WO2014081134A1 - 신규 화합물 및 이를 포함하는 유기 전계 발광 소자 - Google Patents

신규 화합물 및 이를 포함하는 유기 전계 발광 소자 Download PDF

Info

Publication number
WO2014081134A1
WO2014081134A1 PCT/KR2013/009876 KR2013009876W WO2014081134A1 WO 2014081134 A1 WO2014081134 A1 WO 2014081134A1 KR 2013009876 W KR2013009876 W KR 2013009876W WO 2014081134 A1 WO2014081134 A1 WO 2014081134A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
com
mol
aryl
synthesis
Prior art date
Application number
PCT/KR2013/009876
Other languages
English (en)
French (fr)
Inventor
김성무
배형찬
백영미
신진용
박호철
이창준
김영배
김태형
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Publication of WO2014081134A1 publication Critical patent/WO2014081134A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/14Ortho-condensed systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1051Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine

Definitions

  • the present invention relates to a novel organic compound that can be used as a material of the organic electroluminescent device and an organic electroluminescent device comprising the same.
  • the organic electroluminescent device when a voltage is applied between two electrodes, holes are injected into the organic material layer at the anode, and electrons are injected into the organic material layer at the cathode. When the injected holes and electrons meet, excitons are formed, and when the excitons fall to the ground, they shine.
  • the material included in the organic material layer may be classified into a light emitting material, a hole injection material, a hole transport material, an electron transport material, an electron injection material, and the like according to its function.
  • the light emitting material may be classified into blue, green, and red light emitting materials according to the light emitting color, and yellow and orange light emitting materials required to realize a better natural color.
  • a host / dopant system may be used as a light emitting material to increase luminous efficiency through an increase in color purity and energy transfer.
  • the dopant material may be divided into a fluorescent dopant using an organic material and a phosphorescent dopant using a metal complex compound containing heavy atoms such as Ir and Pt.
  • a metal complex compound containing heavy atoms such as Ir and Pt.
  • anthracene derivatives are known as fluorescent dopant / host materials used in the light emitting layer.
  • a phosphorescent dopant material used in the light emitting layer metal complex compounds containing Ir such as Firpic, Ir (ppy) 3 , and (acac) Ir (btp) 2 are known, and as a phosphorescent host material, 4,4-dicarbazolybiphenyl (CBP) is known.
  • the existing materials have advantages in terms of light emission characteristics, but the thermal stability is low due to the low glass transition temperature, and thus the materials are not satisfactory in terms of lifespan of the organic EL device.
  • an object of the present invention is to provide an organic electroluminescent device having improved driving voltage, luminous efficiency and the like by including the novel organic compound.
  • the present invention provides a compound represented by the following formula (1).
  • R 4 and R 5, R 5 and R 6 , or one of R 6 and R 7 may be combined with Formula 2 to form a condensed ring,
  • the dotted line represents a site where condensation occurs with the compound of Formula 1.
  • R 1 to R 11 and Ra are each independently hydrogen, deuterium, halogen, cyano group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 6 ⁇ C 40 aryl group, nuclear atom 5 to 40 heteroaryl group, C 6 ⁇ C 40 aryloxy group, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 40 arylamine group, C 3 ⁇ C 40 cycloalkyl group, C 3 -C 40 heterocycloalkyl group, C 1 -C 40 alkylsilyl group, C 1 -C 40 alkylboron group, C 6 -C 40 aryl boron group, C 6- C 40 aryl phosphine group, is selected from the group consisting of C 6 ⁇ C 40 aryl phosphine oxide group, and a C 6 ⁇ C 40 aryl group in the silyl, by combining groups of neighboring may
  • n is an integer from 0 to 4,
  • Ar 1 is C 1 ⁇ C 40 Alkyl group, C 2 ⁇ C 40 Alkenyl group, C 2 ⁇ C 40 Alkynyl group, C 6 ⁇ C 40 Aryl group, nuclear atom 5 to 40 heteroaryl group, C 6 ⁇ C 40 aryloxy group, C 1 ⁇ C 40 alkyloxy group of, C 6 ⁇ C 40 aryl amine group, C 3 ⁇ C 40 cycloalkyl group, a number of nuclear atoms of 3 to 40 hetero cycloalkyl group, C 1 ⁇ C 40 alkyl silyl group, a alkyl boronic of C 1 ⁇ C 40, C 6 ⁇ C 40 aryl boron group, C 6 ⁇ C 40 aryl phosphine group, C 6 ⁇ aryl phosphine oxide of the C 40 group And it is selected from the group consisting of C 6 ⁇ C 40 arylsilyl group,
  • Alkyl boron group, aryl boron group, aryl phosphine group, aryl phosphine oxide group and aryl silyl group are each independently deuterium, halogen, cyano group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 C 40 alkynyl group, C 6 ⁇ C 40 aryl group, heteroaryl group of 5 to 40 nuclear atoms, C 6 ⁇ C 40 aryloxy group, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 40 -arylamine group, C 3 ⁇ C 40 cycloalkyl group, C 3
  • the present invention is an organic electroluminescent device comprising an anode, a cathode and at least one organic layer interposed between the anode and the cathode, wherein at least one of the at least one organic layer comprises the compound An electroluminescent device is provided.
  • alkyl is a monovalent substituent derived from a straight or branched chain saturated hydrocarbon having 1 to 40 carbon atoms, and examples thereof include methyl, ethyl, propyl, isobutyl, sec-butyl, pentyl, iso-amyl, Hexyl etc. are mentioned.
  • alkenyl is a monovalent substituent derived from a C2-C40 straight or branched chain unsaturated hydrocarbon having one or more carbon-carbon double bonds. Examples thereof include vinyl and allyl. (allyl), isopropenyl, 2-butenyl, and the like.
  • Alkynyl in the present invention is a monovalent substituent derived from a C2-C40 straight or branched chain unsaturated hydrocarbon having one or more carbon-carbon triple bonds, and examples thereof include ethynyl, 2-propynyl etc. are mentioned.
  • aryl refers to a monovalent substituent derived from an aromatic hydrocarbon having 6 to 60 carbon atoms combined with a single ring or two or more rings.
  • a form in which two or more rings are attached to each other (pendant) or condensed may also be included. Examples of such aryls include phenyl, naphthyl, phenanthryl, anthryl and the like.
  • Heteroaryl in the present invention means a monovalent substituent derived from a monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 5 to 40 nuclear atoms. At least one carbon in the ring, preferably 1 to 3 carbons, is substituted with a heteroatom such as N, O, S or Se.
  • a form in which two or more rings are simply attached or condensed with each other may be included, and is also construed to include a form condensed with an aryl group.
  • heteroaryl examples include 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, phenoxathienyl, indolinzinyl, indolyl ( polycyclic rings such as indolyl, purinyl, quinolyl, benzothiazole, carbazolyl, 2-furanyl, N-imidazolyl, 2-isoxazolyl , 2-pyridinyl, 2-pyrimidinyl, and the like.
  • 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, phenoxathienyl, indolinzinyl, indolyl ( polycyclic rings such as indolyl, purinyl, quinolyl, benzothiazole, carbazolyl, 2-furany
  • aryloxy is a monovalent substituent represented by RO-, wherein R means aryl having 6 to 60 carbon atoms. Examples of such aryloxy include phenyloxy, naphthyloxy, diphenyloxy and the like.
  • alkyloxy is a monovalent substituent represented by R'O-, wherein R 'means 1 to 40 alkyl and has a linear, branched or cyclic structure.
  • R'O- monovalent substituent represented by R'O-, wherein R 'means 1 to 40 alkyl and has a linear, branched or cyclic structure.
  • alkyloxy include methoxy, ethoxy, n-propoxy, 1-propoxy, t-butoxy, n-butoxy, pentoxy and the like.
  • Arylamine in the present invention means an amine substituted with aryl having 6 to 60 carbon atoms.
  • Cycloalkyl in the present invention means a monovalent substituent derived from a monocyclic or polycyclic non-aromatic hydrocarbon having 3 to 40 carbon atoms.
  • Examples of such cycloalkyl include cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantine and the like.
  • Heterocycloalkyl in the present invention means a monovalent substituent derived from a non-aromatic hydrocarbon having 3 to 40 nuclear atoms, wherein at least one carbon in the ring, preferably 1 to 3 carbons is N, O, Substituted with a hetero atom such as S or Se.
  • heterocycloalkyl include morpholine, piperazine and the like.
  • alkylsilyl means silyl substituted with alkyl having 1 to 40 carbon atoms
  • arylsilyl means silyl substituted with aryl having 5 to 40 carbon atoms
  • Condensed ring in the present invention means a condensed aliphatic ring, a condensed aromatic ring, a condensed heteroaliphatic ring, a condensed heteroaromatic ring, or a combination thereof.
  • the novel compound according to the present invention is a structure in which an indole moiety is fused to an end of an indoloindole moiety to form a basic skeleton, and various substituents are bonded to the basic skeleton. It is characterized by being displayed as 1.
  • the compound of Formula 1 has a wide bandgap due to the indole moiety bound to the end of the indoloindole moiety, as well as the bipolar characteristics of the entire molecule due to various aromatic ring substituents.
  • the binding force between the holes and the electrons can be increased, the phosphorescence property of the organic EL device can be improved, and the luminous efficiency as well as the hole injection ability and the transport ability can be improved.
  • the molecular weight of the compound is significantly increased due to the various aromatic ring substituents introduced into the indole moiety, thereby improving the glass transition temperature, which is why the conventional CBP (4,4-dicarbazolybiphenyl) It can have high thermal stability.
  • the thermal stability of the compound is improved by the indole moiety fused to the end of the indoloindole moiety, and is effective in suppressing crystallization of the organic material layer. Therefore, the organic electroluminescent device including the compound of Formula 1 according to the present invention may greatly improve durability and lifespan characteristics.
  • the compound represented by Chemical Formula 1 of the present invention when used as a material for the hole injection / transport layer of an organic EL device, and is used as a phosphorescent host material of blue, green, and / or red, it has excellent efficiency and lifespan in comparison with conventional CBP. It can be effective. Therefore, the compound represented by Formula 1 of the present invention can greatly contribute to the performance improvement and lifespan improvement of the organic electroluminescent device, and the improvement of the life of the organic electroluminescent device can lead to the maximization of the performance in the full color organic light emitting panel.
  • the compound represented by Chemical Formula 1 of the present invention is preferably selected from the group consisting of compounds represented by the following Chemical Formulas 3 to 8 when considering the characteristics of the organic electroluminescent device.
  • R 1 to R 11 , Ra, Ar 1 and n are the same as defined above.
  • Ar 1 of the compound represented by the formula (1) of the present invention is C 1 ⁇ C 40 Alkyl group, C 2 ⁇ C 40 Alkenyl group, C 2 ⁇ C 40 Alkynyl group, C 6 ⁇ C 40 Aryl group, nucleus Heteroaryl group of 5 to 40 atoms, C 6 ⁇ C 40 aryloxy group, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 40 arylamine group, C 3 ⁇ C 40 cycloalkyl group, nucleus A heterocycloalkyl group having 3 to 40 atoms, a C 1 to C 40 alkylsilyl group, a C 1 to C 40 alkyl boron group, a C 6 to C 40 aryl boron group, a C 6 to C 40 arylphosphine group, C 6 ⁇ C 40 aryl phosphine oxide of the group and a C 6 ⁇ C 40 aryl group are selected from the silyl group consisting of, when
  • R 1 to R 11 and Ra of the compound of formula 1 according to the present invention are each independently selected from the group consisting of hydrogen or a structure represented by the following S1 to S206.
  • Ar 1 of the compound of Formula 1 according to the present invention is preferably selected from the group consisting of the structures represented by S1 to S206, S1, S6, S14, S19, S23, S71, S72, S78, S79, S80, S81, S84, S90, S91, S92, S95, S102, S103, S104, S105, S106, S107, S110, S112, S119, S122, S126, S127, S130, S139, S145, S146, S147, S148, S149, S150, S166, S167, S168, S169, S170, S175, S176, S177, S178, S179, S180, S181, S188, S197, S198, S199, S200, S201, S202, S203, S204, S205 and S206 More
  • the compound of formula 1 of the present invention can be synthesized in various ways with reference to the following synthesis examples. Detailed synthesis procedures for the compounds of the present invention will be described in detail in the synthesis examples described below.
  • the present invention provides an organic electroluminescent device comprising a compound represented by Formula 1, preferably a compound represented by Formula 3 to Formula 8.
  • the present invention is an organic electroluminescent device comprising an anode (anode), a cathode (cathode) and at least one organic layer interposed between the anode and the cathode, at least one of the at least one organic material layer is It includes a compound represented by the formula (1), preferably a compound represented by the formula (3) to (8).
  • the compound of Formula 1 may be used alone or in combination of two or more.
  • the at least one organic material layer may be any one or more of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer, wherein at least one organic material layer may include a compound represented by the formula (1).
  • the organic material layer containing the compound of Formula 1 is preferably a light emitting layer.
  • the light emitting layer of the organic electroluminescent device of the present invention may include a host material, and may include the compound of Formula 1 as the host material.
  • the compound of Chemical Formula 1 when included as a light emitting layer material of the organic EL device, preferably a blue, green, or red phosphorescent host material, the binding force between the holes and the electrons in the light emitting layer is increased, thereby increasing the efficiency of the organic EL device. Luminous efficiency and power efficiency), lifetime, brightness and driving voltage can be improved.
  • the structure of the organic EL device according to the present invention is not particularly limited, and may be, for example, a structure in which a substrate, an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode are sequentially stacked.
  • at least one of the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer and the electron injection layer may include a compound represented by the formula (1), preferably the light emitting layer comprises a compound represented by the formula (1) Can be.
  • the compound represented by Formula 1 of the present invention may be used as a phosphorescent host material of the light emitting layer.
  • the electron injection layer may be further stacked on the electron transport layer.
  • the structure of the organic electroluminescent device according to the present invention may be a structure in which an anode, one or more organic material layers and a cathode are sequentially stacked, and an insulating layer or an adhesive layer is inserted at an interface between the electrode and the organic material layer.
  • the organic electroluminescent device according to the present invention may be formed using other materials and methods known in the art, except that one or more layers (eg, a light emitting layer) of the organic material layer are formed to include the compound represented by Chemical Formula 1. It can be prepared by forming an organic layer and an electrode.
  • the organic material layer may be formed by a vacuum deposition method or a solution coating method.
  • the solution coating method include, but are not limited to, spin coating, dip coating, doctor blading, inkjet printing, or thermal transfer.
  • the substrate usable in the present invention is not particularly limited, and silicon wafers, quartz, glass plates, metal plates, plastic films, sheets, and the like may be used.
  • examples of the anode material include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole or polyaniline; And carbon black, but are not limited thereto.
  • metals such as vanadium, chromium, copper, zinc and gold or alloys thereof.
  • Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb
  • Conductive polymers such as polythiophene, poly (3-methylthiophene
  • the negative electrode material may be a metal such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, or lead or an alloy thereof; And multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like.
  • IC-3 (3.0 g, 9.3 mmol), 2-chloro-4,6-diphenyl-1,3,5-triazine (2.99 g, 11.16 mmol), and NaH (0.27), which were the compounds prepared in Preparation Example 2, under a nitrogen stream. g, 11.16 mmol) and DMF (80 ml) were mixed and stirred at room temperature for 3 hours. After the reaction was completed, water was added, the solid compound was filtered, and the residue was purified by column chromatography to obtain Com-1 (3.2 g, yield 62%) as a target compound.
  • a glass substrate coated with ITO (Indium tin oxide) having a thickness of 1500 ⁇ was washed with distilled water ultrasonically. After washing the distilled water, ultrasonic cleaning with a solvent such as isopropyl alcohol, acetone, methanol, dried and transferred to a UV OZONE cleaner (Power sonic 405, Hwasin Tech), and then wash the substrate using UV for 5 minutes The substrate was transferred to a vacuum evaporator.
  • ITO Indium tin oxide
  • Example 2 The same procedure as in Example 1 was repeated except that the compounds Com-2 to Com-65 synthesized in Synthesis Examples 2 to 65 were used instead of the compound Com-1 used as a host material in forming the emission layer in Example 1. The device was manufactured.
  • a device was manufactured in the same manner as in Example 1, except that the following CBP was used instead of the compound Com-1 used as a host material in forming the emission layer in Example 1.
  • the green organic electroluminescent device (Examples 1 to 65) using the compound represented by Formula 1 of the present invention as a host material of the light emitting layer is a green organic electroluminescent device using a conventional CBP as a host material (Comparative Example It was confirmed that the better performance in terms of current efficiency and driving voltage than).
  • the compound represented by Chemical Formula 1 of the present invention may be used as a material of the organic material layer of the organic EL device because of its excellent thermal stability and phosphorescence properties.
  • the compound represented by Chemical Formula 1 of the present invention when used as a phosphorescent host material, an organic electroluminescent device having excellent light emission performance, low driving voltage, high efficiency and long life compared to a conventional host material can be manufactured, and further, performance And a full color display panel with greatly improved lifespan.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

본 발명은 신규 유기 화합물 및 이를 포함하는 유기 전계 발광 소자에 관한 것으로, 인돌계 화합물을 호스트 물질로 사용한 발광층을 유기 전계 발광 소자에 도입함으로써 발광효율, 구동 전압 및 수명 등의 특성이 향상된 유기 전계 발광 소자를 제공할 수 있다.

Description

신규 화합물 및 이를 포함하는 유기 전계 발광 소자
본 발명은 유기 전계 발광 소자의 재료로 사용될 수 있는 신규 유기 화합물 및 이를 포함하는 유기 전계 발광 소자에 관한 것이다.
유기 전계 발광 소자는 두 전극 사이에 전압을 걸어 주면 양극에서는 정공이 유기물층으로 주입되고, 음극에서는 전자가 유기물층으로 주입된다. 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어질 때 빛이 나게 된다. 상기 유기물층에 포함되는 물질은 그 기능에 따라, 발광 물질, 정공 주입 물질, 정공 수송 물질, 전자 수송 물질, 전자 주입 물질 등으로 분류될 수 있다.
상기 발광 물질은 발광색에 따라 청색, 녹색, 적색의 발광 물질과, 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색의 발광 물질로 구분될 수 있다. 또한 색순도의 증가와 에너지 전이를 통해 발광 효율을 증가시키기 위하여 발광 물질로서 호스트/도판트 계를 사용할 수 있다.
도판트 물질은 유기 물질을 사용하는 형광 도판트와 Ir, Pt 등의 중원자(heavy atoms)가 포함된 금속 착체 화합물을 사용하는 인광 도판트로 나눌 수 있다. 이때 인광 도판트는 이론적으로 형광 도판트에 비해 최대 4배의 발광 효율을 향상시킬 수 있기 때문에 인광 도판트 뿐만 아니라 인광 호스트에 대한 연구가 많이 진행되고 있다.
현재 발광층에 사용되는 형광 도판트/호스트 물질로는 안트라센 유도체들이 알려져 있다. 또한 발광층에 사용되는 인광 도판트 물질로는 Firpic, Ir(ppy)3, (acac)Ir(btp)2 등의 Ir을 포함하는 금속 착체 화합물이 알려져 있고, 인광 호스트 물질로는 4,4-dicarbazolybiphenyl(CBP)가 알려져 있다.
그러나 기존의 재료들은 발광 특성 측면에서는 유리한 면이 있으나, 유리전이온도가 낮아 열적 안정성이 떨어지기 때문에 유기 전계 발광 소자의 수명 측면에서 만족할 만한 수준이 되지 못하고 있다.
본 발명은 높은 유리 전이온도로 인해 열적 안정성이 우수하면서, 정공과 전자의 결합력을 향상시킬 수 있는 신규 유기 화합물을 제공하는 것을 목적으로 한다.
또, 본 발명은 상기 신규 유기 화합물을 포함하여 구동전압, 발광효율 등이 향상된 유기 전계 발광 소자를 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위해 본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다.
[화학식 1]
Figure PCTKR2013009876-appb-I000001
상기 화학식 1에서,
R4와 R5, R5와 R6, 또는 R6와 R7 중 하나는 하기 화학식 2와 결합하여 축합 고리를 형성하고,
[화학식 2]
Figure PCTKR2013009876-appb-I000002
상기 화학식 2에서 점선은 화학식 1의 화합물과 축합이 이루어지는 부위이며,
상기 R1 내지 R11 및 Ra는 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C6~C40의 아릴옥시기, C1~C40의 알킬옥시기, C6~C40의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C40의 아릴보론기, C6~C40의 아릴포스핀기, C6~C40의 아릴포스핀옥사이드기 및 C6~C40의 아릴실릴기로 이루어진 군에서 선택되고, 인접하는 기와 결합하여 축합 고리를 형성할 수 있으며,
n은 0 내지 4의 정수이고,
Ar1은 C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C6~C40의 아릴옥시기, C1~C40의 알킬옥시기, C6~C40의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C40의 아릴보론기, C6~C40의 아릴포스핀기, C6~C40의 아릴포스핀옥사이드기 및 C6~C40의 아릴실릴기로 이루어진 군에서 선택되고,
상기 R1 내지 R11, Ra 및 Ar1의 알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 아릴아민기, 시클로알킬기, 헤테로시클로알킬기, 알킬실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴실릴기는 각각 독립적으로 중수소, 할로겐, 시아노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C6~C40의 아릴옥시기, C1~C40의 알킬옥시기, C6~C40의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C40의 아릴보론기, C6~C40의 아릴포스핀기, C6~C40의 아릴포스핀옥사이드기 및 C6~C40의 아릴실릴기로 이루어진 군으로부터 선택되는 1종 이상으로 치환될 수 있다. 이때, 치환기가 복수개일 경우 복수개의 치환기는 서로 동일하거나 상이할 수 있다.
또한 본 발명은 양극, 음극 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서, 상기 1층 이상의 유기물층 중에서 적어도 하나는 상기 화합물을 포함하는 것이 특징인 유기 전계 발광 소자를 제공한다.
한편 본 발명에서의 “알킬”은 탄소수 1 내지 40의 직쇄 또는 측쇄의 포화 탄화수소에서 유래되는 1가의 치환기이며, 이의 예로는 메틸, 에틸, 프로필, 이소부틸, sec-부틸, 펜틸, iso-아밀, 헥실 등을 들 수 있다.
본 발명에서의 “알케닐(alkenyl)”은 탄소-탄소 이중 결합을 1개 이상 가진 탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기이며, 이의 예로는 비닐(vinyl), 알릴(allyl), 이소프로펜일(isopropenyl), 2-부텐일(2-butenyl) 등을 들 수 있다.
본 발명에서의 “알키닐(alkynyl)”은 탄소-탄소 삼중 결합을 1개 이상 가진 탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기이며, 이의 예로는 에티닐(ethynyl), 2-프로파닐(2-propynyl) 등을 들 수 있다.
본 발명에서의 “아릴”은 단독 고리 또는 2이상의 고리가 조합된 탄소수 6 내지 60의 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있다. 이러한 아릴의 예로는 페닐, 나프틸, 페난트릴, 안트릴 등을 들 수 있다.
본 발명에서의 “헤테로아릴”은 핵원자수 5 내지 40의 모노헤테로사이클릭 또는 폴리헤테로사이클릭 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이때, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로원자로 치환된다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있고, 나아가 아릴기와의 축합된 형태도 포함하는 것으로 해석한다. 이러한 헤테로아릴의 예로는 피리딜, 피라지닐, 피리미디닐, 피리다지닐, 트리아지닐과 같은 6-원 모노사이클릭 고리, 페녹사티에닐(phenoxathienyl), 인돌리지닐(indolizinyl), 인돌릴(indolyl), 퓨리닐(purinyl), 퀴놀릴(quinolyl), 벤조티아졸(benzothiazole), 카바졸릴(carbazolyl)과 같은 폴리사이클릭 고리, 2-퓨라닐, N-이미다졸릴, 2-이속사졸릴, 2-피리디닐, 2-피리미디닐 등을 들 수 있다.
본 발명에서의 “아릴옥시”는 RO-로 표시되는 1가의 치환기로 상기 R은 탄소수 6 내지 60의 아릴을 의미한다. 이러한 아릴옥시의 예로는 페닐옥시, 나프틸옥시, 디페닐옥시 등을 들 수 있다.
본 발명에서의 “알킬옥시”는 R'O-로 표시되는 1가의 치환기로 상기 R'는 1 내지 40개의 알킬을 의미하며, 직쇄(linear), 측쇄(branched) 또는 사이클릭(cyclic) 구조를 포함하는 것으로 해석한다. 이러한 알킬옥시의 예로는 메톡시, 에톡시, n-프로폭시, 1-프로폭시, t-부톡시, n-부톡시, 펜톡시 등을 들 수 있다.
본 발명에서의 “아릴아민”은 탄소수 6 내지 60의 아릴로 치환된 아민을 의미한다.
본 발명에서의 “시클로알킬”은 탄소수 3 내지 40의 모노사이클릭 또는 폴리사이클릭 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이러한 사이클로알킬의 예로는 사이클로프로필, 사이클로펜틸, 사이클로헥실, 놀보닐(norbornyl), 아다만틴(adamantine) 등을 들 수 있다.
본 발명에서의 “헤테로시클로알킬”은 핵원자수 3 내지 40의 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미하며, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로 원자로 치환된다. 이러한 헤테로시클로알킬의 예로는 모르폴린, 피페라진 등을 들 수 있다.
본 발명에서의 “알킬실릴”은 탄소수 1 내지 40의 알킬로 치환된 실릴이고, “아릴실릴”은 탄소수 5 내지 40의 아릴로 치환된 실릴을 의미한다.
본 발명에서의 “축합 고리”는 축합 지방족 고리, 축합 방향족 고리, 축합 헤테로지방족 고리, 축합 헤테로방향족 고리 또는 이들의 조합된 형태를 의미한다.
이하, 본 발명을 상세히 설명한다.
본 발명에 따른 신규 화합물은 인돌로인돌 모이어티(indoloindole moiety)의 말단에 인돌(indole) 모이어티가 융합(fused)되어 기본 골격을 이루며, 이러한 기본 골격에 다양한 치환체가 결합된 구조로서, 상기 화학식 1로 표시되는 것을 특징으로 한다.
상기 화학식 1의 화합물은 인돌로인돌 모이어티(indoloindole moiety)의 말단에 결합된 인돌(indole) 모이어티로 인해 넓은 밴드갭을 가질 뿐만 아니라, 다양한 방향족 환 치환체로 인해 분자 전체가 바이폴라(bipolar) 특성을 가지면서, 정공과 전자의 결합력을 높일 수 있기 때문에 유기 전계 발광 소자의 인광특성을 개선함과 동시에 정공 주입 능력, 수송 능력뿐만 아니라 발광효율도 개선할 수 있다.
또한 인돌(indole) 모이어티에 도입된 다양한 방향족 환(aromatic ring) 치환체로 인해 화합물의 분자량이 유의적으로 증대됨으로써, 유리전이온도가 향상될 수 있고, 이로 인해 종래 CBP(4,4-dicarbazolybiphenyl)보다 높은 열적 안정성을 가질 수 있다. 또, 인돌로인돌 모이어티(indoloindole moiety)의 말단에 융합된 인돌(indole) 모이어티에 의해 화합물의 열적 안정성이 향상되며 유기물층의 결정화 억제에도 효과적이다. 따라서 본 발명에 따른 화학식 1의 화합물을 포함하는 유기 전계 발광 소자는 내구성 및 수명 특성이 크게 향상될 수 있다.
구체적으로, 본 발명의 화학식 1로 표시되는 화합물을 유기 전계 발광 소자의 정공 주입/수송층의 재료로, 청색, 녹색 및/또는 적색의 인광 호스트 재료로 사용할 경우, 종래 CBP 대비 효율 및 수명 면에서 우수한 효과를 발휘할 수 있다. 따라서 본 발명의 화학식 1로 표시되는 화합물은 유기 전계 발광 소자의 성능 개선 및 수명 향상에 크게 기여할 수 있으며, 이러한 유기 전계 발광 소자의 수명 향상은 풀 칼라 유기 발광 패널에서의 성능 극대화를 가져올 수 있다.
본 발명의 화학식 1로 표시되는 화합물은 유기 전계 발광 소자의 특성을 더 고려할 때 하기 화학식 3 내지 8로 표시되는 화합물로 이루어진 군에서 선택되는 것이 바람직하다.
[화학식 3]
Figure PCTKR2013009876-appb-I000003
[화학식 4]
Figure PCTKR2013009876-appb-I000004
[화학식 5]
Figure PCTKR2013009876-appb-I000005
[화학식 6]
Figure PCTKR2013009876-appb-I000006
[화학식 7]
Figure PCTKR2013009876-appb-I000007
[화학식 8]
Figure PCTKR2013009876-appb-I000008
상기 화학식 3 내지 8에서, R1 내지 R11, Ra, Ar1 및 n은 상기에서 정의한 바와 동일하다.
또한 본 발명의 화학식 1로 표시되는 화합물의 Ar1은 C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C6~C40의 아릴옥시기, C1~C40의 알킬옥시기, C6~C40의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C40의 아릴보론기, C6~C40의 아릴포스핀기, C6~C40의 아릴포스핀옥사이드기 및 C6~C40의 아릴실릴기로 이루어진 군에서 선택되는데, 유기 전계 발광 소자의 특성을 더 고려할 때, C6~C40의 아릴기 또는 핵원자수 5 내지 40의 헤테로아릴기인 것이 바람직하다.
본 발명에 따른 화학식 1의 화합물의 R1 내지 R11 및 Ra는 각각 독립적으로, 수소 또는 하기 S1 내지 S206으로 표시되는 구조로 이루어진 군에서 선택되는 것이 바람직하다. 또, 본 발명에 따른 화학식 1의 화합물의 Ar1은 하기 S1 내지 S206으로 표시되는 구조로 이루어진 군에서 선택되는 것이 바람직하며, S1, S6, S14, S19, S23, S71, S72, S78, S79, S80, S81, S84, S90, S91, S92, S95, S102, S103, S104, S105, S106, S107, S110, S112, S119, S122, S126, S127, S130, S139, S145, S146, S147, S148, S149, S150, S166, S167, S168, S169, S170, S175, S176, S177, S178, S179, S180, S181, S188, S197, S198, S199, S200, S201, S202, S203, S204, S205 및 S206로 표시되는 구조로 이루어진 군에서 선택되는 것이 더욱 바람직하다.
Figure PCTKR2013009876-appb-I000009
Figure PCTKR2013009876-appb-I000010
Figure PCTKR2013009876-appb-I000011
Figure PCTKR2013009876-appb-I000012
본 발명의 화학식 1의 화합물은 하기 합성예를 참조하여 다양하게 합성할 수 있다. 본 발명의 화합물에 대한 상세한 합성 과정은 후술하는 합성예에서 구체적으로 기술하도록 한다.
한편 본 발명은 상기 화학식 1로 표시되는 화합물, 바람직하게는 화학식 3 내지 화학식 8로 표시되는 화합물을 포함하는 유기 전계 발광 소자를 제공한다.
구체적으로, 본 발명은 양극(anode), 음극(cathode) 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서, 상기 1층 이상의 유기물층 중 적어도 하나는 상기 화학식 1로 표시되는 화합물, 바람직하게는 화학식 3 내지 화학식 8로 표시되는 화합물을 포함한다. 이때, 상기 화학식 1의 화합물은 단독으로 또는 2 이상이 혼합되어 사용될 수 있다.
상기 1층 이상의 유기물층은 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 중 어느 하나 이상일 수 있고, 이 중에서 적어도 하나의 유기물층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. 이때, 상기 화학식 1의 화합물을 포함하는 유기물층은 발광층인 것이 바람직하다.
구체적으로, 본 발명의 유기 전계 발광 소자의 발광층은 호스트 재료를 포함할 수 있는데, 이때 호스트 재료로서 상기 화학식 1의 화합물을 포함할 수 있다. 이와 같이 상기 화학식 1의 화합물을 유기 전계 발광 소자의 발광층 재료, 바람직하게는 청색, 녹색, 적색의 인광 호스트 재료로 포함할 경우, 발광층에서 정공과 전자의 결합력이 높아지기 때문에 유기 전계 발광 소자의 효율(발광효율 및 전력효율), 수명, 휘도 및 구동전압 등이 향상될 수 있다.
본 발명에 따른 유기 전계 발광 소자의 구조는 특별히 한정되지 않으며, 예컨대 기판, 양극, 정공주입층, 정공수송층, 발광층, 전자수송층 및 음극이 순차적으로 적층된 구조일 수 있다. 이때, 상기 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 중 하나 이상은 상기 화학식 1로 표시되는 화합물을 포함할 수 있고, 바람직하게는 발광층이 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. 구체적으로, 본 발명의 화학식 1로 표시되는 화합물은 발광층의 인광 호스트 재료로 이용될 수 있다.
한편, 상기 전자수송층 위에는 전자주입층이 추가로 적층될 수 있다. 또한, 본 발명에 따른 유기 전계 발광 소자의 구조는 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층될 뿐만 아니라, 전극과 유기물층 계면에 절연층 또는 접착층이 삽입된 구조일 수 있다.
본 발명에 따른 유기 전계 발광 소자는 상기 유기물층 중 1층 이상(예컨대, 발광층)이 상기 화학식 1로 표시되는 화합물을 포함하도록 형성하는 것을 제외하고는, 당업계에 알려져 있는 재료 및 방법을 이용하여 다른 유기물층 및 전극을 형성하여 제조할 수 있다.
상기 유기물층은 진공 증착법이나 용액 도포법에 의하여 형성될 수 있다. 상기 용액 도포법의 예로는 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅 또는 열 전사법 등이 있으나, 이들에 한정되지 않는다.
본 발명에서 사용 가능한 기판으로는 특별히 한정되지 않으며, 실리콘 웨이퍼, 석영, 유리판, 금속판, 플라스틱 필름 및 시트 등이 사용될 수 있다.
또, 양극 물질로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리티오펜, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 또는 폴리아닐린과 같은 전도성 고분자; 및 카본블랙 등이 있는데, 이에 한정되지 않는다.
또, 음극 물질로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 또는 납과 같은 금속 또는 이들의 합금; 및 LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있는데, 이에 한정되지 않는다.
이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
[준비예 1] IC-1의 합성
<단계 1> 2-(4-bromo-1-phenyl-1H-indol-2-yl)propan-2-ol의 합성
Figure PCTKR2013009876-appb-I000013
질소 기류 하에서 4-bromo-1-phenyl-1H-indole (27.2 g, 0.10 mol), bis(N,N`-dimethylaminoethyl)ether (24.0 g, 0.15 mmol)을 THF (200 ml)에 넣고 온도를 -25℃로 유지한다. lithium diisopropylamide(LDA, 12.8 g, 0.12 mol)을 넣고 30분 교반 후에, propan-2-one (11.6 g, 0.20 mol)을 넣고 상온에서 1시간 교반하였다. 반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 2-(4-bromo-1-phenyl-1H-indol-2-yl)propan-2-ol (20.1 g, 0.061 mol, 수율 61%)을 얻었다.
1H-NMR : δ 1.24 (s, 6H), 3.63 (s,1H), 6.21 (s, 1H), 7.23 (m, 2H), 7.53 (m, 6H)
<단계 2> 1-bromo-10,10-dimethyl-10H-indolo[1,2-a]indole의 합성
Figure PCTKR2013009876-appb-I000014
2-(4-bromo-1-phenyl-1H-indol-2-yl)propan-2-ol (20.1 g, 0.061 mol)을 인산 (150 ml)에 넣고 6시간 상온에서 교반한 후, 메틸렌클로라이드와 물을 사용하여 유기층을 분리한 후 MgSO4를 사용하여 물을 제거하였다. 그리고 에탄올로 재결정하여 1-bromo-10,10-dimethyl-10H-indolo[1,2-a]indole (12.8 g, 40.87 mmol, 수율 67%)을 얻었다.
1H-NMR : δ 1.73 (s, 6H), 6.38 (s, 1H), 7.32 (m, 5H), 7.59 (d, 1H), 7.86 (d,1H)
<단계 3> 10,10-dimethyl-1-(2-nitrophenyl)-10H-indolo[1,2-a]indole의 합성
Figure PCTKR2013009876-appb-I000015
질소 기류 하에서 2.75 g (8.80 mmol)의 1-bromo-10,10-dimethyl-10H-indolo[1,2-a]indole, 1.61 g (9.67 mmol)의 2-nitrophenylboronic acid, 1.06 g (26.37 mmol)의 NaOH과 100 ml/50 ml의 THF/H2O를 넣고 교반하였다. 40℃에서 0.51 g (5 mol%)의 Pd(PPh3)4를 넣고 80℃에서 12시간 동안 교반하였다. 반응 종결 후 메틸렌클로라이드로 추출하고 MgSO4를 넣고 필터하였다. 필터된 유기층의 용매를 제거한 후 컬럼크로마토그래피를 이용하여 10,10-dimethyl-1-(2-nitrophenyl)-10H-indolo[1,2-a]indole (2.56 g, 7.22 mmol, 수율 82 %)을 획득하였다.
1H-NMR : δ 1.73 (s, 6H), 6.38 (s, 1H), 7.32 (m, 5H), 7.66 (m, 1H), 8.01 (m,5H)
<단계 4> IC-1의 합성
Figure PCTKR2013009876-appb-I000016
질소 기류 하에서 10,10-dimethyl-1-(2-nitrophenyl)-10H-indolo[1,2-a]indole 2.56 g (7.22 mmol)과 triphenylphosphine 4.73 g (18.05 mmol), 1,2-dichlorobenzene 30 ml를 넣은 후 12시간 동안 교반하였다. 반응 종료 후 1,2-dichlorobenzene를 제거하고 디클로로메탄으로 추출하였다. 추출된 유기층은 MgSO4로 물을 제거하고, 컬럼크로마토그래피를 이용하여 목적 화합물인 IC-1 (1.79 g, 5.56 mmol, 수율 77 %)을 획득하였다.
1H-NMR : δ 1.73 (s, 6H), 6.38 (s, 1H), 7.32 (m, 4H), 7.58 (m, 3H), 7.99 (m,3H), 9.94 (s,1H)
[준비예 2] IC-2와 IC-3의 합성
<단계 1> 2-(5-bromo-1-phenyl-1H-indol-2-yl)propan-2-ol의 합성
Figure PCTKR2013009876-appb-I000017
4-bromo-1-phenyl-1H-indole 대신 5-bromo-1-phenyl-1H-indole (27.2 g, 0.10 mol)을 사용하는 것을 제외하고는 준비예 1의 <단계 1>과 동일한 과정을 수행하여 2-(5-bromo-1-phenyl-1H-indol-2-yl)propan-2-ol을 얻었다.
1H-NMR : δ 1.24 (s, 6H), 3.63 (s,1H), 6.21 (s, 1H), 7.25 (m, 2H), 7.51 (m, 6H)
<단계 2> 2-bromo-10,10-dimethyl-10H-indolo[1,2-a]indole의 합성
Figure PCTKR2013009876-appb-I000018
2-(4-bromo-1-phenyl-1H-indol-2-yl)propan-2-ol 대신 2-(5-bromo-1-phenyl-1H-indol-2-yl)propan-2-ol (20.1 g, 0.061 mol)을 사용하는 것을 제외하고는 준비예 1의 <단계 2>와 동일한 과정을 수행하여 2-bromo-10,10-dimethyl-10H-indolo[1,2-a]indole을 얻었다.
1H-NMR : δ 1.73 (s, 6H), 6.38 (s, 1H), 7.32 (m, 4H), 7.68 (d, 1H), 7.84 (d,1H), 8.12 (s,1H)
<단계 3> 10,10-dimethyl-2-(2-nitrophenyl)-10H-indolo[1,2-a]indole의 합성
Figure PCTKR2013009876-appb-I000019
1-bromo-10,10-dimethyl-10H-indolo[1,2-a]indole 대신 2-bromo-10,10-dimethyl-10H-indolo[1,2-a]indole (2.75 g, 8.80 mmol)을 사용하는 것을 제외하고는 준비예 1의 <단계 3>과 동일한 과정을 수행하여 10,10-dimethyl-2-(2-nitrophenyl)-10H-indolo[1,2-a]indole을 얻었다.
1H-NMR : δ 1.73 (s, 6H), 6.38 (s, 1H), 7.32 (m, 4H), 7.68 (m, 1H), 8.01 (m,4H), 8.19 (m,2H)
<단계 4> IC-2과 IC-3의 합성
Figure PCTKR2013009876-appb-I000020
10,10-dimethyl-1-(2-nitrophenyl)-10H-indolo[1,2-a]indole 대신 10,10-dimethyl-2-(2-nitrophenyl)-10H-indolo[1,2-a]indole (5.12 g, 14.44 mmol)을 사용하는 것을 제외하고는 준비예 1의 <단계 4>와 동일한 과정을 수행하여 목적 화합물인 IC-2와 IC-3를 얻었다.
IC-2 의 1H-NMR : δ 1.73 (s, 6H), 6.38 (s, 1H), 7.32 (m, 5H), 7.55 (m, 2H), 7.81 (s,1H), 8.00 (m,2H), 9.94 (s,1H)
IC-3 의 1H-NMR : δ 1.73 (s, 6H), 6.38 (s, 1H), 7.32 (m, 5H), 7.55 (m, 2H), 8.01 (m,3H), 9.94 (s,1H)
[준비예 3] IC-4와 IC-5의 합성
<단계 1> 2-(6-bromo-1-phenyl-1H-indol-2-yl)propan-2-ol의 합성
Figure PCTKR2013009876-appb-I000021
4-bromo-1-phenyl-1H-indole 대신 6-bromo-1-phenyl-1H-indole (27.2 g, 0.10 mol)을 사용하는 것을 제외하고는 준비예 1의 <단계 1>과 동일한 과정을 수행하여 2-(6-bromo-1-phenyl-1H-indol-2-yl)propan-2-ol을 얻었다.
1H-NMR : δ 1.24 (s, 6H), 3.63 (s,1H), 6.21 (s, 1H), 7.25 (d, 1H), 7.51 (m, 5H), 7.84 (d,1H), 8.45 (s,1H)
<단계 2> 3-bromo-10,10-dimethyl-10H-indolo[1,2-a]indole의 합성
Figure PCTKR2013009876-appb-I000022
2-(4-bromo-1-phenyl-1H-indol-2-yl)propan-2-ol 대신 2-(6-bromo-1-phenyl-1H-indol-2-yl)propan-2-ol (20.1 g, 0.061 mol)을 사용하는 것을 제외하고는 준비예 1의 <단계 2>와 동일한 과정을 수행하여 3-bromo-10,10-dimethyl-10H-indolo[1,2-a]indole을 얻었다.
1H-NMR : δ 1.73 (s, 6H), 6.38 (s, 1H), 7.32 (m, 4H), 7.61 (d, 1H), 8.33 (d,1H), 8.82 (s,1H)
<단계 3> 10,10-dimethyl-3-(2-nitrophenyl)-10H-indolo[1,2-a]indole의 합
Figure PCTKR2013009876-appb-I000023
1-bromo-10,10-dimethyl-10H-indolo[1,2-a]indole 대신 3-bromo-10,10-dimethyl-10H-indolo[1,2-a]indole (2.75 g, 8.80 mmol)을 사용하는 것을 제외하고는 준비예 1의 <단계 3>과 동일한 과정을 수행하여 10,10-dimethyl-3-(2-nitrophenyl)-10H-indolo[1,2-a]indole을 얻었다.
1H-NMR : δ 1.73 (s, 6H), 6.38 (s, 1H), 7.32 (m, 4H), 7.65 (m, 1H), 8.01 (m,5H), 8.50 (d,1H)
<단계 4> IC-4과 IC-5의 합성
Figure PCTKR2013009876-appb-I000024
10,10-dimethyl-1-(2-nitrophenyl)-10H-indolo[1,2-a]indole 대신 10,10-dimethyl-3-(2-nitrophenyl)-10H-indolo[1,2-a]indole (5.12 g, 14.44 mmol)을 사용하는 것을 제외하고는 준비예 1의 <단계 4>와 동일한 과정을 수행하여 목적 화합물인 IC-4와 IC-5를 얻었다.
IC-4 의 1H-NMR : δ 1.73 (s, 6H), 6.38 (s, 1H), 7.32 (m, 5H), 7.58 (m, 2H), 7.88 (d,1H), 8.14 (d,1H), 8.45 (d,1H), 9.94 (s,1H)
IC-5 의 1H-NMR : δ 1.73 (s, 6H), 6.38 (s, 1H), 7.32 (m, 5H), 7.58 (m, 2H), 7.91 (m,2H), 8.14 (d,1H), 9.94 (s,1H)
[준비예 4] IC-6의 합성
<단계 1> 2-(7-bromo-1-phenyl-1H-indol-2-yl)propan-2-ol의 합성
Figure PCTKR2013009876-appb-I000025
4-bromo-1-phenyl-1H-indole 대신 7-bromo-1-phenyl-1H-indole (27.2 g, 0.10 mol)을 사용하는 것을 제외하고는 준비예 1의 <단계 1>과 동일한 과정을 수행하여 2-(7-bromo-1-phenyl-1H-indol-2-yl)propan-2-ol을 얻었다.
1H-NMR : δ 1.24 (s, 6H), 3.63 (s,1H), 6.21 (s, 1H), 7.24 (m, 2H), 7.51 (m, 6H)
<단계 2> 4-bromo-10,10-dimethyl-10H-indolo[1,2-a]indole의 합성
Figure PCTKR2013009876-appb-I000026
2-(4-bromo-1-phenyl-1H-indol-2-yl)propan-2-ol 대신 2-(7-bromo-1-phenyl-1H-indol-2-yl)propan-2-ol (20.1 g, 0.061 mol)을 사용하는 것을 제외하고는 준비예 1의 <단계 2>와 동일한 과정을 수행하여 4-bromo-10,10-dimethyl-10H-indolo[1,2-a]indole을 얻었다.
1H-NMR : δ 1.73 (s, 6H), 6.38 (s, 1H), 7.32 (m, 5H), 7.67 (d, 1H), 7.88 (d,1H)
<단계 3> 10,10-dimethyl-4-(2-nitrophenyl)-10H-indolo[1,2-a]indole의 합성
Figure PCTKR2013009876-appb-I000027
1-bromo-10,10-dimethyl-10H-indolo[1,2-a]indole 대신 4-bromo-10,10-dimethyl-10H-indolo[1,2-a]indole (2.75 g, 8.80 mmol)을 사용하는 것을 제외하고는 준비예 1의 <단계 3>과 동일한 과정을 수행하여 10,10-dimethyl-4-(2-nitrophenyl)-10H-indolo[1,2-a]indole을 얻었다.
1H-NMR : δ 1.73 (s, 6H), 6.38 (s, 1H), 7.32 (m, 5H), 7.67 (d, 1H), 7.89 (m,4H), 8.31(d,1H)
<단계 4> IC-6의 합성
Figure PCTKR2013009876-appb-I000028
10,10-dimethyl-1-(2-nitrophenyl)-10H-indolo[1,2-a]indole 대신 10,10-dimethyl-4-(2-nitrophenyl)-10H-indolo[1,2-a]indole (5.12 g, 14.44 mmol)을 사용하는 것을 제외하고는 준비예 1의 <단계 4>와 동일한 과정을 수행하여 목적 화합물인 IC-6을 얻었다.
1H-NMR : δ 1.73 (s, 6H), 6.38 (s, 1H), 7.32 (m, 5H), 7.58 (m, 3H), 8.10 (d,1H), 8.44(d,1H), 9.94 (s,1H)
[준비예 5] IC-7의 합성
<단계 1> 10,10-dimethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10H-indolo[1,2-a]indole의 합성
Figure PCTKR2013009876-appb-I000029
질소 기류 하에서 준비예 2의 <단계 2>에서 얻은 2-bromo-10,10-dimethyl-10H-indolo[1,2-a]indole(25 g, 8 mmol), 4,4,4',4',5,5, 5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (24.4 g, 9.6 mmol), Pd(dppf)Cl2 (1.75 g, 2.4 mmol), KOAc (23.57 g, 0.24 mol) 및 1,4-dioxane (500 ml)를 혼합하고 130℃에서 12시간 동안 교반하였다.
반응이 종결된 후 에틸아세테이트로 추출한 다음 MgSO4로 수분을 제거하고, 컬럼크로마토그래피 (Hexane:EA = 10:1 (v/v))로 정제하여 10,10-dimethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10H-indolo[1,2-a]indole (22.35 g, 수율 76%)을 얻었다.
1H-NMR: δ 1.24 (s, 12H), 1.73 (s, 6H), 6.62 (s, 1H), 7.42 (m, 4H), 7.95 (m, 2H)
<단계 2> 2-(5-bromo-2-nitrophenyl)-10,10-dimethyl-10H-indolo[1,2-a]indole의 합성
Figure PCTKR2013009876-appb-I000030
질소 기류 하에서 2,4-dibromo-1-nitrobenzene (18.76 g, 66.8 mmol), 상기 <단계 1>에서 얻은 10,10-dimethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10H-indolo[1,2-a]indole (22 g, 61.23 mmol), NaOH (6.68 g, 167 mmol) 및 THF/H2O(200 ml/50 ml)를 혼합한 다음, 40℃에서 Pd(PPh3)4(1.93 g, 1.67 mol)를 넣고 80℃에서 12시간 동안 교반하였다.
반응 종결 후 메틸렌클로라이드로 추출하고 MgSO4를 넣고 여과하였다. 얻어진 유기층에서 용매를 제거한 후 컬럼 크로마토그래피 (Hexane:EA = 3:1 (v/v))로 정제하여 2-(5-bromo-2-nitrophenyl)-10,10-dimethyl-10H-indolo[1,2-a]indole (12.4 g, 수율 52%)을 얻었다.
1H-NMR: δ 1.74 (s, 6H), 6.35 (s, 1H), 7.38 (m, 4H), 7.73(s, 1H), 8.01(m, 2H), 8.22(m, 3H)
<단계 3> IC-7의 합성
Figure PCTKR2013009876-appb-I000031
10,10-dimethyl-1-(2-nitrophenyl)-10H-indolo[1,2-a]indole 대신 2-(5-bromo-2-nitrophenyl)-10,10-dimethyl-10H-indolo[1,2-a]indole (10.5 g, 24.23 mmol)을 사용하는 것을 제외하고는 준비예 1의 <단계 4>와 동일한 과정을 수행하여 목적 화합물인 IC-7 ( 5.3g, 수율: 54%)을 얻었다.
1H-NMR : δ 1.73 (s, 6H), 6.38 (s, 1H), 7.37 (m, 4H), 7.96 (m, 2H), 10.22 (s,1H)
[합성예 1] Com-1의 합성
Figure PCTKR2013009876-appb-I000032
질소 기류 하에서 준비예 2에서 제조한 화합물인 IC-3 (3.0 g, 9.3 mmol), 2-chloro-4,6-diphenyl-1,3,5-triazine (2.99 g, 11.16 mmol), NaH (0.27 g, 11.16 mmol) 및 DMF(80 ml)를 혼합하고 상온에서 3시간 동안 교반하였다. 반응이 종결된 후 물을 넣고 고체 화합물을 filter한 후, 컬럼 크로마토그래피로 정제하여 목적 화합물인 Com-1 (3.2 g, 수율 62%)를 얻었다.
GC-Mass (이론치: 553.65 g/mol, 측정치: 553 g/mol)
[합성예 2] Com-2의 합성
Figure PCTKR2013009876-appb-I000033
질소 기류 하에서 준비예 2에서 제조한 화합물인 IC-3 (3.0 g, 9.3 mmol), 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine (4.33 g, 11.16 mmol), Cu powder(0.29 g, 4.65 mmol), K2CO3(1.28 g, 9.3 mmol), Na2SO4(2.64 g, 18.61 mmol) 및 nitrobenzene(80 ml)를 혼합하고 190℃에서 12시간 동안 교반하였다.
반응이 종결된 후 nitrobenzene을 제거하고 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 Com-2 (3.4 g, 수율 58%)을 얻었다.
GC-Mass (이론치: 629.75 g/mol, 측정치: 629 g/mol)
[합성예 3] Com-3의 합성
Figure PCTKR2013009876-appb-I000034
질소 기류 하에서 준비예 2에서 제조한 화합물인 IC-3 (3.0 g, 9.3 mmol), 2-(4'-chlorobiphenyl-3-yl)-4,6-diphenyl-1,3,5-triazine (4.69 g, 11.16 mmol), Pd(OAc)2 (0.2 g, 0.93mmol), NaO(t-bu) (2.68 g, 27.93 mmol), P(t-bu)3 (0.37 g, 1.86 mmol) 및 Toluene (100 ml)을 혼합한 다음, 110 ℃에서 12시간 동안 교반하였다.
반응이 종결된 후 에틸아세테이트로 추출한 다음, MgSO4로 수분을 제거하고, 컬럼크로마토그래피 (Hexane:EA = 3:1 (v/v))로 정제하여 목적 화합물인 Com-3 (2.8 g, 수율 43%)을 얻었다.
GC-Mass (이론치: 705.85 g/mol, 측정치: 705 g/mol)
[합성예 4] Com-4의 합성
Figure PCTKR2013009876-appb-I000035
2-(4'-chlorobiphenyl-3-yl)-4,6-diphenyl-1,3,5-triazine 대신 2-(3'-chlorobiphenyl-3-yl)-4,6-diphenyl-1,3,5-triazine (4.68 g, 11.16 mmol)을 사용하는 것을 제외하고는 합성예 3과 동일한 과정을 수행하여 목적 화합물인 Com-4 (2.9 g, 수율 44%)을 얻었다.
GC-Mass (이론치: 705.85 g/mol, 측정치: 705 g/mol)
[합성예 5] Com-5의 합성
Figure PCTKR2013009876-appb-I000036
2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine 대신 2-bromo-4,6-diphenylpyridine (3.46 g, 11.16 mmol)을 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 목적 화합물인 Com-5 (3.1 g, 수율 60%)을 얻었다.
GC-Mass (이론치: 551.68 g/mol, 측정치: 551 g/mol)
[합성예 6] Com-6의 합성
Figure PCTKR2013009876-appb-I000037
2-(4'-chlorobiphenyl-3-yl)-4,6-diphenyl-1,3,5-triazine 대신 2-(3-chlorophenyl)-4,6-diphenylpyridine (3.81 g, 11.16 mmol)을 사용하는 것을 제외하고는 합성예 3과 동일한 과정을 수행하여 목적 화합물인 Com-6 (2.8 g, 수율 48%)을 얻었다.
GC-Mass (이론치: 627.77 g/mol, 측정치: 627 g/mol)
[합성예 7] Com-7의 합성
Figure PCTKR2013009876-appb-I000038
2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine 대신 2-bromo-4,6-diphenylpyrimidine (3.47 g, 11.16 mmol)을 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 목적 화합물인 Com-7 (3.3 g, 수율 64%)을 얻었다.
GC-Mass (이론치: 552.67 g/mol, 측정치: 552 g/mol)
[합성예 8] Com-8의 합성
Figure PCTKR2013009876-appb-I000039
2-(4'-chlorobiphenyl-3-yl)-4,6-diphenyl-1,3,5-triazine 대신 2-(3-chlorophenyl)-4,6-diphenylpyrimidine (3.82 g, 11.16 mmol)을 사용하는 것을 제외하고는 합성예 3과 동일한 과정을 수행하여 목적 화합물인 Com-8 (2.9 g, 수율 50%)을 얻었다.
GC-Mass (이론치: 628.76 g/mol, 측정치: 628 g/mol)
[합성예 9] Com-9의 합성
Figure PCTKR2013009876-appb-I000040
2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine 대신 6-bromo-2,3'-bipyridine (2.62 g, 11.16 mmol)을 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 목적 화합물인 Com-9 (2.5 g, 수율 58%)을 얻었다.
GC-Mass (이론치: 467.57 g/mol, 측정치: 467 g/mol)
[합성예 10] Com-10의 합성
Figure PCTKR2013009876-appb-I000041
2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine 대신 2-bromo-5-phenylpyridine을 (2.61 g, 11.16 mmol)사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 목적 화합물인 Com-10 (2.7 g, 수율 61%)을 얻었다.
GC-Mass (이론치: 475.58 g/mol, 측정치: 475 g/mol)
[합성예 11] Com-11의 합성
Figure PCTKR2013009876-appb-I000042
2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine 대신 2-(3-bromophenyl)pyridine (2.61 g, 11.16 mmol)을 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 목적 화합물인 Com-11 (2.5 g, 수율 57%)을 얻었다.
GC-Mass (이론치: 475.58 g/mol, 측정치: 475 g/mol)
[합성예 12] Com-12의 합성
Figure PCTKR2013009876-appb-I000043
2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine 대신 3-bromo-9-phenyl-9H-carbazole (3.59 g, 11.16 mmol)을 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 목적 화합물인 Com-12 (3.3 g, 수율 63%)을 얻었다.
GC-Mass (이론치: 563.69 g/mo, 측정치: 563 g/mol)
[합성예 13] Com-13의 합성
Figure PCTKR2013009876-appb-I000044
2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine 대신 2-(4-bromophenyl)-1-phenyl-1H-benzo[d]imidazole (3.89 g, 11.16 mmol)을 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 목적 화합물인 Com-13 (3.7g, 수율 67%)을 얻었다.
GC-Mass (이론치: 590.71 g/mol, 측정치: 590 g/mol)
[합성예 14] Com-14의 합성
Figure PCTKR2013009876-appb-I000045
2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine 대신 4-(4-bromophenyl)-3,5-diphenyl-4H-1,2,4-triazole (4.2 g, 11.16 mmol)을 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 목적 화합물인 Com-14 (3.7 g, 수율 62%)을 얻었다.
GC-Mass (이론치: 617.74 g/mol, 측정치: 617 g/mol)
[합성예 15] Com-15의 합성
Figure PCTKR2013009876-appb-I000046
2-(4'-chlorobiphenyl-3-yl)-4,6-diphenyl-1,3,5-triazine 대신 2-chloro-4-phenylquinazoline (2.68 g, 11.16 mmol)을 사용하는 것을 제외하고는 합성예 3과 동일한 과정을 수행하여 목적 화합물인 Com-15 (2.9 g, 수율 59%)을 얻었다.
GC-Mass (이론치: 526.63 g/mol, 측정치: 526 g/mol)
[합성예 16] Com-16의 합성
Figure PCTKR2013009876-appb-I000047
2-(4'-chlorobiphenyl-3-yl)-4,6-diphenyl-1,3,5-triazine 대신 2-(3-chlorophenyl)-4-phenylquinazoline (3.53 g, 11.16 mmol)을 사용하는 것을 제외하고는 합성예 3과 동일한 과정을 수행하여 목적 화합물인 Com-16 (3.1 g, 수율 55%)을 얻었다.
GC-Mass (이론치: 602.73 g/mol, 측정치: 602 g/mol)
[합성예 17] Com-17의 합성
Figure PCTKR2013009876-appb-I000048
2-(4'-chlorobiphenyl-3-yl)-4,6-diphenyl-1,3,5-triazine 대신 4-(biphenyl-4-yl)-2-chloroquinazoline (3.53 g, 11.16 mmol)을 사용하는 것을 제외하고는 합성예 3과 동일한 과정을 수행하여 목적 화합물인 Com-17 (2.9 g, 수율 51%)을 얻었다.
GC-Mass (이론치: 602.73 g/mol, 측정치: 602 g/mol)
[합성예 18] Com-18의 합성
Figure PCTKR2013009876-appb-I000049
2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine 대신 4-bromo-N,N-diphenylaniline (3.62 g, 11.16 mmol)을 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 목적 화합물인 Com-18 (2.8 g, 수율 54%)을 얻었다.
GC-Mass (이론치: 565.70 g/mol, 측정치: 565 g/mol)
[합성예 19] Com-19의 합성
Figure PCTKR2013009876-appb-I000050
2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine 대신 N-(biphenyl-4-yl)-N-(4-bromophenyl)biphenyl-4-amine (5.32 g, 11.16 mmol)을 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 목적 화합물인 Com-19 (4.2 g, 수율 62%)을 얻었다.
GC-Mass (이론치: 717.90 g/mol, 측정치: 717 g/mol)
[합성예 20] Com-20의 합성
Figure PCTKR2013009876-appb-I000051
2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine 대신 N-(biphenyl-4-yl)-N-(4-bromophenyl)-9,9-dimethyl-9H-fluoren-2-amine (5.76 g, 11.16 mmol)을 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 목적 화합물인 Com-20 (4.4 g, 수율 63%)을 얻었다.
GC-Mass (이론치: 757.96 g/mol, 측정치: 757 g/mol)
[합성예 21] Com-21의 합성
Figure PCTKR2013009876-appb-I000052
IC-3 대신 IC-2 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 목적 화합물인 Com-21 (3.3 g, 수율 65%)을 얻었다.
GC-Mass (이론치: 553.65 g/mol, 측정치: 553 g/mol)
[합성예 22] Com-22의 합성
Figure PCTKR2013009876-appb-I000053
IC-3 대신 IC-2 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 목적 화합물인 Com-22 (3.2 g, 수율 55%)을 얻었다.
GC-Mass (이론치: 629.75 g/mol, 측정치: 629 g/mol)
[합성예 23] Com-23의 합성
Figure PCTKR2013009876-appb-I000054
IC-3 대신 IC-2 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 3과 동일한 과정을 수행하여 목적 화합물인 Com-23 (4.1 g, 수율 62%)을 얻었다.
GC-Mass (이론치: 705.85 g/mol, 측정치: 705g/mol)
[합성예 24] Com-24의 합성
Figure PCTKR2013009876-appb-I000055
IC-3 대신 IC-2 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 4와 동일한 과정을 수행하여 목적 화합물인 Com-24 (3.9 g, 수율 59%)을 얻었다.
GC-Mass (이론치: 705.85 g/mol, 측정치: 705 g/mol)
[합성예 25] Com-25의 합성
Figure PCTKR2013009876-appb-I000056
IC-3 대신 IC-2 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 11과 동일한 과정을 수행하여 목적 화합물인 Com-25 (2.4 g, 수율 57%)을 얻었다.
GC-Mass (이론치: 475.58 g/mol, 측정치: 475 g/mol)
[합성예 26] Com-26의 합성
Figure PCTKR2013009876-appb-I000057
IC-3 대신 IC-2 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 12와 동일한 과정을 수행하여 목적 화합물인 Com-26 (2.9 g, 수율 55%)을 얻었다.
GC-Mass (이론치: 563.69 g/mol, 측정치: 563 g/mol)
[합성예 27] Com-27의 합성
Figure PCTKR2013009876-appb-I000058
IC-3 대신 IC-4 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 목적 화합물인 Com-27 (3.2 g, 수율 62%)을 얻었다.
GC-Mass (이론치: 553.65 g/mol, 측정치: 553 g/mol)
[합성예 28] Com-28의 합성
Figure PCTKR2013009876-appb-I000059
IC-3 대신 IC-4 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 목적 화합물인 Com-28 (3.5 g, 수율 60%)을 얻었다.
GC-Mass (이론치: 629.75 g/mol, 측정치: 629 g/mol)
[합성예 29] Com-29의 합성
Figure PCTKR2013009876-appb-I000060
IC-3 대신 IC-4 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 3과 동일한 과정을 수행하여 목적 화합물인 Com-29 (4.3 g, 수율 65%)을 얻었다.
GC-Mass (이론치: 705.85 g/mol, 측정치: 705g/mol)
[합성예 30] Com-30의 합성
Figure PCTKR2013009876-appb-I000061
IC-3 대신 IC-4 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 4와 동일한 과정을 수행하여 목적 화합물인 Com-30 (4.0 g, 수율 61%)을 얻었다.
GC-Mass (이론치: 705.85 g/mol, 측정치: 705g/mol)
[합성예 31] Com-31의 합성
Figure PCTKR2013009876-appb-I000062
IC-3 대신 IC-4 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 11과 동일한 과정을 수행하여 목적 화합물인 Com-31 (2.7 g, 수율 61%)을 얻었다.
GC-Mass (이론치: 475.58 g/mol, 측정치: 475 g/mol)
[합성예 32] Com-32의 합성
Figure PCTKR2013009876-appb-I000063
IC-3 대신 IC-4 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 12와 동일한 과정을 수행하여 목적 화합물인 Com-32 (3.1 g, 수율 59%)을 얻었다.
GC-Mass (이론치: 563.69 g/mol, 측정치: 563 g/mol)
[합성예 33] Com-33의 합성
Figure PCTKR2013009876-appb-I000064
IC-3 대신 IC-5 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 목적 화합물인 Com-33 (34 g, 수율 66%)을 얻었다.
GC-Mass (이론치: 553.65 g/mol, 측정치: 553 g/mol)
[합성예 34] Com-34의 합성
Figure PCTKR2013009876-appb-I000065
IC-3 대신 IC-5 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 목적 화합물인 Com-34 (3.7 g, 수율 63%)을 얻었다.
GC-Mass (이론치: 629.75 g/mol, 측정치: 629 g/mol)
[합성예 35] Com-35의 합성
Figure PCTKR2013009876-appb-I000066
IC-3 대신 IC-5 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 3과 동일한 과정을 수행하여 목적 화합물인 Com-35 (4.0 g, 수율 61%)을 얻었다.
GC-Mass (이론치: 705.85 g/mol, 측정치: 705g/mol)
[합성예 36] Com-36의 합성
Figure PCTKR2013009876-appb-I000067
IC-3 대신 IC-5 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 4와 동일한 과정을 수행하여 목적 화합물인 Com-36 (4.1 g, 수율 62%)을 얻었다.
GC-Mass (이론치: 705.85 g/mol, 측정치: 705g/mol)
[합성예 37] Com-37의 합성
Figure PCTKR2013009876-appb-I000068
IC-3 대신 IC-5 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 11과 동일한 과정을 수행하여 목적 화합물인 Com-37 (2.5 g, 수율 56%)을 얻었다.
GC-Mass (이론치: 475.58 g/mol, 측정치: 475 g/mol)
[합성예 38] Com-38의 합성
Figure PCTKR2013009876-appb-I000069
IC-3 대신 IC-5 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 12와 동일한 과정을 수행하여 목적 화합물인 Com-38 (3.3 g, 수율 63%)을 얻었다.
GC-Mass (이론치: 563.69 g/mol, 측정치: 563 g/mol)
[합성예 39] Com-39의 합성
Figure PCTKR2013009876-appb-I000070
IC-3 대신 IC-1 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 목적 화합물인 Com-39 (3.3 g, 수율 65%)을 얻었다.
GC-Mass (이론치: 553.65 g/mol, 측정치: 553 g/mol)
[합성예 40] Com-40의 합성
Figure PCTKR2013009876-appb-I000071
IC-3 대신 IC-1 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 목적 화합물인 Com-40 (3.5 g, 수율 60%)을 얻었다.
GC-Mass (이론치: 629.75 g/mol, 측정치: 629 g/mol)
[합성예 41] Com-41의 합성
Figure PCTKR2013009876-appb-I000072
IC-3 대신 IC-1 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 3과 동일한 과정을 수행하여 목적 화합물인 Com-41 (4.1 g, 수율 63%)을 얻었다.
GC-Mass (이론치: 705.85 g/mol, 측정치: 705g/mol)
[합성예 42] Com-42의 합성
Figure PCTKR2013009876-appb-I000073
IC-3 대신 IC-1 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 4와 동일한 과정을 수행하여 목적 화합물인 Com-42 (3.9 g, 수율 59%)을 얻었다.
GC-Mass (이론치: 705.85 g/mol, 측정치: 705g/mol)
[합성예 43] Com-43의 합성
Figure PCTKR2013009876-appb-I000074
IC-3 대신 IC-1 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 11과 동일한 과정을 수행하여 목적 화합물인 Com-43 (2.7 g, 수율 61%)을 얻었다.
GC-Mass (이론치: 475.58 g/mol, 측정치: 475 g/mol)
[합성예 44] Com-44의 합성
Figure PCTKR2013009876-appb-I000075
IC-3 대신 IC-1 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 12와 동일한 과정을 수행하여 목적 화합물인 Com-44 (3.1 g, 수율 59%)을 얻었다.
GC-Mass (이론치: 563.69 g/mol, 측정치: 563 g/mol)
[합성예 45] Com-45의 합성
Figure PCTKR2013009876-appb-I000076
IC-3 대신 IC-6 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 목적 화합물인 Com-45 (3.2 g, 수율 62%)을 얻었다.
GC-Mass (이론치: 553.65 g/mol, 측정치: 553 g/mol)
[합성예 46] Com-46의 합성
Figure PCTKR2013009876-appb-I000077
IC-3 대신 IC-6 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 목적 화합물인 Com-46 (3.6 g, 수율 61%)을 얻었다.
GC-Mass (이론치: 629.75 g/mol, 측정치: 629 g/mol)
[합성예 47] Com-47의 합성
Figure PCTKR2013009876-appb-I000078
IC-3 대신 IC-6 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 3과 동일한 과정을 수행하여 목적 화합물인 Com-47 (3.9 g, 수율 59%)을 얻었다.
GC-Mass (이론치: 705.85 g/mol, 측정치: 705g/mol)
[합성예 48] Com-48의 합성
Figure PCTKR2013009876-appb-I000079
IC-3 대신 IC-6 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 4와 동일한 과정을 수행하여 목적 화합물인 Com-48 (4.3 g, 수율 65%)을 얻었다.
GC-Mass (이론치: 705.85 g/mol, 측정치: 705g/mol)
[합성예 49] Com-49의 합성
Figure PCTKR2013009876-appb-I000080
IC-3 대신 IC-6 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 11과 동일한 과정을 수행하여 목적 화합물인 Com-49 (2.5 g, 수율 56%)을 얻었다.
GC-Mass (이론치: 475.58 g/mol, 측정치: 475 g/mol)
[합성예 50] Com-50의 합성
Figure PCTKR2013009876-appb-I000081
IC-3 대신 IC-6 (3.0 g, 9.3 mmol)을 사용하는 것을 제외하고는 합성예 12와 동일한 과정을 수행하여 목적 화합물인 Com-50 (3.1 g, 수율 59%)을 얻었다.
GC-Mass (이론치: 563.69 g/mol, 측정치: 563 g/mol)
[합성예 51] Com-51의 합성
<단계 1 > 51-1의 합성
Figure PCTKR2013009876-appb-I000082
질소 기류 하에서 준비예 5에서 제조한 화합물인 IC-7 (5.3 g, 13.2 mmol), iodobenzene (5.38 g, 26.41 mmol), Cu powder(0.08 g, 1.32 mmol), K2CO3(1.82 g, 13.2 mmol), Na2SO4(3.75 g, 26.4 mmol) 및 nitrobenzene(100 ml)를 혼합하고 190℃에서 12시간 동안 교반하였다.
반응이 종결된 후 nitrobenzene을 제거하고 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 51-1 (4.2 g, 수율 66%)을 얻었다.
GC-Mass (이론치: 477.39 g/mol, 측정치: 477 g/mol)
<단계 2> 51-2의 합성
Figure PCTKR2013009876-appb-I000083
질소 기류 하에서 51-1 (4.2 g, 8.79 mmol), 4,4,4',4',5,5, 5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (3.35 g, 13.19 mmol), Pd(dppf)Cl2 (0.32 g, 5 mol), KOAc (2.6 g, 26.41 mmol) 및 1,4-dioxane (100 ml)를 혼합하고 130℃에서 12시간 동안 교반하였다.
반응이 종결된 후 에틸아세테이트로 추출한 다음 MgSO4로 수분을 제거하고, 컬럼크로마토그래피 (Hexane:EA = 10:1 (v/v))로 정제하여 51-2 (3.5 g, 수율 76%)을 얻었다.
GC-Mass (이론치: 524.46 g/mol, 측정치: 524 g/mol)
<단계 3> Com-51의 합성
Figure PCTKR2013009876-appb-I000084
질소 기류 하에서 51-2 (3.5 g, 6.67 mmol), 3-bromo-9-(4,6-diphenyl-1,3,5-triazin-2-yl)-9H-carbazole (3.82 g, 8 mmol), NaOH (0.8 g, 20.02 mmol) 및 THF/H2O(80 ml/20 ml)를 혼합한 다음, 40℃에서 Pd(PPh3)4(0.38 g, 5 mol)를 넣고 80℃에서 12시간 동안 교반하였다.
반응 종결 후 메틸렌클로라이드로 추출하고 MgSO4를 넣고 여과하였다. 얻어진 유기층에서 용매를 제거한 후 컬럼 크로마토그래피 (Hexane:EA = 3:1 (v/v))로 정제하여 목적 화합물인 Com-51 (3.1 g, 수율 59%)을 얻었다.
GC-Mass (이론치: 794.94 g/mol, 측정치: 794 g/mol)
[합성예 52] Com-52의 합성
Figure PCTKR2013009876-appb-I000085
3-bromo-9-(4,6-diphenyl-1,3,5-triazin-2-yl)-9H-carbazole 대신 3-bromo-9-(3-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-9H-carbazole (4.43g 8.01 mmol)을 사용하는 것을 제외하고는 합성예 51의 <단계 3>과 동일한 과정을 수행하여 목적 화합물인 Com-52 (3.4 g, 수율 58%)을 얻었다.
GC-Mass (이론치: 871.04 g/mol, 측정치: 871 g/mol)
[합성예 53] Com-53의 합성
Figure PCTKR2013009876-appb-I000086
3-bromo-9-(4,6-diphenyl-1,3,5-triazin-2-yl)-9H-carbazole 대신 3-bromo-9-(3-(4,6-diphenylpyridin-2-yl)phenyl)-9H-carbazole (4.41g 8 mmol)을 사용하는 것을 제외하고는 합성예 51의 <단계 3>과 동일한 과정을 수행하여 목적 화합물인 Com-53 (3.3 g, 수율 57%)을 얻었다.
GC-Mass (이론치: 869.06 g/mol, 측정치: 869 g/mol)
[합성예 54] Com-54의 합성
<단계 1> 54-1의 합성
Figure PCTKR2013009876-appb-I000087
IC-3 대신 IC-7 (3g, 7.47 mmol)을 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 54-1 (3.0 g, 수율 63%)을 얻었다.
GC-Mass (이론치: 632.55 g/mol, 측정치: 632 g/mol)
<단계 2> Com-54의 합성
Figure PCTKR2013009876-appb-I000088
질소 기류 하에서 54-1 (3 g, 4.74 mmol), phenylboronic acid (0.7 g, 5.69 mmol), NaOH (0.57 g, 14.24 mmol) 및 THF/H2O(60 ml/15 ml)를 혼합한 다음, 40℃에서 Pd(PPh3)4(0.27 g, 5 mol)를 넣고 80℃에서 12시간 동안 교반하였다.
반응 종결 후 메틸렌클로라이드로 추출하고 MgSO4를 넣고 여과하였다. 얻어진 유기층에서 용매를 제거한 후 컬럼 크로마토그래피 (Hexane:EA = 3:1 (v/v))로 정제하여 목적 화합물인 Com-54(1.8 g, 수율 60%)을 얻었다.
GC-Mass (이론치: 629.75 g/mol, 측정치: 629 g/mol)
[합성예 55] Com-55의 합성
Figure PCTKR2013009876-appb-I000089
phenylboronic acid 대신 dibenzo[b,d]thiophen-2-ylboronic acid (1.3g 5.69 mmol)를 사용하는 것을 제외하고는 합성예 54의 <단계 2>와 동일한 과정을 수행하여 목적 화합물인 Com-55 (1.8 g, 수율 51%)을 얻었다.
GC-Mass (이론치: 735.9 g/mol, 측정치: 735 g/mol)
[합성예 56] Com-56의 합성
Figure PCTKR2013009876-appb-I000090
phenylboronic acid 대신 pyridin-2-ylboronic acid (0.7g 5.69 mmol)를 사용하는 것을 제외하고는 합성예 54의 <단계 2>와 동일한 과정을 수행하여 목적 화합물인 Com-56 (1.7 g, 수율 56%)을 얻었다.
GC-Mass (이론치: 630.74 g/mol, 측정치: 630 g/mol)
[합성예 57] Com-57의 합성
Figure PCTKR2013009876-appb-I000091
phenylboronic acid 대신 9-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole (2.1g 5.69mmol)을 사용하는 것을 제외하고는 합성예 54의 <단계 2>와 동일한 과정을 수행하여 목적 화합물인 Com-57 (2.1 g, 수율 56%)을 얻었다.
GC-Mass (이론치: 794.94 g/mol, 측정치: 794 g/mol)
[합성예 58] Com-58의 합성
<단계 1> 58-1의 합성
Figure PCTKR2013009876-appb-I000092
IC-3 대신 IC-7 (3g, 7.47 mmol)을 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 58-1 (3.3 g, 수율 62%)을 얻었다.
GC-Mass (이론치: 708.65 g/mol, 측정치: 708 g/mol)
<단계 2> Com-58의 합성
Figure PCTKR2013009876-appb-I000093
54-1 대신 58-1 (3.3g, 4.65 mmol)을 사용하는 것을 제외하고는 합성예 54의 <단계 2>와 동일한 과정을 수행하여 목적 화합물인 Com-58 (2.1 g, 수율 63%)을 얻었다.
GC-Mass (이론치: 705.85 g/mol, 측정치: 705 g/mol)
[합성예 59] Com-59의 합성
Figure PCTKR2013009876-appb-I000094
54-1 대신 58-1 (3.3g, 4.65 mmol)을 사용하는 것을 제외하고는 합성예 55와 동일한 과정을 수행하여 목적 화합물인 Com-59(2.4 g, 수율 63%)을 얻었다.
GC-Mass (이론치: 811.99 g/mol, 측정치: 811 g/mol)
[합성예 60] Com-60의 합성
Figure PCTKR2013009876-appb-I000095
54-1 대신 58-1 (3.3g, 4.65 mmol)을 사용하는 것을 제외하고는 합성예 56와 동일한 과정을 수행하여 목적 화합물인 Com-60(2.0 g, 수율 60%)을 얻었다.
GC-Mass (이론치: 706.83 g/mol, 측정치: 706 g/mol)
[합성예 61] Com-61의 합성
Figure PCTKR2013009876-appb-I000096
54-1 대신 58-1 (3.3g, 4.65 mmol)을 사용하는 것을 제외하고는 합성예 57과 동일한 과정을 수행하여 목적 화합물인 Com-61(2.3 g, 수율 57%)을 얻었다.
GC-Mass (이론치: 871.04 g/mol, 측정치: 871 g/mol)
[합성예 62] Com-62의 합성
<단계 1> 62-1의 합성
Figure PCTKR2013009876-appb-I000097
IC-3 대신 IC-7 (3g, 7.47 mmol)을 사용하는 것을 제외하고는 합성예 4와 동일한 과정을 수행하여 62-1 (3.2 g, 수율 54%)을 얻었다.
GC-Mass (이론치: 784.74 g/mol, 측정치: 784 g/mol)
<단계 2> Com-62의 합성
Figure PCTKR2013009876-appb-I000098
54-1 대신 62-1 (3.2g 4.07 mmol)을 사용하는 것을 제외하고는 합성예 54의 <단계 2>와 동일한 과정을 수행하여 목적 화합물인 Com-62 (2.1 g, 수율 65%)을 얻었다.
GC-Mass (이론치: 781.94 g/mol, 측정치: 781 g/mol)
[합성예 63] Com-63의 합성
Figure PCTKR2013009876-appb-I000099
54-1 대신 62-1 (3.2g 4.07 mmol)을 사용하는 것을 제외하고는 합성예 55와 동일한 과정을 수행하여 목적 화합물인 Com-63(2.4 g, 수율 66%)을 얻었다.
GC-Mass (이론치: 888.09 g/mol, 측정치: 888 g/mol)
[합성예 64] Com-64의 합성
Figure PCTKR2013009876-appb-I000100
54-1 대신 62-1 (3.2g 4.07 mmol)을 사용하는 것을 제외하고는 합성예 56와 동일한 과정을 수행하여 목적 화합물인 Com-64(1.9 g, 수율 59%)을 얻었다.
GC-Mass (이론치: 782.93 g/mol, 측정치: 782 g/mol)
[합성예 65] Com-65의 합성
Figure PCTKR2013009876-appb-I000101
54-1 대신 62-1 (3.2g 4.07 mmol)을 사용하는 것을 제외하고는 합성예 57과 동일한 과정을 수행하여 목적 화합물인 Com-65(2.5 g, 수율 65%)을 얻었다.
GC-Mass (이론치: 947.13 g/mol, 측정치: 947 g/mol)
[실시예 1] 녹색 유기 전계 발광 소자의 제조
합성예 1에서 합성된 화합물 Com-1을 통상적으로 알려진 방법으로 고순도 승화정제를 한 후, 하기와 같이 녹색 유기 전계 발광 소자를 제조하였다.
ITO (Indium tin oxide)가 1500Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면, 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV OZONE 세정기 (Power sonic 405, 화신테크)로 이송시킨 다음, UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
상기와 같이 준비된 ITO 투명 기판(전극) 위에, 합성예 1의 화합물 Com-1를 호스트로 이용하여, m-MTDATA(60 nm) / TCTA(80 nm) / 화합물 Com-1 + 10 % Ir(ppy)3(300nm) / BCP(10 nm) / Alq3(30 nm) / LiF(1 nm) / Al(200 nm) 순으로 적층하여 소자를 제조하였다.
사용된 m-MTDATA, TCTA, Ir(ppy)3 및 BCP의 구조는 하기와 같다.
Figure PCTKR2013009876-appb-I000102
Figure PCTKR2013009876-appb-I000103
[실시예 2 내지 65] 녹색 유기 전계 발광 소자의 제조
실시예 1에서 발광층의 형성시 호스트 물질로서 사용된 화합물 Com-1 대신 합성예 2 내지 65에서 각각 합성된 화합물 Com-2 내지 Com-65를 사용하는 것을 제외하고는, 실시예 1과 동일하게 수행하여 소자를 제조하였다.
[비교예] 녹색 유기 전계 발광 소자의 제조
실시예 1에서 발광층 형성시 호스트 물질로서 사용된 화합물 Com-1 대신 하기 CBP를 사용하는 것을 제외하고는 실시예 1과 동일하게 수행하여 소자를 제조하였다.
Figure PCTKR2013009876-appb-I000104
[실험예]
실시예 1 내지 65 및 비교예에서 각각 제조된 녹색 유기 전계 발광 소자에 대하여, 전류밀도 10mA/㎠에서의 구동전압, 전류효율 및 발광 피크를 측정하였고, 그 결과를 하기 표 1에 나타내었다.
표 1
샘플 호스트 구동 전압 (V) 전류효율 (cd/A)
실시예 1 화합물 Com-1 6.55 41.0
실시예 2 화합물 Com-2 6.45 41.2
실시예 3 화합물 Com-3 6.50 42.1
실시예 4 화합물 Com-4 6.52 41.9
실시예 5 화합물 Com-5 6.60 41.5
실시예 6 화합물 Com-6 6.55 41.3
실시예 7 화합물 Com-7 6.55 41.5
실시예 8 화합물 Com-8 6.45 41.9
실시예 9 화합물 Com-9 6.55 41.0
실시예 10 화합물 Com-10 6.50 41.3
실시예 11 화합물 Com-11 6.60 41.9
실시예 12 화합물 Com-12 6.55 42.1
실시예 13 화합물 Com-13 6.60 42.2
실시예 14 화합물 Com-14 6.50 41.7
실시예 15 화합물 Com-15 6.65 42.1
실시예 16 화합물 Com-16 6.60 41.5
실시예 17 화합물 Com-17 6.65 41.9
실시예 18 화합물 Com-18 6.55 42.0
실시예 19 화합물 Com-19 6.50 41.8
실시예 20 화합물 Com-20 6.55 41.6
실시예 21 화합물 Com-21 6.55 41.5
실시예 22 화합물 Com-22 6.60 42.2
실시예 23 화합물 Com-23 6.55 41.5
실시예 24 화합물 Com-24 6.50 41.8
실시예 25 화합물 Com-25 6.55 41.9
실시예 26 화합물 Com-26 6.65 41.7
실시예 27 화합물 Com-27 6.60 42.3
실시예 28 화합물 Com-28 6.50 41.6
실시예 29 화합물 Com-29 6.55 41.5
실시예 30 화합물 Com-30 6.50 41.7
실시예 31 화합물 Com-31 6.60 41.8
실시예 32 화합물 Com-32 6.58 42.0
실시예 33 화합물 Com-33 6.55 41.2
실시예 34 화합물 Com-34 6.51 41.5
실시예 35 화합물 Com-35 6.65 42.1
실시예 36 화합물 Com-36 6.60 41.0
실시예 37 화합물 Com-37 6.65 41.9
실시예 38 화합물 Com-38 6.55 41.7
실시예 39 화합물 Com-39 6.50 41.6
실시예 40 화합물 Com-40 6.55 41.3
실시예 41 화합물 Com-41 6.55 41.5
실시예 42 화합물 Com-42 6.55 42.0
실시예 43 화합물 Com-43 6.60 41.7
실시예 44 화합물 Com-44 6.55 40.8
실시예 45 화합물 Com-45 6.60 41.0
실시예 46 화합물 Com-46 6.65 41.3
실시예 47 화합물 Com-47 6.60 41.1
실시예 48 화합물 Com-48 6.55 40.9
실시예 49 화합물 Com-49 6.55 41.5
실시예 50 화합물 Com-50 6.50 41.9
실시예 51 화합물 Com-51 6.45 42.1
실시예 52 화합물 Com-52 6.50 41.5
실시예 53 화합물 Com-53 6.55 41.2
실시예 54 화합물 Com-54 6.50 41.8
실시예 55 화합물 Com-55 6.65 42.1
실시예 56 화합물 Com-56 6.60 41.8
실시예 57 화합물 Com-57 6.65 41.4
실시예 58 화합물 Com-58 6.55 41.7
실시예 59 화합물 Com-59 6.60 42.1
실시예 60 화합물 Com-60 6.55 41.3
실시예 61 화합물 Com-61 6.55 41.5
실시예 62 화합물 Com-62 6.50 41.5
실시예 63 화합물 Com-63 6.60 41.4
실시예 64 화합물 Com-64 6.50 41.8
실시예 65 화합물 Com-65 6.55 42.0
비교예 CBP 6.93 38.2
상기 표 1를 살펴보면, 본 발명의 화학식 1로 표시되는 화합물을 발광층의 호스트 물질로 사용한 녹색 유기 전계 발광 소자(실시예 1 내지 65)는 종래 CBP를 호스트 물질로 사용한 녹색 유기 전계 발광 소자(비교예)보다 전류효율 및 구동전압 면에서 우수한 성능을 나타내는 것을 확인할 수 있었다.
본 발명의 화학식 1로 표시되는 화합물은 열적 안정성 및 인광 특성이 우수하기 때문에 유기 전계 발광 소자의 유기물층의 재료로 사용될 수 있다. 특히, 본 발명의 화학식 1로 표시되는 화합물을 인광 호스트 재료로 사용할 경우, 종래 호스트 재료에 비해 우수한 발광 성능, 낮은 구동전압, 높은 효율 및 장수명을 가지는 유기 전계 발광 소자를 제조할 수 있고, 나아가 성능 및 수명이 크게 향상된 풀 칼라 디스플레이 패널도 제조할 수 있다.

Claims (6)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2013009876-appb-I000105
    상기 화학식 1에서,
    R4와 R5, R5와 R6, 또는 R6와 R7 중 하나는 하기 화학식 2와 결합하여 축합 고리를 형성하고,
    [화학식 2]
    Figure PCTKR2013009876-appb-I000106
    상기 화학식 2에서 점선은 화학식 1의 화합물과 축합이 이루어지는 부위이며,
    R1 내지 R11 및 Ra는 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C6~C40의 아릴옥시기, C1~C40의 알킬옥시기, C6~C40의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C40의 아릴보론기, C6~C40의 아릴포스핀기, C6~C40의 아릴포스핀옥사이드기 및 C6~C40의 아릴실릴기로 이루어진 군에서 선택되고, 인접하는 기와 결합하여 축합 고리를 형성할 수 있으며,
    n은 0 내지 4의 정수이고,
    Ar1은 C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C6~C40의 아릴옥시기, C1~C40의 알킬옥시기, C6~C40의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C40의 아릴보론기, C6~C40의 아릴포스핀기, C6~C40의 아릴포스핀옥사이드기 및 C6~C40의 아릴실릴기로 이루어진 군에서 선택되고,
    상기 R1 내지 R11, Ra 및 Ar1의 알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 아릴아민기, 시클로알킬기, 헤테로시클로알킬기, 알킬실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴실릴기는 각각 독립적으로 중수소, 할로겐, 시아노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C6~C40의 아릴옥시기, C1~C40의 알킬옥시기, C6~C40의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C40의 아릴보론기, C6~C40의 아릴포스핀기, C6~C40의 아릴포스핀옥사이드기 및 C6~C40의 아릴실릴기로 이루어진 군으로부터 선택되는 1종 이상으로 치환될 수 있다.
  2. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 3 내지 8로 표시되는 화합물로 이루어진 군에서 선택되는 것을 특징으로 하는 화합물:
    [화학식 3]
    Figure PCTKR2013009876-appb-I000107
    [화학식 4]
    Figure PCTKR2013009876-appb-I000108
    [화학식 5]
    Figure PCTKR2013009876-appb-I000109
    [화학식 6]
    Figure PCTKR2013009876-appb-I000110
    [화학식 7]
    Figure PCTKR2013009876-appb-I000111
    [화학식 8]
    Figure PCTKR2013009876-appb-I000112
    상기 화학식 3 내지 8에서, R1 내지 R11, Ra, Ar1 및 n은 제1항에서 정의한 바와 동일하다.
  3. 제1항에 있어서,
    상기 Ar1은 C6~C40의 아릴기 또는 핵원자수 5 내지 40의 헤테로아릴기인 것을 특징으로 하는 화합물.
  4. 제3항에 있어서,
    상기 Ar1 은 하기 S1 내지 S206으로 표시되는 구조로 이루어진 군에서 선택되는 것을 특징으로 하는 화합물.
    Figure PCTKR2013009876-appb-I000113
    Figure PCTKR2013009876-appb-I000114
    Figure PCTKR2013009876-appb-I000115
    Figure PCTKR2013009876-appb-I000116
  5. 양극, 음극 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자에 있어서,
    상기 1층 이상의 유기물층 중 적어도 하나는 제1항 내지 제4항 중 어느 한 항에 기재된 화합물을 포함하는 것을 특징으로 하는 유기 전계 발광 소자.
  6. 제5항에 있어서,
    상기 화합물을 포함하는 유기물층은 발광층인 것을 특징으로 하는 유기 전계 발광 소자.
PCT/KR2013/009876 2012-11-21 2013-11-04 신규 화합물 및 이를 포함하는 유기 전계 발광 소자 WO2014081134A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0132282 2012-11-21
KR1020120132282A KR101577100B1 (ko) 2012-11-21 2012-11-21 신규 화합물 및 이를 포함하는 유기 전계 발광 소자

Publications (1)

Publication Number Publication Date
WO2014081134A1 true WO2014081134A1 (ko) 2014-05-30

Family

ID=50776271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009876 WO2014081134A1 (ko) 2012-11-21 2013-11-04 신규 화합물 및 이를 포함하는 유기 전계 발광 소자

Country Status (2)

Country Link
KR (1) KR101577100B1 (ko)
WO (1) WO2014081134A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105061436A (zh) * 2015-09-10 2015-11-18 清华大学 一种多取代稠合吲哚并吲哚类化合物的制备方法
WO2016036171A1 (en) * 2014-09-04 2016-03-10 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and organic electroluminescent devices comprising the same
KR20160028979A (ko) * 2014-09-04 2016-03-14 롬엔드하스전자재료코리아유한회사 복수종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6673545B2 (ja) * 2016-02-15 2020-03-25 エルジー・ケム・リミテッド ヘテロ環化合物およびこれを含む有機電界発光素子
KR102559638B1 (ko) * 2016-05-24 2023-07-26 솔루스첨단소재 주식회사 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR102338202B1 (ko) * 2019-01-25 2021-12-10 주식회사 엘지화학 화합물 및 이를 포함하는 유기발광소자

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128120A1 (en) * 2009-05-07 2010-11-11 Biosynth Ag Novel indicator platform
WO2012059583A1 (en) * 2010-11-04 2012-05-10 Biosynth Ag Novel applications of indoloindole and indoloquinoline dyes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128120A1 (en) * 2009-05-07 2010-11-11 Biosynth Ag Novel indicator platform
WO2012059583A1 (en) * 2010-11-04 2012-05-10 Biosynth Ag Novel applications of indoloindole and indoloquinoline dyes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIN, Y. ET AL.: "New Conjugated Polymer Based on Dihydroindoloindole for LEDs", BULL. KOREAN CHEM. SOC., vol. 27, no. 7, 2006, pages 1043 - 1047 *
NEKANE, B. ET AL.: "Divergent synthesis of isoindolo[2,1-a]indole and indolo[1,2-a]indole through copper-catalysed C- and N-arylations", TETRAHEDRON LETTERS 2009, vol. 50, 26 February 2009 (2009-02-26), pages 2129 - 2131 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016036171A1 (en) * 2014-09-04 2016-03-10 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and organic electroluminescent devices comprising the same
KR20160028979A (ko) * 2014-09-04 2016-03-14 롬엔드하스전자재료코리아유한회사 복수종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자
KR102409002B1 (ko) 2014-09-04 2022-06-16 롬엔드하스전자재료코리아유한회사 복수종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자
CN105061436A (zh) * 2015-09-10 2015-11-18 清华大学 一种多取代稠合吲哚并吲哚类化合物的制备方法
CN105061436B (zh) * 2015-09-10 2017-08-11 清华大学 一种多取代稠合吲哚并吲哚类化合物的制备方法

Also Published As

Publication number Publication date
KR20140065130A (ko) 2014-05-29
KR101577100B1 (ko) 2015-12-11

Similar Documents

Publication Publication Date Title
WO2017179809A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2015190718A1 (ko) 유기 전계 발광 소자
WO2020159019A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2016105161A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020209679A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018038400A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2013094999A2 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2017111439A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014010810A1 (ko) 신규 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014142488A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017209488A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015111864A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014092354A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015133804A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016105123A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015111943A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015125986A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016105054A2 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2019004584A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014081134A1 (ko) 신규 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2019103397A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020027463A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2017111389A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017095086A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2020218680A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/09/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13857406

Country of ref document: EP

Kind code of ref document: A1