WO2020006923A1 - 显示面板及显示装置 - Google Patents
显示面板及显示装置 Download PDFInfo
- Publication number
- WO2020006923A1 WO2020006923A1 PCT/CN2018/110109 CN2018110109W WO2020006923A1 WO 2020006923 A1 WO2020006923 A1 WO 2020006923A1 CN 2018110109 W CN2018110109 W CN 2018110109W WO 2020006923 A1 WO2020006923 A1 WO 2020006923A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- thin film
- light emitting
- display panel
- particle
- Prior art date
Links
- 239000010409 thin film Substances 0.000 claims abstract description 74
- 239000002245 particle Substances 0.000 claims abstract description 51
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 239000010410 layer Substances 0.000 claims description 299
- 239000002105 nanoparticle Substances 0.000 claims description 42
- 238000005538 encapsulation Methods 0.000 claims description 31
- 239000012044 organic layer Substances 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 4
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 abstract description 9
- 230000002269 spontaneous effect Effects 0.000 abstract description 5
- 238000004806 packaging method and process Methods 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 17
- 239000010408 film Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 9
- 229920001621 AMOLED Polymers 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000005424 photoluminescence Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- OFIYHXOOOISSDN-UHFFFAOYSA-N tellanylidenegallium Chemical compound [Te]=[Ga] OFIYHXOOOISSDN-UHFFFAOYSA-N 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/875—Arrangements for extracting light from the devices
- H10K59/878—Arrangements for extracting light from the devices comprising reflective means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/122—Pixel-defining structures or layers, e.g. banks
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/331—Nanoparticles used in non-emissive layers, e.g. in packaging layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/1201—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/873—Encapsulations
- H10K59/8731—Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
Definitions
- the present application relates to the field of display, and in particular, to a display panel and a display device.
- OLED display devices include two types of passive matrix type (PMOLED) and active matrix type (AMOLED), namely, two types of direct addressing and thin film transistor (TFT) matrix addressing.
- PMOLED passive matrix type
- AMOLED active matrix type
- TFT thin film transistor
- pixels arranged in an array belongs to an active display type, and has high light emitting efficiency, and is generally used as a high-resolution large-sized display device.
- the luminous efficiency of AMOLED devices includes internal quantum efficiency (IQE) and external quantum efficiency (EQE), which are represented by N int and N ext , respectively.
- IQE internal quantum efficiency
- EQE external quantum efficiency
- N ext N int ⁇ N out (N out is the light extraction efficiency).
- N out is the light extraction efficiency.
- the external quantum efficiency of an AMOLED panel is related to the quantum efficiency and light extraction rate within the AMOLED panel.
- N int ⁇ . ⁇ . ⁇ r .
- ⁇ is a carrier balance factor
- ⁇ is an exciton spin factor
- ⁇ r is a photoluminescence quantum efficiency of an organic light emitting material; the larger ⁇ r is, the higher the internal quantum efficiency is.
- K r represents the rate of exciton radiative transitions
- K n is the rate of non-radiative transitions
- the present application provides a display panel and a display device to solve the technical problem of low state density of photons in the existing display panel.
- the present application provides a display panel, wherein the display panel includes:
- At least one particle layer is formed between the thin film transistor layer and the thin film encapsulation layer
- the particle layer is composed of at least two nanoparticles.
- the light emitting device layer includes an anode layer on the thin film transistor layer, a light emitting device layer on the anode layer, and a cathode layer on the light emitting device layer;
- the particle layer is located between the anode layer and the light emitting device layer, or / and the thin film transistor layer.
- the light emitting device layer includes an anode layer on the thin film transistor layer, a light emitting device layer on the anode layer, and a cathode layer on the light emitting device layer;
- the particle layer is located between the cathode layer and the light emitting device layer, or / and the thin film encapsulation layer.
- the thin film encapsulation layer is formed by alternately superposing at least one organic layer and at least one inorganic layer;
- the particle layer is located on the organic layer or the inorganic layer in the thin film encapsulation layer.
- the display panel further includes a pixel definition layer on the thin film transistor layer;
- the particle layer is located on an inclined surface between the pixel definition layer and the light emitting layer.
- the particle layer includes at least one layer of the nanoparticles.
- the shape of each of the nanoparticles is different.
- the size of the smallest circumscribed circle of each of the nanoparticles is different.
- a distance between any two adjacent nanoparticles is not less than 0.
- the present application also proposes a display device including a display panel, a touch layer, a polarizer layer, and a cover layer on the display panel, wherein the display panel includes:
- At least one particle layer is formed between the thin film transistor layer and the thin film encapsulation layer
- the particle layer is composed of at least two nanoparticles.
- the light emitting device layer includes an anode layer on the thin film transistor layer, a light emitting device layer on the anode layer, and a cathode layer on the light emitting device layer;
- the particle layer is located between the anode layer and the light emitting device layer, or / and the thin film transistor layer.
- the light emitting device layer includes an anode layer on the thin film transistor layer, a light emitting device layer on the anode layer, and a cathode layer on the light emitting device layer;
- the particle layer is located between the cathode layer and the light emitting device layer, or / and the thin film encapsulation layer.
- the thin film encapsulation layer is formed by alternately superposing at least one organic layer and at least one inorganic layer;
- the particle layer is located on the organic layer or the inorganic layer in the thin film encapsulation layer.
- the display panel further includes a pixel definition layer on the thin film transistor layer;
- the particle layer is located on an inclined surface between the pixel definition layer and the light emitting layer.
- the particle layer includes at least one layer of the nanoparticles.
- the shape of each of the nanoparticles is different.
- the size of the smallest circumscribed circle of each of the nanoparticles is different.
- a distance between any two adjacent nanoparticles is not less than 0.
- a particle layer is provided between the thin film transistor layer and the thin film encapsulation layer, and the particle layer is composed of silver nanoparticles.
- the SPR effect on the surface of silver nanoparticles the density of states of photons and the spontaneous emission rate of excitons are increased, and the luminous efficiency of the OLED display panel is improved.
- the light reflection effect of the silver nanoparticle layer reduces the loss of light and improves the light extraction rate of the display panel.
- FIG. 1 is a structural diagram of a film layer of a display panel according to a first embodiment of the present application
- FIG. 2 is a structural diagram of a film layer of a display panel according to a second embodiment of the present application.
- FIG. 3 is a structural diagram of a film layer of a display panel according to a third embodiment of the present application.
- FIG. 4 is a structural diagram of a film layer of a display panel according to a fourth embodiment of the present application.
- FIG. 5 is a structural diagram of a film layer of a display panel according to a fifth embodiment of the present application.
- FIG. 6 is a first distribution diagram of nanoparticles in a particle layer of the present application.
- FIG. 7 is a second distribution diagram of nanoparticles in a particle layer of the present application.
- FIG. 9 is a fourth distribution diagram of nanoparticles in a particle layer of the present application.
- FIG. 10 is a structural diagram of a film layer of a display panel according to a sixth embodiment of the present application.
- FIG. 1 is a film structure diagram of a display panel according to a preferred embodiment of the present application.
- the display panel 100 includes a substrate 101, a thin film transistor layer 102, a light emitting device layer 103, a thin film encapsulation layer 115, and a particle layer 116.
- the substrate 101 may be one of a glass substrate, a quartz substrate, and a resin substrate.
- the thin film transistor layer 102 is formed on the substrate 101.
- the thin film transistor layer 102 includes structures such as an etch stop layer type, a back channel etch type, or a top gate thin film transistor type, and is not specifically limited. This embodiment is described by taking a top-gate thin film transistor type as an example.
- the thin film transistor layer 102 includes a buffer layer, an active layer, a gate insulating layer, a first metal layer (gate layer), a first inter-insulating layer, a second metal layer, a second inter-insulating layer, a source and drain, and a flat Floor.
- the light emitting device layer 103 includes an anode layer 112 on the thin film transistor layer 102, a light emitting layer on the anode layer 112, and a cathode layer on the light emitting layer.
- the anode layer 112 is formed on the flat layer.
- the anode layer 112 includes at least two anodes arranged in an array.
- the anode layer 112 is mainly used to provide holes for absorbing electrons.
- the light emitting device is a top emission organic light emitting device, and the light emitting device is a white light emitting device that emits white light.
- the anode layer 112 is a non-transparent light blocking layer.
- the light emitting layer 113 is formed on the anode layer 112, and adjacent light emitting device layers 103 are separated by a pixel definition layer 117.
- a cathode layer 114 is formed on the light emitting device layer 103, and the cathode layer 114 is used to provide the electrons.
- the cathode layer 114 is a transparent material, and the light generated by the light-emitting layer 115 is projected outward through the cathode layer 114.
- a thin-film encapsulation layer 115 is formed on the cathode layer 114.
- the thin film encapsulation layer 115 mainly plays a role of blocking water and oxygen, and prevents external water vapor from eroding the light emitting device layer.
- the thin film encapsulation layer 115 is formed by alternately superposing at least one organic layer and at least one inorganic layer.
- the display panel 100 further includes at least one particle layer 116 formed between the thin film transistor layer 102 and the thin film encapsulation layer.
- the particle layer 116 is composed of several nanoparticles.
- the nanoparticles are silver nanoparticles.
- FIG. 2 is a structural diagram of a film layer of a display panel according to a second embodiment of the present application.
- the particle layer 116 may be located on an upper surface or a lower surface of the anode layer 112, that is, the particle layer 116 is located on the anode layer 112 and the light emitting device layer 103, or / and the anode layer 112 and The thin film transistor layer 102 is described.
- FIG. 3 is a structural diagram of a film layer of a display panel according to a third embodiment of the present application.
- the particle layer 116 may be located between the cathode layer 114 and the light-emitting layer 113, or / and the cathode layer 114 and the thin-film encapsulation layer 115.
- FIG. 4 is a structural diagram of a film layer of a display panel according to a fourth embodiment of the present application.
- the particle layer 116 is formed between the cathode layer 114 and the light emitting device layer 103.
- a silver nanoparticle layer is vapor-deposited on the cathode layer by using a thermal evaporation method, that is, between the cathode layer 114 and the second functional layer in the light-emitting device layer 103.
- FIG. 5 is a structural diagram of a film layer of a display panel according to a fifth embodiment of the present application.
- the particle layer 116 is formed on the inorganic layer 1152 in the thin film encapsulation layer 115.
- the particle layer 116 can also be formed on the organic layer 1151 in the thin film encapsulation layer 115 (not shown);
- FIG. 6 to FIG. 9 are distribution diagrams of the nanoparticles in the particle layer of the present application.
- the particle layer 116 includes two layers of the nanoparticles.
- the specific number of layers in which the nanoparticles are arranged is determined by the actually increased photon density.
- the shape of the two adjacent nanoparticles and the size of the smallest circumscribed circle may be the same or different.
- the operation of actually forming the nano particles is different due to the influence of factors such as equipment and labor.
- the nanoparticles can be regular shapes such as spheres, cubes, cuboids, or triangles, or other irregular shapes;
- a distance between any two adjacent nanoparticles is a, where a is greater than or equal to 0.
- the nanoparticles in two adjacent layers can also be arranged alternately.
- FIG. 10 is a structural diagram of a film layer of a display panel according to a sixth embodiment of the present application.
- the nanoparticles are located on the anode layer 112 and an inclined surface between the pixel defining layer 117 and the light emitting layer 113.
- the particle layer 116 is a groove type.
- the effect of increasing the photon density is the greatest, but the process is more difficult.
- the effect of increasing the photon density decreases, but the process is less difficult.
- the nano particles are disposed on the upper or lower surface of the anode layer 112 or the cathode layer 114 in this application.
- the present application also proposes a display device, which includes the display panel described above, and a touch layer, a polarizer layer, and a cover layer on the display panel.
- the present application provides a display panel and a display device.
- the display panel includes a substrate, a thin film transistor layer, a light emitting device layer, a thin film encapsulation layer, and a particle layer.
- a particle layer is provided between the thin film transistor layer and the thin film encapsulation layer, and the particle layer is composed of several silver nanoparticles, that is, according to the SPR effect on the surface of the silver nanoparticles, the density of states of photons is improved and Spontaneous emission rate of excitons to improve the luminous efficiency of OLED display panels.
- the light reflection effect of the silver nanoparticle layer can reduce the loss of light and improve the light extraction rate of the OLED.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
本申请提出了一种显示面板及显示装置,所述显示面板包括基板、薄膜晶体管层、发光器件层、薄膜封装层以及粒子层。本申请通过在薄膜晶体管层与薄膜封装层之间设置一银纳米颗粒构成的粒子层,增加了光子的态密度以及激子的自发辐射速率,提高了OLED显示面板的发光效率。
Description
本申请涉及显示领域,特别涉及一种显示面板及显示装置。
OLED显示装置包括无源矩阵型(PMOLED)和有源矩阵型(AMOLED)两大类,即直接寻址和薄膜晶体管(TFT)矩阵寻址两类。其中,AMOLED具有呈阵列式排布的像素,属于主动显示类型,发光效能高,通常用作高清晰度的大尺寸显示装置。
AMOLED器件的发光效率包含着内量子效率(IQE)和外量子效率(EQE),分别用N
int和N
ext表示。
其中,两者之间的关系为:N
ext=N
int×N
out(N
out为光提取效率)。AMOLED面板的外量子效率与AMOLED面板内量子效率和光提取率有关。
其中,内量子效率的关系式为:N
int=γ.χ.η
r。
其中,γ为载流子平衡因子,χ为激子自旋因子,η
r为有机发光材料的光致发光量子效率;η
r为越大,内量子效率就越高。
光致发光量子效率η
r为反映了激子辐射复合的概率,它可以表示为:η
r=K
r/(K
r+K
n)=辐射光子数/产生激子数。
其中,
K
r表示激子辐射跃迁的速率,K
n为非辐射跃迁的速率。
因此,提高激子辐射跃迁的速率可以有效提高η
r,进而实现AMOLED器件的内量子效率的提升。根据Purcell效应,激子的自发辐射跃迁的速率与光子的态密度成正比。因此,提升光子的态密度成为了问题的关键。
本申请提供一种显示面板及显示装置,以解决现有显示面板中光子的态密度较低的技术问题。
本申请提供一种显示面板,其中,所述显示面板包括:
基板;
薄膜晶体管层,形成于所述基板上;
发光器件层,形成于所述薄膜晶体层上;
薄膜封装层,形成于所述发光器件层上;以及
至少一粒子层,形成于所述薄膜晶体管层与所述薄膜封装层之间,
其中,所述粒子层由至少两个纳米颗粒构成。
在本申请的显示面板中,所述发光器件层包括位于所述薄膜晶体管层上的阳极层、位于所述阳极层上的发光器件层、及位于所述发光器件层上的阴极层;
所述粒子层位于所述阳极层与所述发光器件层、或/和所述薄膜晶体管层之间。
在本申请的显示面板中,所述发光器件层包括位于所述薄膜晶体管层上的阳极层、位于所述阳极层上的发光器件层、及位于所述发光器件层上的阴极层;
所述粒子层位于所述阴极层与所述发光器件层、或/和所述薄膜封装层之间。
在本申请的显示面板中,所述薄膜封装层由至少一有机层和至少一无机层交替叠加构成;
所述粒子层位于所述薄膜封装层中的所述有机层或所述无机层上。
在本申请的显示面板中,所述显示面板还包括位于所述薄膜晶体管层上的像素定义层;
所述粒子层位于所述像素定义层与发光层之间的斜面上。
在本申请的显示面板中,所述粒子层包括至少一层所述纳米颗粒。
在本申请的显示面板中,每一所述纳米颗粒的形状不同。
在本申请的显示面板中,每一所述纳米颗粒的最小外接圆的尺寸不同。
在本申请的显示面板中,任意相邻两个所述纳米颗粒之间的间距不小于0。
本申请还提出了一种显示装置,包括显示面板、及位于所述显示面板上的触控层、偏光片层及盖板层,其中,所述显示面板包括:
基板;
薄膜晶体管层,形成于所述基板上;
发光器件层,形成于所述薄膜晶体层上;
薄膜封装层,形成于所述发光器件层上;以及
至少一粒子层,形成于所述薄膜晶体管层与所述薄膜封装层之间,
其中,所述粒子层由至少两个纳米颗粒构成。
在本申请的显示装置中,所述发光器件层包括位于所述薄膜晶体管层上的阳极层、位于所述阳极层上的发光器件层、及位于所述发光器件层上的阴极层;
所述粒子层位于所述阳极层与所述发光器件层、或/和所述薄膜晶体管层之间。
在本申请的显示装置中,所述发光器件层包括位于所述薄膜晶体管层上的阳极层、位于所述阳极层上的发光器件层、及位于所述发光器件层上的阴极层;
所述粒子层位于所述阴极层与所述发光器件层、或/和所述薄膜封装层之间。
在本申请的显示装置中,所述薄膜封装层由至少一有机层和至少一无机层交替叠加构成;
所述粒子层位于所述薄膜封装层中的所述有机层或所述无机层上。
在本申请的显示装置中,所述显示面板还包括位于所述薄膜晶体管层上的像素定义层;
所述粒子层位于所述像素定义层与发光层之间的斜面上。
在本申请的显示装置中,所述粒子层包括至少一层所述纳米颗粒。
在本申请的显示装置中,每一所述纳米颗粒的形状不同。
在本申请的显示装置中,每一所述纳米颗粒的最小外接圆的尺寸不同。
在本申请的显示装置中,任意相邻两个所述纳米颗粒之间的间距不小于0。
本申请通过在所述薄膜晶体管层与所述薄膜封装层之间设置一粒子层,所述粒子层由银纳米颗粒构成。通过银纳米颗粒表面的SPR效应,增加了光子的态密度以及激子的自发辐射速率,提高了OLED显示面板的发光效率。另外,银纳米颗粒层的光反射作用,减少了光线的损失,同时提高了显示面板的光提取率。
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例一显示面板的膜层结构图;
图2为本申请实施例二显示面板的膜层结构图;
图3为本申请实施例三显示面板的膜层结构图;
图4为本申请实施例四显示面板的膜层结构图;
图5为本申请实施例五显示面板的膜层结构图;
图6为本申请粒子层中纳米颗粒的第一种分布图;
图7为本申请粒子层中纳米颗粒的第二种分布图;
图8为本申请粒子层中纳米颗粒的第三种分布图;
图9为本申请粒子层中纳米颗粒的第四种分布图;
图10为本申请实施例六显示面板的膜层结构图。
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
图1为本申请优选实施例一一种显示面板的膜层结构图,
所述显示面板100包括基板101、薄膜晶体管层102、发光器件层103、薄膜封装层115以及粒子层116。
所述基板101可以为玻璃基板、石英基板、树脂基板等中的一种。
薄膜晶体管层102,形成于所述基板101上。所述薄膜晶体管层102包括蚀刻阻挡层型、背沟道蚀刻型或顶栅薄膜晶体管型等结构,具体没有限制。本实施例以顶栅薄膜晶体管型为例进行说明。
所述薄膜晶体管层102包括缓冲层、有源层、栅绝缘层、第一金属层(栅极层)、第一间绝缘层、第二金属层、第二间绝缘层、源漏极以及平坦层。
所述发光器件层103包括位于所述薄膜晶体管层102上的阳极层112、位于所述阳极层112上的发光层、及位于所述发光层上的阴极层。
阳极层112,形成于所述平坦层上。所述阳极层112包括至少两个成阵列排布的阳极,所述阳极层112主要用于提供吸收电子的空穴。
在一种实施例中,所述发光器件为顶发射型有机发光器件,所述发光器件为发射白光的白光发光器件。
在一种实施例中,所述阳极层112非透明的挡光层。
所述发光层113形成于所述阳极层112上,相邻的发光器件层103被像素定义层117所分离。
阴极层114,形成于所述发光器件层103上,所述阴极层114用于提供所述电子。
在一种实施例中,所述阴极层114为透明材料,让发光层115产生的光线经过所述阴极层114向外投射。
薄膜封装层115,形成于所述阴极层114上。所述薄膜封装层115主要起阻水阻氧的作用,防止外部水汽对发光器件层的侵蚀。所述薄膜封装层115由至少一有机层和至少一无机层交替叠加构成。
请参阅图1,所述显示面板100还包括至少一粒子层116,所述粒子层116形成于所述薄膜晶体管层102与所述薄膜封装层之间。
在一种实施例中,所述粒子层116由若干个纳米颗粒构成。
在一种实施例中,所述纳米颗粒为银纳米颗粒。
请参阅图2,图2为本申请实施例二显示面板的膜层结构图。
所述粒子层116可以位于所述阳极层112的上表面或下表面,即所述粒子层116以位于所述阳极层112与所述发光器件层103、或/和所述阳极层112与所述薄膜晶体管层102之间。
请参阅图3,图3为本申请实施例三显示面板的膜层结构图。
所述粒子层116可以位于所述阴极层114与所述发光层113、或/和所述阴极层114与所述薄膜封装层115之间。
请参阅图4,图4为本申请实施例四显示面板的膜层结构图。
所述粒子层116形成于所述阴极层114与所述发光器件层103之间。本申请利用热蒸镀的方法将银纳米颗粒层蒸镀在阴极层,即阴极层114与发光器件层103中的第二功能层之间。
银纳米颗粒表面等离子效应被激发后,会加快激子的自发辐射速率,提高内量子效率。因此,理论上所述银纳米颗粒与所述发光层越近,效果越好。但在工艺上,在发光层附近制备银纳米颗粒层难度较大,不具有一定的可重复性。
请参阅图5,图5为本申请实施例五显示面板的膜层结构图。
所述粒子层116形成于所述薄膜封装层115内的所述无机层1152上。所述粒子层116也能形成于所述薄膜封装层115内的所述有机层1151上(未画出);
请参阅图6~图9,图6至图9为本申请粒子层中纳米颗粒的分布图。
请参阅图6,所述粒子层116包括两层所述纳米颗粒。所述纳米颗粒布置的具体层数由实际提升的光子密度决定。
请参阅图7,相邻两个所述纳米颗粒的形状以及最小外接圆的尺寸可以相同或不同。实际形成所述纳米颗粒操作因仪器、人工等因素的影响形成一定的差别。
在一种实施例中,所述纳米颗粒可以为球体、正方体、长方体或三角形等规则形状,或者其他不规则形状;
请参阅图7和图8,任意相邻两个所述纳米颗粒之间的间距为a,其中a大于等于0。
当a等于0时,即相邻两个所述纳米颗粒紧密连接。当a大于0时,即相邻两个所述纳米颗粒之间存在一定的间距。
请参阅图9,相邻两层所述纳米颗粒还可以相间排列。
请参阅图10,图10为本申请实施例六显示面板的膜层结构图。
所述纳米颗粒位于所述阳极层112上、以及所述像素定义层117与所述发光层113之间的斜面上。
在一种实施例中,所述粒子层116为一凹槽型。
在一种实施例中,银纳米颗粒位于所述发光层与所述功能层(未画出)之间时,光子密度提升效果最大,但是工艺难度较大。当远离所述发光层设置时,光子密度提升效果下降,但是工艺难度较小。
在一种实施例中,本申请将所述纳米颗粒设置于所述阳极层112或阴极层114上或下表面。
本申请还提出了一种显示装置,所述显示装置包括上述显示面板、及位于上述显示面板上的触控层、偏光片层及盖板层。
本申请提出了一种显示面板及显示装置,所述显示面板包括基板、薄膜晶体管层、发光器件层、薄膜封装层以及粒子层。本申请通过在所述薄膜晶体管层与所述薄膜封装层之间设置一粒子层,所述粒子层由若干个银纳米颗粒构成,即根据银纳米颗粒表面的SPR效应,提高光子的态密度以及激子的自发辐射速率,以提高OLED显示面板的发光效率。另外,银纳米颗粒层的光反射作用,可以减少光线的损失,提高OLED的光提取率。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。
Claims (18)
- 一种显示面板,其包括:基板;薄膜晶体管层,形成于所述基板上;发光器件层,形成于所述薄膜晶体层上;薄膜封装层,形成于所述发光器件层上;以及至少一粒子层,形成于所述薄膜晶体管层与所述薄膜封装层之间,其中,所述粒子层由至少两个纳米颗粒构成。
- 根据权利要求1所述的显示面板,其中,所述发光器件层包括位于所述薄膜晶体管层上的阳极层、位于所述阳极层上的发光层、及位于所述发光层上的阴极层;所述粒子层位于所述阳极层与所述发光层、或/和所述薄膜晶体管层之间。
- 根据权利要求1所述的显示面板,其中,所述发光器件层包括位于所述薄膜晶体管层上的阳极层、位于所述阳极层上的发光层、及位于所述发光层上的阴极层;所述粒子层位于所述阴极层与所述发光层、或/和所述薄膜封装层之间。
- 根据权利要求1所述的显示面板,其中,所述薄膜封装层由至少一有机层和至少一无机层交替叠加构成;所述粒子层位于所述薄膜封装层中的所述有机层或所述无机层上。
- 根据权利要求1所述的显示面板,其中,所述显示面板还包括位于所述薄膜晶体管层上的像素定义层;所述粒子层位于所述像素定义层与发光层之间的斜面上。
- 根据权利要求1所述的显示面板,其中,所述粒子层包括至少一层所述纳米颗粒。
- 根据权利要求6所述的显示面板,其中,每一所述纳米颗粒的形状不同。
- 根据权利要求6所述的显示面板,其中,每一所述纳米颗粒的最小外接圆的尺寸不同。
- 根据权利要求6所述的显示面板,其中,任意相邻两个所述纳米颗粒之间的间距不小于0。
- 一种显示装置,包括显示面板、及位于所述显示面板上的触控层、偏光片层及盖板层,其中,所述显示面板包括:基板;薄膜晶体管层,形成于所述基板上;发光器件层,形成于所述薄膜晶体层上;薄膜封装层,形成于所述发光器件层上;以及至少一粒子层,形成于所述薄膜晶体管层与所述薄膜封装层之间,其中,所述粒子层由至少两个纳米颗粒构成。
- 根据权利要求10所述的显示装置,其中,所述发光器件层包括位于所述薄膜晶体管层上的阳极层、位于所述阳极层上的发光层、及位于所述发光层上的阴极层;所述粒子层位于所述阳极层与所述发光层、或/和所述薄膜晶体管层之间。
- 根据权利要求10所述的显示装置,其中,所述发光器件层包括位于所述薄膜晶体管层上的阳极层、位于所述阳极层上的发光层、及位于所述发光层上的阴极层;所述粒子层位于所述阴极层与所述发光层、或/和所述薄膜封装层之间。
- 根据权利要求10所述的显示装置,其中,所述薄膜封装层由至少一有机层和至少一无机层交替叠加构成;所述粒子层位于所述薄膜封装层中的所述有机层或所述无机层上。
- 根据权利要求10所述的显示装置,其中,所述显示面板还包括位于所述薄膜晶体管层上的像素定义层;所述粒子层位于所述像素定义层与发光层之间的斜面上。
- 根据权利要求10所述的显示装置,其中,所述粒子层包括至少一层所述纳米颗粒。
- 根据权利要求15所述的显示装置,其中,每一所述纳米颗粒的形状不同。
- 根据权利要求15所述的显示装置,其中,每一所述纳米颗粒的最小外接圆的尺寸不同。
- 根据权利要求15所述的显示装置,其中,任意相邻两个所述纳米颗粒之间的间距不小于0。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/336,123 US20200144547A1 (en) | 2018-07-02 | 2018-10-12 | Display panel and display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810708417.1 | 2018-07-02 | ||
CN201810708417.1A CN108615752B (zh) | 2018-07-02 | 2018-07-02 | 显示面板及显示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020006923A1 true WO2020006923A1 (zh) | 2020-01-09 |
Family
ID=63666108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/110109 WO2020006923A1 (zh) | 2018-07-02 | 2018-10-12 | 显示面板及显示装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20200144547A1 (zh) |
CN (1) | CN108615752B (zh) |
WO (1) | WO2020006923A1 (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108615752B (zh) * | 2018-07-02 | 2020-05-05 | 武汉华星光电半导体显示技术有限公司 | 显示面板及显示装置 |
CN110335960B (zh) * | 2019-06-18 | 2020-10-13 | 武汉华星光电半导体显示技术有限公司 | Oled显示面板及其制备方法、显示装置 |
CN110707124B (zh) * | 2019-09-02 | 2021-02-26 | 武汉华星光电半导体显示技术有限公司 | Oled显示面板及其制作方法、oled显示装置 |
CN110993669A (zh) * | 2019-12-12 | 2020-04-10 | Tcl华星光电技术有限公司 | 显示面板制作方法及显示面板 |
CN111293233B (zh) * | 2020-02-26 | 2022-12-20 | 京东方科技集团股份有限公司 | 有机发光显示基板及其制备方法、有机发光显示面板 |
CN111415966A (zh) * | 2020-04-20 | 2020-07-14 | 武汉华星光电半导体显示技术有限公司 | 有机发光二极管器件及显示装置 |
CN111430573A (zh) * | 2020-04-27 | 2020-07-17 | 武汉华星光电半导体显示技术有限公司 | 一种有机发光器件及其制备方法、显示面板 |
CN111584751B (zh) * | 2020-05-26 | 2023-04-11 | 京东方科技集团股份有限公司 | 封装结构及封装方法、电致发光器件、显示设备 |
CN111584758B (zh) * | 2020-05-28 | 2023-04-14 | 京东方科技集团股份有限公司 | 显示基板及其制作方法、显示装置 |
CN112786810B (zh) * | 2021-01-12 | 2023-06-02 | 纳晶科技股份有限公司 | 显示面板 |
CN113380966A (zh) * | 2021-06-08 | 2021-09-10 | 安徽熙泰智能科技有限公司 | 一种oled器件结构及其制备方法 |
CN114410305A (zh) * | 2022-01-13 | 2022-04-29 | 深圳市华星光电半导体显示技术有限公司 | 复合材料薄膜、其制备方法以及显示面板 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104103766A (zh) * | 2014-06-27 | 2014-10-15 | 京东方科技集团股份有限公司 | 有机电致发光器件、阵列基板及其制备方法、显示装置 |
CN106848091A (zh) * | 2017-01-11 | 2017-06-13 | 瑞声科技(南京)有限公司 | 白光oled器件 |
CN108615752A (zh) * | 2018-07-02 | 2018-10-02 | 武汉华星光电半导体显示技术有限公司 | 显示面板及显示装置 |
-
2018
- 2018-07-02 CN CN201810708417.1A patent/CN108615752B/zh active Active
- 2018-10-12 WO PCT/CN2018/110109 patent/WO2020006923A1/zh active Application Filing
- 2018-10-12 US US16/336,123 patent/US20200144547A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104103766A (zh) * | 2014-06-27 | 2014-10-15 | 京东方科技集团股份有限公司 | 有机电致发光器件、阵列基板及其制备方法、显示装置 |
CN106848091A (zh) * | 2017-01-11 | 2017-06-13 | 瑞声科技(南京)有限公司 | 白光oled器件 |
CN108615752A (zh) * | 2018-07-02 | 2018-10-02 | 武汉华星光电半导体显示技术有限公司 | 显示面板及显示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN108615752A (zh) | 2018-10-02 |
CN108615752B (zh) | 2020-05-05 |
US20200144547A1 (en) | 2020-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020006923A1 (zh) | 显示面板及显示装置 | |
WO2020015173A1 (zh) | Oled显示器 | |
WO2019184360A1 (zh) | 阵列基板及其制备方法、显示装置 | |
US7710026B2 (en) | LED device having improved output and contrast | |
WO2018113019A1 (zh) | Oled显示面板及其制作方法 | |
WO2018113018A1 (zh) | Oled显示面板及其制作方法 | |
TWI443823B (zh) | 有機電致發光顯示裝置及其製造方法 | |
WO2017012326A1 (zh) | 有机电致发光显示面板及制备方法、显示装置 | |
US10692941B2 (en) | Organic light emitting diode display | |
WO2020199445A1 (zh) | 一种oled显示器件及其制备方法 | |
US9660209B2 (en) | Method for manufacturing OLED device and OLED device manufactured therewith | |
WO2017190373A1 (zh) | 自发光型显示装置及其制作方法 | |
WO2020001040A1 (zh) | 发光器件及其制作方法、电子装置 | |
WO2016033884A1 (zh) | 有机发光二极管显示装置及其制作方法 | |
US9620568B2 (en) | Display substrate, fabricating method thereof and display apparatus | |
KR20110021090A (ko) | 유기전계 발광소자 제조 용 쉐도우 마스크 | |
CN104253247A (zh) | Oled器件的制备方法及其制得的oled器件 | |
WO2019061736A1 (zh) | Oled显示器的制作方法及oled显示器 | |
WO2020177187A1 (zh) | 显示面板及显示模组 | |
WO2020244095A1 (zh) | Oled显示面板及其制备方法 | |
WO2019010817A1 (zh) | 主动发光显示面板及其制造方法 | |
JP2016004775A (ja) | 有機発光ダイオード表示パネル | |
WO2020124805A1 (zh) | 显示屏及显示装置 | |
WO2016023274A1 (zh) | 有机发光显示器件及其制备方法、显示装置 | |
WO2021042458A1 (zh) | 量子点的配位方法、量子点以及显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18925184 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18925184 Country of ref document: EP Kind code of ref document: A1 |