WO2020004063A1 - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
WO2020004063A1
WO2020004063A1 PCT/JP2019/023514 JP2019023514W WO2020004063A1 WO 2020004063 A1 WO2020004063 A1 WO 2020004063A1 JP 2019023514 W JP2019023514 W JP 2019023514W WO 2020004063 A1 WO2020004063 A1 WO 2020004063A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
resin
cord
coated cord
axial direction
Prior art date
Application number
PCT/JP2019/023514
Other languages
English (en)
French (fr)
Inventor
崇之 藏田
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to EP19826066.3A priority Critical patent/EP3812173A4/en
Priority to US17/254,856 priority patent/US20210260924A1/en
Priority to CN201980042504.0A priority patent/CN112313087A/zh
Publication of WO2020004063A1 publication Critical patent/WO2020004063A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C9/2204Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre obtained by circumferentially narrow strip winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2238Physical properties or dimensions of the ply coating rubber

Definitions

  • the present disclosure relates to a tire.
  • Japanese Patent Application Laid-Open No. 2014-210487 discloses that a reinforcing cord member (hereinafter, referred to as a “resin-coated cord”) in which a reinforcing cord is covered with a covering resin is spirally wound around the outer periphery of a tire frame member in the tire circumferential direction.
  • a reinforcing cord member hereinafter, referred to as a “resin-coated cord” in which a reinforcing cord is covered with a covering resin is spirally wound around the outer periphery of a tire frame member in the tire circumferential direction.
  • a covering resin is spirally wound around the outer periphery of a tire frame member in the tire circumferential direction.
  • the number of resin-coated cords arranged in the tire axial direction changes at the end position of the resin-coated cord. . That is, in the tire axial direction, the bending rigidity of the belt in the tire axial direction greatly changes at the end position of the resin-coated cord.
  • the present disclosure aims to improve the durability of a tire having a belt configured by spirally winding a resin-coated cord.
  • the tire according to the present disclosure is configured such that an annular tire frame member and a resin-coated code formed by coating a reinforcing cord with a coating resin are spirally wound around the outer periphery of the tire frame member in a tire circumferential direction.
  • the resin-coated cord is spirally wound around the outer periphery (outside in the tire radial direction) of the tire skeleton member and joined to the tire skeleton member, and the adjacent resin-coated cords are joined to form a belt. I have.
  • the end of the reinforcing cord is exposed at the end face of the resin-coated cord. Therefore, the end of the resin-coated cord can be formed only by cutting the elongated resin-coated cord in accordance with the end (end surface shape).
  • FIG. 3 is an enlarged view of a main part of FIG. 2.
  • (A) is a schematic perspective view showing one end side in the tire axial direction of the belt in the tire according to the first embodiment
  • (B) is a SA1 cross-sectional view
  • (C) is a SA2 cross-sectional view
  • (D) are SA3 sectional views. It is a principal part enlarged tire radial direction view showing one end side in the tire axial direction of the belt in the tire according to the variation of the first embodiment.
  • (A) is a view in a tire radial direction of a belt of a tire according to another example
  • (B) is a sectional view in a tire radial direction of a resin-coated cord 134A constituting the belt
  • (C) is a view of the belt.
  • (D) is a tire radial sectional view of the resin covering cord 134B which comprises the said belt.
  • the tire circumferential direction is indicated by an arrow S
  • the tire axial direction (may be read as the tire width direction)
  • the tire radial direction is indicated by an arrow R.
  • the tire axial direction means a direction parallel to the tire rotation axis.
  • the side farther from the tire equatorial plane CL along the tire axial direction will be described as “outside in the tire axial direction”, and the side closer to the tire equatorial plane CL along the tire axial direction will be described as “inward in the tire axial direction”. Furthermore, the side farther from the tire axis along the tire radial direction is referred to as “outside in the tire radial direction”, and the side closer to the tire axis along the tire radial direction is referred to as “inner in the tire radial direction”.
  • the pneumatic tire 10 of the present embodiment is, for example, a so-called radial tire used for a passenger car, includes a pair of bead portions 20 in which a bead core 12 is embedded, and one bead portion 20 and the other bead portion.
  • a carcass 16 composed of a single carcass ply 14 straddles the bead portion (not shown).
  • FIG. 1 shows the shape of the pneumatic tire 10 in a natural state before air filling.
  • the carcass ply 14 is formed by coating a plurality of cords (not shown) extending in the radial direction of the pneumatic tire 10 with a coating rubber (not shown). That is, the pneumatic tire 10 of the present embodiment is a so-called radial tire.
  • the cord material of the carcass ply 14 is, for example, PET, but may be another known material.
  • the end portion of the carcass ply 14 in the tire axial direction has the bead core 12 folded outward in the tire radial direction.
  • a portion extending from one bead core 12 to another bead core (not shown) is referred to as a main body portion 14A, and a portion folded from the bead core 12 is referred to as a folded portion 14B.
  • Bead fillers 18 whose thickness gradually decreases from the bead core 12 to the outside in the tire radial direction are disposed between the main body portion 14A and the folded portion 14B of the carcass ply 14.
  • a portion of the bead filler 18 from the tire radial outer end 18 ⁇ / b> A to the tire radial direction inside is a bead portion 20.
  • An inner liner 22 made of rubber is arranged inside the carcass 16 in the tire, and a side rubber layer 24 made of the first rubber material is arranged outside the carcass 16 in the tire axial direction.
  • the tire case 25 is configured by the bead core 12, the carcass 16, the bead filler 18, the inner liner 22, and the side rubber layer 24.
  • the tire case 25 is, in other words, a tire frame member that forms the frame of the pneumatic tire 10.
  • a belt 26 is arranged outside the crown portion of the carcass 16, in other words, outside the carcass 16 in the tire radial direction, and the belt 26 is in close contact with the outer peripheral surface of the carcass 16.
  • the belt 26 is formed by winding a plurality of (two in this embodiment) reinforcing cords 30 around a resin-coated cord 34 covered with a resin 32.
  • the resin 32 corresponds to “coating resin”.
  • the reinforcing cord 30 of the belt 26 is thicker than the cord of the carcass ply 14 and has high strength (tensile strength).
  • the reinforcing cord 30 of the belt 26 can be composed of a monofilament (single wire) such as a metal fiber or an organic fiber, or a multifilament (stranded wire) obtained by twisting these fibers.
  • the reinforcing cord 30 of the present embodiment is a steel cord.
  • a steel cord of “1 ⁇ 5” having a diameter of 0.225 mm can be used, but a steel cord having another conventionally known structure can also be used.
  • thermoplastic resin having elasticity a thermoplastic elastomer (TPE), a thermosetting resin, or the like can be used. Considering the elasticity during running and the moldability during manufacturing, it is desirable to use a thermoplastic elastomer.
  • thermoplastic elastomer examples include polyolefin-based thermoplastic elastomer (TPO), polystyrene-based thermoplastic elastomer (TPS), polyamide-based thermoplastic elastomer (TPA), polyurethane-based thermoplastic elastomer (TPU), and polyester-based thermoplastic elastomer (TPC). And dynamically crosslinked thermoplastic elastomers (TPV).
  • TPO polyolefin-based thermoplastic elastomer
  • TPS polystyrene-based thermoplastic elastomer
  • TPA polyamide-based thermoplastic elastomer
  • TPU polyurethane-based thermoplastic elastomer
  • TPC polyester-based thermoplastic elastomer
  • TEV dynamically crosslinked thermoplastic elastomers
  • thermoplastic resin examples include a polyurethane resin, a polyolefin resin, a vinyl chloride resin, and a polyamide resin.
  • the deflection temperature under load (under a load of 0.45 MPa) specified in ISO75-2 or ASTM D648 is 78 ° C. or more
  • the tensile yield strength specified in JIS K7113 is 10 MPa.
  • JIS K7113 those having a tensile elongation at break (JIS K7113) also specified in JIS K7113 of 50% or more and a Vicat softening temperature (Method A) specified in JIS K7206 of 130 ° C or more can be used.
  • the tensile modulus of elasticity of the resin 32 that covers the reinforcing cord 30 (defined by JIS K7113: 1995) is preferably 100 MPa or more.
  • the upper limit of the tensile modulus of the resin 32 covering the reinforcing cord 30 is preferably 1000 MPa or less.
  • the tensile modulus of the resin 32 covering the reinforcing cord 30 is particularly preferably in the range of 200 to 700 MPa.
  • the thickness t of the belt 26 of the present embodiment is preferably larger than the diameter of the reinforcing cord 30.
  • the reinforcing cord 30 is completely embedded in the resin 32. Is preferred.
  • the thickness t of the belt 26 is preferably set to 0.70 mm or more.
  • the resin-coated cord 34 constituting the belt 26 is spirally wound around the tire case 25 and joined to the resin-coated cord 34 adjacent in the tire axial direction in the tire radial direction. (Abutment).
  • a cross section in the tire radial direction of the resin-coated cord 34 is rectangular as shown in FIGS. 1 and 4A, and two reinforcing cords 30 are arranged inside the tire in the tire axial direction.
  • the resin-coated cords 34 arranged side by side in the tire axial direction abut (join) with the resin-coated cords 34 adjacent to each other in the tire axial direction when viewed in the tire radial direction, and the belt 26. Is composed.
  • the resin-coated cord 34 located farthest outward in the tire axial direction (the leftmost in FIG. 2) (hereinafter referred to as “resin-coated cord 34A”) has an end portion 40 in the circumferential direction C.
  • the "circumferential direction” refers to the direction in which the resin-coated cord 34 is spirally wound on the tire case 25.
  • the “one end in the circumferential direction” (FIG. 2, direction of arrow C1) described later is a direction toward one end of the resin-coated cord 34 in the circumferential direction on the resin-coated cord 34, and “the other end in the circumferential direction”. (FIG. 2, direction of arrow C2) is the direction toward the other end of the resin-coated cord 34 (not shown).
  • perpendicular direction a portion on the side of the end 40A from the cross section E orthogonal to the circumferential direction shown in FIG.
  • the end portion 40 of the resin-coated cord 34 extends from the tire axially inner end (end) 40A to the tire axially outer end 40B (left side in FIG. 3) as viewed in the tire radial direction.
  • a tapered surface 42 inclined by an angle ⁇ from the outside in the tire axial direction to the other end in the circumferential direction is formed.
  • the tapered surface 42 is formed simply by diagonally cutting the end of the continuously formed resin-coated cord 34.
  • the circumferential length L1 of the reinforcing cord 30 inside the tire axial direction (hereinafter, referred to as “reinforcing cord 30A”) is outside the tire axial direction.
  • the reinforcement cord 30 (hereinafter, referred to as “reinforcement cord 30B”) is longer than the circumference L2.
  • a tread 36 made of a second rubber material is disposed outside the belt 26 in the tire radial direction.
  • a generally known material is used as the second rubber material used for the tread 36.
  • a groove 37 for drainage is formed in the tread 36.
  • the tread 36 has a conventionally known pattern.
  • the width BW of the belt 26 measured along the tire axial direction is 75% or more of the contact width TW of the tread 36 measured along the tire axial direction.
  • the upper limit of the width BW of the belt 26 be 110% with respect to the contact width TW.
  • the contact width TW of the tread 36 means that the pneumatic tire 10 is mounted on a standard rim stipulated in JATMA YEAR BOOK (2018 edition, Japan Automobile Tire Association Standard) and the applicable size in JATMA YEAR BOOK. Fills with 100% internal pressure of the air pressure (maximum air pressure) corresponding to the maximum load capacity (the bold load in the internal pressure-load capacity correspondence table) in the ply rating, and the rotation axis is parallel to the horizontal flat plate in a stationary state And a mass corresponding to the maximum load capacity is added.
  • the TRA standard and the ETRTO standard are applied at the place of use or the place of manufacture, the respective standards are followed.
  • the in-plane shear rigidity of the belt 26 is preferably equal to or greater than that of the belt formed by rubber coating.
  • the resin-coated cord 34 of the belt 26 is spirally wound around the tire case 25.
  • the end portion 40 of the resin-coated cord 34 (34A) is inclined at an angle ⁇ from the inner end portion 40A in the tire axial direction toward the outer end in the tire axial direction (direction of arrow C2) in the tire radial direction as viewed in the tire radial direction.
  • a tapered surface 42 is formed.
  • the end portion 40 of the resin-coated cord 34 has a taper with respect to the area of the tire radial section SA1 (see FIG. 4B) at the portion where the tapered surface 42 is not formed.
  • the area (see FIGS. 4C and 4D) of the tire radial cross sections SA2 and SA3 at the portion where the surface 42 is formed gradually decreases toward the end 40A. That is, the area of the cross section in the tire radial direction decreases toward the end (the inner end in the tire axial direction) 40A in the tire circumferential direction (one end in the circumferential direction). That is, at the end 40 of the resin-coated cord 34A in the tire circumferential direction, the area of the resin-coated cord 34A in the tire radial cross-section gradually decreases.
  • the lengths L1 and L2 in the circumferential direction of the two reinforcing cords 30A and 30B disposed on the resin-coated cord 34A are set to be shorter (L1> L2) toward the outer side in the tire axial direction.
  • the end exposed position Q2 on the tapered surface 42 of the reinforcing cord 30B outside in the tire axial direction is greater than the end exposed position Q1 on the tapered surface 42 of the reinforcing cord 30A on the inner side in the tire axial direction in the circumferential direction (the direction of arrow C). It is located on the other end side (in the direction of arrow C2).
  • the reinforcing cord 30 is formed so as to be more distant from the end 40A in the circumferential direction as the end exposed position of the reinforcing cord 30 in the tire axial direction outer side.
  • the resin-coated cord 34B (FIG. 3, FIG. 3) disposed inside the end 40 of the resin-coated cord 34 (34A) in the tire axial direction by the action of pressure and heat.
  • the concentration of bending stress in the region P) is reduced, and the concentration of strain in the portion is suppressed.
  • the durability of the pneumatic tire 10 is improved.
  • the end surface of the end portion 40 of the resin-coated cord 34A is formed by a tapered surface 42 inclined by a predetermined angle ⁇ from the inner end portion 40A in the tire axial direction toward the outer side in the tire axial direction toward the other end in the circumferential direction (arrow C2 direction). Therefore, the tapered surface 42 can be formed only by diagonally cutting the long resin-coated cord, and the productivity of the pneumatic tire 10 (the resin-coated cord 34) is improved.
  • the thickness of the belt 26 can be reduced as compared with the case where the belt 26 is formed of two or more conventional belt plies, and the thickness of the tread 36 is accordingly reduced.
  • the thickness can be increased, and the depth of the groove 37 can be increased. As a result, the life of the pneumatic tire 10 can be extended.
  • the reinforcing cord 30 is spirally wound, and there is no portion where the reinforcing cord 30 overlaps in the tire radial direction on the circumference, and the thickness is uniform in the tire circumferential direction. Therefore, the pneumatic tire 10 is excellent in uniformity.
  • the thickness t of the belt 26 in other words, the thickness of the resin 32 is less than 0.7 mm, the reinforcing cord 30 embedded in the resin 32 may be too thick to obtain a slack effect.
  • the width BW of the belt 26 is less than 75% of the contact width TW of the tread 36, the hoop effect of the belt 26 becomes insufficient, and it becomes difficult to suppress the generation of noise near the shoulder 39. There is a fear.
  • the width BW of the belt 26 exceeds 100% with respect to the contact width TW of the tread 36, the hoop effect will reach a plateau state, the belt 26 will be more than necessary, and the pneumatic tire 10 will increase in weight.
  • the crown portion of the carcass 16 is reinforced by the belt 26 covered with the resin 32 on the reinforcing cord 30 wound in a spiral shape. Compared to a belt composed of a plurality of layers composed of a belt ply, it is lighter in weight and easier to manufacture.
  • the tensile elasticity of the resin 32 covering the reinforcing cord 30 is set to 100 MPa or more, and the thickness is secured to 0.7 mm or more.
  • the rigidity can be sufficiently secured.
  • the belt 26 having a high in-plane shear rigidity is used, and the width BW of the belt 26 is set to be 75% or more of the contact width TW of the tread 36. Can be increased.
  • the end portion 40 has a tapered surface 42 inclined from the inner end portion 40A in the tire axial direction toward the outer side in the tire axial direction (left side in FIG. 5) toward the other end in the circumferential direction (see the arrow C2 direction) by an angle ⁇ . Is formed.
  • the end portion 40 is formed with the tapered surface 42 inclined from the outer end portion 40B in the tire axial direction toward the inner side in the tire axial direction toward the distal end 40A, the end portion 40 faces the distal end 40A of the resin-coated cord 34A ( The area of the tire radial cross section (in the range A22, A3) is reduced.
  • the end portion 40 includes a range A2 in which one reinforcing cord 30 exists up to the end exposed position Q3 of the reinforcing cord 30 toward the end 40A in the circumferential direction (the direction of arrow C), and the end end exposed position Q3 to the end.
  • a range A3 in which no reinforcing cord exists up to 40A is configured.
  • the end portion 40 of the resin-coated cord 34 constituting the belt 26 of the tire 50 has a first end surface 52 extending in a direction orthogonal to the tire axial direction inner end portion 40A, and a first end surface 52.
  • a side surface 54 extending a distance D from the outer end portion in the tire axial direction to the other end in the circumferential direction (see the direction of the arrow C2) along the circumferential direction, and an outer end portion 40B in the tire axial direction from the other end portion in the circumferential direction of the side surface 54.
  • a second end surface 56 extending to the second end surface.
  • the circumferential length L3 of the reinforcing cord 30A located inside in the tire axial direction is longer than the circumferential length L4 of the reinforcing cord 30B located outside in the tire axial direction.
  • the reinforcement cord 30 located on the outer side in the tire axial direction has a shorter circumferential length (L3> L4).
  • the end exposed position Q5 on the second end surface 56 of the reinforcing cord 30B outside in the tire axial direction is larger than the end exposed position Q4 on the first end surface 52 of the reinforcing cord 30A on the inner side in the tire axial direction.
  • the reinforcing cord 30 is formed so as to be more distant from the end 40A in the circumferential direction as the end exposed position of the reinforcing cord 30 on the outer side in the tire axial direction.
  • the end portion 40 of the resin-coated cord 34A has a range A1 in which the two reinforcing cords 30A and 30B exist up to the second end face 56 in the tire circumferential direction toward the end 40A, A range A2 in which only one reinforcing cord 30A exists up to the end face 52 (end 40A) is configured.
  • the width of the resin-coated cord 34A in the tire axial direction is gradually reduced toward the terminal 40A. That is, the area of the radial section of the resin-coated cord 34A gradually decreases toward the end 40A.
  • the belt 26 is suppressed from having a large change in rigidity in the tire circumferential direction near the end position of the resin-coated cord 34 (a rigidity step is suppressed).
  • the resin-coated cord 34B (FIG. 6, region P) disposed one inner side of the end 40 of the resin-coated cord 34 (34A) in the tire axial direction by the action of pressure and heat. Concentration of bending stress is reduced, and concentration of strain on the portion is suppressed. As a result, the durability of the tire 50 is improved.
  • the end portions of the reinforcing cords 30A and 30B are exposed at the first end surface 52 and the second end surface 56 that constitute the end portion 40 of the resin-coated cord 34, respectively.
  • the reinforcing cords 30A and 30B can be cut in the orthogonal direction.
  • only one reinforcing cord 30 is disposed on the resin-coated cord 34 constituting the belt 26.
  • the end 40 of the resin-coated cord 34A extends in the tire circumferential direction from the first end surface 60 extending in the orthogonal direction from the tire axial direction inner end 40A and the tire axial direction outer end of the first end surface 60.
  • a first side surface 62 extending by the distance D1 toward the other end in the circumferential direction (see the arrow C2 direction), a second end surface 64 extending in the orthogonal direction from the other end in the circumferential direction of the first side surface 54, and a second end surface
  • a second side surface 66 extending by a distance D2 from the outer end portion in the tire axial direction to the other end in the circumferential direction along the tire circumferential direction (see the direction of the arrow C2) from the other end of the second side surface 66 in the circumferential direction.
  • a third end surface 68 extending in the orthogonal direction.
  • the end portion 40 of the resin-coated cord 34A is formed in three steps in the first end face 60, the second end face 64, and the third end face 68 in the tire radial direction, the end 40A in the circumferential direction.
  • the width of the resin-coated cord 34A is gradually reduced in the order of the ranges A21, A22, and A3.
  • the end portion 40 of the resin-coated cord 34A is formed in a stepped shape as viewed in the tire radial direction, a range in which one reinforcing cord 30 extends to the second end surface 64 toward the terminal end 40A in the circumferential direction. A2 and a range A3 where the reinforcing cord from the second end surface 64 to the first end surface 60 does not exist are formed.
  • the bending rigidity of the belt 26 formed of the resin-coated cord 34 including the resin-coated cord 34A greatly changes in the tire circumferential direction near the end of the resin-coated cord 34 (the inner end 40A in the tire axial direction). Be suppressed.
  • the resin-coated cord 34B (FIG. 7, the region P) disposed inside the end 40 of the resin-coated cord 34 (34A) in the tire axial direction. ) Is alleviated, and the concentration of strain in the portion is suppressed. As a result, the durability of the tire 70A is improved.
  • the end portion 40 of the resin-coated cord 34 constituting the belt 26 of the tire 70 includes a tire axially inner end portion 40A, a first end surface 52, a second end surface 56, and a tire axially outer end portion 40B. Are connected by tapered surfaces 42A, 42B and 42C.
  • a second end surface 56 extending in the orthogonal direction from the tire axial outside end of the tire 42B, and a tire inclined at an angle ⁇ from the orthogonal outer end of the second end surface 52 to the other end in the circumferential direction toward the tire axial outside.
  • a tapered surface 42B extending to the axially outer end 40B.
  • the reinforcement cord 30 located on the outer side in the tire axial direction has a shorter circumferential length (L5> L6).
  • the end exposed position Q7 with respect to the second end surface 56 of the reinforcing cord 30B outside in the tire axial direction is larger than the end exposed position Q6 with respect to the first end surface 52 of the reinforcing cord 30A inside in the tire axial direction.
  • the reinforcing cord 30 is formed so as to be more distant from the end 40A in the circumferential direction as the end exposed position of the reinforcing cord 30 on the outer side in the tire axial direction.
  • the end portions 40 are provided with the reinforcing cords 30A, 30B extending from the other end in the circumferential direction (the arrow C2 direction side) of the resin-coated cord 34A to the end 40A to the second end surface 56.
  • A2 a range A2 in which only the reinforcing cord 30A from the second end face 56 to the first end face 52 is present, and a range A3 in which no reinforcing cord from the first end face 52 to the end 40A is present.
  • the bending rigidity of the belt 26 is gradually reduced even in this range by providing the tapered surface 42C (range A12) on the end 40A side.
  • the tapered surface 42B (range A2) and the tapered surface 42A (range A3) the bending rigidity of the belt 26 (resin-coated cord 34A) gradually decreases toward the end 40A.
  • the belt 26 is further suppressed from having a large change in rigidity at the end position of the resin-coated cord 34 (the rigidity step is further suppressed).
  • the resin-coated cord 34B (FIG. 8, area P) disposed one inner side of the end 40 of the resin-coated cord 34 (34A) in the tire axial direction by the action of pressure and heat. Concentration of bending stress is reduced, and concentration of strain on the portion is suppressed. As a result, the durability of the tire 70 is improved.
  • only one reinforcing cord 30 is provided on the resin-coated cord 34 constituting the belt 26.
  • the end 40 of the resin-coated cord 34A is formed by connecting the inner end (end) 40A in the tire axial direction, the end face 72, and the outer end 40B in the tire axial direction with tapered surfaces 42D and 42E.
  • the end portion 40 has one reinforcing cord 30 extending from the other end in the circumferential direction (the arrow C2 direction side) of the resin-coated cord 34A to the terminal end 40A to the end face 72.
  • a range A2 a range A3 where the reinforcing cord from the end face 72 to the end 40A does not exist is configured.
  • the end portion 40 of the resin-coated cord 34A reduces the number of reinforcing cords existing toward the terminal end 40A, the belt 26 including the resin-coated cord 34A in the tire circumferential direction is reduced. A change in rigidity at the end position is suppressed.
  • the bending rigidity of the belt 26 is gradually reduced toward the end 40A by providing the tapered surface 42E (range A22) on the end 40A side thereof. I have. Similarly, the bending stiffness of the belt 26 is gradually reduced toward the end 40A also by the tapered surface 42D (range A3).
  • the belt 26 is further suppressed from having a large change in bending stiffness at the end position of the resin-coated cord 34 in the tire circumferential direction (the stiffness step is further suppressed).
  • the resin-coated cord 34B (FIG. 9, region P) disposed one inner side in the tire axial direction of the end portion 40 of the resin-coated cord 34 (34A). Concentration of bending stress is reduced, and concentration of strain on the portion is suppressed. As a result, the durability of the tire 70 is improved.
  • a tire according to a fourth embodiment of the present invention will be described with reference to the drawings. Note that the same components as those in the first to third embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted. Also, the only difference from the tires of the first to third embodiments is the shape of the end of the resin-coated cord.
  • the end portion 40 of the resin-coated cord 34A constituting the belt 26 of the tire 80 has a distal end 40A side (circling) from the tire radial outside (upper surface 82) to the tire radial inside (lower surface 84).
  • a tapered surface 86 inclined at an angle ⁇ is formed on one end side in the direction (the direction of the arrow C1).
  • the height in the tire radial direction decreases from the other end (the direction of the arrow C2) in the circumferential direction (the direction of the arrow C) toward the terminal 40A at the end 40 of the resin-coated cord 34A. I have. That is, the area of the tire radial section decreases toward the terminal end 40A.
  • the tapered surface 86 of the resin-coated cord 34A constituting the belt 26 of the tire according to the variation is the same as in the fourth embodiment.
  • the tapered surface 86 (end 40A) side of the ridgeline 90 formed by the upper surface 82 of the resin-coated cord 34A and the outer side surface 88 in the tire axial direction is a chamfered portion 92.
  • the bending rigidity of the belt 26 is increased from the other end side in the circumferential direction to the end 40A from the portion where the tapered surface 86 is formed. 26 can be further reduced in bending stiffness.
  • the rigidity step can be reduced by providing the chamfered portion 92 on the ridgeline 90. Can be eased.
  • the tapered surface 86 is formed.
  • the tapered surface 86 is not limited to this, as long as the height of the tire in the radial direction is reduced toward the end 40A to reduce the area of the tire radial cross section. Absent.
  • the shape in the tire radial direction shown in the second embodiment and the third embodiment can be applied as the shape in the tire axial direction.
  • the number of the reinforcing cords 30 covered with the resin 32 in the resin-coated cords 34 is not limited to two, and may be three or more. Further, the number of the reinforcing cords 30 covered with the resin 32 may be one.
  • the shape of the end portion 40 of the resin-coated cord 34A is not limited to the present embodiment. However, it is necessary that the end portion 40 of the resin-coated cord 34A is joined (contacted) to the resin-coated cord 34B adjacent to the end 40A on the inner side in the tire axial direction.
  • the circumferential length of the reinforcing cord 30 at the end portion 40 is shorter toward the outer side in the tire axial direction (the more the reinforcing cord 30 is located closer to the outer side in the tire axial direction,
  • the shape of the end face is not limited as long as the exposed position is separated from the end 40A in the circumferential direction).
  • the plurality of reinforcement cords 30 may be exposed on one end face (in the circumferential direction of the plurality of reinforcement cords 30). Lengths may be equal).
  • the tapered surface has a linear shape when viewed in the tire radial direction or the tire axial direction, but may have a curved shape.
  • the belt 26 is formed by spirally winding one resin-coated cord 34, but the belt 26 may be formed by a plurality of resin-coated cords.
  • a resin-coated cord 34 in which two reinforcing cords 30 are covered with a resin 32 is spirally wound around the center in the tire axial direction (belt width direction).
  • the reinforcing cord 30 is also cut at the connection portion between the resin-coated cords 134A and 134B and the resin-coated cord 34, and thus the same as described in the first to fourth embodiments.
  • the tapered surfaces 42 are formed at both ends of the resin-coated cord 34, and the tapered surfaces 42 are also formed at the axially inner ends of the resin-coated cords 134A and 134B.
  • the rigidity step at the connection portion between the resin-coated cord 34 and the resin-coated cords 134A and 134B can be reduced, and the tire durability can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

タイヤは、環状のタイヤケースと、タイヤケースの外周に設けられ、補強コードを樹脂で被覆して構成された樹脂被覆コードがタイヤケースの外周にタイヤ周方向に螺旋状に巻かれてタイヤケースに接合されると共に、樹脂被覆コードにおけるタイヤ軸方向に互いに隣接する部分同士が接合されたベルトと、を備え、樹脂被覆コードの端部は、タイヤ径方向断面の面積が樹脂被覆コードの末端に向かって漸減すると共に、補強コードがテーパ面に露出されている。

Description

タイヤ
 本開示は、タイヤに関する。
 特開2014-210487号公報には、補強コードを被覆樹脂で被覆してなる補強コード部材(以下、「樹脂被覆コード」という)を、タイヤ骨格部材の外周にタイヤ周方向に螺旋状に巻いて接合したベルトを有するものが開示されている。
 上記従来技術のように樹脂被覆コードを螺旋状に巻いて接合してベルトを形成した場合には、樹脂被覆コードの端部位置でタイヤ軸方向に配設された樹脂被覆コードの本数が変化する。すなわち、タイヤ軸方向において、樹脂被覆コードの端部位置でベルトのタイヤ軸方向の曲げ剛性が大きく変化する。
 この結果、タイヤ成形するための加硫成形時に圧力と熱によって樹脂被覆コードの端部の一本内側に配設された樹脂被覆コードに曲げ応力が集中して作用して歪みを生じ、タイヤ耐久性に影響を与える。この点において改善の余地がある。
 本開示は、樹脂被覆コードを螺旋状に巻いて構成されたベルトを有するタイヤの耐久性を向上させることを目的とする。
 本開示に係るタイヤは、環状のタイヤ骨格部材と、補強コードを被覆樹脂で被覆して構成された樹脂被覆コードが前記タイヤ骨格部材の外周にタイヤ周方向に螺旋状に巻かれて前記タイヤ骨格部材に接合されると共に、前記樹脂被覆コードにおけるタイヤ軸方向に互いに隣接する部分同士が接合されたベルトと、を備え、前記樹脂被覆コードの端部は、タイヤ軸方向内側に隣接する前記樹脂被覆コードに接合されていると共に、タイヤ径方向に沿った断面の面積が当該樹脂被覆コードの末端に向かって減少すると共に、前記補強コードが前記樹脂被覆コードの端面に露出されている。
 このタイヤでは、樹脂被覆コードがタイヤ骨格部材の外周(タイヤ径方向外側)に螺旋状に巻かれてタイヤ骨格部材に接合されると共に、隣接する樹脂被覆コード同士が接合されてベルトが形成されている。
 この樹脂被覆コードの端部では、タイヤ径方向に沿った断面の面積がその末端に向って減少されている。したがって、タイヤ周回方向において、ベルトの曲げ剛性が樹脂被覆コードの末端位置近傍で大きく変化すること(剛性段差)が抑制される。
 この結果、タイヤの加硫成形時に圧力と熱の作用によって樹脂被覆コードの端部とそのタイヤ軸方向で一本内側に配設された樹脂被覆コードに曲げ応力が集中することが緩和され、当該部分に歪みが集中することが抑制される。この結果、タイヤの耐久性が向上する。
 なお、この樹脂被覆コードは、樹脂被覆コードの端面に補強コードの端部が露出されている。したがって、長尺状に形成された樹脂被覆コードを端部(端面形状)に合わせて切断するだけで、樹脂被覆コードの端部を形成することができる。
 本開示によれば、樹脂被覆コードを螺旋状に巻いて構成されたベルトを有するタイヤの耐久性を向上させることができる。
第1実施形態に係るタイヤを示すタイヤ径方向断面図である。 第1実施形態に係るタイヤにおけるベルトのタイヤ軸方向一端側を示すタイヤ径方向視図である。 図2の要部拡大図である。 (A)は第1実施形態に係るタイヤにおけるベルトのタイヤ軸方向一端側を示す模式的な斜視図であり、(B)はそのSA1断面図であり、(C)はそのSA2断面図であり、(D)はそのSA3断面図である。 第1実施形態のバリエーションに係るタイヤにおけるベルトのタイヤ軸方向一端側を示す要部拡大タイヤ径方向視図である。 第2実施形態に係るタイヤにおけるベルトのタイヤ軸方向一端側を示す要部拡大タイヤ径方向視図である。 第2実施形態のバリエーションに係るタイヤにおけるベルトのタイヤ軸方向一端側を示す要部拡大タイヤ径方向視図である。 第3実施形態に係るタイヤにおけるベルトのタイヤ軸方向一端側を示す要部拡大タイヤ径方向視図である。 第3実施形態のバリエーションに係るタイヤにおけるベルトのタイヤ軸方向一端側を示す要部拡大タイヤ径方向視図である。 第4実施形態に係るタイヤにおけるベルトのタイヤ軸方向一端側を示す要部拡大斜視図である。 第4実施形態のバリエーションに係るタイヤにおけるベルトのタイヤ軸方向一端側を示す要部拡大斜視図である。 第1実施形態のバリエーションに係るタイヤにおけるベルトのタイヤ軸方向一端側を示す要部拡大タイヤ径方向視図である。 (A)はその他の例に係るタイヤのベルトのタイヤ径方向視図であり、(B)は当該ベルトを構成する樹脂被覆コード134Aのタイヤ径方向断面図であり、(C)は当該ベルトを構成する樹脂被覆コード34のタイヤ径方向断面図であり、(D)は当該ベルトを構成する樹脂被覆コード134Bのタイヤ径方向断面図である。
[第1実施形態]
 以下、本発明の第1実施形態について図面に基づき説明する。各図において、タイヤ周方向を矢印Sで示し、タイヤ軸方向(タイヤ幅方向と読み替えてもよい)を矢印Wで示し、タイヤ径方向を矢印Rで示している。タイヤ軸方向とは、タイヤ回転軸と平行な方向を意味する。
 また、タイヤ軸方向に沿ってタイヤ赤道面CLから遠い側を「タイヤ軸方向外側」、タイヤ軸方向に沿ってタイヤ赤道面CLに近い側を「タイヤ軸方向内側」として説明する。更に、タイヤ径方向に沿ってタイヤ軸線から遠い側を「タイヤ径方向外側」、タイヤ径方向に沿ってタイヤ軸線に近い側を「タイヤ径方向内側」とする。
 各部の寸法測定方法は、JATMA(日本自動車タイヤ協会)が発行する2018年度版YEAR BOOKに記載の方法による。使用地又は製造地において、TRA規格、ETRTO規格が適用される場合は、各々の規格に従う。
(タイヤ)
 図1及び図2を用いて、本発明の一実施形態に係る空気入りタイヤ10について説明する。
 図1に示すように、本実施形態の空気入りタイヤ10は、例えば、乗用車に用いられる所謂ラジアルタイヤであり、ビードコア12が埋設された一対のビード部20を備え、一方のビード部20と他方のビード部(不図示)との間に、1枚のカーカスプライ14からなるカーカス16が跨っている。なお、図1は、空気入りタイヤ10の空気充填前の自然状態の形状を示している。
 カーカスプライ14は、空気入りタイヤ10のラジアル方向に延びる複数本のコード(図示せず)をコーティングゴム(図示せず)で被覆して形成されている。即ち、本実施形態の空気入りタイヤ10は、所謂ラジアルタイヤである。カーカスプライ14のコードの材料は、例えば、PETであるが、従来公知の他の材料であっても良い。
 カーカスプライ14は、タイヤ軸方向の端部分がビードコア12をタイヤ径方向外側に折り返されている。カーカスプライ14は、一方のビードコア12から他方のビードコア(不図示)に跨る部分が本体部14Aと呼ばれ、ビードコア12から折り返されている部分が折り返し部14Bと呼ばれる。
 カーカスプライ14の本体部14Aと折返し部14Bとの間には、ビードコア12からタイヤ径方向外側に向けて厚さが漸減するビードフィラー18が配置されている。なお、空気入りタイヤ10において、ビードフィラー18のタイヤ径方向外側端18Aからタイヤ径方向内側の部分がビード部20とされている。
 カーカス16のタイヤ内側にはゴムからなるインナーライナー22が配置されており、カーカス16のタイヤ軸方向外側には、第1のゴム材料からなるサイドゴム層24が配置されている。
 なお、本実施形態では、ビードコア12、カーカス16、ビードフィラー18、インナーライナー22、及びサイドゴム層24によってタイヤケース25が構成されている。タイヤケース25は、言い換えれば、空気入りタイヤ10の骨格を成すタイヤ骨格部材のことである。
(ベルト)
 カーカス16のクラウン部の外側、言い換えればカーカス16のタイヤ径方向外側には、ベルト26が配置されており、ベルト26はカーカス16の外周面に密着している。ベルト26は、複数本(本実施形態では2本)の補強コード30を樹脂32で被覆した樹脂被覆コード34に巻回することで形成されている。樹脂32が「被覆樹脂」に相当する。
 ベルト26の補強コード30は、カーカスプライ14のコードよりも太く、かつ、強力(引張強度)が大きいものを用いることが好ましい。ベルト26の補強コード30は、金属繊維や有機繊維等のモノフィラメント(単線)、又はこれらの繊維を撚ったマルチフィラメント(撚り線)で構成することができる。本実施形態の補強コード30は、スチールコードである。補強コード30としては、例えば、直径が0.225mmの“1×5”のスチールコードを用いることができるが、従来公知の他の構造のスチールコードを用いることもできる。
 補強コード30を被覆する樹脂32には、サイドゴム層24を構成するゴム、及び後述するトレッド36を構成する第2のゴム材料よりも引張弾性率の高い樹脂材料が用いられている。補強コード30を被覆する樹脂32としては、弾性を有する熱可塑性樹脂、熱可塑性エラストマー(TPE)、及び熱硬化性樹脂等を用いることができる。走行時の弾性と製造時の成形性を考慮すると、熱可塑性エラストマーを用いることが望ましい。
 熱可塑性エラストマーとしては、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリアミド系熱可塑性エラストマー(TPA)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリエステル系熱可塑性エラストマー(TPC)、動的架橋型熱可塑性エラストマー(TPV)等が挙げられる。
 また、熱可塑性樹脂としては、ポリウレタン樹脂、ポリオレフィン樹脂、塩化ビニル樹脂、ポリアミド樹脂等が挙げられる。さらに、熱可塑性樹脂材料としては、例えば、ISO75-2又はASTM D648に規定されている荷重たわみ温度(0.45MPa荷重時)が78°C以上、JIS K7113に規定される引張降伏強さが10MPa以上、同じくJIS K7113に規定される引張破壊伸び(JIS K7113)が50%以上、JIS K7206に規定されるビカット軟化温度(A法)が130°C以上であるものを用いることができる。
 補強コード30を被覆する樹脂32の引張弾性率(JIS K7113:1995に規定される)は、100MPa以上が好ましい。また、補強コード30を被覆する樹脂32の引張弾性率の上限は、1000MPa以下とすることが好ましい。なお、補強コード30を被覆する樹脂32の引張弾性率は、200~700MPaの範囲内が特に好ましい。
 図1に示すように、本実施形態のベルト26の厚さ寸法tは、補強コード30の直径寸法よりも大きくすることが好ましい、言い換えれば、補強コード30が完全に樹脂32に埋設されていることが好ましい。ベルト26の厚さ寸法tは、空気入りタイヤ10が乗用車用の場合、具体的には、0.70mm以上とすることが好ましい。
 ベルト26を構成する樹脂被覆コード34は、図1及び図2に示すように、タイヤケース25上に螺旋状に巻回され、タイヤ径方向視でタイヤ軸方向に隣接する樹脂被覆コード34と接合(当接)されている。
 樹脂被覆コード34のタイヤ径方向断面は、図1及び図4(A)に示すように、矩形とされており、その内部に2本の補強コード30がタイヤ軸方向に並べて配置されている。
 このようにタイヤ軸方向で並べて配置された樹脂被覆コード34は、図2に示すように、タイヤ径方向視で、タイヤ軸方向に隣接する樹脂被覆コード34と当接(接合)されてベルト26を構成している。
 最もタイヤ軸方向外側(図2では、最も左側)に位置する樹脂被覆コード34(以下、「樹脂被覆コード34A」という)は、周回方向Cの端部40を有する。
 ここで、「周回方向」とは、樹脂被覆コード34がタイヤケース25上に螺旋状に巻かれた方向をいう。また、後述する「周回方向一端側」(図2、矢印C1方向)とは、樹脂被覆コード34上の周回方向において樹脂被覆コード34の一端側に向う方向であり、「周方向他端側」(図2、矢印C2方向)とは、図示しない樹脂被覆コード34の他端側に向う方向である。
 また、本実施形態では、図3に示す周回方向に直交する方向(以下、「直交方向」という)断面Eから末端40A側の部分を「端部40における周回方向長さ」という。
 樹脂被覆コード34の端部40には、図3に示すように、タイヤ軸方向内側端部(末端)40Aからタイヤ軸方向外側端部40B(図3では左側)に向って、タイヤ径方向視でタイヤ軸方向外側から周回方向他端側に角度θだけ傾斜したテーパ面42が形成されている。
 逆にいうと、連続的に形成されている樹脂被覆コード34の端部を斜めに切断するだけでテーパ面42が形成されている。この結果、図3に示すように、樹脂被覆コード34の端部40において、タイヤ軸方向内側の補強コード30(以下、「補強コード30A」という)の周回方向長さL1がタイヤ軸方向外側の補強コード30(以下、「補強コード30B」という)の周回長さL2よりも長くされている。
 図1に示すように、ベルト26のタイヤ径方向外側には、第2のゴム材料からなるトレッド36が配置されている。トレッド36に用いる第2のゴム材料は、従来一般公知のものが用いられる。トレッド36には、排水用の溝37が形成されている。また、トレッド36のパターンも従来一般公知のものが用いられる。
 タイヤ軸方向に沿って計測するベルト26の幅BWは、タイヤ軸方向に沿って計測するトレッド36の接地幅TWに対して75%以上とすることが好ましい。なお、ベルト26の幅BWの上限は、接地幅TWに対して110%とすることが好ましい。
 ここで、トレッド36の接地幅TWとは、空気入りタイヤ10をJATMA YEAR BOOK(2018年度版、日本自動車タイヤ協会規格)に規定されている標準リムに装着し、JATMA YEAR BOOKでの適用サイズ・プライレーティングにおける最大負荷能力(内圧-負荷能力対応表の太字荷重)に対応する空気圧(最大空気圧)の100%の内圧を充填し、静止した状態で水平な平板に対して回転軸が平行となるように配置し、最大の負荷能力に対応する質量を加えたときのものである。なお、使用地又は製造地において、TRA規格、ETRTO規格が適用される場合は各々の規格に従う。
 また、ベルト26の面内剪断剛性は、ゴム被覆で形成されたベルト以上であることが好ましい。
(作用、効果)
 次に、本実施形態の空気入りタイヤ10の作用、効果を説明する。
 本実施形態の空気入りタイヤ10は、ベルト26を樹脂被覆コード34がタイヤケース25上に螺旋状に巻きつけられている。樹脂被覆コード34(34A)の端部40には、タイヤ径方向視でタイヤ軸方向内側端部40Aからタイヤ軸方向外側に向って周回方向他端側(矢印C2方向)に向って角度θ傾斜したテーパ面42が形成されている。
 これにより、樹脂被覆コード34の端部40では、図4に示すように、テーパ面42が形成されていない部分のタイヤ径方向断面SA1の面積(図4(B)参照)に対して、テーパ面42が形成された部分のタイヤ径方向断面SA2、SA3の面積(図4(C)、(D)参照)は、末端40Aに向って漸減していく。すなわち、タイヤ周方向(周回方向の一端部)の末端(タイヤ軸方向内側端部)40Aに向ってタイヤ径方向断面の面積が減少する。すなわち、タイヤ周方向における樹脂被覆コード34Aの端部40において、樹脂被覆コード34Aのタイヤ径方向断面の面積が漸減する。
 この結果、樹脂被覆コード34Aを含む樹脂被覆コード34のタイヤ軸方向側面が接合されることにより形成されたベルト26のタイヤ周方向における曲げ剛性の変化が緩和される。
 また、樹脂被覆コード34Aに配置された2本の補強コード30A、30Bの周回方向長さL1、L2はタイヤ軸方向外側ほど短く(L1>L2)設定されている。換言すると、タイヤ軸方向内側の補強コード30Aのテーパ面42に対する端部露出位置Q1よりもタイヤ軸方向外側の補強コード30Bのテーパ面42に対する端部露出位置Q2が周回方向(矢印C方向)で他端側(矢印C2方向)に位置している。すなわち、タイヤ軸方向外側の補強コード30の端部露出位置ほど、周回方向で末端40Aから離間するように形成されている。
 この結果、樹脂被覆コード34Aの端部40では、図3に示すように、末端40Aに向って2本の補強コード30A、30Bが存在する範囲A1と、1本の補強コードだけ存在する範囲A2と、補強コードが存在しない範囲A3が構成されることになる。
 これにより、樹脂被覆コード34Aは末端40Aに向って曲げ剛性が漸減する。したがって、ベルト26は、タイヤ周方向において樹脂被覆コード34の末端位置近傍で曲げ剛性が大きく変化することが抑制される(剛性段差が抑制される)。
 この結果、空気入りタイヤ10の加硫成形時に圧力と熱の作用によって樹脂被覆コード34(34A)の端部40のタイヤ軸方向で一本内側に配設された樹脂被覆コード34B(図3、領域P)に曲げ応力が集中することが緩和され、当該部分に歪みが集中することが抑制される。この結果、空気入りタイヤ10の耐久性が向上する。
 また、樹脂被覆コード34Aの端部40の端面をタイヤ軸方向内側端部40Aからタイヤ軸方向外側に向って周回方向他端側(矢印C2方向)に所定角度θだけ傾斜したテーパ面42で形成したため、長尺状に形成された樹脂被覆コードを斜めに切断するだけで、テーパ面42を形成することができ、空気入りタイヤ10(樹脂被覆コード34)の生産性が向上する。
 さらに、空気入りタイヤ10では、ベルト26が1層構造であるため、従来の2枚以上のベルトプライで構成した場合に比較して、ベルト26の厚みを薄くでき、その分トレッド36の厚みを厚くすることができ、かつ溝37の深さを深くすることができる。これにより、空気入りタイヤ10の寿命を延ばすことも可能となる。
 また、空気入りタイヤ10におけるベルト26は、補強コード30が螺旋状に巻回され、周上で補強コード30がタイヤ径方向に重なる部分が無く、タイヤ周方向に厚さが均一となっているので、空気入りタイヤ10はユニフォミティーに優れたものとなる。
 ベルト26の厚みt、言い換えれば樹脂32の厚みが0.7mm未満になると、樹脂32中に埋設する補強コード30を太くしてタガ効果を得ることができなくなる虞がある。
 また、ベルト26の幅BWがトレッド36の接地幅TWに対して75%未満となると、ベルト26のタガ効果が不十分となったり、ショルダー39付近の騒音の発生を抑制することが困難になる虞がある。一方、ベルト26の幅BWがトレッド36の接地幅TWに対して100%を超えると、タガ効果としては頭打ち状態となり、ベルト26が必要以上となり、空気入りタイヤ10の重量増加を招く。
 本実施形態の空気入りタイヤ10では、カーカス16のクラウン部が、螺旋状に巻回された補強コード30が樹脂32で被覆されたベルト26で補強されているため、従来タイヤの2枚以上のベルトプライから構成された複数層からなるベルトに比較して軽量となり、製造も簡単になる。
 本実施形態のベルト26は、補強コード30を被覆している樹脂32の引張弾性率が100MPa以上とされ、厚みも0.7mm以上確保されているので、ベルト26のタイヤ軸方向の面内剪断剛性を十分に確保することができる。
 ベルト26の面内剪断剛性が確保されることで、空気入りタイヤ10にスリップ角を付与した場合の横力を十分に発生させることができ、操縦安定性を確保することができ、また、応答性も向上させることができる。
 また、ベルト26の面外曲げ剛性が確保されることで、空気入りタイヤ10に大きな横力が入力した際、トレッド36のバックリング(トレッド36の表面が波打って、一部が路面から離間する現象)を抑制することができる。
 さらに、本実施形態の空気入りタイヤ10では、面内剪断剛性が高いベルト26を用いており、ベルト26の幅BWをトレッド36の接地幅TWの75%以上としているので、ショルダー39付近の剛性を高めることができる。
(バリエーション)
 第1実施形態では、樹脂被覆コード34に2本の補強コード30、30が配設されている場合について説明したが、3本以上でも良い。また、補強コードが1本でもよい。この補強コードが1本の空気入りタイヤ10Aについて説明する。なお、第1実施形態と同様の構成要素の場合には、同一の参照符号を付し、その詳細な説明を省略する。
 図5に示すように、ベルト26を構成する樹脂被覆コード34には、補強コード30が1本だけ配設されている。また、端部40には、タイヤ軸方向内側端部40Aからタイヤ軸方向外側(図5では左側)に向って周回方向他端側(矢印C2方向参照)に角度θだけ傾斜したテーパ面42が形成されている。
 換言すると、端部40は、タイヤ軸方向外側端部40Bからタイヤ軸方向内側に向って末端40A側に傾斜したテーパ面42が形成されているため、樹脂被覆コード34Aの末端40Aに向って(範囲A22、A3で)タイヤ径方向断面の面積が減少している。
 また、端部40は、周回方向(矢印C方向)で末端40Aに向って補強コード30の端部露出位置Q3までの補強コード30が1本存在する範囲A2と、端部露出位置Q3から末端40Aまでの補強コードが存在しない範囲A3が構成されている。
 したがって、樹脂被覆コード34Aを含むベルト26の曲げ剛性がタイヤ周方向で末端位置近傍で大きく変化することが抑制される。これにより、タイヤの耐久性が向上する。
 このように、樹脂被覆コード34に1本の補強コード30しか配設されていない場合でも、タイヤ耐久性を向上させることができる。
[第2実施形態]
 本発明の第2実施形態のタイヤについて図面に基づき説明する。なお、第1実施形態と同様の構成要素には同一の参照符号を付し、その詳細な説明を省略する。また、第1実施形態のタイヤと異なるのは、樹脂被覆コードの端部形状のみなので、該当部分のみ説明する。
(構成)
 図6に示すように、タイヤ50のベルト26を構成する樹脂被覆コード34の端部40は、タイヤ軸方向内側端部40Aから直交方向に延在する第1端面52と、第1端面52のタイヤ軸方向外側端部から周回方向に沿って周回方向他端側(矢印C2方向参照)に距離Dだけ延在する側面54と、側面54の周回方向他端部からタイヤ軸方向外側端部40Bまで延在する第2端面56と、を備えている。
 なお、第1端面52には、補強コード30Aの端部が露出しており、第2端面56には、補強コード30Bが露出している。したがって、樹脂被覆コード34Aの端部40において、タイヤ軸方向内側に位置する補強コード30Aの周回方向長さL3は、タイヤ軸方向外側に位置する補強コード30Bの周回方向長さL4よりも長い。
(作用)
 このように樹脂被覆コードの端部40では、タイヤ軸方向外側に位置する補強コード30ほど、周回方向長さが短い(L3>L4)。換言すると、タイヤ軸方向内側の補強コード30Aの第1端面52に対する端部露出位置Q4よりもタイヤ軸方向外側の補強コード30Bの第2端面56に対する端部露出位置Q5が周回方向(矢印C方向)で他端側(矢印C2方向)に位置している。すなわち、タイヤ軸方向外側の補強コード30の端部露出位置ほど、周回方向で末端40Aから離間するように形成されている。
 したがって、樹脂被覆コード34Aの端部40には、タイヤ周方向で末端40Aに向って第2端面56までの2本の補強コード30A、30Bが存在する範囲A1と、第2端面56から第1端面52(末端40A)までの1本の補強コード30Aだけ存在する範囲A2が構成されている。
 また、末端40Aに向って樹脂被覆コード34Aのタイヤ軸方向幅が段階的に細くされている。すなわち、末端40Aに向って樹脂被覆コード34Aの径方向断面の面積が段階的に減少している。
 これにより、ベルト26(樹脂被覆コード34A)がタイヤ周方向で末端40Aに向って曲げ剛性が減少する。
 この結果、ベルト26は、タイヤ周方向において樹脂被覆コード34の末端位置近傍で剛性が大きく変化することが抑制される(剛性段差が抑制される)。
 したがって、タイヤ50の加硫成形時に圧力と熱の作用によって樹脂被覆コード34(34A)の端部40のタイヤ軸方向で一本内側に配設された樹脂被覆コード34B(図6、領域P)に曲げ応力が集中することが緩和され、当該部分に歪みが集中することが抑制される。この結果、タイヤ50の耐久性が向上する。
 また、このタイヤ50では、樹脂被覆コード34の端部40を構成する第1端面52、第2端面56に補強コード30A、30Bの端部がそれぞれ露出されるため、連続的に形成された樹脂被覆コードを所定長さに切断する際、補強コード30A、30Bを直交方向に切断することができる。
(バリエーション)
 第2実施形態では、樹脂被覆コード34に2本の補強コード30、30が配設されている場合について説明したが、3本以上でも良い。また、補強コードが1本でもよい。この1本のタイヤ50Aについて説明する。なお、第2実施形態と同様の構成要素の場合には、同一の参照符号を付し、その詳細な説明を省略する。
 図7に示すように、ベルト26を構成する樹脂被覆コード34には、補強コード30が1本だけ配設されている。また、樹脂被覆コード34Aの端部40は、タイヤ軸方向内側端部40Aから直交方向に延在する第1端面60と、第1端面60のタイヤ軸方向外側端部からタイヤ周方向に沿って周回方向他端側(矢印C2方向参照)に距離D1だけ延在する第1側面62と、第1側面54の周回方向他端部から直交方向に延在する第2端面64と、第2端面64のタイヤ軸方向外側端部からタイヤ周方向に沿って周回方向他端側(矢印C2方向参照)に距離D2だけ延在する第2側面66と、第2側面66の周回方向他端部から直交方向に延在する第3端面68と、を備えている。
 なお、補強コード30の端部は、第2端面64に露出されている。
 このように樹脂被覆コード34Aの端部40は、タイヤ径方向視において第1端面60、第2端面64、第3端面68で3段の階段状に形成されているため、周回方向において末端40Aに向って範囲A21、A22、A3の順で樹脂被覆コード34Aの幅が段階的に狭められている。
 また、樹脂被覆コード34Aの端部40は、タイヤ径方向視で階段状に形成されているため、周回方向で末端40Aに向って第2端面64までの1本の補強コード30が存在する範囲A2と、第2端面64から第1端面60までの補強コードが存在しない範囲A3が形成されることになる。
 これにより、樹脂被覆コード34Aを含む樹脂被覆コード34で構成されたベルト26は、タイヤ周方向において樹脂被覆コード34の末端(タイヤ軸方向内側端部40A)近傍で曲げ剛性が大きく変化することが抑制される。
 この結果、タイヤ70Aの加硫成形時に圧力と熱の作用によって樹脂被覆コード34(34A)の端部40のタイヤ軸方向で一本内側に配設された樹脂被覆コード34B(図7、領域P)に曲げ応力が集中することが緩和され、当該部分に歪みが集中することが抑制される。この結果、タイヤ70Aの耐久性が向上する。
 このように、樹脂被覆コード34に1本の補強コード30しか配設されていない場合でも、タイヤ耐久性を向上させることができる。
[第3実施形態]
 本発明の第3実施形態のタイヤについて図面に基づき説明する。なお、第1、第2実施形態と同様の構成要素には同一の参照符号を付し、その詳細な説明を省略する。また、第1、第2実施形態のタイヤと異なるのは、樹脂被覆コードの端部形状のみなので、該当部分のみ説明する。
(構成)
 図8に示すように、タイヤ70のベルト26を構成する樹脂被覆コード34の端部40は、タイヤ軸方向内側端部40A、第1端面52、第2端面56、タイヤ軸方向外側端部40Bの間をテーパ面42A、42B、42Cで接続したものである。
 具体的には、タイヤ軸方向内側端部40Aからタイヤ軸方向外側に向って周回方向他端側(図2矢印C2方向)に角度θ傾斜したテーパ面42Aと、テーパ面42Aのタイヤ軸方向外側端部から直交方向に延在する第1端面52と、第1端面52の直交方向外側端部からタイヤ軸方向外側に向って周回方向他端側に角度θ傾斜したテーパ面42Bと、テーパ面42Bのタイヤ軸方向外側端部から直交方向に延在する第2端面56と、第2端面52の直交方向外側端部からタイヤ軸方向外側に向って周回方向他端側に角度θ傾斜しタイヤ軸方向外側端部40Bまで延在するテーパ面42Bと、を備えている。
 なお、第1端面52、第2端面56に補強コード30A、30Bの端部が露出されている。
(作用)
 このように樹脂被覆コード34Aの端部40では、タイヤ軸方向外側に位置する補強コード30ほど、周回方向長さが短い(L5>L6)。換言すると、タイヤ軸方向内側の補強コード30Aの第1端面52に対する端部露出位置Q6よりもタイヤ軸方向外側の補強コード30Bの第2端面56に対する端部露出位置Q7が周回方向(矢印C方向)で他端側(矢印C2方向)に位置している。すなわち、タイヤ軸方向外側の補強コード30の端部露出位置ほど、周回方向で末端40Aから離間するように形成されている。
 このようにタイヤ70を構成することにより、端部40は、樹脂被覆コード34Aの周回方向他端側(矢印C2方向側)から末端40Aに向って、第2端面56までの補強コード30A、30Bが2本ある範囲A1、第2端面56から第1端面52までの補強コード30Aのみが存在する範囲A2、第1端面52から末端40Aまでの補強コードが存在しない範囲A3が構成される。
 このように、樹脂被覆コード34Aの端部40は、周回方向で末端40Aに向って補強コードの本数を減少させているため、樹脂被覆コード34Aを含んで構成されているベルト26のタイヤ周方向における末端位置近傍における曲げ剛性の変化が抑制される。
 また、補強コード30A、30Bが2本存在する範囲A1でも、その末端40A側にテーパ面42C(範囲A12)を設けたことによって、この範囲内でもベルト26の曲げ剛性を漸減させている。テーパ面42B(範囲A2)、テーパ面42A(範囲A3)でも、同様に、末端40Aに向ってベルト26(樹脂被覆コード34A)の曲げ剛性を漸減させている。
 この結果、ベルト26は、樹脂被覆コード34の末端位置で剛性が大きく変化することが一層抑制される(剛性段差が一層抑制される)。
 したがって、タイヤ70の加硫成形時に圧力と熱の作用によって樹脂被覆コード34(34A)の端部40のタイヤ軸方向で一本内側に配設された樹脂被覆コード34B(図8、領域P)に曲げ応力が集中することが緩和され、当該部分に歪みが集中することが抑制される。この結果、タイヤ70の耐久性が向上する。
(バリエーション)
 第3実施形態では、樹脂被覆コード34に2本の補強コード30、30が配設されている場合について説明したが、3本以上でも良い。また、補強コードが1本でもよい。この1本のタイヤ70Aについて説明する。なお、第3実施形態と同様の構成要素の場合には、同一の参照符号を付し、その詳細な説明を省略する。
 図9に示すように、ベルト26を構成する樹脂被覆コード34には、補強コード30が1本だけ配設されている。また、樹脂被覆コード34Aの端部40は、タイヤ軸方向内側端部(末端)40A、端面72、タイヤ軸方向外側端部40Bの間をテーパ面42D、42Eで接続したものである。
 このようにタイヤ70Aを構成することにより、端部40は、樹脂被覆コード34Aの周回方向他端側(矢印C2方向側)から末端40Aに向って、端面72までの補強コード30が1本ある範囲A2、端面72から末端40Aまでの補強コードが存在しない範囲A3が構成されている。
 このように、樹脂被覆コード34Aの端部40は、末端40Aに向って存在する補強コードの本数を減少させているため、樹脂被覆コード34Aを含んで構成されているベルト26のタイヤ周方向における末端位置における剛性の変化が抑制される。
 また、補強コード30が1本存在する範囲A2でも、その末端40A側にテーパ面42E(範囲A22)を設けたことによって、この範囲内でもベルト26の曲げ剛性を末端40Aに向って漸減させている。テーパ面42D(範囲A3)によっても、同様に、末端40Aに向ってベルト26の曲げ剛性を漸減させている。
 この結果、ベルト26は、タイヤ周方向において樹脂被覆コード34の末端位置で曲げ剛性が大きく変化することが一層抑制される(剛性段差が一層抑制される)。
 したがって、タイヤ70Aの加硫成形時に圧力と熱の作用によって樹脂被覆コード34(34A)の端部40のタイヤ軸方向で一本内側に配設された樹脂被覆コード34B(図9、領域P)に曲げ応力が集中することが緩和され、当該部分に歪みが集中することが抑制される。この結果、タイヤ70の耐久性が向上する。
[第4実施形態]
 本発明の第4実施形態のタイヤについて図面に基づき説明する。なお、第1~第3実施形態と同様の構成要素には同一の参照符号を付し、その詳細な説明を省略する。また、第1~第3実施形態のタイヤと異なるのは、樹脂被覆コードの端部形状のみなので、該当部分のみ説明する。
 図10に示すように、タイヤ80のベルト26を構成する樹脂被覆コード34Aの端部40は、タイヤ径方向外側(上面82)からタイヤ径方向内側(下面84)に向って末端40A側(周回方向一端側(矢印C1方向))に角度θで傾斜したテーパ面86が形成されている。
 なお、テーパ面86に補強コード30A、30Bの端部が露出している。
 このように形成されたタイヤ80では、樹脂被覆コード34Aの端部40において周回方向(矢印C方向)の他端側(矢印C2方向)から末端40Aに向ってタイヤ径方向高さが減少している。すなわち、タイヤ径方向断面の面積が末端40Aに向って減少している。
 この結果、樹脂被覆コード34Aを含む樹脂被覆コード34で構成されたベルト26のタイヤ周方向における末端位置近傍の剛性の変化が抑制される。
 したがって、タイヤ80の加硫成形時に圧力と熱の作用によって樹脂被覆コード34(34A)の端部40のタイヤ軸方向で一本内側に配設された樹脂被覆コード34Bに曲げ応力が集中することが緩和され、当該部分に歪みが集中することが抑制される。この結果、タイヤ80の耐久性が向上する。
(バリエーション)
 第4実施形態では、樹脂被覆コード34に2本の補強コード30、30が配設されている場合について説明したが、補強コードの本数は何本でも良い。
 なお、バリエーションに係るタイヤ80Aについて図11を参照して説明する。なお、第4実施形態と同様の構成要素の場合には、同一の参照符号を付し、その詳細な説明を省略する。
 バリエーションに係るタイヤのベルト26を構成する樹脂被覆コード34Aのテーパ面86は、第4実施形態と同様である。この樹脂被覆コード34Aの上面82と、タイヤ軸方向外側側面88がなす稜線90のうち、テーパ面86(末端40A)側を面取り部92としたものである。
 このように、樹脂被覆コード34Aの稜線90の末端40A側に面取り部92を設けることで、テーパ面86の形成部分よりも周回方向他端側からベルト26の曲げ剛性を末端40Aに向ってベルト26の曲げ剛性を一層減少させることができる。
 すなわち、樹脂被覆コード34Aを含む樹脂被覆コード34で構成されたベルト26のタイヤ周方向における末端位置近傍の剛性の変化が一層抑制される。
 したがって、樹脂被覆コード34Aの末端40Aが当接している樹脂被覆コード34Aの1本内側の樹脂被覆コード34Bの部位に応力が集中して歪みを生ずることを防止又は抑制できる。この結果、タイヤ80Aの耐久性を向上させることができる。
 特に、第4実施形態のように、補強コード30A、30Bの長さを異ならせて剛性段差を抑制することができないものであっても、稜線90に面取り部92を設けることで、剛性段差を緩和することができる。
 これは、第1実施形態のタイヤにも適用することができる。図12に示すように、空気入りタイヤ10Bのベルト26を構成する樹脂被覆コード34Aの稜線90に面取り部92を設けることによって、剛性段差を一層抑制することができ、タイヤ耐久性を一層向上させることができる。
 なお、第4実施形態では、テーパ面86を形成したが、末端40Aに向ってタイヤ径方向高さを減少させてタイヤ径方向断面の面積を減少させる構造であれば、これに限定するものではない。例えば、第2実施形態や第3実施形態で示したタイヤ径方向視の形状をタイヤ軸方向視の形状として適用することができる。
(その他)
 なお、樹脂被覆コード34において樹脂32に被覆される補強コード30の数は2本に限られず、3本以上であってもよい。また、樹脂32に被覆される補強コード30の数を1本としてもよい。
 また、樹脂被覆コード34Aの端部40の形状は、本実施形態に限定されるものではない。ただし、樹脂被覆コード34Aの端部40は、末端40Aまでタイヤ軸方向内側で隣接する樹脂被覆コード34Bに接合(当接)されていることが必要である。
 さらに、補強コード30を2本以上有する樹脂被覆コード34であれば、端部40における補強コード30の周回方向長さがタイヤ軸方向外側ほど短ければ(タイヤ軸方向外側の補強コード30ほど端部露出位置が周回方向で末端40Aから離間していれば)、端面の形状を限定するものではない。
 また、第2、第3実施形態のように、端部40に複数の端面を形成した場合に、複数の補強コード30を1つの端面に露出させても良い(複数の補強コード30の周回方向長さを等しくしても良い)。
 さらに、第1、第3、第4実施形態では、テーパ面はタイヤ径方向視又はタイヤ軸方向視で直線形状であったが、曲線形状でも良い。
 また、第1~第4実施形態では、1本の樹脂被覆コード34を螺旋状に巻きつけることによってベルト26を形成したが、複数の樹脂被覆コードでベルト26を形成しても良い。例えば、図13(A)~(D)に示すように、2本の補強コード30を樹脂32で被覆した樹脂被覆コード34をタイヤ軸方向(ベルト幅方向)中央部に螺旋状に巻き、樹脂被覆コード34のタイヤ軸方向両外側(両端部)に、3本の補強コード30を樹脂32で被覆した樹脂被覆コード134A、134Bを螺旋状に巻くものが考えられる。
 このように構成した場合には、樹脂被覆コード134A、134Bと樹脂被覆コード34との接続部位でも、補強コード30が切断されているため、第1~第4実施形態で記載してきたことと同様の問題を生ずる。
 したがって、図13(A)に示すように、樹脂被覆コード34の両端部にテーパ面42を形成すると共に、樹脂被覆コード134A、134Bのタイヤ軸方向内側端部にもテーパ面42を形成することで、樹脂被覆コード34と樹脂被覆コード134A、134Bの接続部位における剛性段差を緩和し、タイヤ耐久性を向上させることができる。
 2018年6月25日に出願された日本国特許出願2018-120276号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載されたすべての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (9)

  1.  環状のタイヤ骨格部材と、
     補強コードを被覆樹脂で被覆して構成された樹脂被覆コードが前記タイヤ骨格部材の外周にタイヤ周方向に螺旋状に巻かれて前記タイヤ骨格部材に接合されると共に、前記樹脂被覆コードにおけるタイヤ軸方向に互いに隣接する部分同士が接合されたベルトと、
     を備え、前記樹脂被覆コードの端部は、タイヤ軸方向内側に隣接する前記樹脂被覆コードに接合されていると共に、タイヤ径方向に沿った断面の面積が当該樹脂被覆コードの末端に向かって減少すると共に、前記補強コードが前記樹脂被覆コードの端面に露出されたタイヤ。
  2.  前記樹脂被覆コードの端部は、前記樹脂被覆コードの周回方向においてタイヤ軸方向内側からタイヤ軸方向外側に向って前記末端から離間する請求項1記載のタイヤ。
  3.  前記樹脂被覆コードの端部には、タイヤ径方向視でタイヤ軸方向外側からタイヤ軸方向内側に向って前記末端側に傾斜したテーパ面が形成されている請求項2記載のタイヤ。
  4.  前記樹脂被覆コードの端部には、タイヤ径方向視でタイヤ軸方向内側からタイヤ軸方向外側に向って前記周回方向において前記末端から離間するように階段状に複数の端面が形成された請求項2又は3記載のタイヤ。
  5.  前記樹脂被覆コードには、複数の補強コードが前記タイヤ軸方向に並べて配設されており、タイヤ軸方向外側の補強コードほど当該補強コードの端部露出位置が前記樹脂被覆コードの周回方向において前記末端から離間する請求項1~4のいずれか1項記載のタイヤ。
  6.  前記樹脂被覆コードの端部は、前記樹脂被覆コードの周回方向において前記末端に向ってタイヤ径方向高さが減少する請求項1記載のタイヤ。
  7.  前記樹脂被覆コードの端部には、タイヤ軸方向視でタイヤ径方向外側からタイヤ径方向内側に向って前記末端側に傾斜したテーパ面が形成されている請求項6記載のタイヤ。
  8.  前記樹脂被覆コードの端部は、前記末端側のタイヤ軸方向外側の稜線が面取りされている請求項1~7のいずれか1項記載のタイヤ。
  9.  環状のタイヤ骨格部材と、
     タイヤ軸方向に並べて配置された複数の補強コードを被覆樹脂で被覆して構成された樹脂被覆コードが前記タイヤ骨格部材の外周にタイヤ周方向に螺旋状に巻かれて前記タイヤ骨格部材に接合されると共に、前記樹脂被覆コードにおけるタイヤ軸方向に互いに隣接する部分同士が接合されたベルトと、
     を備え、前記樹脂被覆コードの端部は、タイヤ軸方向内側に隣接する前記樹脂被覆コードに接合されていると共に、前記補強コードが前記樹脂被覆コードの端面に露出され、タイヤ軸方向外側の前記補強コードほど当該補強コードの端部露出位置が前記樹脂被覆コードの周回方向において当該樹脂被覆コードの末端から離間するタイヤ。
PCT/JP2019/023514 2018-06-25 2019-06-13 タイヤ WO2020004063A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19826066.3A EP3812173A4 (en) 2018-06-25 2019-06-13 TIRE
US17/254,856 US20210260924A1 (en) 2018-06-25 2019-06-13 Tire
CN201980042504.0A CN112313087A (zh) 2018-06-25 2019-06-13 轮胎

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-120276 2018-06-25
JP2018120276A JP7004400B2 (ja) 2018-06-25 2018-06-25 タイヤ

Publications (1)

Publication Number Publication Date
WO2020004063A1 true WO2020004063A1 (ja) 2020-01-02

Family

ID=68986422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023514 WO2020004063A1 (ja) 2018-06-25 2019-06-13 タイヤ

Country Status (5)

Country Link
US (1) US20210260924A1 (ja)
EP (1) EP3812173A4 (ja)
JP (1) JP7004400B2 (ja)
CN (1) CN112313087A (ja)
WO (1) WO2020004063A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106409A (ja) * 1988-10-14 1990-04-18 Bridgestone Corp 空気入りタイヤ
JP2002019415A (ja) * 2000-07-06 2002-01-23 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2005041328A (ja) * 2003-07-22 2005-02-17 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2010111074A (ja) * 2008-11-07 2010-05-20 Bridgestone Corp 超音波接合装置及びタイヤ製造方法
KR101033201B1 (ko) * 2008-08-11 2011-05-06 한국타이어 주식회사 공기압 타이어용 벨트의 보강벨트 구조
JP2013233738A (ja) * 2012-05-09 2013-11-21 Yokohama Rubber Co Ltd:The 空気入りタイヤの製造方法
JP2014205462A (ja) * 2013-04-15 2014-10-30 株式会社ブリヂストン タイヤ及びタイヤの製造方法
JP2014210487A (ja) 2013-04-18 2014-11-13 株式会社ブリヂストン タイヤ及びタイヤの製造方法
JP2016203900A (ja) * 2015-04-27 2016-12-08 株式会社ブリヂストン タイヤ
JP2017109434A (ja) * 2015-12-18 2017-06-22 東洋ゴム工業株式会社 タイヤ及びタイヤの製造方法
JP2017206209A (ja) * 2016-05-20 2017-11-24 株式会社ブリヂストン タイヤ
WO2018101175A1 (ja) * 2016-12-02 2018-06-07 株式会社ブリヂストン タイヤ
JP2018120276A (ja) 2017-01-23 2018-08-02 Nissha株式会社 静電容量式タッチパネル

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03169718A (ja) * 1989-11-30 1991-07-23 Sumitomo Rubber Ind Ltd ラジアルタイヤ
JP4585307B2 (ja) * 2004-12-24 2010-11-24 住友ゴム工業株式会社 自動二輪車用タイヤの製造方法
JP4743126B2 (ja) * 2007-01-23 2011-08-10 横浜ゴム株式会社 空気入りラジアルタイヤ
JP2011136669A (ja) * 2009-12-29 2011-07-14 Sumitomo Rubber Ind Ltd 空気入りタイヤ及びその製造方法
JP6534293B2 (ja) * 2015-04-27 2019-06-26 株式会社ブリヂストン タイヤ
JP6572105B2 (ja) * 2015-11-16 2019-09-04 Toyo Tire株式会社 タイヤ
JP6694795B2 (ja) * 2016-10-18 2020-05-20 株式会社ブリヂストン タイヤ
JP2019217822A (ja) * 2018-06-15 2019-12-26 株式会社ブリヂストン 空気入りタイヤ

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106409A (ja) * 1988-10-14 1990-04-18 Bridgestone Corp 空気入りタイヤ
JP2002019415A (ja) * 2000-07-06 2002-01-23 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2005041328A (ja) * 2003-07-22 2005-02-17 Yokohama Rubber Co Ltd:The 空気入りタイヤ
KR101033201B1 (ko) * 2008-08-11 2011-05-06 한국타이어 주식회사 공기압 타이어용 벨트의 보강벨트 구조
JP2010111074A (ja) * 2008-11-07 2010-05-20 Bridgestone Corp 超音波接合装置及びタイヤ製造方法
JP2013233738A (ja) * 2012-05-09 2013-11-21 Yokohama Rubber Co Ltd:The 空気入りタイヤの製造方法
JP2014205462A (ja) * 2013-04-15 2014-10-30 株式会社ブリヂストン タイヤ及びタイヤの製造方法
JP2014210487A (ja) 2013-04-18 2014-11-13 株式会社ブリヂストン タイヤ及びタイヤの製造方法
JP2016203900A (ja) * 2015-04-27 2016-12-08 株式会社ブリヂストン タイヤ
JP2017109434A (ja) * 2015-12-18 2017-06-22 東洋ゴム工業株式会社 タイヤ及びタイヤの製造方法
JP2017206209A (ja) * 2016-05-20 2017-11-24 株式会社ブリヂストン タイヤ
WO2018101175A1 (ja) * 2016-12-02 2018-06-07 株式会社ブリヂストン タイヤ
JP2018120276A (ja) 2017-01-23 2018-08-02 Nissha株式会社 静電容量式タッチパネル

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAPAN AUTOMOBILE TIRE MANUFACTURERS ASSOCIATION: "JATMA YEAR BOOK", 2018
See also references of EP3812173A4

Also Published As

Publication number Publication date
CN112313087A (zh) 2021-02-02
JP7004400B2 (ja) 2022-02-10
JP2020001468A (ja) 2020-01-09
EP3812173A4 (en) 2022-06-08
EP3812173A1 (en) 2021-04-28
US20210260924A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
JP6211320B2 (ja) タイヤ
JP4429721B2 (ja) 二重ハーフカーカスおよび適合クラウンゾーンを備えたタイヤ
JP4429722B2 (ja) 二重ハーフカーカスおよび低プロファイルクラウン補強体を備えたタイヤ
JP4522865B2 (ja) 可変剛性の側壁部を備えた延長移動性のタイヤ
WO2020004063A1 (ja) タイヤ
WO2019244770A1 (ja) タイヤ
CN110785300A (zh) 缺气保用轮胎
WO2019239898A1 (ja) 空気入りタイヤ
JP6989223B2 (ja) 空気入りタイヤ
JP6781671B2 (ja) ランフラットタイヤ
WO2020004040A1 (ja) 空気入りタイヤ
WO2020004045A1 (ja) タイヤ及びタイヤの製造方法
WO2019244851A1 (ja) 空気入りタイヤ
CN110785301A (zh) 缺气保用轮胎
JP7377699B2 (ja) 空気入りタイヤ
WO2021125112A1 (ja) 空気入りタイヤ
WO2019244737A1 (ja) 空気入りタイヤ
JP7377698B2 (ja) 空気入りタイヤ
WO2019239895A1 (ja) 空気入りタイヤ
WO2019244699A1 (ja) 空気入りタイヤ
JP6952647B2 (ja) 空気入りタイヤ
WO2019244741A1 (ja) 空気入りタイヤ
WO2019230811A1 (ja) 空気入りタイヤ
WO2019235323A1 (ja) 空気入りタイヤ
WO2019244773A1 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019826066

Country of ref document: EP

Effective date: 20210125