WO2013191355A1 - 신규 화합물 및 이를 포함하는 유기 전계 발광 소자 - Google Patents

신규 화합물 및 이를 포함하는 유기 전계 발광 소자 Download PDF

Info

Publication number
WO2013191355A1
WO2013191355A1 PCT/KR2013/001821 KR2013001821W WO2013191355A1 WO 2013191355 A1 WO2013191355 A1 WO 2013191355A1 KR 2013001821 W KR2013001821 W KR 2013001821W WO 2013191355 A1 WO2013191355 A1 WO 2013191355A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
unsubstituted
substituted
compound
formula
Prior art date
Application number
PCT/KR2013/001821
Other languages
English (en)
French (fr)
Inventor
김성무
백영미
김회문
신진용
박호철
김태형
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Publication of WO2013191355A1 publication Critical patent/WO2013191355A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed systems contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present invention relates to a novel compound and an organic electroluminescent device comprising the same, and more specifically, a novel acridine-based compound having excellent hole injection ability, hole transport ability, light emission ability, and the like, and including the compound as a material of an organic material layer to emit light
  • the present invention relates to an organic EL device having improved characteristics such as efficiency, driving voltage, and lifetime.
  • the organic electroluminescent device when a voltage is applied between two electrodes, holes are injected into the organic material layer from the anode and electrons from the cathode. When the injected holes and electrons meet, excitons are formed, and when the excitons fall to the ground, they shine.
  • the material used as the organic material layer may be classified into a light emitting material, a hole injection material, a hole transport material, an electron transport material, an electron injection material and the like according to its function.
  • the light emitting material may be classified into blue, green, and red light emitting materials according to light emission colors. In addition, it can be divided into yellow and orange light emitting materials required to achieve a better natural color.
  • a host / dopant system may be used as the light emitting material in order to increase the light emission efficiency through increase in color purity and energy transfer.
  • the dopant material may be divided into a fluorescent dopant using an organic material and a phosphorescent dopant using a metal complex compound containing heavy atoms such as Ir and Pt. Since the development of phosphorescent materials can theoretically improve luminous efficiency up to four times compared to fluorescence, attention is being paid not only to phosphorescent dopants but also to phosphorescent host materials.
  • NPB, BCP, Alq 3 , and the like which are used as a hole injection layer, a hole transporting layer, a hole blocking layer, or an electron transporting layer, are widely known, and anthracene derivatives are fluorescent dopants / It is reported as a host material.
  • phosphorescent materials having great advantages in terms of efficiency improvement among light emitting materials include metal complex compounds including Ir such as Firpic, Ir (ppy) 3 , and (acac) Ir (btp) 2 . It is used as a red dopant material.
  • CBP has shown excellent properties as a phosphorescent host material.
  • the conventional luminescent materials are good in terms of luminescence properties, but due to low glass transition temperature and very poor thermal stability, they are not satisfactory in terms of lifespan in organic EL devices. Therefore, there is a demand for development of a light emitting material having excellent performance.
  • An object of the present invention is to provide a novel compound that can be used as a light emitting layer material, a hole transporting layer material, a hole injection layer material having excellent hole injection ability, hole transporting ability, light emitting ability and the like.
  • Another object of the present invention is to provide an organic electroluminescent device including the novel compound having a low driving voltage, high luminous efficiency, and an improved lifetime.
  • the present invention provides a compound represented by the following formula (1).
  • X 1 to X 8 are each independently CR 11 or N, wherein a plurality of CR 11 are the same as or different from each other;
  • R 11 is hydrogen, deuterium, halogen, cyano group, substituted or unsubstituted C 1 to C 40 alkyl group, substituted or unsubstituted C 2 to C 40 alkenyl group, substituted or unsubstituted C 2 to C 40 Alkynyl group, substituted or unsubstituted C 3 to C 40 cycloalkyl group, substituted or unsubstituted C 3 to C 40 heterocycloalkyl group, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted Heteroaryl group having 5 to 60 carbon atoms, substituted or unsubstituted C 1 to C 40 alkyloxy group, substituted or unsubstituted C 6 to C 60 aryloxy group, substituted or unsubstituted C 1 to An alkylsilyl group of C 40 , a substituted or unsubstituted C 6 -C 60 arylsilyl group
  • Y 1 to Y 4 are each independently CR 12 or N, wherein a plurality of CR 12 are the same as or different from each other;
  • R 12 is hydrogen, deuterium, halogen, cyano group, substituted or unsubstituted C 1 to C 40 alkyl group, substituted or unsubstituted C 2 to C 40 alkenyl group, substituted or unsubstituted C 2 to C 40 Alkynyl group, substituted or unsubstituted C 3 to C 40 cycloalkyl group, substituted or unsubstituted C 3 to C 40 heterocycloalkyl group, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted Heteroaryl group having 5 to 60 carbon atoms, substituted or unsubstituted C 1 to C 40 alkyloxy group, substituted or unsubstituted C 6 to C 60 aryloxy group, substituted or unsubstituted C 1 to An alkylsilyl group of C 40 , a substituted or unsubstituted C 6 -C 60 arylsilyl group
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted C 1 ⁇ C 40 alkyl group, a substituted or unsubstituted C 2 ⁇ C 40 alkenyl group, a substituted or unsubstituted C 2 ⁇ C 40 alkynyl group, Substituted or unsubstituted C 3 to C 40 cycloalkyl group, substituted or unsubstituted C 3 to C 40 heterocycloalkyl group, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted nuclear atom A substituted or unsubstituted C 1 -C 40 alkyloxy group, a substituted or unsubstituted C 6 -C 60 aryloxy group, a substituted or unsubstituted C 1 -C 40 group An alkylsilyl group, a substituted or unsubstituted C 6 -C 60 arylsilyl group, and
  • R 21 and R 22 are each independently hydrogen, a substituted or unsubstituted C 1 to C 40 alkyl group, a substituted or unsubstituted C 6 to C 60 aryl group, or a substituted or unsubstituted nuclear atom having 5 to 60 atoms.
  • Heteroaryl groups are selected from the group consisting of;
  • One or more substituents that can be introduced to each of the silyl, arylsilyl and arylamine groups are each independently deuterium, halogen, nitrile, nitro, cyano, C 1 -C 40 alkyl, C 2 -C 40 alkenes group, C 1 ⁇ C 40 alkoxy group, C 1 ⁇ C 40 of the amino group, C of 3 ⁇ C 40 cycloalkyl group, the number of nuclear atoms of 3 to 40 heterocycloalkyl group, C 6 ⁇ C 40 aryl group, a nuclear atom Heteroaryl group of 5 to 60, C 1 ⁇ C 40 alkyloxy group, C 6
  • the present invention is an organic electroluminescent device comprising an anode, a cathode, and at least one organic layer interposed between the anode and the cathode, wherein at least one of the at least one organic layer comprises the compound.
  • an organic electroluminescent device comprising an anode, a cathode, and at least one organic layer interposed between the anode and the cathode, wherein at least one of the at least one organic layer comprises the compound.
  • At least one organic material layer including the compound is selected from the group consisting of a hole transporting layer, a hole injection layer and a light emitting layer, preferably a hole transporting layer and / or a light emitting layer, more preferably a light emitting layer.
  • the compound when the compound is included in the light emitting layer, the compound is used as a phosphorescent host material.
  • the compound according to the present invention has excellent heat resistance, hole injection ability, hole transporting ability, light emitting ability, and the like, it can be used as an organic material layer material of the organic electroluminescent device, preferably a hole injection layer material, a hole transport layer material, or a light emitting layer material. .
  • the organic EL device including the compound according to the present invention in the hole injection layer, the hole transport layer, and / or the light emitting layer may greatly improve aspects such as light emission performance, driving voltage, lifespan, efficiency, and the like. Can be applied effectively.
  • the novel compound according to the present invention is an acridine-based compound in which an indole derivative moiety is fused to an acridine moiety to form a basic skeleton, and various substituents are bonded to the basic skeleton. It is characterized by being displayed as 1.
  • the compound represented by the formula (1) has a higher molecular weight than the conventional organic EL device material (for example, 4,4-dicarbazolybiphenyl (hereinafter referred to as 'CBP')) has a high thermal stability, hole injection ability, hole number It is excellent in the ability to transmit power and light emission. Therefore, when the organic electroluminescent device includes the compound of Formula 1, the driving voltage, efficiency, lifespan, etc. of the device may be improved.
  • the compound represented by Formula 1 has various substituents such as alkyl group, aryl group, heteroaryl group, etc., connected to indoloacridine base skeleton formed by fusion (condensation) of acridine-based moiety and indole derivative moiety. And by condensation of an aromatic ring or a heteroaromatic ring, preferably a heretoaromatic ring, the energy level can be controlled to have a wide bandgap (sky blue to red).
  • the compound of Formula 1 may be used as an organic material layer material, preferably a light emitting layer material (phosphorescent host material), a hole transport layer material and a hole injection layer material, more preferably a light emitting layer material of the organic electroluminescent device.
  • the compound of Formula 1 may optionally be used as an electron transporting layer material by introducing an appropriate substituent.
  • the compound of Formula 1 has a wide bandgap due to the indolo acridine-based skeleton, and can improve the binding force between the hole and the electron, it has excellent properties as a light emitting layer material, especially a phosphorescent host material compared to the conventional CBP Can be exercised.
  • the compound represented by the formula (1) is introduced into a variety of substituents, especially aryl groups and / or heteroaryl groups in the indolo acridine-based skeleton significantly increases the molecular weight of the compound, thereby improving the glass transition temperature, thereby It may have a higher thermal stability than conventional CBP. Therefore, the organic electroluminescent device including the compound represented by Chemical Formula 1 of the present invention may greatly improve durability and lifespan characteristics.
  • the compound represented by Chemical Formula 1 when adopted as a hole injection / transport layer, a blue, green and / or red phosphorescent host material of an organic EL device, it may exhibit an excellent effect in terms of efficiency and lifetime compared to conventional CBP. have. Therefore, the compound according to the present invention can greatly contribute to improving the performance and lifespan of the organic light emitting device, and further, the lifespan of the organic light emitting device can maximize the performance of the full color organic light emitting panel.
  • X 1 to X 8 are each independently CR 11 or nitrogen (N), wherein a plurality of CR 11 may be the same or different from each other.
  • R 11 is hydrogen, halogen, cyano, substituted or unsubstituted C 1 to C 40 alkyl group, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted nuclear atom having 5 to 60 atoms It is preferably selected from the group consisting of a heteroaryl group and a substituted or unsubstituted C 6 ⁇ C 60 arylamine group.
  • the alkyl group, aryl group, heteroaryl group and arylamine group of R 11 are each independently deuterium, halogen, C 1 ⁇ C 40 alkyl group, C 3 ⁇ C 40 cycloalkyl group, heteroatoms of 3 to 40 hetero atoms Cycloalkyl group, C 6 ⁇ C 60 aryl group, C 5 ⁇ C 60 heteroaryl group, C 1 ⁇ C 40 Alkyloxy group, C 6 ⁇ C 60 Aryloxy group, C 1 ⁇ C 40 Alkyl Silyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, C 6 ⁇ C 60 arylphosphine group, C 6 ⁇ C 60 aryl It may be substituted with one or more substituents selected from the group consisting of a phosphine oxide group and a C 6 ⁇ C 60 arylamine group, a plurality of
  • At least one of X 1 to X 8 preferably at least one of X 5 to X 8 is combined with an adjacent group to form a condensed ring represented by Formula 2 above.
  • Y 1 to Y 4 are each independently CR 12 or nitrogen (N), and a plurality of CR 12 may be the same or different from each other.
  • R 12 is hydrogen, halogen, cyano, substituted or unsubstituted C 1 to C 40 alkyl group, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted nuclear atom having 5 to 60 atoms It is preferably selected from the group consisting of a heteroaryl group and a substituted or unsubstituted C 6 ⁇ C 60 arylamine group.
  • the alkyl group, aryl group, heteroaryl group and arylamine group of R 12 are each independently deuterium, halogen, C 1 ⁇ C 40 alkyl group, C 3 ⁇ C 40 cycloalkyl group, heteronuclear atoms of 3 to 40 Cycloalkyl group, C 6 ⁇ C 60 aryl group, C 5 ⁇ C 60 heteroaryl group, C 1 ⁇ C 40 Alkyloxy group, C 6 ⁇ C 60 Aryloxy group, C 1 ⁇ C 40 Alkyl Silyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, C 6 ⁇ C 60 arylphosphine group, C 6 ⁇ C 60 aryl It may be substituted with one or more substituents selected from the group consisting of a phosphine oxide group and a C 6 ⁇ C 60 arylamine group, a plurality
  • At least one of X 1 to X 8 , and Y 1 to Y 4 may be N.
  • the driving voltage of the device is lowered due to a double bond of C and N.
  • Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6 ⁇ C 60 aryl group, substituted or unsubstituted heteroaryl group having 5 to 60 nuclear atoms When selected from the group, it may have a wider bandgap, it is also preferable because the glass transition temperature can be further improved and the thermal stability is further improved.
  • the Ar aryl groups 1 and Ar 2, and heteroaryl groups each independently selected from deuterium, halogen, cyano, C 1 ⁇ C 40 alkyl group, C 3 ⁇ C 40 cycloalkyl group, a number of nuclear atoms of 3 to 40 heterocycloalkyl group of , C 6 ⁇ C 60 aryl group, nuclear atom 5 ⁇ 60 heteroaryl group, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group , C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, C 6 ⁇ C 60 aryl phosphine group, C 6 ⁇ C 60 aryl phosphine It may be substituted with one or more substituents selected from the group consisting of an oxide group and a C 6 ⁇ C 60 arylamine group. In this case, the
  • the aryl group or heteroaryl group is phenyl, naphthyl, indene, anthracene, phenanthrene, pyrene, triphenylene, pyridine, pyrimidine, pyrazine, triazine, quinoline , Isoquinoline, quinoxaline, fluorene, carbazole, dibenzothiophene, dibenzofuran, acridine, indole, benzofuran, benzothiophene, benzimidazole, benzothiazole, purine and the like.
  • R 21 and R 22 are each independently hydrogen, halogen, cyano, alkyl group of C 1 ⁇ C 40 , C 6 ⁇ C 60 aryl group, heteroaryl group of 5 to 60 nuclear atoms, C 6 ⁇ It is preferably selected from the group consisting of C 60 arylamine groups.
  • the alkyl group, aryl group, heteroaryl group, arylamine group of R 21 and R 22 are each independently deuterium, halogen, C 1 ⁇ C 40 alkyl group, C 3 ⁇ C 40 cycloalkyl group, C 3 ⁇ C 40 Heterocycloalkyl group, C 6 ⁇ C 60 aryl group, heteroaryl group having 5 to 60 nuclear atoms, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 Alkyl silyl group, C 6 ⁇ C 60 aryl silyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, C 6 ⁇ C 60 aryl phosphine group, C 6 ⁇ C 60 It may be substituted with one or more substituents selected from the group consisting of an aryl phosphine oxide group and a C 6 ⁇ C 60 arylamine group,
  • R 21 and R 22 may each independently be methyl or phenyl.
  • R 11 , R 12, Ar 1 and Ar 2 may be each independently selected from the group consisting of hydrogen and the following substituents S1 to S166, but is not limited thereto.
  • Examples of the compound represented by Formula 1 according to the present invention include a compound represented by Formula 3, a compound represented by Formula 4, and the like, but is not limited thereto.
  • X 1 to X 5 , and X 8 are each independently CR 11 or N, wherein a plurality of CR 11 are the same as or different from each other;
  • Y 1 to Y 4 are each independently CR 12 or N, wherein a plurality of CR 12 are the same as or different from each other;
  • X 1 to X 5 , X 8 and Y 1 to Y 4 is N;
  • R 11 , R 12 , R 21 , R 22 , Ar 1 and Ar 2 are the same as defined in Chemical Formula 1, respectively.
  • examples of the compound represented by Formula 1 according to the present invention include a compound represented by the following formula (5) to a compound represented by the formula (8), but is not limited thereto.
  • X 1 to X 8 Y 1 to Y 4 , R 21 , R 22 , Ar 1 , and Ar 2 are the same as defined in Formula 1, respectively.
  • unsubstituted alkyl refers to a monovalent functional group obtained by removing a hydrogen atom from a straight or branched chain saturated hydrocarbon of 1 to 40 carbon atoms, non-limiting examples of which are methyl, ethyl, propyl, iso Butyl, sec-butyl, pentyl, iso-amyl, hexyl and the like.
  • unsubstituted alkenyl refers to a monovalent functional group obtained by removing a hydrogen atom from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms having at least one carbon-carbon double bond. do. Examples thereof include vinyl, allyl, isopropenyl, 2-butenyl, and the like, but are not limited thereto.
  • unsubstituted alkynyl means a monovalent functional group obtained by removing a hydrogen atom from a C2-C40 straight or branched unsaturated hydrocarbon having at least one carbon-carbon triple bond. do. Examples thereof include ethynyl, 2-propynyl, and the like, but are not limited thereto.
  • unsubstituted cycloalkyl means a monovalent functional group obtained by removing a hydrogen atom from a monocyclic or polycyclic non-aromatic hydrocarbon (saturated cyclic hydrocarbon) having 3 to 40 carbon atoms.
  • cycloalkyl include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantine, and the like.
  • unsubstituted heterocycloalkyl means a monovalent functional group obtained by removing a hydrogen atom from a non-aromatic hydrocarbon (saturated cyclic hydrocarbon) having 3 to 40 nuclear atoms, wherein at least one of the rings Carbon, preferably 1 to 3 carbons, is substituted with a hetero atom such as N, O or S.
  • a non-aromatic hydrocarbon saturated cyclic hydrocarbon having 3 to 40 nuclear atoms, wherein at least one of the rings Carbon, preferably 1 to 3 carbons, is substituted with a hetero atom such as N, O or S.
  • Non-limiting examples thereof include morpholine, piperazine and the like.
  • unsubstituted aryl means the monovalent functional group obtained by removing a hydrogen atom from a C6-C60 aromatic hydrocarbon combined with a single ring or two or more rings.
  • the two or more rings may be attached to each other in a simple or fused form.
  • Non-limiting examples thereof include phenyl, biphenyl, terphenyl, naphthyl, phenanthryl, anthryl and the like.
  • unsubstituted heteroaryl is a monovalent functional group obtained by removing a hydrogen atom from a monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 5 to 60 nuclear atoms, and preferably at least one carbon in the ring, preferably Preferably 1 to 3 carbons are substituted with heteroatoms such as nitrogen (N), oxygen (O), sulfur (S) or selenium (Se).
  • heteroaryl may be attached in a form in which two or more rings are simply attached or fused to each other, and also include a condensed form with an aryl group.
  • heteroaryl examples include 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl; Polycyclics such as phenoxathienyl, indolinzinyl, indolyl, purinyl, quinolyl, benzothiazole, carbazolyl It is understood to include a ring and to include 2-furanyl, N-imidazolyl, 2-isoxazolyl, 2-pyridinyl, 2-pyrimidinyl, and the like.
  • unsubstituted alkyloxy means a monovalent functional group represented by RO-, wherein R is alkyl having 1 to 40 carbon atoms, and is linear, branched or cyclic ( It is interpreted as including a cyclic) structure.
  • alkyloxy may include, but are not limited to, methoxy, ethoxy, n-propoxy, 1-propoxy, t-butoxy, n-butoxy, pentoxy and the like.
  • unsubstituted aryloxy means a monovalent functional group represented by R'O-, wherein R 'is aryl having 6 to 60 carbon atoms.
  • aryloxy include phenyloxy, naphthyloxy, diphenyloxy and the like.
  • unsubstituted alkylsilyl means silyl substituted with alkyl having 1 to 40 carbon atoms
  • unsubstituted arylsilyl means silyl substituted with aryl having 6 to 60 carbon atoms
  • "Unsubstituted arylamine” means an amine substituted with aryl having 6 to 60 carbon atoms.
  • fused ring means a condensed aliphatic ring, a condensed aromatic ring, a condensed heteroaliphatic ring, a condensed heteroaromatic ring or a combination thereof.
  • the compound represented by Chemical Formula 1 according to the present invention may be synthesized according to a general synthetic method [ Chem. Rev. , 60 : 313 (1960); J. Chem. SOC . 4482 (1955); Chem. Rev. 95: 2457 (1995) et al. Detailed synthesis procedures for the compounds of the present invention will be described in detail in the synthesis examples described below.
  • the present invention provides an organic electroluminescent device comprising a compound represented by the formula (1) (preferably a compound represented by any one of formulas 3 to 8).
  • the organic electroluminescent device includes an anode, a cathode, and at least one organic material layer interposed between the anode and the cathode, and at least one of the at least one organic material layer.
  • the organic electroluminescent device Is characterized in that it comprises at least one compound represented by the formula (1) (preferably a compound represented by any one of formulas 3 to 8).
  • the one or more organic material layers include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, etc.
  • at least one organic material layer may include a compound represented by Chemical Formula 1.
  • at least one organic material layer including the compound of Formula 1 may be a hole transport layer, a hole injection layer or a light emitting layer, more preferably a light emitting layer or a hole transport layer, even more preferably a light emitting layer.
  • the light emitting layer of the organic electroluminescent device according to the present invention comprises a host material and / or a dopant material.
  • the compound represented by Chemical Formula 1 (preferably, the compound represented by any one of Chemical Formulas 3 to 8) may be used as a phosphorescent host material, a fluorescent host, or a dopant material thereof.
  • the compound represented by Formula 1 may be included in the organic light emitting device as a blue, green and / or red phosphorescent host, a fluorescent host, or a dopant material. In this case, the luminous efficiency, luminance, power efficiency, thermal stability and lifespan of the device may be improved due to the compound.
  • the structure of the organic electroluminescent device according to the present invention is not particularly limited, and a non-limiting example may be a structure in which a substrate, an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode are sequentially stacked.
  • an electron injection layer may be further stacked on the electron transport layer.
  • the organic electroluminescent device according to the present invention may not only have a structure in which an anode, at least one organic material layer, and a cathode are sequentially stacked, but also have a structure in which an insulating layer or an adhesive layer is inserted at an interface between the electrode and the organic material layer.
  • the organic electroluminescent device according to the present invention is in the art, except that at least one layer (eg, the light emitting layer, the hole transport layer and / or electron transport layer) of the organic material layer is formed to include the compound represented by the formula (1) It can be prepared by forming other organic material layers and electrodes using known materials and methods.
  • at least one layer eg, the light emitting layer, the hole transport layer and / or electron transport layer
  • the organic material layer is formed to include the compound represented by the formula (1) It can be prepared by forming other organic material layers and electrodes using known materials and methods.
  • the organic material layer may be formed by a vacuum deposition method or a solution coating method.
  • the solution coating method include, but are not limited to, spin coating, dip coating, doctor blading, inkjet printing, or thermal transfer.
  • a silicon wafer As the substrate usable in the present invention, a silicon wafer, a quartz or glass plate, a metal plate, a plastic film or sheet, etc. may be used, but is not limited thereto.
  • examples of the anode material include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole and polyaniline; Or carbon black, but is not limited thereto.
  • metals such as vanadium, chromium, copper, zinc and gold or alloys thereof.
  • Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb
  • Conductive polymers such as polythiophene, poly (3-methylthiophene
  • the negative electrode material may be a metal such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, or lead or an alloy thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like, but are not limited thereto.
  • the hole injection layer, the hole transport layer, the electron injection layer and the electron transport layer is not particularly limited, conventional materials known in the art may be used.
  • Compound AC-13 (3.03 g) was prepared in the same manner as in Synthesis Example 3, except that 1.55 g (5.82 mmol) of Compound IMC-3 synthesized in Preparation Example 3 was used instead of Compound IMC-1 used in Synthesis Example 3. , Yield 86%).
  • a glass substrate coated with ITO (Indium tin oxide) to a thickness of 1500 mm 3 was washed with distilled water ultrasonically. After washing the distilled water, ultrasonic cleaning with a solvent such as isopropyl alcohol, acetone, methanol, dried, and then transferred to a UV OZONE cleaner (Power sonic 405, Hwasin Tech), and then wash the substrate using UV for 5 minutes And the substrate was transferred to a vacuum evaporator.
  • a solvent such as isopropyl alcohol, acetone, methanol
  • Example 2 In the same manner as in Example 1 except for using the compounds AC-1 to AC-30 synthesized in Synthesis Examples 2 to 30 instead of the compound AC-1 used as a host material when forming the emission layer in Example 1 A green organic EL device was manufactured.
  • a green organic EL device was manufactured in the same manner as in Example 1, except that CBP (4,4-dicarbazolybiphenyl) was used instead of the compound AC-1 used as a host material in forming the emission layer in Example 1.
  • CBP 4,4-dicarbazolybiphenyl
  • the structure of CBP used is as described in Example 1.
  • the green organic EL devices manufactured in Examples 1 to 30 using the compounds (compound AC-1 to compound AC-30) according to the present invention as the host material of the light emitting layer As compared with the green organic EL device (Comparative Example 1) using CBP, which is a conventional host material, it has been found to exhibit better performance in terms of efficiency and driving voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 정공 주입 및 수송능, 발광능 등이 우수한 신규 아크리딘계 화합물 및 이를 하나 이상의 유기물층에 포함함으로써 발광효율, 구동 전압, 수명 등의 특성이 향상된 유기 전계 발광 소자에 관한 것이다.

Description

신규 화합물 및 이를 포함하는 유기 전계 발광 소자
본 발명은 신규 화합물 및 이를 포함하는 유기 전계 발광 소자에 관한 것으로, 보다 구체적으로는 정공 주입능, 정공 수송능, 발광능 등이 우수한 신규 아크리딘계 화합물 및 상기 화합물을 유기물층의 재료로서 포함하여 발광효율, 구동 전압, 수명 등의 특성이 향상된 유기 전계 발광 소자에 관한 것이다.
1950년대 Bernanose의 유기 박막 발광 관측을 시점으로 하여, 1965년 안트라센 단결정을 이용한 청색 전기발광으로 이어진 유기 전계 발광 (electroluminescent, EL) 소자(이하, 간단히 '유기 EL 소자'로 칭함)에 대한 연구가 이어져 오다가, 1987년 탕(Tang)에 의하여 정공층과 발광층의 기능층으로 나눈 적층구조의 유기 EL 소자가 제시되었다. 이후, 유기 EL 소자의 효율 및 수명을 향상시키기 위하여, 소자 내 특징적인 유기물층을 도입하는 형태로 발전하여 왔으며, 또한 이에 사용되는 특화된 물질의 개발로 이어졌다.
유기 전계 발광 소자는 두 전극 사이에 전압을 걸어 주면 양극에서는 정공이, 음극에서는 전자가 각각 유기물층으로 주입된다. 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥 상태로 떨어질 때 빛이 나게 된다. 유기물층으로 사용되는 물질은 그 기능에 따라 발광 물질, 정공 주입 물질, 정공 수송 물질, 전자 수송 물질, 전자 주입 물질 등으로 분류될 수 있다.
발광 물질은 발광색에 따라 청색, 녹색, 적색 발광 물질로 구분될 수 있다. 그밖에, 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 물질로 구분될 수 있다. 또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 물질로서 호스트/도펀트 계를 사용할 수 있다. 도판트 물질은 유기 물질을 사용하는 형광 도판트와 Ir, Pt 등의 중원자(heavy atoms)가 포함된 금속 착체 화합물을 사용하는 인광 도판트로 나눌 수 있다. 인광 재료의 개발은 이론적으로 형광에 비해 4배까지의 발광 효율을 향상시킬 수 있기 때문에, 인광 도판트 뿐만 아니라 인광 호스트 재료들에 대해서도 관심이 집중되고 있다.
현재까지 정공 주입층, 정공 수송층, 정공 차단층, 전자 수송층으로사용되는 물질로는, 하기 화학식으로 표시되는 NPB, BCP, Alq3 등이 널리 알려져 있고, 발광 물질로는 안트라센 유도체들이 형광 도판트/호스트 재료로서 보고되고 있다. 특히, 발광 물질 중 효율 향상 측면에서 큰 장점을 가지고 있는 인광 재료로는 Firpic, Ir(ppy)3, (acac)Ir(btp)2 등과 같은 Ir을 포함하는 금속 착체 화합물이 있고, 이들은 청색, 녹색, 적색 도판트 재료로 사용되고 있다. 현재까지는 CBP가 인광 호스트 재료로 우수한 특성을 나타내고 있다.
Figure PCTKR2013001821-appb-I000001
Figure PCTKR2013001821-appb-I000002
그러나, 종래 발광 물질들은 발광 특성 측면에서 양호하나, 유리전이온도가 낮아 열적 안정성이 매우 좋지 않기 때문에, 유기 EL 소자에서의 수명 측면에서 만족할만한 수준이 되지 못하고 있다. 따라서, 우수한 성능을 가지는 발광 물질의 개발이 요구되고 있다.
본 발명은 정공 주입능, 정공 수송능, 발광능 등이 모두 우수하여 발광층 재료, 정공 수송층 재료, 정공 주입층 재료로 사용될 수 있는 신규 화합물을 제공하는 것을 목적으로 한다.
또, 본 발명은 상기 신규 화합물을 포함하여 구동전압이 낮고, 발광 효율이 높으며, 수명이 향상된 유기 전계 발광 소자를 제공하는 것을 또 다른 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다.
화학식 1
Figure PCTKR2013001821-appb-C000001
(상기 화학식 1에서,
X1 내지 X8은 각각 독립적으로 CR11 또는 N이고, 이때 복수개의 CR11은 서로 동일하거나 상이하며;
R11은 수소, 중수소, 할로겐, 시아노기, 치환 또는 비치환된 C1~C40의 알킬기, 치환 또는 비치환된 C2~C40의 알케닐기, 치환 또는 비치환된 C2~C40의 알키닐기, 치환 또는 비치환된 C3~C40의 시클로알킬기, 치환 또는 비치환된 C3~C40의 헤테로시클로알킬기, 치환 또는 비치환된 C6~C60의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 60의 헤테로아릴기, 치환 또는 비치환된 C1~C40의 알킬옥시기, 치환 또는 비치환된 C6~C60의 아릴옥시기, 치환 또는 비치환된 C1~C40의 알킬실릴기, 치환 또는 비치환된 C6~C60의 아릴실릴기 및 치환 또는 비치환된 C6~C60의 아릴아민기로 이루어진 군에서 선택되고, 이때 이들은 인접한 기와 축합(fused)하여 방향족 고리 또는 헤테로방향족 고리를 형성하거나 또는 비형성하고;
단, X1 내지 X8 중 적어도 하나는 인접한 기와 결합하여 하기 화학식 2로 표시되는 축합(fused) 고리를 형성하며;
화학식 2
Figure PCTKR2013001821-appb-C000002
상기 화학식 2 에서,
Y1 내지 Y4는 각각 독립적으로 CR12 또는 N이고, 이때 복수개의 CR12는 서로 동일하거나 상이하며;
R12은 수소, 중수소, 할로겐, 시아노기, 치환 또는 비치환된 C1~C40의 알킬기, 치환 또는 비치환된 C2~C40의 알케닐기, 치환 또는 비치환된 C2~C40의 알키닐기, 치환 또는 비치환된 C3~C40의 시클로알킬기, 치환 또는 비치환된 C3~C40의 헤테로시클로알킬기, 치환 또는 비치환된 C6~C60의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 60의 헤테로아릴기, 치환 또는 비치환된 C1~C40의 알킬옥시기, 치환 또는 비치환된 C6~C60의 아릴옥시기, 치환 또는 비치환된 C1~C40의 알킬실릴기, 치환 또는 비치환된 C6~C60의 아릴실릴기 및 치환 또는 비치환된 C6~C60의 아릴아민기로 이루어진 군에서 선택되고, 이때 이들은 인접한 기와 축합(fused)하여 방향족 고리 또는 헤테로방향족 고리를 형성하거나 또는 비형성하고;
Ar1 및 Ar2은 각각 독립적으로 치환 또는 비치환된 C1~C40의 알킬기, 치환 또는 비치환된 C2~C40의 알케닐기, 치환 또는 비치환된 C2~C40의 알키닐기, 치환 또는 비치환된 C3~C40의 시클로알킬기, 치환 또는 비치환된 C3~C40의 헤테로시클로알킬기, 치환 또는 비치환된 C6~C60의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 60의 헤테로아릴기, 치환 또는 비치환된 C1~C40의 알킬옥시기, 치환 또는 비치환된 C6~C60의 아릴옥시기, 치환 또는 비치환된 C1~C40의 알킬실릴기, 치환 또는 비치환된 C6~C60의 아릴실릴기 및 치환 또는 비치환된 C6~C60의 아릴아민기로 이루어진 군에서 선택되고, 이때 이들은 인접한 기와 축합(fused) 고리를 형성하거나 또는 비형성하며;
R21 및 R22는 각각 독립적으로 수소, 치환 또는 비치환된 C1~C40의 알킬기, 치환 또는 비치환된 C6~C60의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택되며;
상기 R11, R12, R21, R22, Ar1 및 Ar2의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기 및 아릴아민기에 각각 도입될 수 있는 하나 이상의 치환기는 각각 독립적으로 중수소, 할로겐, 니트릴기, 니트로기, 시아노기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C1~C40의 아미노기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C40의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되며, 이때 복수개의 치환기는 서로 동일하거나 상이할 수 있다.
또한, 본 발명은 양극, 음극, 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서, 상기 1층 이상의 유기물층 중 적어도 하나는 상기 화합물을 포함하는 것이 특징인 유기 전계 발광 소자를 제공한다.
상기 화합물을 포함하는 1층 이상의 유기물층은 정공 수송층, 정공 주입층 및 발광층으로 이루어진 군에서 선택되며, 바람직하게는 정공 수송층 및/또는 발광층이며, 보다 바람직하게는 발광층이다. 특히, 상기 화합물이 발광층에 포함될 경우, 상기 화합물은 인광 호스트 재료로 사용된다.
본 발명에 따른 화합물은 내열성, 정공 주입능, 정공 수송능, 발광능 등이 우수하기 때문에, 유기 전계 발광 소자의 유기물층 재료, 바람직하게는 정공 주입층 재료, 정공 수송층 재료 또는 발광층 재료로 사용될 수 있다.
또한, 본 발명에 따른 화합물을 정공 주입층, 정공 수송층 및/또는 발광층에 포함하는 유기 EL 소자는 발광 성능, 구동전압, 수명, 효율 등의 측면이 크게 향상될 수 있고, 나아가 풀 칼라 디스플레이 패널 등에 효과적으로 적용될 수 있다.
이하, 본 발명에 대해 설명한다.
본 발명에 따른 신규 화합물은 아크리딘 모이어티(acridine moiety)에 인돌 유도체 모이어티가 융합(fused)되어 기본 골격을 이루며, 이러한 기본 골격에 다양한 치환체가 결합되어 있는 아크리딘계 화합물로서, 상기 화학식 1로 표시되는 것을 특징으로 한다. 이러한 화학식 1로 표시되는 화합물은 종래 유기 EL 소자용 재료[예: 4,4-dicarbazolybiphenyl (이하, 'CBP'라 함)]보다 큰 분자량을 가져 열적 안정성이 높을 뿐만 아니라, 정공 주입능, 정공 수송능, 발광능 등이 우수하다. 따라서, 상기 화학식 1의 화합물을 유기 전계 발광 소자가 포함할 경우, 소자의 구동 전압, 효율, 수명 등이 향상될 수 있다.
상기 화학식 1로 표시되는 화합물은 아크리딘계 모이어티와 인돌 유도체 모이어티가 융합(축합)되어 이루어진 인돌로아크리딘(indoloacridine) 기본 골격에 알킬기, 아릴기, 헤테로아릴기 등의 다양한 치환체가 연결되어 있고, 또 방향족 고리 또는 헤테로방향족 고리, 바람직하게는 헤레토방향족 고리가 축합되어 있음으로써, 에너지 레벨이 조절되어 넓은 밴드갭 (sky blue ~ red)을 가질 수 있다. 이러한 화합물은 소자의 인광 특성을 향상시킴과 동시에, 정공 주입/수송 능력, 발광 효율, 구동 전압, 수명 특성 등을 향상시킬 수 있고, 또한 도입되는 치환체의 종류에 따라 전자 수송 능력 등도 향상시킬 수 있다. 따라서, 상기 화학식 1의 화합물은 유기 전계 발광 소자의 유기물층 재료, 바람직하게는 발광층 재료(인광 호스트 재료), 정공 수송층 재료 및 정공 주입층 재료, 보다 바람직하게는 발광층 재료로 사용될 수 있다. 또한, 상기 화학식 1의 화합물은 선택적으로 적절한 치환체를 도입함으로써, 전자 수송층 재료 등으로도 사용될 수 있다. 특히, 상기 화학식 1의 화합물은 인돌로아크리딘계 기본골격으로 인해 넓은 밴드갭을 가지면서, 정공과 전자의 결합력을 향상시킬 수 있기 때문에, 종래 CBP에 비해 발광층 재료, 특히 인광 호스트 재료로서 우수한 특성을 발휘할 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 인돌로아크리딘계 기본 골격에 다양한 치환체, 특히 아릴기 및/또는 헤테로아릴기가 도입되어 화합물의 분자량이 유의적으로 증대됨으로써, 유리 전이온도가 향상되고, 이로 인해 종래 CBP보다 높은 열적 안정성을 가질 수 있다. 따라서, 본 발명의 화학식 1로 표시되는 화합물을 포함하는 유기 전계 발광 소자는 내구성 및 수명 특성이 크게 향상될 수 있다.
아울러, 상기 화학식 1로 표시되는 화합물을 유기 전계 발광 소자의 정공 주입/수송층, 청색, 녹색 및/또는 적색의 인광 호스트 재료로 채택할 경우, 종래 CBP 대비 효율 및 수명 측면에서 월등히 우수한 효과를 발휘할 수 있다. 따라서, 본 발명에 따른 화합물은 유기 전계 발광 소자의 성능 개선 및 수명 향상에 크게 기여할 수 있으며, 나아가 유기 전계 발광 소자의 수명 향상은 풀 칼라 유기 발광 패널의 성능을 극대화시킬 수 있다.
본 발명에 따른 화학식 1로 표시되는 화합물에서, X1 내지 X8는 각각 독립적으로 CR11 또는 질소(N)이고, 이때 복수개의 CR11은 서로 동일하거나 상이할 수 있다.
상기 R11은 수소, 할로겐, 시아노, 치환 또는 비치환된 C1~C40의 알킬기, 치환 또는 비치환된 C6~C60의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 60의 헤테로아릴기, 및 치환 또는 비치환된 C6~C60의 아릴아민기로 이루어진 군에서 선택되는 것이 바람직하다.
이때, 상기 R11의 알킬기, 아릴기, 헤테로아릴기 및 아릴아민기는 각각 독립적으로 중수소, 할로겐, C1~C40의 알킬기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 구성된 군으로부터 선택된 하나 이상의 치환기로 치환될 수 있고, 복수개의 치환기는 서로 동일하거나 상이할 수 있다.
다만, 상기 화학식 1의 화합물에서, 상기 X1 내지 X8 중 적어도 하나, 바람직하게는 X5 내지 X8 중 적어도 하나는 인접한 기와 결합하여 상기 화학식 2로 표시되는 축합 고리를 형성한다.
상기 화학식 2로 표시되는 축합 고리에 있어서, Y1 내지 Y4는 각각 독립적으로 CR12 또는 질소(N)이고, 이때 복수개의 CR12는 서로 동일하거나 상이할 수 있다.
상기 R12는 수소, 할로겐, 시아노, 치환 또는 비치환된 C1~C40의 알킬기, 치환 또는 비치환된 C6~C60의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 60의 헤테로아릴기, 및 치환 또는 비치환된 C6~C60의 아릴아민기로 이루어진 군에서 선택되는 것이 바람직하다.
이때, 상기 R12의 알킬기, 아릴기, 헤테로아릴기 및 아릴아민기는 각각 독립적으로 중수소, 할로겐, C1~C40의 알킬기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 구성된 군으로부터 선택된 하나 이상의 치환기로 치환될 수 있고, 복수개의 치환기는 서로 동일하거나 상이할 수 있다.
바람직하게는, 본 발명의 화합물에서, 상기 X1 내지 X8, 및 Y1 내지 Y4 중 적어도 하나가 N일 수 있다. 상기 X1 내지 X8, 및 Y1 내지 Y4 중 적어도 하나가 N일 경우, C와 N의 이중결합으로 인해서 소자의 구동전압이 낮아지는 효과가 있다.
또, 상기 화학식 1로 표시되는 화합물에서, Ar1 및 Ar2가 각각 독립적으로 치환 또는 비치환된 C6~C60의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택된 것일 경우, 보다 넓은 밴드갭을 가질 수 있으며, 또한 유리전이온도가 보다 향상되어 열적 안정성이 보다 더 향상될 수 있어 바람직하다.
상기 Ar1 및Ar2의 아릴기 및 헤테로아릴기는 각각 독립적으로 중수소, 할로겐, 시아노, C1~C40의 알킬기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 구성된 군으로부터 선택된 하나 이상의 치환기로 치환될 수 있다. 이때, 복수개의 치환기는 서로 동일하거나 상이할 수 있다.
일례로, 본 발명의 Ar1 및 Ar2 에서, 상기 아릴기 또는 헤테로아릴기는 페닐, 나프틸, 인덴, 안트라센, 페난트렌, 파이렌, 트리페닐렌, 피리딘, 피리미딘, 피라진, 트리아진, 퀴놀린, 이소퀴놀린, 퀴녹살린, 플루오렌, 카바졸, 디벤조싸이오펜, 디벤조퓨란, 아크리딘, 인돌, 벤조퓨란, 벤조싸이오펜, 벤즈이미다졸, 벤조싸이아졸, 퓨린 등일 수 있다.
또, 상기 R21 및 R22는 각각 독립적으로 수소, 할로겐, 시아노, C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C6~C60의 아릴아민기로 이루어진 군에서 선택된 것이 바람직하다.
이때, 상기 R21 및 R22의 알킬기, 아릴기, 헤테로아릴기, 아릴아민기는 각각 독립적으로 중수소, 할로겐, C1~C40의 알킬기, C3~C40의 시클로알킬기, C3~C40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 구성된 군으로부터 선택된 하나 이상의 치환기로 치환될 수 있고, 복수개의 치환기는 서로 동일하거나 상이할 수 있다.
보다 바람직하게는, 상기 R21 및 R22는 각각 독립적으로 메틸 또는 페닐일 수 있다.
본 발명에 따른 화학식 1의 화합물에서, 상기 R11, R12, Ar1 및 Ar2는 각각 독립적으로 수소, 및 하기 치환기 S1 내지 S166로 이루어진 군에서 선택될 수 있는데, 이에 한정되는 것은 아니다.
Figure PCTKR2013001821-appb-I000003
Figure PCTKR2013001821-appb-I000004
Figure PCTKR2013001821-appb-I000005
Figure PCTKR2013001821-appb-I000006
Figure PCTKR2013001821-appb-I000007
Figure PCTKR2013001821-appb-I000008
본 발명에 따른 화학식 1로 표시되는 화합물의 예로는 하기 화학식 3으로 표시되는 화합물, 화학식 4로 표시되는 화합물 등이 있는데, 이에 한정되지 않는다.
화학식 3
Figure PCTKR2013001821-appb-C000003
화학식 4
Figure PCTKR2013001821-appb-C000004
상기 화학식 3 및 4에서,
X1 내지 X5, 및 X8은 각각 독립적으로 CR11 또는 N이고, 이때 복수개의 CR11은 서로 동일하거나 상이하고;
Y1 내지 Y4는 각각 독립적으로 CR12 또는 N이고, 이때 복수개의 CR12는 서로 동일하거나 상이하며;
단, X1 내지 X5, X8 및 Y1 내지 Y4 중 적어도 하나는 N이고;
R11, R12, R21, R22, Ar1 및 Ar2는 각각 화학식 1에서 정의한 바와 동일하다.
또, 본 발명에 따른 화학식 1로 표시되는 화합물의 예로는 하기 화학식 5로 표시되는 화합물 내지 화학식 8로 표시되는 화합물 등이 있는데, 이에 한정되지 않는다.
화학식 5
Figure PCTKR2013001821-appb-C000005
화학식 6
Figure PCTKR2013001821-appb-C000006
화학식 7
Figure PCTKR2013001821-appb-C000007
화학식 8
Figure PCTKR2013001821-appb-C000008
상기 화학식 5 내지 8에서,
상기 X1 내지 X8, Y1 내지 Y4, R21, R22, Ar1, 및 Ar2는 각각 화학식 1에서 정의한 바와 동일하다.
상기 화학식 1로 표시되는 화합물의 구체적인 예로는 하기 예시된 것들이 있는데, 이에 한정되는 것은 아니다. 하기 화합물의 구조식에서, Ar1 및 Ar2는 각각 독립적으로 화학식 1에서 정의한 바와 동일하다.
Figure PCTKR2013001821-appb-I000009
Figure PCTKR2013001821-appb-I000010
Figure PCTKR2013001821-appb-I000011
Figure PCTKR2013001821-appb-I000012
Figure PCTKR2013001821-appb-I000013
Figure PCTKR2013001821-appb-I000014
Figure PCTKR2013001821-appb-I000015
Figure PCTKR2013001821-appb-I000016
Figure PCTKR2013001821-appb-I000017
Figure PCTKR2013001821-appb-I000018
Figure PCTKR2013001821-appb-I000019
Figure PCTKR2013001821-appb-I000020
Figure PCTKR2013001821-appb-I000021
Figure PCTKR2013001821-appb-I000022
Figure PCTKR2013001821-appb-I000023
Figure PCTKR2013001821-appb-I000024
Figure PCTKR2013001821-appb-I000025
Figure PCTKR2013001821-appb-I000026
Figure PCTKR2013001821-appb-I000027
Figure PCTKR2013001821-appb-I000028
Figure PCTKR2013001821-appb-I000029
Figure PCTKR2013001821-appb-I000030
Figure PCTKR2013001821-appb-I000031
Figure PCTKR2013001821-appb-I000032
Figure PCTKR2013001821-appb-I000033
Figure PCTKR2013001821-appb-I000034
Figure PCTKR2013001821-appb-I000035
Figure PCTKR2013001821-appb-I000036
Figure PCTKR2013001821-appb-I000037
Figure PCTKR2013001821-appb-I000038
Figure PCTKR2013001821-appb-I000039
Figure PCTKR2013001821-appb-I000040
Figure PCTKR2013001821-appb-I000041
Figure PCTKR2013001821-appb-I000042
Figure PCTKR2013001821-appb-I000043
Figure PCTKR2013001821-appb-I000044
Figure PCTKR2013001821-appb-I000045
Figure PCTKR2013001821-appb-I000046
본 발명에서 사용되는 "비치환된 알킬"은 탄소수 1 내지 40의 직쇄 또는 측쇄의 포화 탄화수소로부터 수소 원자를 제거하여 얻어지는 1가의 작용기를 의미하며, 이의 비제한적인 예로는 메틸, 에틸, 프로필, 이소부틸, sec-부틸, 펜틸, iso-아밀, 헥실 등이 있다.
또, 본 발명에서 "비치환된 알케닐(alkenyl)"은 탄소-탄소 이중 결합을 1개 이상 가진, 탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소로부터 수소 원자를 제거하여 얻어지는 1가의 작용기를 의미한다. 이의 예로는 비닐(vinyl), 알릴(allyl), 이소프로펜일(isopropenyl), 2-부텐일(2-butenyl) 등이 있으며, 이에 한정되는 것은 아니다.
또, 본 발명에서 "비치환된 알키닐(alkynyl)"은 탄소-탄소 삼중 결합을 1개 이상 가진, 탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소로부터 수소 원자를 제거하여 얻어지는 1가의 작용기를 의미한다. 이의 예로는 에타인일(ethynyl), 2-프로파인일(2-propynyl) 등이 있는데, 이에 제한되는 것은 아니다.
또, 본 발명에서 "비치환된 시클로알킬"은 탄소수 3 내지 40의 모노사이클릭 또는 폴리사이클릭 비-방향족 탄화수소(포화 고리형 탄화수소)로부터 수소 원자를 제거하여 얻어지는 1가의 작용기를 의미한다. 이러한 시클로알킬의 예로는 시클로프로필, 시클로펜틸, 시클로헥실, 놀보닐(norbornyl), 아다만틴(adamantine)등이 있는데, 이에 한정되지 않는다.
또, 본 발명에서 "비치환된 헤테로시클로알킬"은 핵원자수 3 내지 40의 비-방향족 탄화수소(포화 고리형 탄화수소)로부터 수소 원자를 제거하여 얻어지는 1가의 작용기를 의미하며, 이때 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O 또는 S와 같은 헤테로 원자로 치환된다. 이의 비-제한적인 예로는 모르폴린, 피페라진 등이 있다.
또, 본 발명에서 "비치환된 아릴"은 단독 고리 혹은 2 이상의 고리가 조합된, 탄소수 6 내지 60의 방향족 탄화수소로부터 수소 원자를 제거하여 얻어지는 1가의 작용기를 의미한다. 이때, 2 이상의 고리는 서로 단순 부착(pendant)되거나 축합된(fused) 형태로 부착될 수 있다. 이의 비제한적인 예로는 페닐, 비페닐, 터페닐(terphenyl), 나프틸, 페난트릴, 안트릴 등이 있다.
또, 본 발명에서 "비치환된 헤테로아릴"은 핵원자수 5 내지 60의 모노헤테로사이클릭 또는 폴리헤테로사이클릭 방향족 탄화수소로부터 수소 원자를 제거하여 얻어지는 1가의 작용기로서, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 질소(N), 산소(O), 황(S) 또는 셀레늄(Se)과 같은 헤테로원자로 치환된다. 이때, 헤테로아릴은 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된(fused) 형태로 부착될 수 있고, 나아가 아릴기와의 축합된 형태도 포함한다. 이러한 헤테로아릴의 비제한적인 예로는 피리딜, 피라지닐, 피리미디닐, 피리다지닐, 트리아지닐과 같은 6-원 모노사이클릭 고리; 페녹사티에닐(phenoxathienyl), 인돌리지닐(indolizinyl), 인돌릴(indolyl), 퓨리닐(purinyl), 퀴놀릴(quinolyl), 벤조티아졸(benzothiazole), 카바졸릴(carbazolyl)과 같은 폴리사이클릭 고리를 포함하고, 2-퓨라닐, N-이미다졸릴, 2-이속사졸릴, 2-피리디닐, 2-피리미디닐 등도 포함하는 것으로 해석한다.
또, 본 발명에서 "비치환된 알킬옥시"는 RO-로 표시되는 1가의 작용기를 의미하며, 이때 상기 R은 탄소수 1 내지 40개의 알킬로서, 직쇄(linear), 측쇄(branched) 또는 사이클릭(cyclic) 구조를 포함하는 것으로 해석한다. 이러한 알킬옥시의 예로는 메톡시, 에톡시, n-프로폭시, 1-프로폭시, t-부톡시, n-부톡시, 펜톡시 등이 포함될 수 있으며 이에 한정되지는 않는다.
또, 본 발명에서 "비치환된 아릴옥시"는 R'O-로 표시되는 1가의 작용기를 의미하며, 이때 상기 R'는 탄소수 6 내지 60의 아릴이다. 아릴옥시의 비제한적인 예로는 페닐옥시, 나프틸옥시, 디페닐옥시 등이 있다.
또, 본 발명에서 "비치환된 알킬실릴"은 탄소수 1 내지 40의 알킬로 치환된 실릴을 의미하며, "비치환된 아릴실릴"은 탄소수 6 내지 60의 아릴로 치환된 실릴을 의미하고, "비치환된 아릴아민"은 탄소수 6 내지 60의 아릴로 치환된 아민을 의미한다.
또한, 본 발명에서 "축합(fused) 고리"는 축합 지방족 고리, 축합 방향족 고리, 축합 헤테로지방족 고리, 축합 헤테로방향족 고리 또는 이들의 조합된 형태를 의미한다.
본 발명에 따른 화학식 1로 표시되는 화합물은 일반적인 합성방법에 따라 합성될 수 있다 [Chem. Rev., 60:313 (1960); J. Chem. SOC. 4482 (1955); Chem. Rev. 95: 2457 (1995) 등 참조]. 본 발명의 화합물에 대한 상세한 합성 과정은 후술하는 합성예에서 구체적으로 기술하도록 한다.
한편, 본 발명은 전술한 화학식 1로 표시되는 화합물(바람직하게는 화학식 3 내지 8 중 어느 하나로 표시되는 화합물)을 포함하는 유기 전계 발광 소자를 제공한다.
구체적으로, 본 발명에 따른 유기 전계 발광 소자는 양극(anode), 음극(cathode), 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하며, 상기 1층 이상의 유기물층 중 적어도 하나는 상기 화학식 1로 표시되는 화합물(바람직하게는 화학식 3 내지 8 중 어느 하나로 표시되는 화합물)을 1종 이상 포함하는 것을 특징으로 하는 한다.
상기 1층 이상의 유기물층으로는 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등이 있는데, 이 중에서 적어도 하나의 유기물층이 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. 바람직하게는 상기 화학식 1의 화합물을 포함하는 1층 이상의 유기물층은 정공 수송층, 정공 주입층 또는 발광층일 수 있으며, 보다 바람직하게는 발광층 또는 정공 수송층일 수 있고, 보다 더욱 바람직하게는 발광층일 수 있다.
일례로, 본 발명에 따른 유기 전계 발광 소자의 발광층은 호스트 재료 및/또는 도펀트 재료를 포함한다. 이때, 상기 화학식 1로 표시되는 화합물(바람직하게는 화학식 3 내지 8 중 어느 하나로 표시되는 화합물)을 발광층의 인광 호스트 재료 또는 형광 호스트나, 이의 도펀트 재료로 사용할 수 있다. 바람직하게는, 상기 화학식 1로 표시되는 화합물이 청색, 녹색 및/또는 적색의 인광 호스트, 형광 호스트, 또는 도펀트 재료로서 유기 발광 소자에 포함될 수 있다. 이 경우, 상기 화합물로 인해 소자의 발광효율, 휘도, 전력효율, 열적 안정성 및 수명이 향상될 수 있다.
본 발명에 따른 유기 전계 발광 소자의 구조는 특별히 한정되지 않으며, 비제한적인 예로는 기판, 양극, 정공 주입층, 정공 수송층, 발광층, 전자 수송층 및 음극이 순차적으로 적층된 구조일 수 있다. 선택적으로, 전자수송층 위에는 전자주입층이 추가로 적층될 수도 있다. 또한, 본 발명에 따른 유기 전계 발광 소자는 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조뿐만 아니라, 전극과 유기물층 계면에 절연층 또는 접착층이 삽입된 구조로 이루어질 수도 있다.
본 발명에 따른 유기 전계 발광 소자는 상기 유기물층 중 1층 이상(예컨대, 발광층, 정공수송층 및/또는 전자수송층)이 상기 화학식 1로 표시되는 화합물을 포함하도록 형성하는 것을 제외하고는, 당 기술 분야에 알려져 있는 재료 및 방법을 이용하여 다른 유기물층 및 전극을 형성하여 제조될 수 있다.
상기 유기물층은 진공증착법이나 용액 도포법에 의하여 형성될 수 있다. 상기 용액 도포법의 예로는 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅 또는 열 전사법 등이 있으나, 이들에만 한정되지 않는다.
본 발명에서 사용 가능한 기판으로는 실리콘 웨이퍼, 석영 또는 유리판, 금속판, 플라스틱 필름이나 시트 등이 사용될 수 있는데, 이에 한정되지 않는다.
또, 양극 물질로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리티오펜, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자; 또는 카본블랙 등이 있으나, 이에 한정되지 않는다.
또, 음극 물질로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 또는 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
또한, 정공 주입층, 정공 수송층, 전자 주입층 및 전자 수송층은 특별히 한정되는 것은 아니며, 당업계에 알려진 통상의 물질이 사용될 수 있다.
이하, 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
[준비예 1] 화합물 IMC-1의 합성
<단계 1> 9,9-dimethyl-2-(2-nitrophenyl)-10-phenyl-9,10-dihydroacridine의 합성
Figure PCTKR2013001821-appb-I000047
질소 기류 하에서 18.21 g (50.0 mmol)의 2-bromo-9,9-dimethyl-10-phenyl-9,10-dihydroacridine, 9.18 g (55.0 mmol)의 2-nitrophenylboronic acid, 6.00 g (150.0 mmol)의 NaOH과 200 ml/100 ml의 THF/H2O를 넣고, 교반하여 반응 혼합물을 얻었다. 이후, 40 ℃에서 2.90 g (5 mol%)의 Pd(PPh3)4를 넣고, 80 ℃에서 12시간 동안 교반하였다. 반응 종결 후, 메틸렌클로라이드로 추출한 다음, MgSO4를 넣고 필터링하였다. 이후, 필터링된 유기층에서 용매를 제거한 다음, 컬럼크로마토그래피를 이용하여 9,9-dimethyl-2-(2-nitrophenyl)-10-phenyl-9,10-dihydroacridine 16.67 g (yield: 82 %)을 얻었다.
1H-NMR: δ 1.75 (s, 6H), 6.68 (m, 6H), 7.00 (m, 2H), 7.24 (m, 3H), 7.66 (m, 2H), 8.01 (m, 3H)
<단계 2> 화합물 IMC-1의 합성
Figure PCTKR2013001821-appb-I000048
질소 기류 하에서 준비예 1의 <단계 1>에서 얻은 9,9-dimethyl-2-(2-nitrophenyl)-10-phenyl-9,10-dihydroacridine 7.76 g (19.10 mmol)를 triphenylphosphine 12.52 g (47.72 mmol), 및 1,2-dichlorobenzene 50 ml와 혼합한 다음, 12시간 교반하였다. 반응 종료 후, 1,2-dichlorobenzene를 제거하고 디클로로메탄으로 추출하여 유기층을 얻었다. 이후, MgSO4로 추출된 유기층에서 물을 제거한 다음, 컬럼크로마토그래피를 이용하여 화합물 IMC-1 2.86 g (yield: 40 %)을 획득하였다.
1H-NMR: δ 1.75 (s, 6H), 6.69 (m, 6H), 7.01 (m, 2H), 7.26 (m, 3H), 7.68 (m, 3H), 8.12 (d, 1H), 10.44 (s, 1H)
[준비예 2] 화합물 IMC-2 및 화합물 IMC-3의 합성
<단계 1> 9,9-dimethyl-2-(3-nitropyridin-2-yl)-10-phenyl-9,10-dihydroacridine의 합성
Figure PCTKR2013001821-appb-I000049
준비예 1의 <단계 1>에서 사용된 2-nitrophenylboronic acid 대신 3-nitropyridin-2-ylboronic acid 25.19 g (150 mmol)을 사용하는 것을 제외하고는, 준비예 1의 <단계 1>과 동일하게 수행하여 9,9-dimethyl-2-(3-nitropyridin-2-yl)-10-phenyl-9,10-dihydroacridine을 얻었다.
1H-NMR: δ 1.75 (s, 6H), 6.66 (m, 6H), 7.03 (m, 2H), 7.24 (m, 3H), 7.87 (d, 1H), 8.19 (m, 2H), 8.89 (d, 1H)
<단계 2> 화합물 IMC-2 및 화합물 IMC-3의 합성
Figure PCTKR2013001821-appb-I000050
준비예 1의 <단계 2>에서 사용된 9,9-dimethyl-2-(2-nitrophenyl)-10-phenyl-9,10-dihydroacridine 대신 준비예 2의 <단계 1>에서 얻은 9,9-dimethyl-2-(3-nitropyridin-2-yl)-10-phenyl-9,10-dihydroacridine 7.78 g (19.10 mmol)을 사용하는 것을 제외하고는, 준비예 1의 <단계 2>와 동일하게 수행하여 화합물 IMC-2 및 화합물 IMC-3을 얻었다.
IMC-2 의 1H-NMR: δ 1.75 (s, 6H), 6.68 (m, 6H), 7.02 (m, 2H), 7.23 (m, 3H), 7.80 (m, 2H), 8.44 (d, 1H), 10.42 (s, 1H)
IMC-3 의 1H-NMR: δ 1.75 (s, 6H), 6.67 (m, 6H), 7.02 (m, 2H), 7.23 (m, 3H), 7.84 (m, 2H), 8.45 (d, 1H), 10.41 (s, 1H)
[준비예 3] 화합물 IMC-4 의 합성
<단계 1> 9,9-dimethyl-3-(2-nitrophenyl)-10-phenyl-9,10-dihydroacridine의 합성
Figure PCTKR2013001821-appb-I000051
준비예 1의 <단계 1>에서 사용된 2-bromo-9,9-dimethyl-10-phenyl-9,10-dihydroacridine 대신 3-bromo-9,9-dimethyl-10-phenyl-9,10-dihydroacridine 18.21 g (50.0 mmol)을 사용하는 것을 제외하고는, 준비예 1의 <단계 1>과 동일하게 수행하여 9,9-dimethyl-3-(2-nitrophenyl)-10-phenyl-9,10-dihydroacridine을 얻었다.
1H-NMR: δ 1.75 (s, 6H), 6.68 (m, 7H), 7.01 (m, 2H), 7.22 (m, 3H), 7.64 (t, 1H), 7.99 (m, 3H)
<단계 2> 화합물 IMC-4의 합성
Figure PCTKR2013001821-appb-I000052
준비예 1의 <단계 2>에서 사용된 9,9-dimethyl-2-(2-nitrophenyl)-10-phenyl-9,10-dihydroacridine 대신 준비예 3의 <단계 1>에서 얻은 9,9-dimethyl-3-(2-nitrophenyl)-10-phenyl-9,10-dihydroacridine 15.48 g (38.0 mmol)을 사용하는 것을 제외하고는, 준비예 1의 <단계 2>와 동일하게 수행하여 화합물 IMC-4를 얻었다.
IMC-4 의 1H-NMR: δ 1.75 (s, 6H), 6.69 (m, 5H), 7.01 (m, 2H), 7.23 (m, 4H), 7.54 (m, 3H), 8.12 (d, 1H), 10.44 (s, 1H)
[준비예 4] 화합물 IMC-5 의 합성
<단계 1> 9,9-dimethyl-3-(3-nitropyridin-2-yl)-10-phenyl-9,10-dihydroacridine의 합성
Figure PCTKR2013001821-appb-I000053
준비예 1의 <단계 1>에서 사용된 2-bromo-9,9-dimethyl-10-phenyl-9,10-dihydroacridine 대신 3-bromo-9,9-dimethyl-10-phenyl-9,10-dihydroacridine 18.21 g (50.0 mmol)을 사용하고, 2-nitrophenylboronic acid 대신 3-nitropyridin-2-ylboronic acid 9.24 g (55.0 mmol)을 사용하는 것을 제외하고는, 준비예 1의 <단계 1>과 동일하게 수행하여 9,9-dimethyl-3-(3-nitropyridin-2-yl)-10-phenyl-9,10-dihydroacridine을 얻었다.
1H-NMR: δ 1.75 (s, 6H), 6.68 (m, 5H), 7.01 (m, 2H), 7.24 (m, 5H), 7.58 (d, 1H), 8.32 (d, 1H), 8.89 (d, 1H)
<단계 2> 화합물 IMC-5의 합성
Figure PCTKR2013001821-appb-I000054
준비예 1의 <단계 2>에서 사용된 9,9-dimethyl-2-(2-nitrophenyl)-10-phenyl-9,10-dihydroacridine 대신 준비예 4의 <단계 1>에서 얻은 9,9-dimethyl-3-(3-nitropyridin-2-yl)-10-phenyl-9,10-dihydroacridine 15.69 g (38.5 mmol)을 사용하는 것을 제외하고는, 준비예 1의 <단계 2>와 동일하게 수행하여 화합물 IMC-5를 얻었다.
IMC-5 의 1H-NMR: δ 1.75 (s, 6H), 6.68 (m, 5H), 7.01 (m, 2H), 7.23 (m, 5H), 7.98 (d, 1H), 8.43 (d, 1H), 10.42 (s, 1H)
[준비예 5] 화합물 IMC-6 의 합성
<단계 1> 2-(3-nitropyridin-2-yl)-9,9,10-triphenyl-9,10-dihydroacridine의 합성
Figure PCTKR2013001821-appb-I000055
준비예 1의 <단계 1>에서 사용된 2-bromo-9,9-dimethyl-10-phenyl-9,10-dihydroacridine 대신 2-bromo-9,9,10-triphenyl-9,10-dihydroacridine 24.42 g (50.0 mmol)을 사용하는 것을 제외하고는, 준비예 1의 <단계 1>과 동일하게 수행하여 2-(3-nitropyridin-2-yl)-9,9,10-triphenyl-9,10-dihydroacridine을 얻었다.
1H-NMR: δ 1.75 (s, 6H), 6.68 (m, 11H), 7.01 (m, 2H), 7.24 (m, 9H), 7.58 (d, 1H), 8.27 (d, 1H), 8.89 (d, 1H)
<단계 2> 화합물 IMC-6의 합성
Figure PCTKR2013001821-appb-I000056
준비예 1의 <단계 2>에서 사용된 9,9-dimethyl-2-(2-nitrophenyl)-10-phenyl-9,10-dihydroacridine 대신 준비예 5의 <단계 1>에서 얻은 2-(3-nitropyridin-2-yl)-9,9,10-triphenyl-9,10-dihydroacridine 17.54 g (33.0 mmol)을 사용하는 것을 제외하고는, 준비예 1의 <단계 2>와 동일하게 수행하여 화합물 IMC-6를 얻었다.
IMC-6 의 1H-NMR: δ 1.75 (s, 6H), 6.68 (m, 11H), 7.01 (m, 2H), 7.23 (m, 9H), 7.98 (d, 1H), 8.38 (d, 1H), 10.43 (s, 1H)
[합성예 1] AC-1의 합성
Figure PCTKR2013001821-appb-I000057
질소 기류 하에서 준비예 1에서 합성된 화합물 IMC-1 (4.98 g, 13.29 mmol)을, 3,3'-(5-bromo-1,3-phenylene)dipyridine (8.27 g, 26.57 mmol), Cu powder(0.17 g, 2.66 mmol), K2CO3(3.66 g, 26.57 mmol), Na2SO4(3.78 g, 26.57 mmol) 및 nitrobenzene(100 ml)와 혼합하고, 190 ℃에서 12시간 동안 교반하였다.
반응이 종결된 후, nitrobenzene을 제거하고 메틸렌클로라이드로 유기층을 분리한 다음, MgSO4를 이용하여 유기층에서 물을 제거하였다. 유기층에서 용매를 제거한 후, 컬럼크로마토그래피로 정제하여 화합물 AC-1 (5.06 g, 수율: 63 %)을 얻었다.
Exact Mass: 604 g/mol
Elemental Analysis: C, 85.40; H, 5.33; N, 9.26
[합성예 2] 화합물 AC-2의 합성
Figure PCTKR2013001821-appb-I000058
합성예 1에서 사용된 3,3'-(5-bromo-1,3-phenylene)dipyridine 대신 2-bromo-4,6-diphenylpyridine 6.24 g (20.12 mmol)을 사용하는 것을 제외하고는, 합성예 1과 동일하게 수행하여 화합물 AC-2 (4.78 g, 수율: 59 %)을 얻었다.
Exact Mass: 603 g/mol
Elemental Analysis: C, 87.53; H, 5.51; N, 6.96
[합성예 3] 화합물 AC-3의 합성
Figure PCTKR2013001821-appb-I000059
질소 기류 하에서 준비예 1에서 합성된 화합물 IMC-1 (2.19 g, 5.85 mmol)를, 2-chloro-4,6-diphenylpyrimidine (2.09 g, 7.85 mmol), NaH (2.11 g, 8.78 mmol) 및 DMF(80 ml)와 혼합한 다음, 상온에서 3 시간 동안 교반하였다. 반응이 종결된 후, 물을 넣고 고체 화합물을 필터링한 다음, 컬럼 크로마토그래피로 정제하여 화합물 AC-3 (2.86 g, 수율: 81 %)를 얻었다.
Exact Mass: 604 g/mol
Elemental Analysis: C, 85.40; H, 5.33; N, 9.26
[합성예 4] 화합물 AC-4의 합성
Figure PCTKR2013001821-appb-I000060
합성예 3에서 사용된 2-chloro-4,6-diphenylpyrimidine 대신 2-chloro-4,6-diphenyl-1,3,5-triazine 1.49 g (8.37 mmol)을 사용하는 것을 제외하고는, 합성예 3과 동일하게 수행하여 화합물 AC-4 (3.01 g, 수율: 89 %)을 얻었다.
Exact Mass: 605 g/mol
Elemental Analysis: C, 83.28; H, 5.16; N, 11.56
[합성예 5] 화합물 AC-5의 합성
Figure PCTKR2013001821-appb-I000061
합성예 3에서 사용된 2-chloro-4,6-diphenylpyrimidine 대신 2,4-di(biphenyl-3-yl)-6-chloro-1,3,5-triazine 3.78 g (9.02 mmol)을 사용하는 것을 제외하고는, 합성예 3과 동일하게 수행하여 화합물 AC-5 (2.73 g, 수율: 75 %)을 얻었다.
Exact Mass: 757 g/mol
Elemental Analysis: C, 85.57; H, 5.19; N, 9.24
[합성예 6] 화합물 AC-6의 합성
Figure PCTKR2013001821-appb-I000062
합성예 1에서 사용된 화합물 IMC-1 대신 준비예 2에서 합성된 화합물 IMC-2 3.04 g (9.78 mmol)를 사용하는 것을 제외하고는, 합성예 1과 동일하게 수행하여 화합물 AC-6 (2.37 g, 수율: 60 %)을 얻었다.
Exact Mass: 605 g/mol
Elemental Analysis: C, 83.28; H, 5.16; N, 11.56
[합성예 7] 화합물 AC-7의 합성
Figure PCTKR2013001821-appb-I000063
합성예 1에서 사용된 화합물 IMC-1 대신 준비예 2에서 합성된 화합물 IMC-2 2.4 g (6.40 mmol)을 사용하고, 3,3'-(5-bromo-1,3-phenylene)dipyridine 대신 2-bromo-4,6-diphenylpyridine 2.98 g (9.60 mmol)을 사용하는 것을 제외하고는 합성예 1과 동일하게 수행하여 화합물 AC-7 (2.40 g, 수율: 62 %)을 얻었다.
Exact Mass: 604 g/mol
Elemental Analysis: C, 85.40; H, 5.33; N, 9.26
[합성예 8] 화합물 AC-8의 합성
Figure PCTKR2013001821-appb-I000064
합성예 3에서 사용된 화합물 IMC-1 대신 준비예 2에서 합성된 화합물 IMC-2 2.32 g (8.71 mmol)을 사용하는 것을 제외하고는, 합성예 3과 동일하게 수행하여 화합물 AC-8 (2.99 g, 수율 85%)을 얻었다.
Exact Mass: 605 g/mol
Elemental Analysis: C, 83.28; H, 5.16; N, 11.56
[합성예 9] 화합물 AC-9의 합성
Figure PCTKR2013001821-appb-I000065
합성예 3에서 사용된 화합물 IMC-1 대신 준비예 2에서 합성된 화합물 IMC-2 2.14 g (5.71 mmol)을 사용하고, 2-chloro-4,6-diphenylpyrimidine 대신 2-chloro-4,6-diphenyl-1,3,5-triazine 2.29 g (8.57 mmol)을 사용하는 것을 제외하고는, 합성예 3과 동일하게 수행하여 화합물 AC-9 (3.05 g, 수율 88%)를 얻었다.
Exact Mass: 606 g/mol
Elemental Analysis: C, 81.16; H, 4.98; N, 13.85
[합성예 10] 화합물 AC-10의 합성
Figure PCTKR2013001821-appb-I000066
합성예 3에서 사용된 화합물 IMC-1 대신 준비예 2에서 합성된 화합물 IMC-2 1.69 g (4.50 mmol)을 사용하고, 2-chloro-4,6-diphenylpyrimidine 대신 2,4-di(biphenyl-3-yl)-6-chloro-1,3,5-triazine 2.83 g (6.75 mmol)을 사용하는 것을 제외하고는, 합성예 3과 동일하게 수행하여 화합물 AC-10 (2.87 g, 수율 84%)을 얻었다.
Exact Mass: 758 g/mol
Elemental Analysis: C, 83.88; H, 5.05; N, 11.07
[합성예 11] 화합물 AC-11의 합성
Figure PCTKR2013001821-appb-I000067
합성예 1에서 사용된 화합물 IMC-1 대신 준비예 3에서 합성된 화합물 IMC-3 3.03 g (9.73 mmol)을 사용하는 것을 제외하고는, 합성예 1과 동일하게 수행하여 화합물 AC-11 (2.75 g, 수율: 70 %)을 얻었다.
Exact Mass: 605 g/mol
Elemental Analysis: C, 83.28; H, 5.16; N, 11.56
[합성예 12] 화합물 AC-12의 합성
Figure PCTKR2013001821-appb-I000068
합성예 1에서 사용된 화합물 IMC-1 대신 준비예 3에서 합성된 화합물 IMC-3 2.38 g (6.35 mmol)을 사용하고, 3,3'-(5-bromo-1,3-phenylene)dipyridine 대신 2-bromo-4,6-diphenylpyridine 2.96 g (9.53 mmol)을 사용하는 것을 제외하고는, 합성예 1과 동일하게 수행하여 화합물 AC-12 (2.61 g, 수율 68%)를 얻었다.
Exact Mass: 604 g/mol
Elemental Analysis: C, 85.40; H, 5.33; N, 9.26
[합성예 13] 화합물 AC-13의 합성
Figure PCTKR2013001821-appb-I000069
합성예 3에서 사용된 화합물 IMC-1 대신 준비예 3에서 합성된 화합물 IMC-3 1.55 g (5.82 mmol)을 사용하는 것을 제외하고는, 합성예 3과 동일하게 수행하여 화합물 AC-13 (3.03 g, 수율 86%)을 얻었다.
Exact Mass: 605 g/mol
Elemental Analysis: C, 83.28; H, 5.16; N, 11.56
[합성예 14] 화합물 AC-14의 합성
Figure PCTKR2013001821-appb-I000070
합성예 3에서 사용된 화합물 IMC-1 대신 준비예 3에서 합성된 화합물 IMC-3 2.24 g (5.97 mmol)을 사용하고, 2-chloro-4,6-diphenylpyrimidine 대신 2-chloro-4,6-diphenyl-1,3,5-triazine 2.40 g (8.96 mmol)을 사용하는 것을 제외하고는, 합성예 3과 동일하게 수행하여 화합물 AC-14 (3.19 g, 수율 88%)를 얻었다.
Exact Mass: 606 g/mol
Elemental Analysis: C, 81.16; H, 4.98; N, 13.85
[합성예 15] 화합물 AC-15의 합성
Figure PCTKR2013001821-appb-I000071
합성예 3에서 사용된 화합물 IMC-1 대신 준비예 3에서 합성된 화합물 IMC-3 1.82 g (4.85 mmol)을 사용하고, 2-chloro-4,6-diphenylpyrimidine 대신 2,4-di(biphenyl-3-yl)-6-chloro-1,3,5-triazine 3.05 g (7.28 mmol)을 사용하는 것을 제외하고는, 합성예 3과 동일하게 수행하여 화합물 AC-15 (3.09 g, 수율 84%)를 얻었다.
Exact Mass: 758 g/mol
Elemental Analysis: C, 83.88; H, 5.05; N, 11.07
[합성예 16] 화합물 AC-16의 합성
Figure PCTKR2013001821-appb-I000072
합성예 1에서 사용된 화합물 IMC-1 대신 준비예 4에서 합성된 화합물 IMC-4 2.56 g (6.84 mmol)을 사용하는 것을 제외하고는, 합성예 1과 동일하게 수행하여 화합물 AC-16 (2.40 g, 수율 58%)을 얻었다.
Exact Mass: 604 g/mol
Elemental Analysis: C, 85.40; H, 5.33; N, 9.26
[합성예 17] 화합물 AC-17의 합성
Figure PCTKR2013001821-appb-I000073
합성예 1에서 사용된 화합물 IMC-1 대신 준비예 4에서 합성된 화합물 IMC-4 2.75 g (7.34 mmol)을 사용하고, 3,3'-(5-bromo-1,3-phenylene)dipyridine 대신 2-bromo-4,6-diphenylpyridine 3.42 g (11.01 mmol)을 사용하는 것을 제외하고는, 합성예 1과 동일하게 수행하여 화합물 AC-17 (2.66 g, 수율: 60 %)을 얻었다.
Exact Mass: 603 g/mol
Elemental Analysis: C, 87.53; H, 5.51; N, 6.96
[합성예 18] 화합물 AC-18의 합성
Figure PCTKR2013001821-appb-I000074
합성예 3에서 사용된 화합물 IMC-1 대신 준비예 4에서 합성된 화합물 IMC-4 2.26 g (6.05 mmol)을 사용하는 것을 제외하고는, 합성예 3과 동일하게 수행하여 화합물 AC-18 (3.07 g, 수율: 84 %)을 얻었다.
Exact Mass: 604 g/mol
Elemental Analysis: C, 85.40; H, 5.33; N, 9.26
[합성예 19] 화합물 AC-19의 합성
Figure PCTKR2013001821-appb-I000075
합성예 3에서 사용된 화합물 IMC-1 대신 준비예 4에서 합성된 화합물 IMC-4 2.26 g (6.04 mmol)을 사용하고, 2-chloro-4,6-diphenylpyrimidine 대신 2-chloro-4,6-diphenyl-1,3,5-triazine 2.43 g (9.06 mol)을 사용하는 것을 제외하고는, 합성예 3과 동일하게 수행하여 화합물 AC-19 (3.00 g, 수율: 82 %)을 얻었다.
Exact Mass: 605 g/mol
Elemental Analysis: C, 83.28; H, 5.16; N, 11.56
[합성예 20] 화합물 AC-20의 합성
Figure PCTKR2013001821-appb-I000076
합성예 3에서 사용된 화합물 IMC-1 대신 준비예 4에서 합성된 화합물 IMC-4 1.73 g (4.63 mmol)을 사용하고, 2-chloro-4,6-diphenylpyrimidine 대신 2,4-di(biphenyl-3-yl)-6-chloro-1,3,5-triazine 2.92 g (6.95 mmol)을 사용하는 것을 제외하고는, 합성예 3과 동일하게 수행하여 화합물 AC-20 (3.12 g, 수율: 89 %)을 얻었다.
Exact Mass: 757 g/mol
Elemental Analysis: C, 85.57; H, 5.19; N, 9.24
[합성예 21] 화합물 AC-21의 합성
Figure PCTKR2013001821-appb-I000077
합성예 1에서 사용된 화합물 IMC-1 대신 준비예 5에서 합성된 화합물 IMC-5 4.99g (13.29 mmol)을 사용하는 것을 제외하고는, 합성예 1과 동일하게 수행하여 화합물 AC-21 (5.55 g, 수율: 69 %)을 얻었다.
Exact Mass: 605 g/mol
Elemental Analysis: C, 83.28; H, 5.16; N, 11.56
[합성예 22] 화합물 AC-22의 합성
Figure PCTKR2013001821-appb-I000078
합성예 1에서 사용된 화합물 IMC-1 대신 준비예 5에서 합성된 화합물 IMC-5 4.98 g (13.29 mmol)을 사용하고, 3,3'-(5-bromo-1,3-phenylene)dipyridine 대신 2-bromo-4,6-diphenylpyridine 6.18 g (19.94 mmol)을 사용하는 것을 제외하고는, 합성예 1과 동일하게 수행하여 화합물 AC-22 (6.26 g, 수율: 78 %)을 얻었다.
Exact Mass: 604 g/mol
Elemental Analysis: C, 85.40; H, 5.33; N, 9.26
[합성예 23] 화합물 AC-23의 합성
Figure PCTKR2013001821-appb-I000079
합성예 3에서 사용된 화합물 IMC-1 대신 준비예 5에서 합성된 화합물 IMC-5 2.20 g (5.85 mmol)을 사용하는 것을 제외하고는, 합성예 3과 동일하게 수행하여 화합물 AC-23 (3.08 g, 수율: 87 %)을 얻었다.
Exact Mass: 605 g/mol
Elemental Analysis: C, 83.28; H, 5.16; N, 11.56
[합성예 24] 화합물 AC-24의 합성
Figure PCTKR2013001821-appb-I000080
합성예 3에서 사용된 화합물 IMC-1 대신 준비예 5에서 합성된 화합물 IMC-5 2.20 g (5.85 mmol)을 사용하고, 2-chloro-4,6-diphenylpyrimidine 대신 2-chloro-4,6-diphenyl-1,3,5-triazine 2.64 g (9.85 mmol)을 사용하는 것을 제외하고는, 합성예 3과 동일하게 수행하여 화합물 AC-24 (3.30 g, 수율: 93 %)을 얻었다.
Exact Mass: 606 g/mol
Elemental Analysis: C, 81.16; H, 4.98; N, 13.85
[합성예 25] 화합물 AC-25의 합성
Figure PCTKR2013001821-appb-I000081
합성예 3에서 사용된 화합물 IMC-1 대신 준비예 5에서 합성된 화합물 IMC-5 2.20 g (5.85 mmol)을 사용하고, 2-chloro-4,6-diphenylpyrimidine 대신 2,4-di(biphenyl-3-yl)-6-chloro-1,3,5-triazine 4.12 g (9.85 mmol)을 사용하는 것을 제외하고는, 합성예 3과 동일하게 수행하여 화합물 AC-25 (4.08 g, 수율: 92 %)를 얻었다.
Exact Mass: 758 g/mol
Elemental Analysis: C, 83.88; H, 5.05; N, 11.07
[합성예 26] 화합물 AC-26의 합성
Figure PCTKR2013001821-appb-I000082
합성예 1에서 사용된 화합물 IMC-1 대신 준비예 6에서 합성된 화합물 IMC-6 6.64 (13.29 mmol)을 사용하는 것을 제외하고는, 합성예 1과 동일하게 수행하여 화합물 AC-26 (6.30 g, 수율: 65 %)을 얻었다.
Exact Mass: 729 g/mol
Elemental Analysis: C, 85.57; H, 4.83; N, 9.60
[합성예 27] 화합물 AC-27의 합성
Figure PCTKR2013001821-appb-I000083
합성예 1에서 사용된 화합물 IMC-1 대신 준비예 6에서 합성된 화합물 IMC-6 6.64 (13.29 mmol)을 사용하고, 3,3'-(5-bromo-1,3-phenylene)dipyridine 대신 2-bromo-4,6-diphenylpyridine 8.24 g (26.57 mmol)을 사용하는 것을 제외하고는, 합성예 1과 동일하게 수행하여 화합물 AC-27 (6.39 g, 수율: 66 %)를 얻었다.
Exact Mass: 728 g/mol
Elemental Analysis: C, 87.33; H, 4.98; N, 7.69
[합성예 28] 화합물 AC-28의 합성
Figure PCTKR2013001821-appb-I000084
합성예 3에서 사용된 화합물 IMC-1 대신 준비예 6에서 합성된 화합물 IMC-6 2.92 g (5.85 mmol)을 사용하는 것을 제외하고는, 합성예 3과 동일하게 수행하여 화합물 AC-28 (3.50 g, 수율: 82 %)을 얻었다.
Exact Mass: 729 g/mol
Elemental Analysis: C, 85.57; H, 4.83; N, 9.60
[합성예 29] 화합물 AC-29의 합성
Figure PCTKR2013001821-appb-I000085
합성예 3에서 사용된 화합물 IMC-1 대신 준비예 6에서 합성된 화합물 IMC-6 2.92 g (5.85 mmol)을 사용하고, 2-chloro-4,6-diphenylpyrimidine 대신 2-chloro-4,6-diphenyl-1,3,5-triazine 2.64 g (9.85 mmol)을 사용하는 것을 제외하고는, 합성예 3과 동일하게 수행하여 화합물 AC-29 (3.72 g, 수율 87%)를 얻었다.
Exact Mass: 730 g/mol
Elemental Analysis: C, 83.81; H, 4.69; N, 11.50
[합성예 30] 화합물 AC-30의 합성
Figure PCTKR2013001821-appb-I000086
합성예 3에서 사용된 화합물 IMC-1 대신 준비예 6에서 합성된 화합물 IMC-6 2.92 g (5.85 mmol)을 사용하고, 2-chloro-4,6-diphenylpyrimidine 대신 2,4-di(biphenyl-3-yl)-6-chloro-1,3,5-triazine 4.14 g (9.85 mmol)을 사용하는 것을 제외하고는, 합성예 3과 동일하게 수행하여 화합물 AC-30 (4.85 g, 수율: 94%)을 얻었다.
Exact Mass: 882 g/mol
Elemental Analysis: C, 85.69; H, 4.79; N, 9.52
[실시예 1] 녹색 유기 EL 소자의 제작
합성예 1에서 합성된 화합물 AC-1를 통상적으로 알려진 방법으로 고순도 승화정제를 한 후 하기 과정에 따라 녹색 유기 EL 소자를 제조하였다.
ITO (Indium tin oxide)가 1500 Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면, 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후, UV OZONE 세정기 (Power sonic 405, 화신테크)로 이송시킨 다음, UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
상기와 같이 준비된 ITO 투명 전극 위에, m-MTDATA (60 nm) / TCTA (80 nm) / 화합물 AC-10 + 10 % Ir(ppy)3 (300nm) / BCP (10 nm) / Alq3 (30 nm) / LiF (1 nm) / Al (200 nm) 순으로 적층하여 유기 EL 소자를 제조하였다.
사용된 m-MTDATA, TCTA, Ir(ppy)3, CBP 및 BCP의 구조는 하기와 같다.
Figure PCTKR2013001821-appb-I000087
Figure PCTKR2013001821-appb-I000088
[실시예 2 ~ 30] 녹색 유기 EL 소자의 제조
실시예 1에서 발광층 형성시 호스트 물질로 사용된 화합물 AC-1 대신 합성예 2 내지 30에서 각각 합성된 화합물 AC-1 ~ AC-30을 사용하는 것을 제외하고는, 실시예 1과 동일하게 수행하여 녹색 유기 EL 소자를 제조하였다.
[비교예 1] 녹색 유기 EL 소자의 제작
실시예 1에서 발광층 형성시 호스트 물질로 사용된 화합물 AC-1 대신 CBP(4,4-dicarbazolybiphenyl)를 사용하는 것을 제외하고는, 실시예 1과 동일하게 수행하여 녹색 유기 EL 소자를 제조하였다. 사용된 CBP의 구조는 실시예 1에 기재된 바와 같다.
[평가예]
실시예 1 내지 30, 및 비교예 1에서 각각 제조된 녹색 유기 EL 소자에 대하여 전류밀도 10 mA/㎠에서의 구동전압, 전류효율 및 발광 피크를 측정하였고, 그 결과를 하기 표 1에 나타내었다.
표 1
호스트 구동 전압(V) EL 피크 (nm) 전류효율 (cd/A)
실시예 1 화합물 AC-1 6.88 515 44.0
실시예 2 화합물 AC-2 6.76 518 44.8
실시예 3 화합물 AC-3 6.61 517 44.2
실시예 4 화합물 AC-4 6.71 515 44.7
실시예 5 화합물 AC-5 6.67 518 44.5
실시예 6 화합물 AC-6 6.52 515 43.2
실시예 7 화합물 AC-7 6.53 518 43.3
실시예 8 화합물 AC-8 6.50 517 43.5
실시예 9 화합물 AC-9 6.55 515 44.2
실시예 10 화합물 AC-10 6.52 518 44.3
실시예 11 화합물 AC-11 6.51 515 43.4
실시예 12 화합물 AC-12 6.50 518 44.5
실시예 13 화합물 AC-13 6.53 517 43.6
실시예 14 화합물 AC-14 6.54 515 43.7
실시예 15 화합물 AC-15 6.50 518 44.8
실시예 16 화합물 AC-16 6.86 515 44.2
실시예 17 화합물 AC-17 6.74 518 43.3
실시예 18 화합물 AC-18 6.63 517 44.3
실시예 19 화합물 AC-19 6.72 515 44.3
실시예 20 화합물 AC-20 6.71 518 43.5
실시예 21 화합물 AC-21 6.54 515 44.6
실시예 22 화합물 AC-22 6.56 518 43.2
실시예 23 화합물 AC-23 6.54 517 44.2
실시예 24 화합물 AC-24 6.55 515 43.7
실시예 25 화합물 AC-25 6.53 518 44.5
실시예 26 화합물 AC-26 6.55 515 44.0
실시예 27 화합물 AC-27 6.51 518 44.3
실시예 28 화합물 AC-28 6.52 517 43.3
실시예 29 화합물 AC-29 6.53 515 44.1
실시예 30 화합물 AC-30 6.54 518 44.1
비교예 1 CBP 6.93 516 38.2
실험 결과, 상기 표1에서 알 수 있는 바와 같이, 본 발명에 따른 화합물(화합물 AC-1 ~ 화합물 AC-30)을 발광층의 호스트 물질로 사용한 실시예 1 내지 30에서 각각 제조된 녹색 유기 EL 소자는, 종래 호스트 물질인 CBP를 사용한 녹색 유기 EL 소자(비교예1)에 비해 효율 및 구동전압 면에서 보다 우수한 성능을 나타내는 것을 알 수 있었다.

Claims (9)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2013001821-appb-I000089
    (상기 화학식 1에서,
    X1 내지 X8은 각각 독립적으로 CR11 또는 N이고, 이때 복수개의 CR11은 서로 동일하거나 상이하며;
    R11은 수소, 중수소, 할로겐, 시아노기, 치환 또는 비치환된 C1~C40의 알킬기, 치환 또는 비치환된 C2~C40의 알케닐기, 치환 또는 비치환된 C2~C40의 알키닐기, 치환 또는 비치환된 C3~C40의 시클로알킬기, 치환 또는 비치환된 C3~C40의 헤테로시클로알킬기, 치환 또는 비치환된 C6~C60의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 60의 헤테로아릴기, 치환 또는 비치환된 C1~C40의 알킬옥시기, 치환 또는 비치환된 C6~C60의 아릴옥시기, 치환 또는 비치환된 C1~C40의 알킬실릴기, 치환 또는 비치환된 C6~C60의 아릴실릴기 및 치환 또는 비치환된 C6~C60의 아릴아민기로 이루어진 군에서 선택되고, 이때 이들은 인접한 기와 축합(fused)하여 방향족 고리 또는 헤테로방향족 고리를 형성하거나 또는 비형성하고;
    단, X1 내지 X8 중 적어도 하나는 인접한 기와 하기 화학식 2로 표시되는 축합(fused) 고리를 형성하며;
    [화학식 2]
    Figure PCTKR2013001821-appb-I000090
    상기 화학식 2 에서,
    Y1 내지 Y4는 각각 독립적으로 CR12 또는 N이고, 이때 복수개의 CR12는 서로 동일하거나 상이하며;
    R12은 수소, 중수소, 할로겐, 시아노기, 치환 또는 비치환된 C1~C40의 알킬기, 치환 또는 비치환된 C2~C40의 알케닐기, 치환 또는 비치환된 C2~C40의 알키닐기, 치환 또는 비치환된 C3~C40의 시클로알킬기, 치환 또는 비치환된 C3~C40의 헤테로시클로알킬기, 치환 또는 비치환된 C6~C60의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 60의 헤테로아릴기, 치환 또는 비치환된 C1~C40의 알킬옥시기, 치환 또는 비치환된 C6~C60의 아릴옥시기, 치환 또는 비치환된 C1~C40의 알킬실릴기, 치환 또는 비치환된 C6~C60의 아릴실릴기 및 치환 또는 비치환된 C6~C60의 아릴아민기로 이루어진 군에서 선택되고, 이때 이들은 인접한 기와 축합(fused)하여 방향족 고리 또는 헤테로방향족 고리를 형성하거나 또는 비형성하고;
    Ar1 및 Ar2은 각각 독립적으로, 치환 또는 비치환된 C1~C40의 알킬기, 치환 또는 비치환된 C2~C40의 알케닐기, 치환 또는 비치환된 C2~C40의 알키닐기, 치환 또는 비치환된 C3~C40의 시클로알킬기, 치환 또는 비치환된 C3~C40의 헤테로시클로알킬기, 치환 또는 비치환된 C6~C60의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 60의 헤테로아릴기, 치환 또는 비치환된 C1~C40의 알킬옥시기, 치환 또는 비치환된 C6~C60의 아릴옥시기, 치환 또는 비치환된 C1~C40의 알킬실릴기, 치환 또는 비치환된 C6~C60의 아릴실릴기 및 치환 또는 비치환된 C6~C60의 아릴아민기로 이루어진 군에서 선택되고, 이때 이들은 인접한 기와 축합(fused) 고리를 형성하거나 또는 비형성하며;
    R21 및 R22는 각각 독립적으로 수소, 치환 또는 비치환된 C1~C40의 알킬기, 치환 또는 비치환된 C6~C60의 아릴기, 치환 또는 비치환된 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택되며;
    상기 R11, R12, R21, R22, Ar1 및 Ar2의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기 및 아릴아민기에 각각 도입될 수 있는 하나 이상의 치환기는 각각 독립적으로 중수소, 할로겐, 니트릴기, 니트로기, 시아노기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C1~C40의 아미노기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C40의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되며, 이때 복수개의 치환기는 서로 동일하거나 상이할 수 있음).
  2. 제1항에 있어서, 하기 화학식 3 또는 4로 표시되는 화합물:
    [화학식 3]
    Figure PCTKR2013001821-appb-I000091
    ; 및
    [화학식 4]
    Figure PCTKR2013001821-appb-I000092
    (상기 화학식 3 및 4에서,
    X1 내지 X5, 및 X8은 각각 독립적으로 CR11 또는 N이고, 이때 복수개의 CR11은 서로 동일하거나 상이하고;
    Y1 내지 Y4는 각각 독립적으로 CR12 또는 N이고, 이때 복수개의 CR12는 서로 동일하거나 상이하며;
    단, X1 내지 X5, X8 및 Y1 내지 Y4 중 적어도 하나는 N이고;
    R11, R12, R21, R22, Ar1 및 Ar2는 각각 제1항에서 정의한 바와 동일함).
  3. 제1항에 있어서, 하기 화학식 5 내지 8 중 어느 하나로 표시되는 화합물:
    [화학식 5]
    Figure PCTKR2013001821-appb-I000093
    ;
    [화학식 6]
    Figure PCTKR2013001821-appb-I000094
    ;
    [화학식 7]
    Figure PCTKR2013001821-appb-I000095
    ; 및
    [화학식 8]
    Figure PCTKR2013001821-appb-I000096
    (상기 화학식 5 내지 8에서,
    X1 내지 X8, Y1 내지 Y4, R21, R22, Ar1, 및 Ar2는 각각 제1항에서 정의한 바와 동일함).
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 Ar1 및 Ar2 는 각각 독립적으로C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택되고,
    상기 Ar1 및 Ar2의 아릴기 및 헤테로아릴기 각각에 도입될 수 있는 하나 이상의 치환기는 각각 독립적으로 중수소, 할로겐, 니트릴기, 니트로기, 시아노기, C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C1~C40의 아미노기, 핵원자수 3 내지 40의 시클로알킬기, C3~C40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되며, 이때 복수개의 치환기는 서로 동일하거나 상이할 수 있는 것이 특징인 화합물.
  5. 양극, 음극, 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서,
    상기 1층 이상의 유기물층 중에서 적어도 하나는 제1항 내지 제3항 중 어느 한 항에 기재된 화합물을 포함하는 것이 특징인 유기 전계 발광 소자.
  6. 제5항에 있어서,
    상기 화합물을 포함하는 1층 이상의 유기물층은 정공 주입층, 정공 수송층 및 발광층으로 이루어진 군에서 선택되는 것이 특징인 유기 전계 발광 소자.
  7. 제5항에 있어서,
    상기 화합물을 포함하는 유기물층은 발광층인 것이 특징인 유기 전계 발광 소자.
  8. 제7항에 있어서,
    상기 화합물은 인광 호스트인 것이 특징인 유기 전계 발광 소자.
  9. 제5항에 있어서,
    상기 화합물을 포함하는 유기물층은 정공수송층인 것이 특징인 유기 전계 발광 소자.
PCT/KR2013/001821 2012-06-20 2013-03-06 신규 화합물 및 이를 포함하는 유기 전계 발광 소자 WO2013191355A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0066360 2012-06-20
KR1020120066360A KR101366492B1 (ko) 2012-06-20 2012-06-20 신규 화합물 및 이를 포함하는 유기 전계 발광 소자

Publications (1)

Publication Number Publication Date
WO2013191355A1 true WO2013191355A1 (ko) 2013-12-27

Family

ID=49768926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001821 WO2013191355A1 (ko) 2012-06-20 2013-03-06 신규 화합물 및 이를 포함하는 유기 전계 발광 소자

Country Status (2)

Country Link
KR (1) KR101366492B1 (ko)
WO (1) WO2013191355A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106255695A (zh) * 2014-04-29 2016-12-21 东进世美肯株式会社 新型化合物及包含其的有机发光元件
TWI571467B (zh) * 2014-06-30 2017-02-21 喜星素材股份有限公司 雜環化合物及使用其之有機發光裝置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015167223A1 (ko) * 2014-04-29 2015-11-05 주식회사 동진쎄미켐 신규한 화합물 및 이를 포함하는 유기발광소자
KR102317448B1 (ko) 2014-07-17 2021-10-28 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102339569B1 (ko) * 2014-12-22 2021-12-17 솔루스첨단소재 주식회사 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR102198515B1 (ko) * 2014-12-23 2021-01-05 솔루스첨단소재 주식회사 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102515592B1 (ko) 2017-08-24 2023-03-30 삼성디스플레이 주식회사 함질소 화합물 및 이를 포함하는 유기 전계 발광 소자

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050123800A1 (en) * 2003-10-17 2005-06-09 Kim Kong K. Organic compound and organic light emitting device using the same
US20070224446A1 (en) * 2006-03-24 2007-09-27 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
US20110062429A1 (en) * 2008-05-08 2011-03-17 Takahiro Kai Compound for organic electroluminescent device and organic electroluminescent device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5089235B2 (ja) 2006-08-04 2012-12-05 キヤノン株式会社 縮合複素環化合物および有機発光素子
KR101718165B1 (ko) * 2009-09-11 2017-03-20 후지필름 가부시키가이샤 광전 변환 소자 및 그 제조방법, 광센서, 촬상소자 및 이들의 구동방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050123800A1 (en) * 2003-10-17 2005-06-09 Kim Kong K. Organic compound and organic light emitting device using the same
US20070224446A1 (en) * 2006-03-24 2007-09-27 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
US20110062429A1 (en) * 2008-05-08 2011-03-17 Takahiro Kai Compound for organic electroluminescent device and organic electroluminescent device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK, MIN SU ET AL.: "Fused indole derivatives as high triplet energy hole transport materials for deep blue phosphorescent organic light-emitting diodes", J. MATER. CHEM., vol. 22, February 2012 (2012-02-01), pages 3099 - 3104 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106255695A (zh) * 2014-04-29 2016-12-21 东进世美肯株式会社 新型化合物及包含其的有机发光元件
CN106255695B (zh) * 2014-04-29 2019-12-31 东进世美肯株式会社 化合物及包含其的有机发光元件
TWI571467B (zh) * 2014-06-30 2017-02-21 喜星素材股份有限公司 雜環化合物及使用其之有機發光裝置
US10446765B2 (en) 2014-06-30 2019-10-15 Heesung Material Ltd. Heterocyclic compound and organic light emitting element using same

Also Published As

Publication number Publication date
KR101366492B1 (ko) 2014-02-25
KR20130142818A (ko) 2013-12-30

Similar Documents

Publication Publication Date Title
WO2016105161A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2019017616A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2018230782A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2013094999A2 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2015060684A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2013100497A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2017111543A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017111544A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2013168927A2 (ko) 신규 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017209488A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014098447A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2013191355A1 (ko) 신규 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2019103397A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016105123A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015133804A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015111943A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015125986A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020009381A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017111389A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015060635A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020218680A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2016013894A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015133808A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018186551A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015046982A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 08-04-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13806617

Country of ref document: EP

Kind code of ref document: A1