WO2018038400A1 - 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 - Google Patents

유기 화합물 및 이를 포함하는 유기 전계 발광 소자 Download PDF

Info

Publication number
WO2018038400A1
WO2018038400A1 PCT/KR2017/007717 KR2017007717W WO2018038400A1 WO 2018038400 A1 WO2018038400 A1 WO 2018038400A1 KR 2017007717 W KR2017007717 W KR 2017007717W WO 2018038400 A1 WO2018038400 A1 WO 2018038400A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
aryl
formula
alkyl
boron
Prior art date
Application number
PCT/KR2017/007717
Other languages
English (en)
French (fr)
Inventor
배형찬
김영배
김회문
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Publication of WO2018038400A1 publication Critical patent/WO2018038400A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to novel organic compounds that can be used as materials for organic electroluminescent devices and organic electroluminescent devices comprising the same.
  • the material used as the organic material layer may be classified into a light emitting material, a hole injection material, a hole transport material, an electron transport material, an electron injection material and the like according to its function.
  • the light emitting materials may be classified into blue, green, and red light emitting materials, and yellow and orange light emitting materials for better natural colors according to light emission colors.
  • a host / dopant system may be used as the light emitting material in order to increase the light emission efficiency through increase in color purity and energy transfer.
  • the dopant material may be divided into a fluorescent dopant using an organic material and a phosphorescent dopant using a metal complex compound containing heavy atoms such as Ir and Pt.
  • a metal complex compound containing heavy atoms such as Ir and Pt.
  • NPB hole blocking layer
  • BCP hole blocking layer
  • electron transporting layer material anthracene derivatives have been reported as the light emitting layer material.
  • metal complex compounds containing Ir such as Firpic, Ir (ppy) 3 , and (acac) Ir (btp) 2 , which have advantages in terms of efficiency improvement among the light emitting layer materials, are blue, green, and red. (red) is used as the phosphorescent dopant material, 4,4-dicarbazolybiphenyl (CBP) is used as the phosphorescent host material.
  • the conventional organic material has an advantageous aspect in terms of light emission characteristics, but the thermal stability is not very good due to the low glass transition temperature, it is not a satisfactory level in terms of the life of the organic EL device. Therefore, the development of the organic material layer material which is excellent in performance is calculated
  • an object of the present invention is to provide a novel compound and an organic electroluminescent device using the compound which can improve the efficiency, lifespan and stability of the organic electroluminescent device.
  • the present invention provides a compound represented by the following formula (1):
  • X 1 is selected from the group consisting of S, O, N (Ar 1 ) and C (Ar 2 ) (Ar 3 );
  • A is a substituent represented by the following formula (2);
  • Ar 1 to Ar 3 are each independently a substituent represented by formula (3);
  • Y 1 is selected from the group consisting of S, O, N (Ar 4 ) and C (Ar 5) (Ar 6 );
  • Q 1 and Q 2 are each independently selected from the group consisting of C 6 ⁇ C 30 arene and 5 to 30 heteroarylene atoms;
  • n is an integer from 0 to 4.
  • Ar 4 to Ar 6 and R 1 are each independently a substituent represented by Formula 4, and when there are a plurality of R 1 , they are the same as or different from each other;
  • L 1 is selected from the group consisting of a single bond, an arylene group having 6 to 18 carbon atoms and a heteroarylene group having 5 to 18 nuclear atoms;
  • R 2 is hydrogen, deuterium, halogen, cyano group, nitro group, C 1 -C 40 alkyl group, C 2 -C 40 alkenyl group, C 2 -C 40 alkynyl group, C 3 -C 40 cycloalkyl group, 3 to 40 heterocycloalkyl groups, C 6 to C 60 aryl groups, 5 to 60 heteroaryl groups, C 1 to C 40 alkyloxy groups, C 6 to C 60 aryloxy groups , C 3 ⁇ C 40 Alkylsilyl group, C 6 ⁇ C 60 Arylsilyl group, C 1 ⁇ C 40 Alkyl boron group, C 6 ⁇ C 60 Aryl boron group, C 6 ⁇ C 60 Aryl phospha A aryl group, a C 6 -C 60 mono or diarylphosphinyl group, and a C 6 -C 60 arylamine group, or combine with an adjacent group to form a condensed ring;
  • L 2 is selected from the group consisting of a single bond, an arylene group having 6 to 18 carbon atoms and a heteroarylene group having 5 to 18 nuclear atoms;
  • R 3 is hydrogen, deuterium, halogen, cyano group, nitro group, C 1 -C 40 alkyl group, C 2 -C 40 alkenyl group, C 2 -C 40 alkynyl group, C 3 -C 40 cycloalkyl group, 3 to 40 heterocycloalkyl groups, C 6 to C 60 aryl groups, 5 to 60 heteroaryl groups, C 1 to C 40 alkyloxy groups, C 6 to C 60 aryloxy groups , C 3 ⁇ C 40 Alkylsilyl group, C 6 ⁇ C 60 Arylsilyl group, C 1 ⁇ C 40 Alkyl boron group, C 6 ⁇ C 60 Aryl boron group, C 6 ⁇ C 60 Aryl phospha group, C 6 ⁇ C 60 mono or diaryl phosphine blood group and a C 6 ⁇ , or selected from the group consisting of C 60 aryl amine, the combination group adjacent to form a condensed ring;
  • Arylene group and a heteroarylene group, an alkyl group of the R 3 of the L 2, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aryloxy group, an alkyloxy group, a cycloalkyl group, a heterocycloalkyl group, an arylamine group, Alkylsilyl group, alkyl boron group, aryl boron group, arylphosphanyl group, mono or diaryl phosphinyl group and arylsilyl group are each independently deuterium, halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, an aryloxy group of C 2 ⁇ C 40 alkynyl group, C 6 ⁇ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, C 6 ⁇ C 60 of, C 1 ⁇ C 40 alkyl
  • the present invention includes an anode, a cathode and one or more organic material layers interposed between the anode and the cathode, and at least one of the one or more organic material layers provides an organic electroluminescent device comprising the compound of Formula 1. .
  • Alkyl in the present invention is a monovalent substituent derived from a straight or branched chain saturated hydrocarbon having 1 to 40 carbon atoms, examples of which are methyl, ethyl, propyl, isobutyl, sec-butyl, pentyl, iso-amyl and hexyl And the like, but are not limited thereto.
  • Alkenyl in the present invention is a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms having at least one carbon-carbon double bond, and examples thereof include vinyl, Allyl, isopropenyl, 2-butenyl, and the like, but is not limited thereto.
  • Alkynyl in the present invention is a monovalent substituent derived from a C2-C40 straight or branched chain unsaturated hydrocarbon having one or more carbon-carbon triple bonds, examples of which are ethynyl. , 2-propynyl, and the like, but is not limited thereto.
  • Aryl in the present invention means a monovalent substituent derived from an aromatic hydrocarbon having 6 to 60 carbon atoms in which a single ring or two or more rings are combined.
  • monovalent having two or more rings condensed with each other, containing only carbon as a ring forming atom for example, may have 8 to 60 carbon atoms
  • the whole molecule has non-aromacity Substituents may also be included. Examples of such aryl include, but are not limited to, phenyl, naphthyl, phenanthryl, anthryl, fluorenyl, and the like.
  • Heteroaryl in the present invention means a monovalent substituent derived from a monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 5 to 60 nuclear atoms. At least one carbon in the ring, preferably 1 to 3 carbons, is substituted with a heteroatom selected from N, O, P, S and Se. In addition, two or more rings are simply pendant or condensed with each other, and in addition to carbon as a ring forming atom, a hetero atom selected from N, O, P, S and Se, the entire molecule is non-aromatic (non- It is also interpreted to include monovalent groups having aromacity).
  • heteroaryl examples include 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl; Polycides such as phenoxathienyl, indolinzinyl, indolyl, purinyl, quinolyl, benzothiazole, carbazolyl Click ring; 2-furanyl, N-imidazolyl, 2-isoxazolyl, 2-pyridinyl, 2-pyrimidinyl, and the like, but are not limited thereto.
  • aryloxy is a monovalent substituent represented by RO-, wherein R means aryl having 5 to 60 carbon atoms.
  • R means aryl having 5 to 60 carbon atoms. Examples of such aryloxy include, but are not limited to, phenyloxy, naphthyloxy, diphenyloxy, and the like.
  • alkyloxy is a monovalent substituent represented by R'O-, wherein R 'means 1-40 alkyl, and is linear, branched or cyclic structure.
  • alkyloxy include, but are not limited to, methoxy, ethoxy, n-propoxy, 1-propoxy, t-butoxy, n-butoxy, pentoxy and the like.
  • Arylamine in the present invention means an amine substituted with aryl having 6 to 60 carbon atoms.
  • cycloalkyl in the present invention is meant monovalent substituents derived from monocyclic or polycyclic non-aromatic hydrocarbons having 3 to 40 carbon atoms.
  • examples of such cycloalkyl include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantine, and the like.
  • Heterocycloalkyl in the present invention means a monovalent substituent derived from 3 to 40 non-aromatic hydrocarbons having 3 to 40 nuclear atoms, and at least one carbon in the ring, preferably 1 to 3 carbons is N, O, Substituted with a hetero atom such as S or Se.
  • heterocycloalkyl include, but are not limited to, morpholine, piperazine, and the like.
  • alkylsilyl means silyl substituted with alkyl having 1 to 40 carbon atoms
  • arylsilyl means silyl substituted with aryl having 5 to 60 carbon atoms.
  • Condensed ring in the present invention means a condensed aliphatic ring, a condensed aromatic ring, a condensed heteroaliphatic ring, a condensed heteroaromatic ring, or a combination thereof.
  • the compound of the present invention has excellent thermal stability, carrier transporting ability, light emitting ability, and the like, it can be usefully applied as an organic material layer material of an organic EL device.
  • the organic electroluminescent device including the compound of the present invention in the organic material layer can be effectively applied to a full color display panel since the aspects such as light emission performance, driving voltage, lifespan, and efficiency are greatly improved.
  • FIG. 1 illustrates a cross-sectional view of an organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 2 illustrates a cross-sectional view of an organic electroluminescent device according to an embodiment of the present invention.
  • organic layer 31 hole transport layer
  • X 1 is selected from the group consisting of S, O, N (Ar 1 ) and C (Ar 2 ) (Ar 3 );
  • A is a substituent represented by the following formula (2);
  • Ar 1 to Ar 3 are each independently a substituent represented by formula (3);
  • Y 1 is selected from the group consisting of S, O, N (Ar 4 ) and C (Ar 5 ) (Ar 6 );
  • Q 1 and Q 2 are each independently selected from the group consisting of C 6 ⁇ C 30 arene and 5 to 30 heteroarylene atoms;
  • n is an integer from 0 to 4.
  • Ar 4 to Ar 6 and R 1 are each independently a substituent represented by Formula 4, and when there are a plurality of R 1 , they are the same as or different from each other;
  • L 1 is selected from the group consisting of a single bond, an arylene group having 6 to 18 carbon atoms and a heteroarylene group having 5 to 18 nuclear atoms;
  • R 2 is hydrogen, deuterium, halogen, cyano group, nitro group, C 1 -C 40 alkyl group, C 2 -C 40 alkenyl group, C 2 -C 40 alkynyl group, C 3 -C 40 cycloalkyl group, nuclear atoms of 3 to 40 heterocycloalkyl group, C 6 ⁇ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, C 1 ⁇ alkyloxy group of C 40, the aryloxy group of C 6 ⁇ C 60 , C 3 ⁇ C 40 Alkylsilyl group, C 6 ⁇ C 60 Arylsilyl group, C 1 ⁇ C 40 Alkyl boron group, C 6 ⁇ C 60 Aryl boron group, C 6 ⁇ C 60 Aryl phospha A aryl group, a C 6 -C 60 mono or diarylphosphinyl group, and a C 6 -C 60 arylamine group, or combine with an adjacent
  • L 2 is selected from the group consisting of a single bond, an arylene group having 6 to 18 carbon atoms and a heteroarylene group having 5 to 18 nuclear atoms;
  • R 3 is hydrogen, deuterium, halogen, cyano group, nitro group, C 1 -C 40 alkyl group, C 2 -C 40 alkenyl group, C 2 -C 40 alkynyl group, C 3 -C 40 cycloalkyl group, 3 to 40 heterocycloalkyl groups, C 6 to C 60 aryl groups, 5 to 60 heteroaryl groups, C 1 to C 40 alkyloxy groups, C 6 to C 60 aryloxy groups , C 3 ⁇ C 40 Alkylsilyl group, C 6 ⁇ C 60 Arylsilyl group, C 1 ⁇ C 40 Alkyl boron group, C 6 ⁇ C 60 Aryl boron group, C 6 ⁇ C 60 Aryl phospha A aryl group, a C 6 -C 60 mono or diarylphosphinyl group, and a C 6 -C 60 arylamine group, or combine with an adjacent group to form a condensed ring;
  • Arylene group and a heteroarylene group, an alkyl group of the R 3 of the L 2, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aryloxy group, an alkyloxy group, a cycloalkyl group, a heterocycloalkyl group, an arylamine group, Alkylsilyl group, alkyl boron group, aryl boron group, arylphosphanyl group, mono or diaryl phosphinyl group and arylsilyl group are each independently deuterium, halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, an aryloxy group of C 2 ⁇ C 40 alkynyl group, C 6 ⁇ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, C 6 ⁇ C 60 of, C 1 ⁇ C 40 alkyl
  • novel compounds of the present invention can be represented by the following formula (1):
  • X 1 is selected from the group consisting of S, O, N (Ar 1 ) and C (Ar 2 ) (Ar 3 );
  • A is a substituent represented by the following formula (2);
  • Ar 1 to Ar 3 are each independently a substituent represented by formula (3);
  • Y 1 is selected from the group consisting of S, O, N (Ar 4 ) and C (Ar 5) (Ar 6 );
  • Q 1 and Q 2 are each independently selected from the group consisting of C 6 ⁇ C 30 arene and 5 to 30 heteroarylene atoms;
  • n is an integer from 0 to 4.
  • Ar 4 to Ar 6 and R 1 are, each independently, a substituent to the formula (4), when the R 1 a plurality individual which the same or different;
  • L 1 is selected from the group consisting of a single bond, an arylene group having 6 to 18 carbon atoms and a heteroarylene group having 5 to 18 nuclear atoms;
  • R 2 is hydrogen, deuterium, halogen, cyano group, nitro group, C 1 -C 40 alkyl group, C 2 -C 40 alkenyl group, C 2 -C 40 alkynyl group, C 3 -C 40 cycloalkyl group, 3 to 40 heterocycloalkyl groups, C 6 to C 60 aryl groups, 5 to 60 heteroaryl groups, C 1 to C 40 alkyloxy groups, C 6 to C 60 aryloxy groups , C 3 ⁇ C 40 Alkylsilyl group, C 6 ⁇ C 60 Arylsilyl group, C 1 ⁇ C 40 Alkyl boron group, C 6 ⁇ C 60 Aryl boron group, C 6 ⁇ C 60 Aryl phospha A aryl group, a C 6 -C 60 mono or diarylphosphinyl group, and a C 6 -C 60 arylamine group, or combine with an adjacent group to form a condensed ring;
  • L 2 is selected from the group consisting of a single bond, C 6 ⁇ C 18 arylene group and a nuclear atoms of 5 to 18 heteroarylene group of;
  • R 3 is hydrogen, deuterium, halogen, cyano group, nitro group, C 1 -C 40 alkyl group, C 2 -C 40 alkenyl group, C 2 -C 40 alkynyl group, C 3 -C 40 cycloalkyl group, 3 to 40 heterocycloalkyl groups, C 6 to C 60 aryl groups, 5 to 60 heteroaryl groups, C 1 to C 40 alkyloxy groups, C 6 to C 60 aryloxy groups , C 3 ⁇ C 40 Alkylsilyl group, C 6 ⁇ C 60 Arylsilyl group, C 1 ⁇ C 40 Alkyl boron group, C 6 ⁇ C 60 Aryl boron group, C 6 ⁇ C 60 Aryl phospha A aryl group, a C 6 -C 60 mono or diarylphosphinyl group, and a C 6 -C 60 arylamine group, or combine with an adjacent group to form a condensed ring;
  • the present invention provides a novel indolo florenecene-based compound having excellent thermal stability, carrier transporting ability, light emitting ability and the like.
  • the novel organic compound according to the present invention has a structure in which a carbazole moiety is bonded to an indolofluorene to form a basic skeleton, and various substituents are bonded or condensed to the basic skeleton.
  • the phosphorescent light emitting layer of the organic material layer included in the organic electroluminescent device includes a host and a dopant to increase the color purity and the luminous efficiency.
  • the host should have a triplet energy gap higher than the dopant. That is, in order to effectively provide phosphorescence from the dopant, the energy of the lowest excited state of the host must be higher than the energy of the lowest emission state of the dopant.
  • the indolofluorene structure part has a wide singlet energy level and a high triplet energy level. Furthermore, when a specific substituent is introduced into a structure in which carbazole is bonded to the indolofluorene, it may exhibit a higher energy level than that of the dopant.
  • the compound according to the present invention can be used as an organic material layer material of the organic electroluminescent device, preferably a light emitting layer material (blue, green and / or red phosphorescent host material).
  • the compound of Formula 1 has a variety of substituents, particularly aryl groups and / or heteroaryl groups introduced into the basic skeleton, the compound molecular weight is significantly increased, and thus the glass transition temperature is improved to improve the conventional light emitting material (for example , CBP) can have a higher thermal stability.
  • the compound is effective in suppressing crystallization of the organic material layer.
  • the heteroaryl group when the heteroaryl group is introduced, it has a bipolar characteristic, so that the exciton formation is better and the charge balance between the holes and the electrons is improved, so that the driving voltage and the efficiency characteristics can be obtained better than when the aryl group is introduced.
  • the compound represented by Chemical Formula 1 in the present invention may be an organic material layer material of an organic electroluminescent device, preferably an emission layer material (blue, green and / or red phosphorescent host material), an electron transport layer / injection layer material, a hole transport layer / When applied as an injection layer material, a light emission auxiliary layer material, or a life improvement layer material, the performance and life characteristics of the organic EL device may be greatly improved. As a result, the organic EL device may maximize the performance of the full color organic light emitting panel.
  • the compound may be represented by the following formula (5):
  • X 1 and A are each as defined in Chemical Formula 1.
  • the compound represented by the formula (5) is connected to the 12 position corresponding to the active site (active-site), the physicochemical properties of the material to which the compound is to be stabilized, high current efficiency and low drive Voltage can be secured.
  • X 1 may be S or O.
  • the compound may be represented by any one of the following formulas 6 to 12:
  • Ar 1 to Ar 6 , R 1 , m and Q 1 to Q 2 are each as defined in Chemical Formulas 1 and 2 above.
  • the compound is represented by any one of Formulas 6 to 8, 10 and 11, more preferably represented by Formula 10, a low driving voltage when the compound is applied to an organic electroluminescent device And high current efficiency can be ensured.
  • A may be a substituent represented by the following formula (13) or (14):
  • Y 1 , R 1 and m are each as defined in Chemical Formula 2.
  • L 1 and L 2 may be each independently a single bond or a linker represented by any one of the following formulas A-1 to A-7:
  • Y 2 is O or S
  • Z 1 to Z 3 are each independently N or C (R 5 );
  • R 4 and R 5 are each independently hydrogen, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 6 ⁇ C 60 aryl group and the number of nuclear atoms 5 To 60 heteroaryl groups, and when there are a plurality of R 5 , they are the same as or different from each other;
  • the alkyl group, alkenyl group, alkynyl group, aryl group and heteroaryl group of R 4 and R 5 are each independently deuterium, halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group , C 2 ⁇ C 40 Alkynyl group, C 6 ⁇ C 60 Aryl group, 5 to 60 heteroaryl group, C 6 ⁇ C 60 Aryloxy group, C 1 ⁇ C 40 Alkyloxy group, C 6 ⁇ C 60 arylamine group, C 3 ⁇ C 40 cycloalkyl group, C 3 ⁇ C 40 heterocycloalkyl group, C 1 ⁇ C 40 Alkylsilyl group, C 1 ⁇ C 40 Alkyl boron group, C 6 to C 60 aryl boron group, C 6 to C 60 arylphosphanyl group, C 6 to C 60 mono or diaryl phosphinyl group and C 6 to C 60 aryls
  • At least one of L 1 and L 2 may be a linker represented by any one of Formulas A-5 to A-7, wherein at least one of Z 1 and Z 2 is N
  • R 4 may be selected from the group consisting of phenyl group, biphenyl group and naphthalenyl group.
  • the R 2 and R 3 may be a substituent represented by any of respectively independently to the formula B-1 to B-4:
  • Z 4 to Z 8 are each independently N or C (R 6 );
  • Y 3 is selected from the group consisting of S, O, N (Ar 7 ) and C (Ar 8 ) (Ar 9 );
  • R 6 and Ar 7 to Ar 9 are each independently hydrogen, C 1 -C 40 alkyl group, C 2 -C 40 alkenyl group, C 2 -C 40 alkynyl group, C 6 -C 60 aryl group and nucleus Selected from the group consisting of 5 to 60 heteroaryl groups, and when there are a plurality of R 6 groups, they are the same as or different from each other;
  • the alkyl group, alkenyl group, alkynyl group, aryl group and heteroaryl group of R 6 and Ar 7 to Ar 9 are each independently deuterium, halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 Alkenyl group, C 2 ⁇ C 40 alkynyl group, C 6 ⁇ C 60 aryl group, 5 to 60 heteroaryl group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 Alkyl Oxy group, C 6 to C 60 arylamine group, C 3 to C 40 cycloalkyl group, nuclear atom 3 to 40 heterocycloalkyl group, C 1 to C 40 alkylsilyl group, C 1 to C 40 alkyl Boron group, C 6 ⁇ C 60 aryl boron group, C 6 ⁇ C 60 aryl phosphanyl group, C 6 ⁇ C 60 mono or diaryl phosphinyl group and C 6 ⁇ C
  • At least one of the R 2 and R 3 may be a substituent represented by the formula (B-1), wherein at least one of Z 4 to Z 7 is N, which is an organic electric field When applied to a light emitting device it is possible to ensure a low driving voltage and high current efficiency.
  • R 2 and R 3 may be each in the following substituent represented by any one of formulas C-1 to C-10 independently:
  • t is an integer from 0 to 5
  • u is an integer from 0 to 4.
  • v is an integer from 0 to 3;
  • w is an integer from 0 to 2;
  • R 7 is deuterium, halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 6 ⁇ C 60 aryl group, nuclear atom C 5 to C 60 aryloxy group, C 6 to C 60 aryloxy group, C 1 to C 40 alkyloxy group, C 3 to C 40 cycloalkyl group, nuclear atom 3 to 40 heterocycloalkyl group, C of 6 ⁇ C 60 aryl amine group, C 1 ⁇ C 40 alkylsilyl group, C 1 ⁇ C 40 group of an alkyl boron, C 6 ⁇ C group 60 arylboronic of, C 6 ⁇ of the C 60 aryl phosphazene group, C 6 ⁇ C 60 It is selected from the group consisting of mono or diaryl phosphinyl group and C 6 ⁇ C 60 arylsilyl group, or may be combined with adjacent
  • the alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, aryloxy group, alkyloxy group, cycloalkyl group of R 7 is heterocycloalkyl group, arylamine group, alkylsilyl group, alkyl boron group, aryl boron group, Arylphosphanyl group, mono or diarylphosphinyl group and arylsilyl group are each independently deuterium, halogen, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 6 ⁇ C 60 aryl group, 5 to 60 heteroaryl group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 Arylamine group, C 3 ⁇ C 40 cycloalkyl group, C 3 ⁇ C 40 heterocycloalkyl group
  • At least one of R 2 and R 3 may be a substituent represented by any one of Formulas C-5 to C-10, more preferably Formula C-7 or C
  • the substituent represented by -10 may ensure low driving voltage and high current efficiency when it is applied to the organic EL device.
  • R 7 may be selected from the group consisting of phenyl group, biphenyl group, naphthalenyl group, dibenzofuranyl group and dibenzothiophenyl group.
  • the compound represented by Formula 1 is a compound represented by Formula 10, wherein R 3 is a substituent represented by any one of Formulas C-5 to C-10, When applied to the organic light emitting device it is possible to ensure a low driving voltage and high current efficiency.
  • the compound represented by Formula 1 is a compound represented by any one of Formulas 6 to 8, at least one of L 1 and L 2 , more preferably L 1 is It may be a linker represented by any one of A-5 to A-7, wherein at least one of Z 1 and Z 2 is N, it can ensure a low driving voltage and high current efficiency when applied to the organic electroluminescent device have.
  • the compound represented by Formula 1 is a compound represented by any one of Formula 6 to 8, wherein A is a substituent represented by Formula 14, wherein L 1 and L 2 At least one, more preferably L 1 may be a linker represented by any one of Formulas A-5 to A-7, wherein at least one of Z 1 and Z 2 is N, it is applied to the organic electroluminescent device Low driving voltage and high current efficiency can be ensured.
  • the compound represented by Formula 1 is a compound represented by Formula 10 or 11, at least one of L 1 and L 2 , more preferably L 1 is represented by Formula A- It may be a linker represented by any one of 5 to A-7, wherein at least one of Z 1 and Z 2 is N, it can ensure a low driving voltage and high current efficiency when applied to the organic EL device.
  • Compound represented by Formula 1 of the present invention may be represented by the following compounds, but is not limited thereto:
  • organic electroluminescent device comprising the compound represented by the formula (1) according to the present invention.
  • the present invention is an organic electroluminescent device comprising an anode, a cathode, and at least one organic layer interposed between the anode and the cathode, wherein at least one of the at least one organic layer It includes a compound represented by the formula (1).
  • the compound may be used alone or mixed two or more.
  • the one or more organic material layers may be any one or more of a hole injection layer, a hole transport layer, a light emitting layer, a light emitting auxiliary layer, a life improvement layer, an electron transport layer, an electron transport auxiliary layer and an electron injection layer, wherein at least one organic material layer is It may include a compound represented by 1.
  • the structure of the organic EL device according to the present invention described above is not particularly limited, but referring to FIG. 1 as an example, for example, the anode 10 and the cathode 20 facing each other, and the anode 10 and the cathode ( 20) and an organic layer 30 positioned between them.
  • the organic layer 30 may include a hole transport layer 31, a light emitting layer 32, and an electron transport layer 34.
  • a hole transport auxiliary layer 33 may be included between the hole transport layer 31 and the light emitting layer 32
  • an electron transport auxiliary layer 35 may be included between the electron transport layer 34 and the light emitting layer 32. can do.
  • the organic layer 30 may further include a hole injection layer 37 between the hole transport layer 31 and the anode 10, the electron transport layer 34 and the cathode
  • the electron injection layer 36 may be further included between the holes 20.
  • the hole injection layer 37 stacked between the hole transport layer 31 and the anode 10 may not only improve the interface property between the ITO used as the anode and the organic material used as the hole transport layer 31.
  • the surface is applied to the upper surface of the uneven ITO to soften the surface of the ITO, a layer that can be used without particular limitation as long as it is commonly used in the art, for example, may be used an amine compound It is not limited to this.
  • the electron injection layer 36 is a layer that is stacked on top of the electron transport layer 34 to facilitate the injection of electrons from the cathode to ultimately improve the power efficiency, commonly used in the art.
  • materials such as LiF, Liq, NaCl, CsF, Li 2 O, BaO and the like can be used.
  • a light emitting auxiliary layer may be further included between the hole transport auxiliary layer 33 and the light emitting layer 32.
  • the emission auxiliary layer may serve to transport holes to the emission layer 32 and to adjust the thickness of the organic layer 30.
  • the emission auxiliary layer may include a hole transport material, and may be made of the same material as the hole transport layer 31.
  • a life improvement layer may be further included between the electron transport auxiliary layer 35 and the light emitting layer 32. Holes traveling through the ionization potential level in the organic light emitting device to the light emitting layer 32 are blocked by the high energy barrier of the lifespan improvement layer, and thus do not diffuse or move to the electron transport layer, and consequently, the holes are limited to the light emitting layer. .
  • Such a function of limiting holes to the light emitting layer prevents holes from diffusing into the electron transporting layer that moves electrons by reduction, thereby suppressing the lifespan phenomenon through irreversible decomposition reaction by oxidation and contributing to improving the life of the organic light emitting device. Can be.
  • the compound represented by Formula 1 has a wide singlet energy level and a high triplet energy level of the indoloflorancene structural moiety. Furthermore, when a specific substituent is introduced into a structure in which carbazole is bonded to the indolofluorene, it may exhibit a higher energy level than that of the dopant.
  • the compound according to the present invention may be used as an organic material layer material of the organic electroluminescent device, and preferably used as a light emitting layer material, thereby greatly improving the luminous efficiency, luminance, power efficiency, thermal stability and device life of the organic electroluminescent device. Can be.
  • the compound represented by Chemical Formula 1 may be a phosphorescent host, a fluorescent host, or a dopant material of the light emitting layer, and preferably, a phosphorescent host (blue, green, and / or red phosphorescent host material).
  • the organic electroluminescent device may not only sequentially stack an anode, at least one organic material layer, and a cathode as described above, but may further include an insulating layer or an adhesive layer at an interface between the electrode and the organic material layer.
  • the organic electroluminescent device of the present invention uses materials and methods known in the art, except that at least one of the organic material layers (for example, an electron transport auxiliary layer) is formed to include the compound represented by Chemical Formula 1. It can be prepared by forming other organic material layer and electrode using.
  • the organic material layers for example, an electron transport auxiliary layer
  • the organic material layer may be formed by a vacuum deposition method or a solution coating method.
  • the solution coating method include, but are not limited to, spin coating, dip coating, doctor blading, inkjet printing, or thermal transfer.
  • the substrate usable in the present invention is not particularly limited, and silicon wafers, quartz, glass plates, metal plates, plastic films, sheets, and the like may be used.
  • the positive electrode material may be made of a high work function conductor, for example, to facilitate hole injection, and may include metals such as vanadium, chromium, copper, zinc, and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole or polyaniline; And carbon black, but are not limited thereto.
  • metals such as vanadium, chromium, copper, zinc, and gold or alloys thereof
  • Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb
  • the cathode material may be made of a low work function conductor, for example, to facilitate electron injection, and may include magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, or lead. The same metal or alloys thereof; And multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like.
  • 3-bromofluoranthene (30 g, 106.7 mmol), 4,4,4 ', 4', 5,5, 5 ', 5'-octamethyl-2,2'-ratio under nitrogen stream (1, 3,2-dioxaborolane) (32.5 g, 128 mmol), Pd (dppf) Cl 2 (2.61 g, 3.2 mmol), KOAc (31.4 g, 320 mmol) and 300 ml of 1,4-dioxane Mix and stir at 110 ° C. for 12 h.
  • Inv-33 (4.13) was prepared in the same manner as in Synthesis Example 1, except that 2-chloro-4-phenylquinazoline (2.71 g, 11.26 mmol) was used instead of 3-bromo-1,1'-biphenyl. g, yield 62%).
  • Inv 122 (4.9 g, yield 78%) was obtained in the same manner as Synthesis Example 1 except for using Core4 (5 g, 82.14 mmol) instead of Core1.
  • Inv284 (5.5 g, yield 73%) was obtained in the same manner as Synthesis Example 17 except for using Core8 (5.0 g, 10.92 mmol) instead of Core5.
  • Inv334 was carried out in the same manner as in Synthesis Example 38, except that 2-bromo-9-phenyl-9H-carbazole (4.0 g, 12.66 mmol) was used instead of 4-bromo-1,1'-biphenyl. (5.4 g, yield 72%) was obtained.
  • a glass substrate coated with ITO Indium tin oxide
  • ITO Indium tin oxide
  • a solvent such as isopropyl alcohol, acetone, methanol, etc.
  • UV OZONE cleaner Power sonic 405, Hwasin Tech
  • a green organic electroluminescent device was manufactured in the same manner as in Example 1, except that CBP was used instead of the compound Inv2 as a light emitting host material when forming the emission layer.
  • Example 10 Inv141 6.39 516 47.4
  • a glass substrate coated with ITO Indium tin oxide
  • ITO Indium tin oxide
  • a solvent such as isopropyl alcohol, acetone, methanol, etc.
  • UV OZONE cleaner Power sonic 405, Hwasin Tech
  • M-MTDATA 60 nm) / TCTA (80 nm) / Inv33 to Inv360 + 10% (piq) 2 Ir (acac) (300nm) / BCP (10 nm) / Alq 3 (30) nm) / LiF (1 nm) / Al (200 nm) were laminated to fabricate an organic EL device.
  • a red organic EL device was manufactured in the same manner as in Example 29, except that CBP was used instead of the compound of Synthesis Example 5 as a light emitting host material when forming the emission layer.
  • Example 29 Inv33 4.92 12.6
  • Example 30 Inv39 4.84 13.6
  • Example 31 Inv114 4.28 14.8
  • Example 32 Inv117 4.14 15.8
  • Example 33 Inv153 4.32 14.7
  • Example 34 Inv193 4.25 14.6
  • Example 35 Inv234 4.28 15.8
  • Example 36 Inv257 4.34 15.6
  • Example 37 Inv270 4.25 13.6
  • Example 38 Inv273 4.32 12.8
  • Example 39 Inv275 4.14 15.8
  • Example 40 Inv279 4.32 14.7
  • Example 41 Inv316 4.25 14.6
  • Example 42 Inv318 4.28 15.8
  • Example 43 Inv355 4.34 15.6
  • Example 44 Inv360 4.25 13.6 Comparative Example 2 CBP 5.25 8.2
  • the present invention relates to novel organic compounds that can be used as materials for organic electroluminescent devices and organic electroluminescent devices comprising the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 신규 화합물 및 이를 포함하는 유기 전계 발광 소자에 관한 것으로서, 본 발명에 따른 화합물은 유기 전계 발광 소자의 유기물층, 바람직하게는 발광층에 사용됨에 따라 유기 전계 발광 소자의 발광 효율, 구동 전압, 수명 등을 향상시킬 수 있다.

Description

유기 화합물 및 이를 포함하는 유기 전계 발광 소자
본 발명은 유기 전계 발광 소자용 재료로서 사용될 수 있는 신규 유기 화합물 및 이를 포함하는 유기 전계 발광 소자에 관한 것이다.
1950년대 베르나소스(Bernanose)의 유기 박막 발광 관측을 시점으로 하여, 1965년 안트라센 단결정을 이용한 청색 전기발광으로 이어진 유기 전계 발광(electroluminescent, EL) 소자에 대한 연구가 이어져 오다가, 1987년 탕(Tang)에 의하여 정공층과 발광층의 기능층으로 나눈 적층구조의 유기 전계 발광 소자가 제시되었다. 이후, 고효율, 고수명의 유기 전계 발광 소자를 만들기 위하여, 소자 내 각각의 특징적인 유기물층을 도입하는 형태로 발전하여 왔으며, 이에 사용되는 특화된 물질의 개발로 이어졌다.
유기 전계 발광 소자는 두 전극 사이에 전압을 걸어주면 양극에서는 정공이 유기물층으로 주입되고, 음극에서는 전자가 유기물층으로 주입된다. 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어질 때 빛이 나게 된다. 이때, 유기물층으로 사용되는 물질은 그 기능에 따라, 발광물질, 정공주입 물질, 정공수송 물질, 전자수송 물질, 전자주입 물질 등으로 분류될 수 있다.
발광 물질은 발광색에 따라 청색, 녹색, 적색 발광 물질과, 보다 나은 천연색을 구현하기 위한 노란색 및 주황색 발광 물질로 구분될 수 있다. 또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 물질로서 호스트/도펀트 계를 사용할 수 있다.
도펀트 물질은 유기 물질을 사용하는 형광 도펀트와 Ir, Pt 등의 중원자(heavy atoms)가 포함된 금속 착체 화합물을 사용하는 인광 도펀트로 나눌 수 있다. 이때, 인광 재료의 개발은 이론적으로 형광에 비해 4배까지 발광 효율을 향상시킬 수 있기 때문에, 인광 도펀트 뿐만 아니라 인광 호스트 재료들에 대한 연구도 많이 진행되고 있다.
현재까지 정공 주입층, 정공 수송층. 정공 차단층, 전자 수송층 재료로는 NPB, BCP, Alq3 등이 널리 알려져 있으며, 발광층 재료로는 안트라센 유도체들이 보고되고 있다. 특히, 발광층 재료 중 효율 향상 측면에서 장점을 가지고 있는 Firpic, Ir(ppy)3, (acac)Ir(btp)2 등과 같은 Ir을 포함하는 금속 착체 화합물이 청색(blue), 녹색(green), 적색(red)의 인광 도판트 재료로 사용되고 있으며, 4,4-디카바졸리비페닐(4,4-dicarbazolybiphenyl, CBP)은 인광 호스트 재료로 사용되고 있다.
Figure PCTKR2017007717-appb-I000001
그러나 종래의 유기물층 재료들은 발광 특성 측면에서는 유리한 면이 있으나, 유리전이온도가 낮아 열적 안정성이 매우 좋지 않기 때문에, 유기 전계 발광 소자의 수명 측면에서 만족할 만한 수준이 되지 못하고 있다. 따라서, 성능이 뛰어난 유기물층 재료의 개발이 요구되고 있다.
본 발명은 상기한 문제점을 해결하기 위해, 유기 전계 발광 소자의 효율, 수명 및 안정성 등을 향상시킬 수 있는 신규 화합물 및 상기 화합물을 이용한 유기 전계 발광 소자를 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위해, 본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2017007717-appb-I000002
상기 화학식 1에서,
X1은 S, O, N(Ar1) 및 C(Ar2)(Ar3)로 이루어진 군으로부터 선택되고;
A는 하기 화학식 2로 표시되는 치환기이며;
Ar1 내지 Ar3은 각각 독립적으로 하기 화학식 3으로 표시되는 치환기이며;
[화학식 2]
Figure PCTKR2017007717-appb-I000003
상기 화학식 2에서,
Y1은 S, O, N(Ar4) 및 C(Ar5)(Ar6)로 이루어진 군으로부터 선택되고;
Q1 및 Q2는 각각 독립적으로 C6~C30의 아렌 및 핵원자수 5 내지 30개의 헤테로아렌으로 이루어진 군에서 선택되며;
m은 0 내지 4의 정수이며;
Ar4 내지 Ar6 및 R1은 각각 독립적으로 하기 화학식 4로 표시되는 치환기이고, 상기 R1이 복수 개인 경우 이들은 서로 동일하거나 상이하며;
[화학식 3]
Figure PCTKR2017007717-appb-I000004
상기 화학식 3에서,
*은 결합이 이루어지는 부분을 의미하고;
L1은 단일결합, C6~C18의 아릴렌기 및 핵원자수 5 내지 18개의 헤테로아릴렌기로 이루어진 군에서 선택되며;
R2는 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 인접하는 기와 결합하여 축합 고리를 형성하며;
상기 L1의 아릴렌기 및 헤테로아릴렌기와, 상기 R2의 알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 시클로알킬기, 헤테로시클로알킬기, 아릴아민기, 알킬실릴기, 알킬보론기, 아릴보론기, 아릴포스파닐기, 모노 또는 디아릴포스피닐기 및 아릴실릴기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C6~C60의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 복수 개의 치환기로 치환되는 경우, 이들은 서로 동일하거나 상이하며;
[화학식 4]
Figure PCTKR2017007717-appb-I000005
상기 화학식 4에서,
*은 결합이 이루어지는 부분을 의미하고;
L2는 단일결합, C6~C18의 아릴렌기 및 핵원자수 5 내지 18개의 헤테로아릴렌기로 이루어진 군에서 선택되며;
R3은 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 인접하는 기와 결합하여 축합 고리를 형성하며;
상기 L2의 아릴렌기 및 헤테로아릴렌기와, 상기 R3의 알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 시클로알킬기, 헤테로시클로알킬기, 아릴아민기, 알킬실릴기, 알킬보론기, 아릴보론기, 아릴포스파닐기, 모노 또는 디아릴포스피닐기 및 아릴실릴기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C6~C60의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 복수 개의 치환기로 치환되는 경우, 이들은 서로 동일하거나 상이하다.
본 발명은 양극, 음극 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하며, 상기 1층 이상의 유기물층 중에서 적어도 하나는 상기 화학식 1의 화합물을 포함하는 유기 전계 발광 소자를 제공한다.
본 발명에서의 “알킬”은 탄소수 1 내지 40개의 직쇄 또는 측쇄의 포화 탄화수소에서 유래되는 1가의 치환기이며, 이의 예로는 메틸, 에틸, 프로필, 이소부틸, sec-부틸, 펜틸, iso-아밀, 헥실 등이 있는데, 이에 한정되지 않는다.
본 발명에서의 “알케닐(alkenyl)”은 탄소-탄소 이중 결합을 1개 이상 가진, 탄소수 2 내지 40개의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기이며, 이의 예로는 비닐(vinyl), 알릴(allyl), 이소프로펜일(isopropenyl), 2-부텐일(2-butenyl) 등이 있는데, 이에 한정되지 않는다.
본 발명에서의 “알키닐(alkynyl)”은 탄소-탄소 삼중 결합을 1개 이상 가진, 탄소수 2 내지 40개의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기이며, 이의 예로는 에티닐(ethynyl), 2-프로파닐(2-propynyl) 등이 있는데, 이에 한정되지 않는다.
본 발명에서의 “아릴”은 단독 고리 또는 2 이상의 고리가 조합된, 탄소수 6 내지 60개의 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 또한, 2 이상의 고리가 서로 축합되어 있고, 고리 형성 원자로서 탄소만을 포함(예를 들어, 탄소수는 8 내지 60개일 수 있음)하고, 분자 전체가 비-방향족성(non-aromacity)를 갖는 1가 치환기도 포함될 수 있다. 이러한 아릴의 예로는 페닐, 나프틸, 페난트릴, 안트릴, 플루오레닐 등이 있는데, 이에 한정되지 않는다.
본 발명에서의 “헤테로아릴”은 핵원자수 5 내지 60개의 모노헤테로사이클릭 또는 폴리헤테로사이클릭 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이때, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, P, S 및 Se 중에서 선택된 헤테로원자로 치환된다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합되어 있고, 고리 형성 원자로서 탄소 외에 N, O, P, S 및 Se 중에서 선택된 헤테로 원자를 포함하고, 분자 전체가 비-방향족성(non-aromacity)를 갖는 1가 그룹도 포함하는 것으로 해석된다. 이러한 헤테로아릴의 예로는 피리딜, 피라지닐, 피리미디닐, 피리다지닐, 트리아지닐과 같은 6-원 모노사이클릭 고리; 페녹사티에닐(phenoxathienyl), 인돌리지닐(indolizinyl), 인돌릴(indolyl), 퓨리닐(purinyl), 퀴놀릴(quinolyl), 벤조티아졸(벤조thiazole), 카바졸릴(carbazolyl)과 같은 폴리사이클릭 고리; 2-퓨라닐, N-이미다졸릴, 2-이속사졸릴, 2-피리디닐, 2-피리미디닐 등이 있는데, 이에 한정되지 않는다.
본 발명에서의 “아릴옥시”는 RO-로 표시되는 1가의 치환기로, 상기 R은 탄소수 5 내지 60개의 아릴을 의미한다. 이러한 아릴옥시의 예로는 페닐옥시, 나프틸옥시, 디페닐옥시 등이 있는데, 이에 한정되지 않는다.
본 발명에서의 “알킬옥시”는 R’O-로 표시되는 1가의 치환기로, 상기 R’는 1 내지 40개의 알킬을 의미하며, 직쇄(linear), 측쇄(branched) 또는 사이클릭(cyclic) 구조를 포함하는 것으로 해석한다. 이러한 알킬옥시의 예로는 메톡시, 에톡시, n-프로폭시, 1-프로폭시, t-부톡시, n-부톡시, 펜톡시 등이 있는데, 이에 한정되지 않는다.
본 발명에서의 “아릴아민”은 탄소수 6 내지 60개의 아릴로 치환된 아민을 의미한다.
본 발명에서의 “시클로알킬”은 탄소수 3 내지 40개의 모노사이클릭 또는 폴리사이클릭 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이러한 사이클로알킬의 예로는 사이클로프로필, 사이클로펜틸, 사이클로헥실, 놀보닐(norbornyl), 아다만틴(adamantine) 등이 있는데, 이에 한정되지 않는다.
본 발명에서의 “헤테로시클로알킬”은 핵원자수 3 내지 40개의 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미하며, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로 원자로 치환된다. 이러한 헤테로시클로알킬의 예로는 모르폴린, 피페라진 등이 있는데, 이에 한정되지 않는다.
본 발명에서의 “알킬실릴”은 탄소수 1 내지 40개의 알킬로 치환된 실릴이고, “아릴실릴”은 탄소수 5 내지 60개의 아릴로 치환된 실릴을 의미한다.
본 발명에서의 “축합 고리”는 축합 지방족 고리, 축합 방향족 고리, 축합 헤테로지방족 고리, 축합 헤테로방향족 고리 또는 이들의 조합된 형태를 의미한다.
본 발명의 화합물은 열적 안정성, 캐리어 수송능, 발광능 등이 우수하기 때문에 유기 전계 발광 소자의 유기물층 재료로 유용하게 적용될 수 있다.
또한, 본 발명의 화합물을 유기물층에 포함하는 유기 전계 발광 소자는 발광성능, 구동전압, 수명, 효율 등의 측면이 크게 향상되어 풀 칼라 디스플레이 패널 등에 효과적으로 적용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 유기 전계 발광 소자의 단면도를 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른 유기 전계 발광 소자의 단면도를 나타낸 것이다.
10: 양극 20: 음극
30: 유기층 31: 정공 수송층
32: 발광층 33: 정공 수송 보조층
34: 전자 수송층 35: 전자 수송 보조층
36: 전자 주입층 37: 정공 주입층
하기 화학식 1로 표시되는 화합물:
[화학식 1]
Figure PCTKR2017007717-appb-I000006
상기 화학식 1에서,
X1은 S, O, N(Ar1) 및 C(Ar2)(Ar3)로 이루어진 군으로부터 선택되고;
A는 하기 화학식 2로 표시되는 치환기이며;
Ar1 내지 Ar3은 각각 독립적으로 하기 화학식 3으로 표시되는 치환기이며;
[화학식 2]
Figure PCTKR2017007717-appb-I000007
상기 화학식 2에서,
Y1은 S, O, N(Ar4) 및 C(Ar5)(Ar6)로 이루어진 군으로부터 선택되고;
Q1 및 Q2는 각각 독립적으로 C6~C30의 아렌 및 핵원자수 5 내지 30개의 헤테로아렌으로 이루어진 군에서 선택되며;
m은 0 내지 4의 정수이며;
Ar4 내지 Ar6 및 R1은 각각 독립적으로 하기 화학식 4로 표시되는 치환기이고, 상기 R1이 복수 개인 경우 이들은 서로 동일하거나 상이하며;
[화학식 3]
Figure PCTKR2017007717-appb-I000008
상기 화학식 3에서,
*은 결합이 이루어지는 부분을 의미하고;
L1은 단일결합, C6~C18의 아릴렌기 및 핵원자수 5 내지 18개의 헤테로아릴렌기로 이루어진 군에서 선택되며;
R2는 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 인접하는 기와 결합하여 축합 고리를 형성하며;
상기 L1의 아릴렌기 및 헤테로아릴렌기와, 상기 R2의 알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 시클로알킬기, 헤테로시클로알킬기, 아릴아민기, 알킬실릴기, 알킬보론기, 아릴보론기, 아릴포스파닐기, 모노 또는 디아릴포스피닐기 및 아릴실릴기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C6~C60의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 복수 개의 치환기로 치환되는 경우, 이들은 서로 동일하거나 상이하며;
[화학식 4]
Figure PCTKR2017007717-appb-I000009
상기 화학식 4에서,
*은 결합이 이루어지는 부분을 의미하고;
L2는 단일결합, C6~C18의 아릴렌기 및 핵원자수 5 내지 18개의 헤테로아릴렌기로 이루어진 군에서 선택되며;
R3은 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 인접하는 기와 결합하여 축합 고리를 형성하며;
상기 L2의 아릴렌기 및 헤테로아릴렌기와, 상기 R3의 알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 시클로알킬기, 헤테로시클로알킬기, 아릴아민기, 알킬실릴기, 알킬보론기, 아릴보론기, 아릴포스파닐기, 모노 또는 디아릴포스피닐기 및 아릴실릴기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C6~C60의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 복수 개의 치환기로 치환되는 경우, 이들은 서로 동일하거나 상이하다.
이하, 본 발명을 상세히 설명한다.
1. 신규 유기 화합물
본 발명의 신규 화합물은 하기 화학식 1로 표시될 수 있다:
[화학식 1]
Figure PCTKR2017007717-appb-I000010
상기 화학식 1에서,
X1은 S, O, N(Ar1) 및 C(Ar2)(Ar3)로 이루어진 군으로부터 선택되고;
A는 하기 화학식 2로 표시되는 치환기이며;
Ar1 내지 Ar3은 각각 독립적으로 하기 화학식 3으로 표시되는 치환기이며;
[화학식 2]
Figure PCTKR2017007717-appb-I000011
상기 화학식 2에서,
Y1은 S, O, N(Ar4) 및 C(Ar5)(Ar6)로 이루어진 군으로부터 선택되고;
Q1 및 Q2는 각각 독립적으로 C6~C30의 아렌 및 핵원자수 5 내지 30개의 헤테로아렌으로 이루어진 군에서 선택되며;
m은 0 내지 4의 정수이며;
Ar4 내지 Ar6 및 R1은 각각 독립적으로 하기 화학식 4로 표시되는 치환기이고, 상기 R1이 복수 개인 경우 이들은 서로 동일하거나 상이하며;
[화학식 3]
Figure PCTKR2017007717-appb-I000012
상기 화학식 3에서,
*은 결합이 이루어지는 부분을 의미하고;
L1은 단일결합, C6~C18의 아릴렌기 및 핵원자수 5 내지 18개의 헤테로아릴렌기로 이루어진 군에서 선택되며;
R2는 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 인접하는 기와 결합하여 축합 고리를 형성하며;
상기 L1의 아릴렌기 및 헤테로아릴렌기와, 상기 R2의 알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 시클로알킬기, 헤테로시클로알킬기, 아릴아민기, 알킬실릴기, 알킬보론기, 아릴보론기, 아릴포스파닐기, 모노 또는 디아릴포스피닐기 및 아릴실릴기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C6~C60의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 복수 개의 치환기로 치환되는 경우, 이들은 서로 동일하거나 상이하며;
[화학식 4]
Figure PCTKR2017007717-appb-I000013
상기 화학식 4에서,
*은 결합이 이루어지는 부분을 의미하고;
L2는 단일결합, C6~C18의 아릴렌기 및 핵원자수 5 내지 18개의 헤테로아릴렌기로 이루어진 군에서 선택되며;
R3은 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 인접하는 기와 결합하여 축합 고리를 형성하며;
상기 L2의 아릴렌기 및 헤테로아릴렌기와, 상기 R3의 알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 시클로알킬기, 헤테로시클로알킬기, 아릴아민기, 알킬실릴기, 알킬보론기, 아릴보론기, 아릴포스파닐기, 모노 또는 디아릴포스피닐기 및 아릴실릴기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C6~C60의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 복수 개의 치환기로 치환되는 경우, 이들은 서로 동일하거나 상이하다.
본 발명은 열적 안정성, 캐리어 수송능 및 발광능 등이 우수한 신규 인돌로 플로란센계 화합물을 제공한다. 구체적으로, 본 발명에 따른 신규 유기 화합물은 인돌로플로란센에 카바졸 모이어티가 결합되어 기본 골격을 이루고, 이러한 기본 골격에 다양한 치환기가 결합되거나 축합되어 이루어진 구조를 갖는다.
일반적으로 유기 전계 발광 소자에 포함되는 유기물층 중에서 인광 발광층은 색순도의 증가와 발광 효율을 증가시키기 위해 호스트 및 도펀트를 포함한다. 이때, 상기 호스트는 삼중항 에너지 갭이 도펀트보다 높아야 한다. 즉, 도펀트로부터 효과적으로 인광 발광을 제공하기 위해서는 호스트의 가장 낮은 여기 상태의 에너지가 도펀트의 가장 낮은 방출 상태의 에너지보다 높아야 한다.
그런데 본 발명에서 제공하는 상기 화학식 1로 표시되는 화합물의 경우, 인돌로플로란센 구조 부분이 넓은 일중항 에너지 준위와 높은 삼중항 에너지 준위를 갖는다. 더 나아가 이러한 인돌로플로란센에 카바졸이 결합된 구조에 특정의 치환기가 도입됨으로써 발광층의 호스트로 적용될 경우, 도펀트보다 높은 에너지 준위를 나타낼 수 있다.
또한, 상기 화합물은 상기한 바와 같이 높은 삼중항 에너지를 갖기 때문에, 발광층에서 생성된 엑시톤(exciton)이 인접하는 전자 수송층 또는 정공 수송층으로 확산(이동)되는 것을 방지할 수 있다. 따라서 본 발명에 따른 화합물은 유기 전계 발광 소자의 유기물층 재료로 사용될 수 있으며, 바람직하게는 발광층 재료(청색, 녹색 및/또는 적색의 인광 호스트 재료)로 사용될 수 있다.
또한 상기 화학식 1의 화합물은 상기 기본 골격에 다양한 치환기, 특히 아릴기 및/또는 헤테로아릴기가 도입됨으로써, 화합물 분자량이 유의적으로 증대되고, 따라서 유리전이온도가 향상되어 종래의 발광재료(예를 들어, CBP)에 비해 높은 열적 안정성을 가질 수 잇다. 또한 상기 화합물은 유기물층의 결정화 억제에도 효과가 있다. 또한 헤테로아릴기가 도입된 경우 바이폴라한 특성을 가지게 되어 엑시톤 형성이 더 잘되고 홀과 전자의 차지 발란스가 좋아지므로 아릴기가 도입된 경우보다 나은 구동전압 및 효율 특성을 얻을 수 있다.
이렇듯, 본 발명에서 상기 화학식 1로 표시되는 화합물을 유기 전계 발광 소자의 유기물층 재료, 바람직하게는 발광층 재료(청색, 녹색 및/또는 적색의 인광 호스트 재료), 전자 수송층/주입층 재료, 정공 수송층/주입층 재료, 발광 보조층 재료, 수명 개선층 재료로 적용할 경우, 유기 전계 발광 소자의 성능 및 수명 특성이 크게 향상될 수 있다. 이러한 유기 전계 발광 소자는 결과적으로 풀 칼라 유기 발광 패널의 성능을 극대화시킬 수 있다.
본 발명의 바람직한 한 구현 예에 따르면, 상기 화합물은 하기 화학식 5로 표시될 수 있다:
[화학식 5]
Figure PCTKR2017007717-appb-I000014
상기 화학식 5에서,
X1 및 A 각각은 상기 화학식 1에서 정의된 바와 같다.
본 발명에서 상기 화학식 5로 표시되는 화합물은, 활성화 위치(active-site)에 해당하는 12번 위치에 치환기가 연결됨으로써, 상기 화합물이 적용될 재료의 물리화학적 성질이 안정화되고, 높은 전류 효율과 낮은 구동 전압이 확보될 수 있다.
본 발명의 바람직한 한 구현 예에 따르면, 상기 X1은 S 또는 O일 수 있다.
본 발명의 바람직한 한 구현 예에 따르면, 상기 화합물은 하기 화학식 6 내지 12 중 어느 하나로 표시될 수 있다:
[화학식 6]
Figure PCTKR2017007717-appb-I000015
[화학식 7]
Figure PCTKR2017007717-appb-I000016
[화학식 8]
Figure PCTKR2017007717-appb-I000017
[화학식 9]
Figure PCTKR2017007717-appb-I000018
[화학식 10]
Figure PCTKR2017007717-appb-I000019
[화학식 11]
Figure PCTKR2017007717-appb-I000020
[화학식 12]
Figure PCTKR2017007717-appb-I000021
상기 화학식 6 내지 12에서,
Ar1 내지 Ar6, R1, m 및 Q1 내지 Q2 각각은 상기 화학식 1 및 2에서 정의된 바와 같다.
본 발명의 바람직한 한 구현 예에 따르면, 상기 화합물은 상기 화학식 6 내지 8, 10 및 11 중 어느 하나, 보다 바람직하게는 화학식 10으로 표시되는 것이, 상기 화합물을 유기 전계 발광 소자에 적용 시 낮은 구동전압과 높은 전류 효율을 확보할 수 있다.
본 발명의 바람직한 한 구현 예에 따르면, 상기 A는 하기 화학식 13 또는 14로 표시되는 치환기일 수 있다:
[화학식 13]
Figure PCTKR2017007717-appb-I000022
[화학식 14]
Figure PCTKR2017007717-appb-I000023
상기 화학식 13 및 14에서,
*은 결합이 이루어지는 부분을 의미하고;
Y1, R1 및 m 각각은 상기 화학식 2에서 정의된 바와 같다.
본 발명의 바람직한 한 구현 예에 따르면, 상기 L1 및 L2는 각각 독립적으로 단일결합이거나, 하기 화학식 A-1 내지 A-7 중 어느 하나로 표시되는 링커일 수 있다:
Figure PCTKR2017007717-appb-I000024
상기 화학식 A-1 내지 A-7에서,
*은 결합이 이루어지는 부분을 의미하고;
Y2는 O 또는 S이며;
Z1 내지 Z3는 각각 독립적으로 N 또는 C(R5)이며;
R4 및 R5는 각각 독립적으로 수소, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기 및 핵원자수 5 내지 60개의 헤테로아릴기로 이루어진 군에서 선택되고, 상기 R5가 복수 개인 경우 이들은 서로 동일하거나 상이하며;
상기 R4 및 R5의 알킬기, 알케닐기, 알키닐기, 아릴기 및 헤테로아릴기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C6~C60의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 복수 개의 치환기로 치환되는 경우, 이들은 서로 동일하거나 상이하다.
본 발명의 바람직한 한 구현 예에 따르면, 상기 L1 및 L2 중 적어도 하나는 상기 화학식 A-5 내지 A-7 중 어느 하나로 표시되는 링커일 수 있고, 이때 Z1 및 Z2 중 적어도 하나는 N인 것이, 이를 유기 전계 발광 소자에 적용 시 낮은 구동전압 및 높은 전류 효율을 확보할 수 있다.
본 발명의 바람직한 한 구현 예에 따르면, 상기 R4는 페닐기, 비페닐기 및 나프탈레닐기로 이루어진 군에서 선택될 수 있다.
본 발명의 바람직한 한 구현 예에 따르면, 상기 R2 및 R3는 각각 독립적으로 하기 화학식 B-1 내지 B-4 중 어느 하나로 표시되는 치환기일 수 있다:
Figure PCTKR2017007717-appb-I000025
상기 B-1 내지 B-4에서,
*은 결합이 이루어지는 부분을 의미하고;
Z4 내지 Z8은 각각 독립적으로 N 또는 C(R6)이며;
Y3는 S, O, N(Ar7) 및 C(Ar8)(Ar9)로 이루어진 군으로부터 선택되고;
R6 및 Ar7 내지 Ar9는 각각 독립적으로 수소, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기 및 핵원자수 5 내지 60개의 헤테로아릴기로 이루어진 군에서 선택되고, 상기 R6이 복수 개인 경우 이들은 서로 동일하거나 상이하며;
상기 R6 및 Ar7 내지 Ar9의 알킬기, 알케닐기, 알키닐기, 아릴기 및 헤테로아릴기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C6~C60의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 복수 개의 치환기로 치환되는 경우, 이들은 서로 동일하거나 상이하다.
본 발명의 바람직한 한 구현 예에 따르면, 상기 R2 및 R3 중 적어도 하나는 상기 화학식 B-1로 표시되는 치환기일 수 있고, 이때 Z4 내지 Z7 중 적어도 하나는 N인 것이, 이를 유기 전계 발광 소자에 적용 시 낮은 구동전압 및 높은 전류 효율을 확보할 수 있다.
본 발명의 바람직한 한 구현 예에 따르면, 상기 R2 및 R3는 각각 독립적으로 하기 화학식 C-1 내지 C-10 중 어느 하나로 표시되는 치환기일 수 있다:
Figure PCTKR2017007717-appb-I000026
상기 화학식 C-1 내지 C-10에서,
*은 결합이 이루어지는 부분을 의미하고;
t는 0 내지 5의 정수이며,
u는 0 내지 4의 정수이며;
v는 0 내지 3의 정수이며;
w는 0 내지 2의 정수이며;
R7은 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴아민기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택되거나, 인접하는 기와 결합하여 축합 고리를 형성할 수 있고, 상기 R7이 복수 개인 경우 이들은 서로 동일하거나 상이하며;
상기 R7의 알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 시클로알킬기, 헤테로시클로알킬기, 아릴아민기, 알킬실릴기, 알킬보론기, 아릴보론기, 아릴포스파닐기, 모노 또는 디아릴포스피닐기 및 아릴실릴기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C6~C60의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 복수 개의 치환기로 치환되는 경우, 이들은 서로 동일하거나 상이할 수 있다.
본 발명의 바람직한 한 구현 예에 따르면, 상기 R2 및 R3는 중 적어도 하나는 상기 화학식 C-5 내지 C-10 중 어느 하나로 표시되는 치환기일 수 있고, 보다 바람직하게는 화학식 C-7 또는 C-10으로 표시되는 치환기인 것이, 이를 유기 전계 발광 소자에 적용 시 낮은 구동전압 및 높은 전류 효율을 확보할 수 있다.
본 발명의 바람직한 한 구현 예에 따르면, 상기 R7은 페닐기, 비페닐기, 나프탈레닐기, 디벤조퓨라닐기 및 디벤조티오페닐기로 이루어진 군에서 선택될 수 있다.
본 발명의 바람직한 한 구현 예에 따르면, 상기 화학식 1로 표시되는 화합물은 상기 화학식 10으로 표시되는 화합물이고, 이때 상기 R3는 상기 화학식 C-5 내지 C-10 중 어느 하나로 표시되는 치환기인 것이, 이를 유기 전계 발광 소자에 적용 시 낮은 구동전압 및 높은 전류 효율을 확보할 수 있다.
본 발명의 바람직한 한 구현 예에 따르면, 상기 화학식 1로 표시되는 화합물은 상기 화학식 6 내지 8 중 어느 하나로 표시되는 화합물이고, 상기 L1 및 L2 중 적어도 하나, 보다 바람직하게는 L1은 상기 화학식 A-5 내지 A-7 중 어느 하나로 표시되는 링커일 수 있고, 이때 Z1 및 Z2 중 적어도 하나는 N인 것이, 이를 유기 전계 발광 소자에 적용 시 낮은 구동전압 및 높은 전류 효율을 확보할 수 있다.
본 발명의 바람직한 한 구현 예에 따르면, 상기 화학식 1로 표시되는 화합물은 상기 화학식 6 내지 8 중 어느 하나로 표시되는 화합물이고, 상기 A는 상기 화학식 14로 표시되는 치환기이고, 상기 L1 및 L2 중 적어도 하나, 보다 바람직하게는 L1은 상기 화학식 A-5 내지 A-7 중 어느 하나로 표시되는 링커일 수 있고, 이때 Z1 및 Z2 중 적어도 하나는 N인 것이, 이를 유기 전계 발광 소자에 적용 시 낮은 구동전압 및 높은 전류 효율을 확보할 수 있다.
본 발명의 바람직한 한 구현 예에 따르면, 상기 화학식 1로 표시되는 화합물은 상기 화학식 10 또는 11로 표시되는 화합물이고, 상기 L1 및 L2 중 적어도 하나, 보다 바람직하게는 L1은 상기 화학식 A-5 내지 A-7 중 어느 하나로 표시되는 링커일 수 있고, 이때 Z1 및 Z2 중 적어도 하나는 N인 것이, 이를 유기 전계 발광 소자에 적용 시 낮은 구동전압 및 높은 전류 효율을 확보할 수 있다.
본 발명의 화학식 1로 표시되는 화합물은 하기 화합물로 나타낼 수 있으나 이에 한정되는 것은 아니다:
Figure PCTKR2017007717-appb-I000027
Figure PCTKR2017007717-appb-I000028
Figure PCTKR2017007717-appb-I000029
Figure PCTKR2017007717-appb-I000030
Figure PCTKR2017007717-appb-I000031
Figure PCTKR2017007717-appb-I000032
Figure PCTKR2017007717-appb-I000033
Figure PCTKR2017007717-appb-I000034
Figure PCTKR2017007717-appb-I000035
Figure PCTKR2017007717-appb-I000036
Figure PCTKR2017007717-appb-I000037
Figure PCTKR2017007717-appb-I000038
Figure PCTKR2017007717-appb-I000039
Figure PCTKR2017007717-appb-I000040
Figure PCTKR2017007717-appb-I000041
Figure PCTKR2017007717-appb-I000042
Figure PCTKR2017007717-appb-I000043
Figure PCTKR2017007717-appb-I000044
Figure PCTKR2017007717-appb-I000045
Figure PCTKR2017007717-appb-I000046
Figure PCTKR2017007717-appb-I000047
Figure PCTKR2017007717-appb-I000048
Figure PCTKR2017007717-appb-I000049
Figure PCTKR2017007717-appb-I000050
본 발명의 화학식 1의 화합물은 일반적인 합성방법에 따라 합성될 수 있다(Chem. Rev., 60:313 (1960); J. Chem. SOC. 4482 (1955); Chem. Rev. 95: 2457 (1995) 등 참조). 본 발명의 화합물에 대한 상세한 합성 과정은 후술하는 합성예에서 구체적으로 기술하도록 한다.
2. 유기 전계 발광 소자
한편, 본 발명의 다른 측면은 상기한 본 발명에 따른 화학식 1로 표시되는 화합물을 포함하는 유기 전계 발광 소자(유기 EL 소자)에 관한 것이다.
구체적으로, 본 발명은 양극(anode), 음극(cathode), 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서, 상기 1층 이상의 유기물층 중 적어도 하나는 상기 화학식 1로 표시되는 화합물을 포함한다. 이때, 상기 화합물은 단독 또는 2 이상 혼합되어 사용될 수 있다.
상기 1층 이상의 유기물층은 정공 주입층, 정공 수송층, 발광층, 발광 보조층, 수명 개선층, 전자 수송층, 전자 수송 보조층 및 전자 주입층 중 어느 하나 이상일 수 있고, 이 중에서 적어도 하나의 유기물층이 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
전술한 본 발명에 따른 유기 전계 발광 소자의 구조는 특별히 한정되지 않으나, 일 예시로 도 1을 참고하면, 예컨대 서로 마주하는 양극(10)과 음극(20), 그리고 상기 양극(10)과 음극(20) 사이에 위치하는 유기층(30)을 포함한다. 여기서, 상기 유기층(30)은 정공 수송층(31), 발광층(32) 및 전자 수송층(34)을 포함할 수 있다. 또한, 상기 정공 수송층(31)과 발광층(32) 사이에는 정공 수송 보조층(33)을 포함할 수 있으며, 상기 전자 수송층(34)과 발광층(32) 사이에는 전자 수송 보조층(35)을 포함할 수 있다.
본 발명의 다른 예시로 도 2를 참고하면, 상기 유기층(30)은 정공 수송층(31)과 양극(10)사이에 정공 주입층(37)을 더 포함할 수 있으며, 전자 수송층(34)과 음극(20)사이에는 전자 주입층(36)을 추가로 더 포함할 수 있다.
본 발명에서 상기 정공 수송층(31)과 양극(10) 사이에 적층되는 정공 주입층(37)은 양극으로 사용되는 ITO와, 정공 수송층(31)으로 사용되는 유기물질 사이의 계면 특성을 개선할 뿐만 아니라 그 표면이 평탄하지 않은 ITO의 상부에 도포되어 ITO의 표면을 부드럽게 만들어주는 기능을 하는 층으로, 당 기술분야에서 통상적으로 사용되는 것이면 특별한 제한없이 사용할 수 있으며, 예컨대, 아민 화합물을 사용할 수 있으나 이에 한정되는 것은 아니다.
또한, 상기 전자 주입층(36)은 전자 수송층(34)의 상부에 적층되어 음극으로부터의 전자 주입을 용이하게 해주어 궁극적으로 전력효율을 개선시키는 기능을 수행하는 층으로, 당 기술분야에서 통상적으로 사용되는 것이면 특별한 제한없이 사용할 수 있으며, 예컨대, LiF, Liq, NaCl, CsF, Li2O, BaO 등의 물질을 이용할 수 있다.
또한, 본 발명에서 도면에는 도시하지 않았으나, 상기 정공 수송 보조층(33)과 발광층(32) 사이에 발광 보조층을 더 포함할 수 있다. 상기 발광 보조층은 발광층(32)에 정공을 수송하는 역할을 하면서 유기층(30)의 두께를 조정하는 역할을 할 수 있다. 상기 발광 보조층은 정공 수송 물질을 포함할 수 있고, 정공 수송층(31)과 동일한 물질로 만들어질 수 있다.
또한, 본 발명에서 도면에는 도시하지 않았으나, 상기 전자 수송 보조층 (35)과 발광층(32) 사이에 수명 개선층을 더 포함할 수 있다. 상기 발광층(32)으로 유기 발광 소자 내에서 이온화 포텐셜 레벨을 타고 이동하는 정공이 수명개선층의 높은 에너지 장벽에 막혀 전자 수송층으로 확산, 또는 이동하지 못해, 결과적으로 정공을 발광층에 제한시키는 기능을 한다. 이렇게 정공을 발광층에 제한시키는 기능은 환원에 의해 전자를 이동시키는 전자 수송층으로 정공이 확산되는 것을 막아, 산화에 의한 비가역적 분해반응을 통한 수명저하 현상을 억제하여, 유기 발광 소자의 수명 개선에 기여할 수 있다.
본 발명에서 상기 화학식 1로 표시되는 화합물은 인돌로플로란센 구조 부분이 넓은 일중항 에너지 준위와 높은 삼중항 에너지 준위를 갖는다. 더 나아가 이러한 인돌로플로란센에 카바졸이 결합된 구조에 특정의 치환기가 도입됨으로써 발광층의 호스트로 적용될 경우, 도펀트보다 높은 에너지 준위를 나타낼 수 있다.
또한, 상기 화합물은 상기한 바와 같이 높은 삼중항 에너지를 갖기 때문에, 발광층에서 생성된 엑시톤(exciton)이 인접하는 전자 수송층 또는 정공 수송층으로 확산(이동)되는 것을 방지할 수 있다. 따라서 본 발명에 따른 화합물은 유기 전계 발광 소자의 유기물층 재료로 사용될 수 있으며, 바람직하게는 발광층 재료로 사용되어, 유기 전계 발광 소자의 발광효율, 휘도, 전력효율, 열적 안정성 및 소자 수명을 매우 향상시킬 수 있다.
예를 들어, 상기 화학식 1로 표시되는 화합물은 발광층의 인광 호스트, 형광 호스트 또는 도펀트 재료일 수 있으며, 바람직하게는 인광 호스트(청색, 녹색 및/또는 적색의 인광 호스트 재료) 일 수 있다.
또한, 본 발명에서 상기 유기 전계 발광 소자는 상기한 바와 같이 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층될 뿐만 아니라, 전극과 유기물층 계면에 절연층 또는 접착층을 추가로 포함할 수 있다.
본 발명의 유기 전계 발광 소자는 상기 유기물층 중 적어도 하나 이상(예컨대, 전자 수송 보조층)이 상기 화학식 1로 표시되는 화합물을 포함하도록 형성하는 것을 제외하고는, 당 기술 분야에 알려져 있는 재료 및 방법을 이용하여 다른 유기물층 및 전극을 형성하여 제조될 수 있다.
상기 유기물층은 진공 증착법이나 용액 도포법에 의하여 형성될 수 있다. 상기 용액 도포법의 예로는 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅 또는 열 전사법 등이 있으나, 이에 한정되지 않는다.
본 발명에서 사용 가능한 기판으로는 특별히 한정되지 않으며, 실리콘 웨이퍼, 석영, 유리판, 금속판, 플라스틱 필름 및 시트 등이 사용될 수 있다.
또, 양극 물질로는 예컨대 정공 주입이 원활하도록 일 함수가 높은 도전체로 만들어질 수 있으며, 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리티오펜, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 또는 폴리아닐린과 같은 전도성 고분자; 및 카본블랙 등이 있으나, 이에 한정되지는 않는다.
또, 음극 물질로는 예컨대 전자 주입이 원활하도록 일 함수가 낮은 도전체로 만들어질 수 있으며, 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 또는 납과 같은 금속 또는 이들의 합금; 및 LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이에 한정되지는 않는다.
이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
[ 준비예 1] Core1의 합성
< 단계1 >2-( 플루오란텐 -3-일)-4,4,5,5- 테트라메틸 -1,3,2- 디옥사보로란의 합성
Figure PCTKR2017007717-appb-I000051
질소 기류 하에서 3-브로모플루오란텐 (30 g, 106.7 mmol), 4,4,4',4',5,5, 5',5'-옥타메틸-2,2'-비(1,3,2-디옥사보로란) (32.5 g, 128 mmol), Pd(dppf)Cl2 (2.61 g, 3.2 mmol), KOAc (31.4 g, 320 mmol) 및 1,4-디옥산 300 ml를 혼합하고 110℃에서 12시간 동안 교반하였다.
반응이 종결된 후 컬럼크로마토그래피로 정제하여 2-(플루오란텐-3-일)-4,4,5,5-테트라메틸-1,3,2-디옥사보로란 (25g, 수율 71%)를 얻었다.
<단계 2> 3 -(5- 클로로 -2- 니트로페닐 ) 플루오란텐의 합성
Figure PCTKR2017007717-appb-I000052
질소 기류 하에서 2-(플루오란텐-3-일)-4,4,5,5-테트라메틸-1,3,2-디옥사보로란 (25 g, 76.16 mmol), 4-클로로-2-요오드-1-니트로벤젠 (21.6 g, 76.16 mmol), Pd(PPh3)4 (2.64 g, 3 mol%), K2CO3 (31.6 g, 228 mmol)을 300 ml / 100 ml의 1,4- 디옥산/H2O를 넣고 110℃에서 12시간 동안 교반하였다. 반응 종결 후 메틸렌클로라이드로 추출하고 MgSO4를 넣고 필터하였다. 필터된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 3-(5-클로로-2-니트로페닐)플루오란텐 (20g, 수율 73 %)을 얻었다.
<단계 3> 12- 클로로 -9H- 플루오레노[9,1-bc]카바졸의 합성
Figure PCTKR2017007717-appb-I000053
질소 기류 하에서 (1,4-비스(2-니트로페닐)디벤조[b,e][1,4]디옥신 (20 g, 55.89 mmol), 트리페닐포스핀 (36.6 g, 139.7 mmol)를 1,2-디클로로벤젠 150 ml에 넣고 150℃에서 12시간 동안 교반하였다. 반응 종결 후 메틸렌클로라이드로 추출하고 MgSO4를 넣고 필터하였다. 필터된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 12-클로로-9H-플루오레노[9,1-bc]카바졸 (12 g, 수율 66%)을 획득하였다.
<단계 4> 12- 클로로 -9-페닐-9H- 플루오레노[9,1-bc]카바졸의 합성
Figure PCTKR2017007717-appb-I000054
질소 기류 하에서 12-클로로-9H-플루오레노[9,1-bc]카바졸 (12 g, 36.83 mmol)과 요오드벤젠(9 g, 44.2 mmol), Cu 분말 (0.23 g, 3.68 mmol), K2CO3 (10.2 g, 73.66 mmol), 니트로벤젠 100 ml를 혼합하고 250℃에서 6시간 동안 교반하였다.
반응 종결 후 니트로벤젠을 제거하고 메틸렌클로라이드로 유기층을 분리하여 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 컬럼크로마토그래피로 정제하여 12-클로로-9-페닐-9H-플루오레노[9,1-bc]카바졸 (12 g, 수율 81%)을 얻었다.
<단계 5> Core1의 합성
Figure PCTKR2017007717-appb-I000055
2-(플루오란텐-3-일)-4,4,5,5-테트라메틸-1,3,2-디옥사보로란 대신 3-(4,4,5,5-테트라메틸-1,3,2-디옥사보로란-2-일)-9H-카바졸(10.5 g, 35.83 mmol)을 사용하고 4-클로로-2-요오드-1-니트로벤젠 대신 12-클로로-9-페닐-9H-플루오레노[9,1-bc]카바졸(12 g, 29.85 mmol)을 사용하는 것을 제외하고는 상기 <단계3>과 동일한 과정을 수행하여 Core1(10g, 수율 63 %)을 얻었다.
1H-NMR: δ 7.18 (t, 1H), 7.75 (m, 15H), 8.12 (m, 4H), 8.30 (d, 1H), 8.45 (m, 2H) 12.10(s, 1H)
[ 준비예 2] Core2의 합성
Figure PCTKR2017007717-appb-I000056
요오드벤젠 대신 3-브로모-1,1'-비페닐 (8.5 g, 36.83 mmol)을 사용하는 것을 제외하고는 상기 [준비예1]의 <단계5>와 동일한 과정을 수행하였고 12-클로로-9-페닐-9H-플루오레노[9,1-bc]카바졸 대신 9-([1,1'-비페닐]-3-일)-12-클로로-9H-플루오레노[9,1-bc]카바졸 (11 g, 23 mmol)을 사용하는 것을 제외하고는 상기 [준비예1]의 <단계6>과 동일한 과정을 수행하여 Core2(9.5g, 수율 68 %)를 얻었다.
1H-NMR: δ 7.15 (t, 1H), 7.72 (m, 20H), 8.19 (m, 4H), 8.46 (m, 2H), 12.22(s, 1H)
[ 준비예 3] Core3의 합성
Figure PCTKR2017007717-appb-I000057
12-클로로-9-페닐-9H-플루오레노[9,1-bc]카바졸 대신 12-클로로-9H-플루오레노[9,1-bc]카바졸 (10 g, 30.69 mmol)을 사용하고 3-(4,4,5,5-테트라메틸-1,3,2-디옥사보로란-2-일)-9H-카바졸 대신 9-페닐-3-(4,4,5,5-테트라메틸-1,3,2-디옥사보로란-2-일)-9H-카바졸 (13.6 g, 36.83 mmol)을 사용하는 것을 제외하고는 상기 [준비예1]의 <단계6>과 동일한 과정을 수행하여 Core3(10.8g, 수율 66 %)을 얻었다.
1H-NMR: δ 7.20 (t, 1H), 7.82 (m, 15H), 8.20 (m, 4H), 8.33 (d, 1H), 8.46 (m, 2H) 12.15(s, 1H)
[ 준비예 4] Core4의 합성
Figure PCTKR2017007717-appb-I000058
9-페닐-3-(4,4,5,5-테트라메틸-1,3,2-디옥사보로란-2-일)-9H-카바졸 대신 9-([1,1'-비페닐]-3-일)-3-(4,4,5,5-테트라메틸-1,3,2-디옥사보로란-2-일)-9H-카바졸 (16.4 g, 36.83 mmol)을 사용하는 것을 제외하고는 상기 [준비예3]과 동일한 과정을 수행하여 Core4(11.5g, 수율 62 %)를 얻었다.
1H-NMR: δ 7.16 (t, 1H), 7.68 (m, 18H), 8.17 (m, 5H), 8.32 (d, 1H), 8.48 (m, 2H) 12.16(s, 1H)
[ 준비예 5] Core5 의 합성
Figure PCTKR2017007717-appb-I000059
9-페닐-3-(4,4,5,5-테트라메틸-1,3,2-디옥사보로란-2-일)-9H-카바졸 대신 2-(디벤조[b,d]퓨란-2-일)-4,4,5,5-테트라메틸-1,3,2-디옥사보로란 (10.8 g, 36.83 mmol)을 사용하는 것을 제외하고는 상기 [준비예3]과 동일한 과정을 수행하여 Core5(10.2g, 수율 73 %)를 얻었다.
1H-NMR: δ 7.38 (m, 2H), 7.55 (m, 2H), 7.95 (m, 10H), 8.12 (m, 2H), 8.42 (m, 2H) 12.10(s, 1H)
[ 준비예 6] Core6의 합성
Figure PCTKR2017007717-appb-I000060
9-페닐-3-(4,4,5,5-테트라메틸-1,3,2-디옥사보로란-2-일)-9H-카바졸 대신 2-(디벤조[b,d]티오펜-2-일)-4,4,5,5-테트라메틸-1,3,2-디옥사보로란 (11.4 g, 36.83 mmol)을 사용하는 것을 제외하고는 상기 [준비예3]과 동일한 과정을 수행하여 Core6(9.8g, 수율 67 %)을 얻었다.
1H-NMR: δ 7.54 (m, 3H), 7.76 (m, 3H), 7.95 (m, 5H), 8.14 (m, 4H), 8.45 (m, 3H) 12.05(s, 1H)
[ 준비예 7] Core7 의 합성
Figure PCTKR2017007717-appb-I000061
9-페닐-3-(4,4,5,5-테트라메틸-1,3,2-디옥사보로란-2-일)-9H-카바졸 대신 10-(4,4,5,5-테트라메틸-1,3,2-디옥사보로란-2-일)-7H-벤조[c]카바졸 (12.6 g, 36.83 mmol)을 사용하는 것을 제외하고는 상기 [준비예3]과 동일한 과정을 수행하여 Core7(11.2g, 수율 63 %)을 얻었다.
1H-NMR: δ 7.60 (m, 18H), 8.13 (m, 3H), 8.34 (d, 1H), 8.40 (m, 2H), 12.08(s, 1H)
[ 준비예 8] Core8 의 합성
Figure PCTKR2017007717-appb-I000062
<단계 1> 3-(5- 브로모 -2- 플루오로페닐 )-2- 에톡시플루오란텐의 합성
질소 기류하에서 (2-에톡시플루오란텐-3-일)보로닉산 (34.71 g, 119.64 mmol) 4-브로모-1-플루오로-2-요오드벤젠 (30 g, 99.7 mmol), Pd(PPh3)4 (3.45 g, 3 mol%), K2CO3 (41.33 g, 299.1 mmol)와 400 ml / 100 ml / 100ml의 톨루엔/EtOH/H2O을 넣고 110℃에서 12시간 동안 교반하였다. 반응 종결 후 메틸렌클로라이드로 추출하고 MgSO4를 넣고 필터하였다. 필터된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 3-(5-브로모-2-플루오로페닐)-2-에톡시플루오란텐 (23.5g, 수율 56 %)을 얻었다.
<단계 2> 3-(5- 브로모 -2- 플루오로페닐 ) 플루오란텐 -2-올의 합성
질소 기류 하에서 3-(5-브로모-2-플루오로페닐)-2-에톡시플루오란텐 (23.5 g, 56.04 mmol)을 300ml의 CH2Cl2에 녹이고 100ml CH2Cl2에 보론트리브로마이드 (16.84 g, 67.25 mmol)을 넣은 용액을 혼합하여 0℃에서 상온으로 올려주며 18시간 동안 교반 하였다. 반응 종결 후 물을 넣고 교반 하다가 NaHCO3를 첨가하고 에틸아세테이트로 추출하고 유기층을 MgSO4로 건조 후 감압여과 하였다. 여과된 유기층을 감압증류 한 뒤 컬럼 크로마토그래피를 이용하여 3-(5-브로모-2-플루오로페닐)플루오란텐-2-올 (20 g, 수율 91 %)을 얻었다.
<단계 3> 12- 브로모플루오란테노[2,3-b]벤조퓨란의 합성
3-(5-브로모-2-플루오로페닐)플루오란텐-2-올 (20 g, 51.12 mmol), NMP 200mL, K2CO3 (14.1 g, 102.23 mmol)을 첨가하고, 그 후 200℃에서 2시간 교반하였다. 반응 종결 후 메틸렌클로라이드로 추출하고 MgSO4를 넣고 필터하였다. 필터된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 12-브로모플루오란테노[2,3-b]벤조퓨란 (12.4 g, 수율 65%)을 얻었다.
<단계 4> Core8의 합성
4-브로모-1-플루오로-2-요오드벤젠 대신 12-브로모플루오란테노[2,3-b]벤조퓨란 (12.4 g, 33.4 mmol)을 사용하고 (2-에톡시플루오란텐-3-일)보로닉산대신 3-(4,4,5,5-테트라메틸-1,3,2-디옥사보로란-2-일)-9H-카바졸 (11.75 g, 40.08 mmol)을 사용하는 것을 제외하고는 [준비예8]의 <단계 1>과 동일한 과정을 수행하여 Core8 (11.5 g, 수율 75 %)을 얻었다.
1H-NMR: δ 7.15 (t, 1H), 7.68 (m, 12H), 8.12 (m, 3H), 8.40 (m, 2H), 12.08(s, 1H)
[ 준비예 9] Core9 의 합성
Figure PCTKR2017007717-appb-I000063
<단계 1>5 - 클로로 -2-( 플루오란텐 -2- 일티오 )아닐린의 합성
2-브로모플루오란텐 (20 g, 71.13 mmol), 2-아미노-4-클로로벤젠티올 (13.62 g, 85.36 mmol), K2CO3 19.6g (142.27 mmol)을 400ml DMF에 넣고 80시간 동안 환류 교반하였다. 반응 종결 후 디클로로메탄으로 추출하고 유기층을 MgSO4로 건조 후 감압여과 하였다. 여과된 유기층을 감압증류 한 뒤 컬럼 크로마토그래피를 이용하여 목적 화합물인 5-클로로-2-(플루오란텐-2-일티오)아닐린 (24.7 g, 수율 76 %)을 획득하였다.
<단계 2> 12- 클로로벤조[b]플루오란테노[3,2-d]티오펜의 합성
2-(5-브로모나프탈렌-1-일티오)아닐린 (24.7 g, 68.63 mmol), HCl 20ml, 아세트산 200ml, H2O 60ml 혼합물에 NaNO2 (47.35g, 686.35 mmol)과 H2O 70ml 수용액을 0~5℃에서 1시간 가량 적하하고 12시간 동안 교반하였다. CuSO4 (49.3 g, 308.8 mmol)을 H2O 800ml, HCl 50ml에 넣은 용액을 첨가하고 1시간 동안 환류 교반하였다. 온도를 낮추고 고체를 필터하여 12-클로로벤조[b]플루오란테노[3,2-d]티오펜 (22.3 g, 수율 : 95 %)을 획득하였다.
<단계 3> Core9의 합성
12-클로로-9-페닐-9H-플루오레노[9,1-bc]카바졸 대신 12-클로로벤조[b]플루오란테노[3,2-d]티오펜 (24.7 g, 72.04 mmol)을 사용하는 것을 제외하고는 [준비예1]의 <단계 6>과 동일한 과정을 수행하여 Core9 (25.2 g, 수율 74%)를 얻었다.
1H-NMR: δ 7.22 (t, 1H), 7.65 (m, 6H), 8.03 (d, 1H), 8.19 (m, 5H), 8.43(m, 2H), 12.15(s, 1H)
[ 합성예 1] Inv 2 의 합성
Figure PCTKR2017007717-appb-I000064
Core1 (5.0 g, 9.38 mmol)와 3-브로모-1,1'-비페닐 (2.62 g, 11.26 mmol) 및 Pd2(dba)3 (0.25 g, 0.28 mmol), P(t-Bu)3 (0.38 g, 0.94 mmol), 소디움 터트-뷰톡사이드 (1.80 g, 18.7 mmol)을 80 ml 톨루엔에 넣고 110℃에서 12시간 동안 교반하였다. 반응 종결 후 메틸렌클로라이드로 추출하고 MgSO4를 넣고 필터하였다. 필터된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 Inv 2 (4.8 g, 수율 75%)을 얻었다.
Mass : [(M+H)+] : 684
[ 합성예 2] In 17 의 합성
Figure PCTKR2017007717-appb-I000065
질소 기류 하에서 Core1 (5.0 g, 9.38 mmol), 2-클로로-4,6-디페닐-1,3,5-트리아진 (3.0 g, 11.26 mmol), NaH (0.045 g, 1.87 mmol) 및 DMF(100 ml)를 혼합하고 상온에서 3시간 동안 교반하였다. 반응이 종결된 후 물을 넣고 고체 화합물을 여과한 후, 컬럼 크로마토그래피 (Hexane:MC = 2:1 (v/v))로 정제하여 Inv 17 (5.1 g, 수율 71%)을 얻었다.
Mass : [(M+H)+] : 763
[ 합성예 3] Inv 22의 합성
Figure PCTKR2017007717-appb-I000066
3-브로모-1,1'-비페닐 대신 2-(3-클로로페닐)-4,6-디페닐-1,3,5-트리아진 (3.87 g, 11.26 mmol)을 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 Inv 22 (5.7 g, 수율 72%)를 얻었다.
Mass : [(M+H)+] : 839
[ 합성예 4] Inv 29 의 합성
Figure PCTKR2017007717-appb-I000067
2-(3-클로로페닐)-4,6-디페닐-1,3,5-트리아진 대신 2-클로로-4-(디벤조[b,d]퓨란-3-일)-6-페닐-1,3,5-트리아진 (4.0 g, 11.26 mmol)을 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 Inv 29(5.0 g, 수율 62%)를 얻었다.
Mass : [(M+H)+] : 853
[ 합성예 5] Inv 33 의 합성
Figure PCTKR2017007717-appb-I000068
3-브로모-1,1'-비페닐 대신 2-클로로-4-페닐퀴나졸린 (2.71 g, 11.26 mmol)을 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 Inv-33 (4.13 g, 수율 62%)을 얻었다.
Mass : [(M+H)+] : 736
[ 합성예 6] Inv 39 의 합성
Figure PCTKR2017007717-appb-I000069
3-브로모-1,1'-비페닐 대신 3-클로로-1-페닐벤조[f]퀴나졸린 (3.27 g, 11.26 mmol)을 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 Inv 39 (4.2 g, 수율 57%)를 얻었다.
Mass : [(M+H)+] : 786
[ 합성예 7] Inv 92 의 합성
Figure PCTKR2017007717-appb-I000070
Core1대신 Core3(5.0 g, 93.87 mmol)을 사용하고 3-브로모-1,1'-비페닐 대신 2-브로모디벤조[b,d]퓨란 (2.78 g, 11.26 mmol)을 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 Inv 92 (4.8 g, 수율 73%)를 얻었다.
Mass : [(M+H)+] : 698
[ 합성예 8] Inv 98 의 합성
Figure PCTKR2017007717-appb-I000071
Core1 대신 Core2 (5.0 g, 93.87 mmol)을 사용하고 2-클로로-4,6-디페닐-1,3,5-트리아진 대신 2-클로로-4,6-디페닐-1,3,5-트리아진 (4.73 g, 11.26 mmol)을 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 Inv 98 (5.5 g, 수율 64%)을 얻었다.
Mass : [(M+H)+] : 915
[ 합성예 9] Inv 103 의 합성
Figure PCTKR2017007717-appb-I000072
2-브로모디벤조[b,d]퓨란 대신 2-([1,1'-비페닐]-4-일)-4-(3-클로로페닐)-6-페닐-1,3,5-트리아진 (4.73 g, 11.26 mmol)을 사용하는 것을 제외하고는 합성예 7과 동일한 과정을 수행하여 Inv 103 (5.9 g, 수율 69%)을 얻었다.
Mass : [(M+H)+] : 915
[ 합성예 10] Inv 111 의 합성
Figure PCTKR2017007717-appb-I000073
2-브로모디벤조[b,d]퓨란 대신 2-(8-브로모디벤조[b,d]퓨란-2-일)-4,6-디페닐-1,3,5-트리아진 (5.38 g, 11.26 mmol)을 사용하는 것을 제외하고는 합성예 7과 동일한 과정을 수행하여 Inv 103 (6.2 g, 수율 71%)을 얻었다.
Mass : [(M+H)+] : 929
[ 합성예 11] Inv 114의 합성
Figure PCTKR2017007717-appb-I000074
2-브로모디벤조[b,d]퓨란 대신 4-([1,1'-비페닐]-4-일)-2-클로로퀴나졸린 (3.56 g, 11.26 mmol)을 사용하는 것을 제외하고는 합성예 7과 동일한 과정을 수행하여 Inv 114 (4.7 g, 수율 62%)를 얻었다.
Mass : [(M+H)+] : 812
[ 합성예 12] Inv 117 의 합성
Figure PCTKR2017007717-appb-I000075
2-브로모디벤조[b,d]퓨란 대신 2-클로로-4-페닐벤조[h]퀴나졸린요오드벤젠 (3.27 g, 11.26 mmol)을 사용하는 것을 제외하고는 합성예 7과 동일한 과정을 수행하여 Inv 117 (4.3 g, 수율 58%)을 얻었다.
Mass : [(M+H)+] : 786
[ 합성예 13] Inv 122 의 합성
Figure PCTKR2017007717-appb-I000076
Core1 대신 Core4 (5 g, 82.14 mmol)를 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 Inv 122 (4.9 g, 수율 78%)를 얻었다.
Mass : [(M+H)+] : 760
[ 합성예 14] Inv 141 의 합성
Figure PCTKR2017007717-appb-I000077
3-브로모-1,1'-비페닐 대신 2-(3-브로모페닐)-4,6-디페닐-1,3,5-트리아진 (3.38 g, 9.85 mmol)을 사용하는 것을 제외하고는 합성예 13과 동일한 과정을 수행하여 Inv141(5.3 g, 수율 70%)을 얻었다.
Mass : [(M+H)+] : 915
[ 합성예 15] Inv 147 의 합성
Figure PCTKR2017007717-appb-I000078
3-브로모-1,1'-비페닐 대신 2-(3'-클로로-[1,1'-비페닐]-3-일)-4,6-디페닐-1,3,5-트리아진 (4.13 g, 98.56 mmol)을 사용하는 것을 제외하고는 합성예 13과 동일한 과정을 수행하여 Inv 147 (5.8 g, 수율 71%)을 얻었다.
Mass : [(M+H)+] : 992
[ 합성예 16] Inv 153 의 합성
Figure PCTKR2017007717-appb-I000079
3-브로모-1,1'-비페닐 대신 2-클로로-4-페닐퀴나졸린 (2.37 g, 98.56 mmol)을 사용하는 것을 제외하고는 합성예 13과 동일한 과정을 수행하여 Inv 153 (4.2 g, 수율 63%)을 얻었다.
Mass : [(M+H)+] : 812
[ 합성예 17] Inv 164 의 합성
Figure PCTKR2017007717-appb-I000080
Core1 대신 Core5 (5.0 g, 10.92 mmol)를 사용하고 3-브로모-1,1'-비페닐 대신 5'-브로모-1,1':3',1''-터페닐 (4.05 g, 13.11 mmol)을 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 Inv 164 (5.7 g, 수율 76%)를 얻었다.
Mass : [(M+H)+] : 685
[ 합성예 18] Inv 179 의 합성
Figure PCTKR2017007717-appb-I000081
Core1 대신 Core5 (5.0 g, 10.92 mmol)를 사용하고 2-클로로-4,6-디페닐-1,3,5-트리아진 대신 2-클로로-4,6-디(나프탈렌-2-일)-1,3,5-트리아진 (4.82 g, 13.11 mmol)을 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 Inv 179 (5.5 g, 수율 64%)를 얻었다.
Mass : [(M+H)+] : 788
[ 합성예 19] Inv 182 의 합성
Figure PCTKR2017007717-appb-I000082
5'-브로모-1,1':3',1''-터페닐 대신 2-(3-클로로페닐)-4,6-디페닐-1,3,5-트리아진 (4.5 g, 13.11 mmol)을 사용하는 것을 제외하고는 합성예 17과 동일한 과정을 수행하여 Inv 164 (6.0 g, 수율 72%)를 얻었다.
Mass : [(M+H)+] : 764
[ 합성예 20] Inv 188 의 합성
Figure PCTKR2017007717-appb-I000083
5'-브로모-1,1':3',1''-터페닐 대신 2-(4'-클로로-[1,1'-비페닐]-3-일)-4,6-디페닐-1,3,5-트리아진 (5.5 g, 13.11 mmol)을 사용하는 것을 제외하고는 합성예 17과 동일한 과정을 수행하여 Inv 188 (6.2 g, 수율 67%)을 얻었다.
Mass : [(M+H)+] : 840
[ 합성예 21] Inv 193의 합성
Figure PCTKR2017007717-appb-I000084
5'-브로모-1,1':3',1''-터페닐 대신 2-클로로-4-페닐퀴나졸린 (3.15 g, 13.11 mmol)을 사용하는 것을 제외하고는 합성예 17과 동일한 과정을 수행하여 Inv 193 (4.2 g, 수율 58%)을 얻었다.
Mass : [(M+H)+] : 661
[ 합성예 22] Inv 208 의 합성
Figure PCTKR2017007717-appb-I000085
Core1 대신 Core6 (5.0 g, 10.55 mmol)을 사용하고 3-브로모-1,1'-비페닐 대신 2-브로모트리페닐렌 (3.89 g, 12.66 mmol)을 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 Inv 208 (5.5 g, 수율 74%)를 얻었다.
Mass : [(M+H)+] : 699
[ 합성예 23] Inv 217 의 합성
Figure PCTKR2017007717-appb-I000086
Core1 대신 Core6 (5.0 g, 10.55 mmol)을 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 Inv 217 (4.5 g, 수율 60%)를 얻었다.
Mass : [(M+H)+] : 704
[ 합성예 24] Inv 225 의 합성
Figure PCTKR2017007717-appb-I000087
2-브로모트리페닐렌 대신 4-([1,1'-비페닐]-4-일)-2-클로로퀴나졸린 (4.0 g, 12.66 mmol)을 사용하는 것을 제외하고는 합성예 22와 동일한 과정을 수행하여 Inv225 (5.8 g, 수율 70%)를 얻었다.
Mass : [(M+H)+] : 779
[ 합성예 25] Inv 234 의 합성
Figure PCTKR2017007717-appb-I000088
2-브로모트리페닐렌 대신 4-(3-클로로페닐)-2,6-디페닐피리미딘 (4.3 g, 12.66 mmol)을 사용하는 것을 제외하고는 합성예 22와 동일한 과정을 수행하여 Inv234 (5.5 g, 수율 69%)를 얻었다.
Mass : [(M+H)+] : 753
[ 합성예 26] Inv 257 의 합성
Figure PCTKR2017007717-appb-I000089
Core1 대신 Core7 (5.0 g, 8.58 mmol)을 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 Inv 257 (4.5 g, 수율 64%)를 얻었다.
Mass : [(M+H)+] : 813
[ 합성예 27] Inv 270 의 합성
Figure PCTKR2017007717-appb-I000090
2-클로로-4,6-디페닐-1,3,5-트리아진 대신 2-클로로-4-(디벤조[b,d]퓨란-2-일)-6-페닐-1,3,5-트리아진 (3.68 g, 10.29 mmol)을 사용하는 것을 제외하고는 합성예 26과 동일한 과정을 수행하여 Inv 270 (4.6 g, 수율 59%)을 얻었다.
Mass : [(M+H)+] : 904
[ 합성예 28] Inv273 합성
Figure PCTKR2017007717-appb-I000091
Core1 대신 Core7 (5.0 g, 8.58 mmol)을 사용하는 것을 제외하고는 합성예 5와 동일한 과정을 수행하여 Inv273 (4.1 g, 수율 61%)을 얻었다.
Mass : [(M+H)+] : 786
[ 합성예 29] Inv275의 합성
Figure PCTKR2017007717-appb-I000092
2-클로로-4-페닐퀴나졸린 대신 2-클로로-4-(4-(나프탈렌-2-일)페닐)퀴나졸린 (3.7 g, 102.97 mmol)을 사용하는 것을 제외하고는 합성예 28과 동일한 과정을 수행하여 Inv275 (4.5 g, 수율 57%)를 얻었다.
Mass : [(M+H)+] : 913
[ 합성예 30] Inv279의 합성
Figure PCTKR2017007717-appb-I000093
2-클로로-4-페닐퀴나졸린 대신 3-클로로-1-페닐벤조[f]퀴나졸린 (3.0g, 290.75mmol)을 사용하는 것을 제외하고는 합성예 28과 동일한 과정을 수행하여 Inv275 (4.0 g, 수율 56%)를 얻었다.
Mass : [(M+H)+] : 837
[ 합성예 31] Inv 284 의 합성
Figure PCTKR2017007717-appb-I000094
Core5 대신 Core8 (5.0 g, 10.92 mmol)을 사용하는 것을 제외하고는 합성예 17과 동일한 과정을 수행하여 Inv284 (5.5 g, 수율 73%)을 얻었다.
Mass : [(M+H)+] : 685
[ 합성예 32] Inv 292 의 합성
Figure PCTKR2017007717-appb-I000095
5'-브로모-1,1':3',1''-터페닐 대신 2-브로모디벤조[b,d]퓨란 (3.24 g, 13.11 mmol)을 사용하는 것을 제외하고는 합성예 31과 동일한 과정을 수행하여 목적 화합물인 Inv 292 (5.1 g, 수율 75%)를 얻었다.
Mass : [(M+H)+] : 623
[ 합성예 33] Inv298 의 합성
Figure PCTKR2017007717-appb-I000096
Core2 대신 Core8 (5.5 g, 13.11 mmol)을 사용하는 것을 제외하고는 합성예 8과 동일한 과정을 수행하여Inv298 (6.0 g, 수율 65%)를 얻었다.
Mass : [(M+H)+] : 840
[ 합성예 34] Inv302 의 합성
Figure PCTKR2017007717-appb-I000097
5'-브로모-1,1':3',1''-터페닐 대신 2-(3-클로로페닐)-4,6-디페닐-1,3,5-트리아진 (4.5 g, 13.11 mmol)을 사용하는 것을 제외하고는 합성예 31과 동일한 과정을 수행하여 Inv302 (5.8g, 수율 69%)를 얻었다.
Mass : [(M+H)+] : 764
[ 합성예 35] Inv311 의 합성
Figure PCTKR2017007717-appb-I000098
5'-브로모-1,1':3',1''-터페닐 대신 2-(3-클로로페닐)-4,6-디페닐-1,3,5-트리아진 (6.2 g, 13.11 mmol)을 사용하는 것을 제외하고는 합성예 31과 동일한 과정을 수행하여 Inv311 (6.6g, 수율 71%)를 얻었다.
Mass : [(M+H)+] : 854
[ 합성예 36] Inv316 의 합성
Figure PCTKR2017007717-appb-I000099
5'-브로모-1,1':3',1''-터페닐 대신 2-클로로-4-(4-(나프탈렌-1-일)페닐)퀴나졸린 (4.8 g, 13.11 mmol)을 사용하는 것을 제외하고는 합성예 31과 동일한 과정을 수행하여 Inv311 (5.5g, 수율64%)를 얻었다.
Mass : [(M+H)+] : 787
[ 합성예 37] Inv318 의 합성
Figure PCTKR2017007717-appb-I000100
5'-브로모-1,1':3',1''-터페닐 대신 4-([1,1'-비페닐]-4-일)-2-클로로벤조[h]퀴나졸린 (6.2 g, 13.11 mmol)을 사용하는 것을 제외하고는 합성예 31과 동일한 과정을 수행하여 Inv318 (5.2g, 수율 60%)를 얻었다.
Mass : [(M+H)+] : 787
[ 합성예 38] Inv323 의 합성
Figure PCTKR2017007717-appb-I000101
Core1 대신 Core9 (5.0 g, 10.55 mmol)를 사용하고 3-브로모-1,1'-비페닐대신 4-브로모-1,1'-비페닐 (2.95 g, 12.66 mmol)을 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여Inv323 (5.0 g, 수율 76%)를 얻었다.
Mass : [(M+H)+] : 625
[ 합성예 39] Inv334 의 합성
Figure PCTKR2017007717-appb-I000102
4-브로모-1,1'-비페닐 대신 2-브로모-9-페닐-9H-카바졸 (4.0 g, 12.66 mmol)을 사용하는 것을 제외하고는 합성예 38과 동일한 과정을 수행하여Inv334 (5.4 g, 수율 72%)를 얻었다.
Mass : [(M+H)+] : 714
[ 합성예 40] Inv340 의 합성
Figure PCTKR2017007717-appb-I000103
Core1 대신 Core9 (5.0 g, 10.55 mmol)를 사용하고 2-클로로-4,6-디페닐-1,3,5-트리아진 대신 2-클로로-4,6-디(나프탈렌-1-일)-1,3,5-트리아진 (4.66 g, 12.66 mmol)을 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 목적 화합물인 Inv340 (5.1 g, 수율 60%)를 얻었다.
Mass : [(M+H)+] : 804
[ 합성예 41] Inv344 의 합성
Figure PCTKR2017007717-appb-I000104
4-브로모-1,1'-비페닐 대신 2,4-디([1,1'-비페닐]-3-일)-6-(3-클로로페닐)-1,3,5-트리아진 (6.2 g, 12.66 mmol)을 사용하는 것을 제외하고는 합성예 38과 동일한 과정을 수행하여Inv344 (6.6 g, 수율 67를 얻었다.
Mass : [(M+H)+] : 933
[ 합성예 42] Inv346 의 합성
Figure PCTKR2017007717-appb-I000105
4-브로모-1,1'-비페닐 대신 4-([1,1'-비페닐]-4-일)-6-(4-클로로페닐)-2-페닐피리미딘 (5.3 g, 12.66 mmol)을 사용하는 것을 제외하고는 합성예 38과 동일한 과정을 수행하여Inv346 (6.1 g, 수율 67%)을 얻었다.
Mass : [(M+H)+] : 856
[ 합성예 43] Inv355 의 합성
Figure PCTKR2017007717-appb-I000106
4-브로모-1,1'-비페닐 대신 2-클로로-4-(4-(나프탈렌-2-일)페닐)퀴나졸린 (4.6 g, 12.66 mmol)을 사용하는 것을 제외하고는 합성예 38과 동일한 과정을 수행하여Inv355 (5.2 g, 수율 61%)를 얻었다.
Mass : [(M+H)+] : 803
[ 합성예 44] Inv360 의 합성
Figure PCTKR2017007717-appb-I000107
4-브로모-1,1'-비페닐 대신 1-([1,1'-비페닐]-4-일)-3-클로로벤조[f]퀴나졸린 (4.64 g, 12.66 mmol)을 사용하는 것을 제외하고는 합성예 38과 동일한 과정을 수행하여Inv360 (4.8 g, 수율 57%)를 얻었다.
Mass : [(M+H)+] : 803
[ 실시예 1 ~ 28] 녹색 유기 전계 발광 소자의 제작
합성예 1~42에서 합성한 화합물 Inv2 ~ Inv346을 통상적으로 알려진 방법으로 고순도 승화정제를 한 후 아래의 과정에 따라 녹색 유기 전계 발광 소자를 제작하였다.
먼저, ITO (Indium tin oxide)가 1500Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV OZONE 세정기 (Power sonic 405, 화신테크)로 이송시킨 다음 UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
이렇게 준비된 ITO 투명 전극 위에 m-MTDATA (60 nm)/TCTA (80 nm)/ Inv2 ~ Inv346 의 각각의 화합물 + 10 % Ir(ppy)3 (30nm)/BCP (10 nm)/Alq3 (30 nm)/LiF (1 nm)/Al (200 nm) 순으로 적층하여 유기 전계 발광 소자를 제작하였다.
m-MTDATA, TCTA, Ir(ppy)3, CBP 및 BCP의 구조는 하기와 같다.
Figure PCTKR2017007717-appb-I000108
Figure PCTKR2017007717-appb-I000109
[비교예 1] 녹색 유기 전계 발광 소자의 제작
발광층 형성시 발광 호스트 물질로서 화합물 Inv2 대신 CBP를 사용하는 것을 제외하고는 실시예 1과 동일한 과정으로 녹색 유기 전계 발광 소자를 제작하였다.
[평가예 1]
실시예 1 ~ 28 및 비교예 1에서 제작한 각각의 녹색 유기 전계 발광 소자에 대하여 전류밀도 (10) mA/㎠에서의 구동전압, 전류효율 및 발광 피크를 측정하고, 그 결과를 하기 표 1에 나타내었다.
샘플 호스트 구동 전압(V) EL 피크(nm) 전류효율(cd/A)
실시예 1 Inv2 6.64 516 42.2
실시예 2 Inv17 6.35 517 47.4
실시예 3 Inv22 6.42 518 49.2
실시예 4 Inv29 6.53 516 45.8
실시예 5 Inv92 6.66 517 41.1
실시예 6 Inv98 6.48 516 45.6
실시예 7 Inv103 6.32 516 47.5
실시예 8 Inv111 6.28 516 46.4
실시예 9 Inv122 6.76 517 43.1
실시예 10 Inv141 6.39 516 47.4
실시예 11 Inv147 6.45 516 46.6
실시예 12 Inv164 6.81 518 42.4
실시예 13 Inv179 6.38 516 47.6
실시예 14 Inv182 6.54 518 46.1
실시예 15 Inv188 6.37 517 45.4
실시예 16 Inv208 6.72 517 43.7
실시예 17 Inv217 6.55 516 44.8
실시예 18 Inv225 6.36 518 46.5
실시예 19 Inv284 6.68 516 42.1
실시예 20 Inv292 6.72 516 43.6
실시예 21 Inv298 6.26 517 49.9
실시예 22 Inv302 6.18 518 47.4
실시예 23 Inv311 6.26 516 49.2
실시예 24 Inv323 6.72 517 43.6
실시예 25 Inv334 6.62 517 42.4
실시예 26 Inv340 6.37 518 48.3
실시예 27 Inv344 6.29 516 47.4
실시예 28 Inv346 6.34 516 46.3
비교예 1 CBP 6.93 516 38.2
상기 표 1에 나타낸 바와 같이, 본 발명에 따른 화합물 Inv2 ~ Inv346을 녹색 유기 전계 발광 소자의 발광층으로 사용하였을 경우(실시예 1~28) 종래 CBP를 사용한 녹색 유기 전계 발광 소자(비교예 1)와 비교해 볼 때 효율 및 구동전압 면에서 보다 우수한 성능을 나타내는 것을 알 수 있다. 더욱이, N을 포함하는 헤테로아릴기가 치환된 경우 더욱 낮은 구동전압과 높은 전류효율의 특성을 확보할 수 있는 것을 볼 수 있다.
[실시예 29 ~ 44] 적색 유기 전계 발광 소자의 제조
합성예 15~44에서 합성한 화합물을 통상적으로 알려진 방법으로 고순도 승화정제를 한 후 아래의 과정에 따라 적색 유기 전계 발광 소자를 제작하였다.
먼저, ITO (Indium tin oxide)가 1500Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV OZONE 세정기 (Power sonic 405, 화신테크)로 이송시킨 다음 UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
이렇게 준비된 ITO 투명 전극 위에 m-MTDATA (60 nm)/TCTA (80 nm)/ Inv33 ~ Inv360 의 화합물 + 10 % (piq)2Ir(acac) (300nm)/BCP (10 nm)/Alq3 (30 nm)/LiF (1 nm)/Al (200 nm) 순으로 적층하여 유기 전계 발광 소자를 제작하였다.
[비교예 2] 적색 유기 전계 발광 소자의 제조
발광층 형성시 발광 호스트 물질로서 상기 합성예 5의 화합물 대신 CBP를 사용하는 것을 제외하고는 상기 실시예 29와 동일한 과정으로 적색 유기 전계 발광 소자를 제작하였다.
상기 실시예 29 ~ 44 및 비교예2 에서 사용된 m-MTDATA, (piq)2Ir(acac), CBP 및 BCP의 구조는 하기와 같다.
Figure PCTKR2017007717-appb-I000110
[ 평가예 2]
실시예 29 ~ 44 및 비교예 2에서 제작한 각각의 유기 전계 발광 소자에 대하여 전류밀도 10 mA/㎠에서의 구동전압 및 전류효율을 측정하고, 그 결과를 하기 표 2에 나타내었다.
샘플 호스트 구동 전압(V) 전류효율(cd/A)
실시예 29 Inv33 4.92 12.6
실시예 30 Inv39 4.84 13.6
실시예 31 Inv114 4.28 14.8
실시예 32 Inv117 4.14 15.8
실시예 33 Inv153 4.32 14.7
실시예 34 Inv193 4.25 14.6
실시예 35 Inv234 4.28 15.8
실시예 36 Inv257 4.34 15.6
실시예 37 Inv270 4.25 13.6
실시예 38 Inv273 4.32 12.8
실시예 39 Inv275 4.14 15.8
실시예 40 Inv279 4.32 14.7
실시예 41 Inv316 4.25 14.6
실시예 42 Inv318 4.28 15.8
실시예 43 Inv355 4.34 15.6
실시예 44 Inv360 4.25 13.6
비교예 2 CBP 5.25 8.2
상기 표 2 나타낸 바와 같이, 본 발명에 따른 화합물을 적색 유기 전계 발광 소자의 발광층의 재료로 사용하였을 경우(실시예 29~44) 종래 CBP를 발광층의 재료로 사용한 적색 유기 전계 발광 소자(비교예2)와 비교해 볼 때 효율 및 구동전압 면에서 우수한 성능을 나타내는 것을 알 수 있다.
본 발명은 유기 전계 발광 소자용 재료로서 사용될 수 있는 신규 유기 화합물 및 이를 포함하는 유기 전계 발광 소자에 관한 것이다.

Claims (14)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2017007717-appb-I000111
    상기 화학식 1에서,
    X1은 S, O, N(Ar1) 및 C(Ar2)(Ar3)로 이루어진 군으로부터 선택되고;
    A는 하기 화학식 2로 표시되는 치환기이며;
    Ar1 내지 Ar3은 각각 독립적으로 하기 화학식 3으로 표시되는 치환기이며;
    [화학식 2]
    Figure PCTKR2017007717-appb-I000112
    상기 화학식 2에서,
    Y1은 S, O, N(Ar4) 및 C(Ar5)(Ar6)로 이루어진 군으로부터 선택되고;
    Q1 및 Q2는 각각 독립적으로 C6~C30의 아렌 및 핵원자수 5 내지 30개의 헤테로아렌으로 이루어진 군에서 선택되며;
    m은 0 내지 4의 정수이며;
    Ar4 내지 Ar6 및 R1은 각각 독립적으로 하기 화학식 4로 표시되는 치환기이고, 상기 R1이 복수 개인 경우 이들은 서로 동일하거나 상이하며;
    [화학식 3]
    Figure PCTKR2017007717-appb-I000113
    상기 화학식 3에서,
    *은 결합이 이루어지는 부분을 의미하고;
    L1은 단일결합, C6~C18의 아릴렌기 및 핵원자수 5 내지 18개의 헤테로아릴렌기로 이루어진 군에서 선택되며;
    R2는 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 인접하는 기와 결합하여 축합 고리를 형성하며;
    상기 L1의 아릴렌기 및 헤테로아릴렌기와, 상기 R2의 알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 시클로알킬기, 헤테로시클로알킬기, 아릴아민기, 알킬실릴기, 알킬보론기, 아릴보론기, 아릴포스파닐기, 모노 또는 디아릴포스피닐기 및 아릴실릴기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C6~C60의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 복수 개의 치환기로 치환되는 경우, 이들은 서로 동일하거나 상이하며;
    [화학식 4]
    Figure PCTKR2017007717-appb-I000114
    상기 화학식 4에서,
    *은 결합이 이루어지는 부분을 의미하고;
    L2는 단일결합, C6~C18의 아릴렌기 및 핵원자수 5 내지 18개의 헤테로아릴렌기로 이루어진 군에서 선택되며;
    R3은 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 인접하는 기와 결합하여 축합 고리를 형성하며;
    상기 L2의 아릴렌기 및 헤테로아릴렌기와, 상기 R3의 알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 시클로알킬기, 헤테로시클로알킬기, 아릴아민기, 알킬실릴기, 알킬보론기, 아릴보론기, 아릴포스파닐기, 모노 또는 디아릴포스피닐기 및 아릴실릴기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C6~C60의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 복수 개의 치환기로 치환되는 경우, 이들은 서로 동일하거나 상이하다.
  2. 제1항에 있어서,
    상기 화합물은 하기 화학식 5로 표시되는, 화합물:
    [화학식 5]
    Figure PCTKR2017007717-appb-I000115
    상기 화학식 5에서,
    X1 및 A 각각은 제1항에서 정의된 바와 같다.
  3. 제1항에 있어서,
    상기 X1은 S 또는 O인, 화합물.
  4. 제1항에 있어서,
    상기 화합물은 하기 화학식 6 내지 12 중 어느 하나로 표시되는, 화합물:
    [화학식 6]
    Figure PCTKR2017007717-appb-I000116
    [화학식 7]
    Figure PCTKR2017007717-appb-I000117
    [화학식 8]
    Figure PCTKR2017007717-appb-I000118
    [화학식 9]
    Figure PCTKR2017007717-appb-I000119
    [화학식 10]
    Figure PCTKR2017007717-appb-I000120
    [화학식 11]
    Figure PCTKR2017007717-appb-I000121
    [화학식 12]
    Figure PCTKR2017007717-appb-I000122
    상기 화학식 6 내지 12에서,
    Ar1 내지 Ar6, R1, m 및 Q1 내지 Q2 각각은 제1항에서 정의된 바와 같다.
  5. 제1항에 있어서,
    상기 A는 하기 화학식 13 또는 14로 표시되는 치환기인 화합물:
    [화학식 13]
    Figure PCTKR2017007717-appb-I000123
    [화학식 14]
    Figure PCTKR2017007717-appb-I000124
    상기 화학식 13 및 14에서,
    *은 결합이 이루어지는 부분을 의미하고;
    Y1, R1 및 m 각각은 제1항에서 정의된 바와 같다.
  6. 제1항에 있어서,
    상기 L1 및 L2는 각각 독립적으로 단일결합이거나, 하기 화학식 A-1 내지 A-7 중 어느 하나로 표시되는 링커인 화합물:
    Figure PCTKR2017007717-appb-I000125
    상기 화학식 A-1 내지 A-7에서,
    *은 결합이 이루어지는 부분을 의미하고;
    Y2는 O 또는 S이며;
    Z1 내지 Z3는 각각 독립적으로 N 또는 C(R5)이며;
    R4 및 R5는 각각 독립적으로 수소, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기 및 핵원자수 5 내지 60개의 헤테로아릴기로 이루어진 군에서 선택되고, 상기 R5가 복수 개인 경우 이들은 서로 동일하거나 상이하며;
    상기 R4 및 R5의 알킬기, 알케닐기, 알키닐기, 아릴기 및 헤테로아릴기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C6~C60의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 복수 개의 치환기로 치환되는 경우, 이들은 서로 동일하거나 상이하다.
  7. 제6항에 있어서,
    상기 R4는 페닐기, 비페닐기 및 나프탈레닐기로 이루어진 군에서 선택되는, 화합물.
  8. 제1항에 있어서,
    상기 R2 및 R3는 각각 독립적으로 하기 화학식 B-1 내지 B-4 중 어느 하나로 표시되는 치환기인 화합물:
    Figure PCTKR2017007717-appb-I000126
    상기 B-1 내지 B-4에서,
    *은 결합이 이루어지는 부분을 의미하고;
    Z4 내지 Z8은 각각 독립적으로 N 또는 C(R6)이며;
    Y3는 S, O, N(Ar7) 및 C(Ar8)(Ar9)로 이루어진 군으로부터 선택되고;
    R6 및 Ar7 내지 Ar9는 각각 독립적으로 수소, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기 및 핵원자수 5 내지 60개의 헤테로아릴기로 이루어진 군에서 선택되고, 상기 R6이 복수 개인 경우 이들은 서로 동일하거나 상이하며;
    상기 R6 및 Ar7 내지 Ar9의 알킬기, 알케닐기, 알키닐기, 아릴기 및 헤테로아릴기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C6~C60의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 복수 개의 치환기로 치환되는 경우, 이들은 서로 동일하거나 상이하다.
  9. 제1항에 있어서,
    상기 R2 및 R3는 각각 독립적으로 하기 화학식 C-1 내지 C-10 중 어느 하나로 표시되는 치환기인 화합물:
    Figure PCTKR2017007717-appb-I000127
    상기 화학식 C-1 내지 C-10에서,
    *은 결합이 이루어지는 부분을 의미하고;
    t는 0 내지 5의 정수이며,
    u는 0 내지 4의 정수이며;
    v는 0 내지 3의 정수이며;
    w는 0 내지 2의 정수이며;
    R7은 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴아민기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택되거나, 인접하는 기와 결합하여 축합 고리를 형성할 수 있고, 상기 R7이 복수 개인 경우 이들은 서로 동일하거나 상이하며;
    상기 R7의 알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 시클로알킬기, 헤테로시클로알킬기, 아릴아민기, 알킬실릴기, 알킬보론기, 아릴보론기, 아릴포스파닐기, 모노 또는 디아릴포스피닐기 및 아릴실릴기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C6~C60의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스파닐기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 복수 개의 치환기로 치환되는 경우, 이들은 서로 동일하거나 상이할 수 있으며,
  10. 제9항에 있어서,
    상기 R2 및 R3는 각각 독립적으로 상기 화학식 C-1, C-7 및 C-10 중 어느 하나로 표시되는 치환기인 화합물.
  11. 제9항에 있어서,
    상기 R7은 페닐기, 비페닐기, 나프탈레닐기, 디벤조퓨라닐기 및 디벤조티오페닐기로 이루어진 군에서 선택되는 화합물.
  12. 제1항에 있어서,
    상기 화합물은 아래의 화합물로 이루어진 군에서 선택되는 것을 특징으로 하는 화합물:
    Figure PCTKR2017007717-appb-I000128
    Figure PCTKR2017007717-appb-I000129
    Figure PCTKR2017007717-appb-I000130
    Figure PCTKR2017007717-appb-I000131
    Figure PCTKR2017007717-appb-I000132
    Figure PCTKR2017007717-appb-I000133
    Figure PCTKR2017007717-appb-I000134
    Figure PCTKR2017007717-appb-I000135
    Figure PCTKR2017007717-appb-I000136
    Figure PCTKR2017007717-appb-I000137
    Figure PCTKR2017007717-appb-I000138
    Figure PCTKR2017007717-appb-I000139
    Figure PCTKR2017007717-appb-I000141
    Figure PCTKR2017007717-appb-I000142
    Figure PCTKR2017007717-appb-I000143
    Figure PCTKR2017007717-appb-I000144
    Figure PCTKR2017007717-appb-I000145
    Figure PCTKR2017007717-appb-I000146
    Figure PCTKR2017007717-appb-I000147
    Figure PCTKR2017007717-appb-I000148
    Figure PCTKR2017007717-appb-I000149
    Figure PCTKR2017007717-appb-I000150
    Figure PCTKR2017007717-appb-I000151
  13. (i) 양극, (ii) 음극, 및 (iii) 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서,
    상기 1층 이상의 유기물층 중에서 적어도 하나는 제1항의 화학식 1로 표시되는 화합물을 포함하는 것을 특징으로 하는 유기 전계 발광 소자.
  14. 제13항에 있어서,
    상기 화합물을 포함하는 유기물층은 정공 주입층, 정공 수송층, 전자 수송층, 전자 수송 보조층, 전자 주입층, 수명 개선층, 발광층 및 발광 보조층으로 이루어진 군에서 선택되는 유기 전계 발광 소자.
PCT/KR2017/007717 2016-08-23 2017-07-18 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 WO2018038400A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0107182 2016-08-23
KR1020160107182A KR20180022189A (ko) 2016-08-23 2016-08-23 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Publications (1)

Publication Number Publication Date
WO2018038400A1 true WO2018038400A1 (ko) 2018-03-01

Family

ID=61246200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007717 WO2018038400A1 (ko) 2016-08-23 2017-07-18 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Country Status (2)

Country Link
KR (1) KR20180022189A (ko)
WO (1) WO2018038400A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019194177A (ja) * 2018-05-04 2019-11-07 三星エスディアイ株式会社Samsung SDI Co., Ltd. 有機光電子素子用化合物、有機光電子素子用組成物、有機光電子素子および表示装置
US11223019B2 (en) 2017-06-22 2022-01-11 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device
US11800794B2 (en) 2017-06-22 2023-10-24 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102044943B1 (ko) 2018-05-28 2019-11-14 삼성에스디아이 주식회사 화합물, 조성물, 유기 광전자 소자 및 표시 장치
KR102546267B1 (ko) * 2020-05-08 2023-06-21 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102546268B1 (ko) * 2020-05-13 2023-06-21 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021230690A1 (ko) * 2020-05-13 2021-11-18 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20220089516A (ko) * 2020-12-21 2022-06-28 엘티소재주식회사 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조방법 및 유기물층용 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080047209A (ko) * 2006-11-24 2008-05-28 삼성전자주식회사 유기 발광 화합물 및 이를 구비한 유기 발광 소자
KR20120020816A (ko) * 2010-08-31 2012-03-08 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101184159B1 (ko) * 2009-12-30 2012-09-18 주식회사 두산 유기 화합물 및 이를 이용한 유기 전계 발광 소자
KR20150019143A (ko) * 2013-08-12 2015-02-25 삼성디스플레이 주식회사 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
CN104649956A (zh) * 2013-12-02 2015-05-27 北京鼎材科技有限公司 一种芴并咔唑衍生物及其在有机电致发光器件中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080047209A (ko) * 2006-11-24 2008-05-28 삼성전자주식회사 유기 발광 화합물 및 이를 구비한 유기 발광 소자
KR101184159B1 (ko) * 2009-12-30 2012-09-18 주식회사 두산 유기 화합물 및 이를 이용한 유기 전계 발광 소자
KR20120020816A (ko) * 2010-08-31 2012-03-08 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20150019143A (ko) * 2013-08-12 2015-02-25 삼성디스플레이 주식회사 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
CN104649956A (zh) * 2013-12-02 2015-05-27 北京鼎材科技有限公司 一种芴并咔唑衍生物及其在有机电致发光器件中的应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11223019B2 (en) 2017-06-22 2022-01-11 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device
US11696498B2 (en) 2017-06-22 2023-07-04 Samsung Sdi Co., Ltd. Compound for an organic optoelectronic device, organic optoelectronic device, and display device using the same
US11800794B2 (en) 2017-06-22 2023-10-24 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device
JP2019194177A (ja) * 2018-05-04 2019-11-07 三星エスディアイ株式会社Samsung SDI Co., Ltd. 有機光電子素子用化合物、有機光電子素子用組成物、有機光電子素子および表示装置
US11217756B2 (en) 2018-05-04 2022-01-04 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device

Also Published As

Publication number Publication date
KR20180022189A (ko) 2018-03-06

Similar Documents

Publication Publication Date Title
WO2018038401A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017179809A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2018093107A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018038400A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016089080A1 (ko) 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015190718A1 (ko) 유기 전계 발광 소자
WO2016105165A2 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2018216921A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020209679A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017111439A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018038464A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014010810A1 (ko) 신규 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017209488A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014092354A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015133804A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015111943A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016105054A2 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2017023125A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2015125986A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016105123A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016122178A2 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2019004584A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020027463A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2017111389A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014081134A1 (ko) 신규 화합물 및 이를 포함하는 유기 전계 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843820

Country of ref document: EP

Kind code of ref document: A1