WO2020003907A1 - 配線基板および電子部品実装基板 - Google Patents

配線基板および電子部品実装基板 Download PDF

Info

Publication number
WO2020003907A1
WO2020003907A1 PCT/JP2019/021917 JP2019021917W WO2020003907A1 WO 2020003907 A1 WO2020003907 A1 WO 2020003907A1 JP 2019021917 W JP2019021917 W JP 2019021917W WO 2020003907 A1 WO2020003907 A1 WO 2020003907A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
land
wiring board
electronic component
lands
Prior art date
Application number
PCT/JP2019/021917
Other languages
English (en)
French (fr)
Inventor
健 稲吉
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2020003907A1 publication Critical patent/WO2020003907A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components

Definitions

  • the present invention relates to a wiring board and an electronic component mounting board.
  • Japanese Unexamined Patent Publication No. 2000-299548 discloses that a soldering portion having a narrow width corresponding to the terminal width of a mounted component is provided at one end of a land to prevent occurrence of mounting defects. Have been.
  • An object of the present invention is to provide a wiring board capable of improving the mounting reliability of an electronic component and an electronic component mounting board having a high mounting reliability.
  • One embodiment of the wiring board of the present invention has a pair of lands arranged opposite to each other, to which electrodes of an electronic component are joined via solder.
  • Each land has a groove extending along the direction in which the pair of lands face each other and recessed in the thickness direction. The depth of the groove increases from both ends in the width direction toward the middle.
  • the present invention it is possible to exhibit a self-alignment effect caused by a surface tension or a flow force of a molten solder flowing into a groove at the time of reflow, and to enhance mounting reliability of an electronic component on a wiring board. it can.
  • FIG. 1 is an exploded perspective view showing the configuration of the electronic component mounting board according to the first embodiment.
  • FIG. 2A is a plan view illustrating a configuration of an electronic component mounting board according to the first embodiment
  • FIG. 2B is a plan view illustrating a configuration of a land according to the first embodiment.
  • FIG. 3A is a sectional view taken along line AA in FIG. 2A
  • FIG. 3B is a sectional view taken along line BB in FIG. 2A.
  • FIG. 4A is a perspective view illustrating a configuration of a land according to the second embodiment
  • FIG. 4B is a perspective view illustrating a configuration of a land according to the third embodiment.
  • FIG. 3 is a diagram illustrating a configuration of a chip capacitor mounting board in an analysis model 1.
  • FIG. 6A is a distortion contour diagram of the analysis model 1
  • FIG. 6B is a distortion contour diagram of the analysis model 2.
  • FIG. 7 is a graph showing a time change of strain measured at measurement points indicated
  • FIG. 1 is an exploded perspective view showing the configuration of the electronic component mounting board according to the first embodiment
  • FIG. 2A is a plan view showing the configuration of the electronic component mounting board according to the first embodiment
  • FIG. ) Is a plan view showing the configuration of the land according to the first embodiment
  • FIG. 3A is a cross-sectional view taken along the line AA in FIG. 2A
  • FIG. It is BB sectional drawing in the inside.
  • the electronic component mounting board 100 shown in FIGS. 1 and 2 includes a wiring board 1 and an electronic component 10 bonded (mounted) to the wiring board 1 via solder S.
  • the electronic component 10 has a component body 20 and electrodes 30 provided at both ends of the component body 20. Examples of such an electronic component 10 include a capacitor element, a quartz oscillator, a piezoelectric element, a magnetostrictive element, a memory element, a resistance element, and the like.
  • the wiring substrate 1 includes a substrate 2, a pair of lands 3 disposed on the substrate 2 so as to face each other, wiring (not shown) electrically connected to the lands 3, And a resist layer 4 covering the surface of the substrate.
  • the land 3 is exposed from the resist layer 4, as shown in FIG.
  • the surface of the land 3 is located on the same plane as the surface of the resist layer 4. Note that the substrate 2 and the resist layer 4 are omitted in FIGS. 2 to 4 so as not to complicate the drawings.
  • the substrate 2 may be a solid substrate, a flexible substrate, or a combination of these.
  • each land 3 is made of, for example, copper, aluminum, nickel or an alloy containing these.
  • the shape (the shape viewed from the thickness direction) of each land 3 in a plan view is substantially rectangular.
  • the direction along the line connecting the intersections I where the diagonal lines L of the pair of lands 3 intersect, that is, the direction in which the pair of lands 3 face each other is referred to as the “X-axis direction”.
  • the thickness direction of the land 3 is referred to as “Z-axis direction”, and the direction orthogonal to both the X-axis direction and the Z-axis direction is referred to as “Y-axis direction”.
  • a side closer to the other land 3 of one land 3 is defined as “inside”, and a side farther from the other land 3 is defined as “outer”.
  • each land 3 includes a groove 31 extending along the X-axis direction and concave in the Z-axis direction, and the depth of the groove 31 is set at both ends in the Y-axis direction (that is, the width direction of the groove 31). It is characterized by increasing from the side toward the middle side.
  • both ends in the Y-axis direction of the groove 31 mean both sides of the groove 31 extending along the X-axis direction, and the middle side of the groove 31 in the Y-axis direction is the center line of the groove 31.
  • the solder S in a molten state (hereinafter, also referred to as “molten solder S”) in the groove 31 due to reflow when the electronic component 10 is mounted on the wiring board 1.
  • molten solder S solder S in a molten state
  • the self-alignment effect is exerted by the surface tension and the flow force of the molten solder S, and the positioning between the electrode 30 and the land 3 is accurately performed.
  • the mounting reliability of the electronic component 10 on the wiring board 1 can be improved.
  • the inner surface of the groove 31 includes two inclined surfaces 311a and 311b that are inclined from both ends in the Y-axis direction toward the middle so that the depth of the groove 31 increases.
  • the molten solder S easily flows into the groove 31, and the mounting reliability of the electronic component 10 to the wiring board 1 can be further improved.
  • the two inclined surfaces 311 are directly connected on the middle side in the Y-axis direction.
  • the inclination angles ⁇ of the inclined surfaces 311a and 311b are constant.
  • the inclination angle ⁇ of the inclined surface 311a and the inclination angle ⁇ of the inclined surface 311b are also equal to each other. That is, the groove 31 has a V-shape that is line-symmetrical in its cross section. As a result, the molten solder S flows into the groove 31 evenly from both ends in the Y-axis direction toward the middle.
  • the depth (maximum depth) of the groove 31 is constant along the X-axis direction.
  • the groove 31 having such a shape is preferable because it can be easily formed on the land 3. Further, since the two inclined surfaces 311a and 311b are directly connected on the middle side in the Y-axis direction, even when the area (planar area) of the land 3 in plan view is reduced, a sufficient amount of solder S Can be secured. Further, since the center of the groove 31 in the Y-axis direction is the deepest, the position of the electronic component 10 with respect to the land 3 is easily determined, and a misalignment error is less likely to occur.
  • both ends (inner end and outer end) of the groove 31 in the X-axis direction are open to the sides of the land 3. With such a shape, the groove 31 is easily formed by the land 3.
  • the maximum depth (“D” in FIG. 3B) of the groove 31 having such a configuration is preferably about 30 to 150 ⁇ m, and more preferably about 50 to 100 ⁇ m.
  • the inclination angle ⁇ of each inclined surface 311a, 311b is preferably about 10 to 50 °, and more preferably about 15 to 30 °.
  • the inclination angle ⁇ of each of the inclined surfaces 311a and 311b is constant in the cross section of the groove 31, but may be changed in the middle of the Z-axis direction. Further, the inclination angle ⁇ of the inclined surface 311a and the inclination angle ⁇ of the inclined surface 311b may be different from each other. Further, the inclined surface 311a and the inclined surface 311b may form one continuous curved surface.
  • the groove 31 may have a semicircular shape in its cross section.
  • the ratio of the opening area of the groove 31 to the plane area of the land 3 is not particularly limited, but is preferably about 20 to 70%, and more preferably about 30 to 60%. By setting the opening area of the groove 31 in the above range, the flow efficiency of the molten solder S into the groove 31 can be further increased.
  • the inner surface of the groove 31 may be subjected to a treatment for improving the wettability to the molten solder S more than the surface (upper surface) of the land 3. Also by this processing, the efficiency of flowing the molten solder S into the groove 31 can be further increased. Examples of such a process include an oxide film removing process, a flux applying process, a surface roughening process, and a plating process.
  • FIG. 4A is a perspective view illustrating a configuration of a land according to the second embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals.
  • the land 3 according to the second embodiment is the same as the land 3 according to the first embodiment except that the configuration of the groove 31 is different. That is, in the groove 31 of the second embodiment, the two inclined surfaces 311a and 311b are connected via the bottom surface 312 (flat bottom surface 312) orthogonal to the Z-axis direction on the middle side in the Y-axis direction.
  • the groove 31 Since the inner surface of the groove 31 includes the flat bottom surface 312, the groove 31 can be easily formed by the land 3, and the amount of the solder S that can be held in the land 3 can be increased. In the second embodiment, the same operation and effect as those of the first embodiment can be obtained.
  • FIG. 4B is a perspective view illustrating a configuration of a land according to the third embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals.
  • the land 3 according to the third embodiment is the same as the land 3 according to the first embodiment except that the configuration of the groove 31 is different. That is, the depth of the groove 31 of the third embodiment is continuously reduced from the inside to the outside in the X-axis direction (continuously increased from the outside to the inside). This allows the molten solder S to efficiently flow into and collect below the electrode 30 of the electronic component 10.
  • the depth of the groove 31 is the largest at the inner end in the X-axis direction. Thereby, the amount of the molten solder S collected directly under the electrode 30 can be increased.
  • the inside volume of the groove 31 in the X-axis direction is larger than the outside volume. Accordingly, the amount of the solder S located below the electrodes 30 of the electronic component 10 can be increased in a state where the electronic component 10 is mounted on the wiring board 1. For this reason, the force for pressing the electronic component 10 downward due to the surface tension increases, and chip standing failure hardly occurs. Further, the amount of the solder S on the electrode 30 side becomes sufficiently large. For this reason, it is possible to reduce the distortion of the joint caused by the difference between the coefficient of thermal expansion of the electronic component 10 and the coefficient of thermal expansion of the wiring board 1 (land 3). As a result, it is possible to suppress the occurrence of fatigue fracture of the solder S at the joint between the wiring board 1 and the electronic component 10, and to further enhance the mounting reliability of the electronic component 10 on the wiring board 1.
  • the groove 31 when viewed from the Z-axis direction (in a plan view), the groove 31 has an isosceles triangular shape having a base inside the X-axis direction. Since the shape of the groove 31 in a plan view is an isosceles triangle, the amount of the solder S in the Y-axis direction in the groove 31 is appropriately balanced. This contributes to an improvement in the mounting reliability of the electronic component 10 on the wiring board 1.
  • the groove 31 has a polygonal shape when viewed from the Z-axis direction (in a plan view).
  • the polygonal shape has a longer outer peripheral length than the circular shape. From the viewpoint of enhancing the self-alignment effect, it is preferable to increase the outer peripheral length of the shape of the groove 31 in plan view. For this reason, by making the shape of the groove 31 in a polygonal shape in a plan view, the self-alignment effect can be enhanced.
  • the shape of the groove 31 in plan view may be a polygonal shape such as a pentagonal shape, a hexagonal shape, a heptagonal shape, or a T-shape.
  • the shape is a line-symmetric shape having a target axis along the X-axis direction, and further, the formability is considered.
  • the shape is more preferably a triangular shape (especially, an isosceles triangular shape).
  • the groove 31 has a portion whose depth decreases from the inside to the outside in the X-axis direction. It may have a second portion that is constant along the direction or whose depth increases from the inside to the outside in the X-axis direction.
  • the groove 31 only needs to have a volume on the inside in the X-axis direction larger than the volume on the outside, the width is constant, and the depth decreases from the inside to the outside in the X-axis direction.
  • the depth may be constant, and the width may decrease from the inside to the outside in the X-axis direction.
  • the volume of the groove 31 may change continuously or stepwise along the X-axis direction.
  • the wiring board and the electronic component mounting board of the present invention have been described above, the present invention is not limited to these, and various modifications can be made within the technical idea of the present invention.
  • the wiring board and the electronic component mounting board of the present invention may each have another arbitrary configuration, or may be replaced with an arbitrary configuration exhibiting a similar function.
  • any of the first to third embodiments may be combined.
  • a groove modeled on the third embodiment is formed on the surface of a land provided on a substrate.
  • the length (length in the X-axis direction) of the groove was set to 150 ⁇ m
  • the width (length in the Y-axis direction) was set to 500 ⁇ m
  • the depth (length in the Z-axis direction) was set to 60 ⁇ m.
  • solder was supplied onto the lands.
  • the chip capacitor was arranged on the substrate so that the electrode was in contact with the solder, and the chip capacitor was mounted on the substrate by reflow. Note that a chip capacitor mounting board as shown in FIG. 5 was obtained.
  • An analysis model 2 was constructed in the same manner as the analysis model 1 except that the groove was omitted.
  • a temperature cycle test was performed between ⁇ 40 ° C. and 120 ° C. on the analysis model constructed as described above.
  • the distortion generated in the solder during the temperature cycle test was analyzed.
  • the temperature dependence was considered for the physical properties of the substrate and the solder, but the temperature dependence was ignored for the physical properties of the chip capacitor because they were hardly affected by heat.
  • FIG. 6A is a distortion contour diagram of the analysis model 1
  • FIG. 6B is a distortion contour diagram of the analysis model 2. As shown in these contour diagrams, the generation of distortion is reduced in the analysis model 1 in which the groove is formed, compared to the analysis model 2 in which the groove is not formed.
  • FIG. 7 is a graph showing a time change of distortion measured at measurement points indicated by white circles in FIGS. 6A and 6B. As shown in this graph, the generation of distortion is reduced by about 25% in the analysis model 1 as compared with the analysis model 2.
  • SYMBOLS 100 electronic component mounting board, 1 ... wiring board, 2 ... board, 3 ... land, 31 ... groove, 311a, 311b ... inclined surface, 312 ... bottom surface, 4 ... resist layer, 10 ... electronic component, 20 ... component body, 30: electrode, S: solder, ⁇ : inclination angle, D: maximum depth

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

配線基板1は、はんだSを介して電子部品10の電極30が接合される、対向して配置された一対のランド3を有する。各ランド3は、一対のランド3が対向する方向に沿って延び、かつ厚さ方向に窪む溝31を備える。溝31は、その幅方向の両端側から中側に向けて深さが大きくなっている。

Description

配線基板および電子部品実装基板

 本発明は、配線基板および電子部品実装基板に関する。

 電子部品を配線基板にはんだを介して実装する際に、リフロー炉の中で溶融したはんだの表面張力によるセルフアライメント効果により実装信頼性を高める技術がある。例えば、日本国公開公報特開2000-299548号公報には、ランドの一端側に実装部品の端子幅に合わせた狭い幅のはんだ付け部を設けることにより、実装不良の発生を防止することが開示されている。

特開2000-299548号公報

 電子部品をはんだ上に配置する際に大きく位置ずれすると、電子部品の位置が修正されることなく、配線基板に実装されてしまうという問題がある。本発明の目的は、電子部品の実装信頼性を向上させ得る配線基板、および実装信頼性が高い電子部品実装基板を提供することにある。

 本発明の配線基板の一つの態様は、はんだを介して電子部品の電極が接合される、対向して配置された一対のランドを有する。各ランドは、一対のランドが対向する方向に沿って延び、かつ厚さ方向に窪む溝を備える。溝は、その幅方向の両端側から中側に向けて深さが大きくなっている。

 本発明の一つの態様によれば、リフロー時に溝内に流入する溶融状態のはんだの表面張力や流れの力により生じるセルフアライメント効果を発揮させ、電子部品の配線基板に対する実装信頼性を高めることができる。

図1は、第1実施形態に係る電子部品実装基板の構成を示す分解斜視図である。 図2(a)は、第1実施形態に係る電子部品実装基板の構成を示す平面図であり、図2(b)は、第1実施形態に係るランドの構成を示す平面図である。 図3(a)は、図2(a)中のA-A線断面図であり、図3(b)は、図2(a)中のB-B線断面図である。 図4(a)は、第2実施形態に係るランドの構成を示す斜視図であり、図4(b)は、第3実施形態に係るランドの構成を示す斜視図である。 解析モデル1におけるチップコンデンサ実装基板の構成を示す図である。 図6(a)は、解析モデル1の歪みコンター図であり、図6(b)は、解析モデル2の歪みコンター図である。 図6(a)および図6(b)中の白丸で示す測定点において測定された歪みの時間変化を示すグラフである。

 以下、本発明の配線基板および電子部品実装基板を添付図面に示す実施形態に基づいて詳細に説明する。

 <第1実施形態>

 まず、本発明の第1実施形態について説明する。

 図1は、第1実施形態に係る電子部品実装基板の構成を示す分解斜視図、図2(a)は、第1実施形態に係る電子部品実装基板の構成を示す平面図、図2(b)は、第1実施形態に係るランドの構成を示す平面図、図3(a)は、図2(a)中のA-A線断面図、図3(b)は、図2(a)中のB-B線断面図である。

 図1および図2に示す電子部品実装基板100は、配線基板1と、はんだSを介して配線基板1に接合(実装)される電子部品10とを備えている。電子部品10は、部品本体20と、部品本体20の両端部に設けられた電極30とを有している。このような電子部品10としては、例えば、コンデンサ素子、水晶振動子、圧電素子、磁歪素子、メモリ素子、抵抗素子等が挙げられる。

 配線基板1は、基板2と、この基板2上に対向して配置された一対のランド3と、ランド3に電気的に接続された配線(図示せず)と、ランド3を残して基板2の表面を覆うレジスト層4とを有している。ランド3は、図1に示すように、レジスト層4から露出している。そして、ランド3の表面は、レジスト層4の表面と同一平面上に位置している。なお、図2~図4では、図面が煩雑とならないように、基板2およびレジスト層4を省略している。基板2としては、ソリッド基板、フレキシブル基板、またはこれらを組み合わせた基板のいずれであってもよい。

 各ランド3には、図2(a)に示すように、はんだSを介して、電子部品10の対応する電極30が接合される。各ランド3は、例えば、銅、アルミニウム、ニッケルまたはこれらを含む合金等で構成されている。また、本実施形態において、各ランド3の平面視における形状(厚さ方向から見た形状)は、略長方形状をなしている。

 以下では、図2(b)に示すように、一対のランド3の対角線Lが交差する交点I同士を結ぶ線分に沿った方向、すなわち一対のランド3が対向する方向を「X軸方向」とする。また、ランド3の厚さ方向を「Z軸方向」とし、X軸方向およびZ軸方向の双方と直交する方向を「Y軸方向」とする。さらに、一方のランド3の他方のランド3に近い側を「内側」とし、他方のランド3から遠い側を「外側」とする。

 本発明は、各ランド3がX軸方向に沿って延び、かつZ軸方向に窪む溝31を備え、この溝31の深さが、Y軸方向(すなわち、溝31の幅方向)の両端側から中側に向けて大きくなっていることを特徴とする。ここで、溝31のY軸方向の両端側とは、溝31のX軸方向に沿って延びる両縁部の側を言い、溝31のY軸方向の中側とは、溝31の中心線の側を言う。

 かかる構成の溝31をランド3に設けることにより、電子部品10を配線基板1に実装する際のリフローにより、溶融した状態のはんだS(以下、「溶融はんだS」とも言う。)を溝31内に円滑に流入させ得るようになる。この際の溶融はんだSの表面張力や流れの力によりセルフアライメント効果が発揮され、電極30とランド3との位置合わせが正確に行われる。その結果、電子部品10の配線基板1に対する実装信頼性を高めることができる。

 本実施形態では、溝31の内面は、Y軸方向の両端側から中側に向けて、溝31の深さが大きくなるように傾斜する2つの傾斜面311a、311bを含む。これにより、溶融はんだSが溝31内に流入し易く、電子部品10の配線基板1に対する実装信頼性をより高めることができる。さらに、2つの傾斜面311がY軸方向の中側において直接繋がっている。

 また、図3(a)に示すように、溝31の横断面(Y軸方向に沿った断面)において、各傾斜面311a、311bの傾斜角度θは一定である。これにより、溝31をランド3に形成し易く、溶融はんだSが溝31内により流入し易くもなる。また、傾斜面311aの傾斜角度θと傾斜面311bの傾斜角度θとも互いに等しくなっている。すなわち、溝31は、その横断面において、線対称な形状であるV字形状をなしている。これにより、Y軸方向の両端側から中側に向けて均等に、溶融はんだSが溝31内に流入するようになる。さらに、図3(b)に示すように、溝31の深さ(最大深さ)は、X軸方向に沿って一定となっている。

 かかる形状の溝31は、ランド3に形成し易いことから好ましい。また、2つの傾斜面311a、311bがY軸方向の中側において直接繋がっているため、ランド3の平面視における面積(平面積)を小さくした場合でも、ランド3上に十分な量のはんだSを確保することができる。さらに、溝31のY軸方向の中央部が最も深くなるため、電子部品10のランド3に対する位置が定まり易く、位置ずれ不良が発生し難くなる。

 なお、溝31をランド3に形成する方法としては、例えば、プレス加工、切削加工、レーザー加工、ブラスト加工、エッチング加工等が挙げられる。また、本実施形態では、溝31のX軸方向の両端部(内側端部および外側端部)は、ランド3の側方に開放している。かかる形状とすることにより、溝31をランド3により形成し易くなる。

 このような構成の溝31は、その最大深さ(図3(b)中「D」)は、30~150μm程度であることが好ましく、50~100μm程度であることがより好ましい。また、各傾斜面311a、311bの傾斜角度θは、10~50°程度であることが好ましく、15~30°程度であることがより好ましい。溝31のサイズを前記範囲に設定することにより、溶融はんだSを溝31内により円滑に流入させ得るようになる。その結果、溶融はんだSの表面張力や流れの力によるセルフアライメント効果がより好適に発揮される。

 各傾斜面311a、311bの傾斜角度θは、溝31の横断面において一定であるが、Z軸方向の途中で変化していてもよい。また、傾斜面311aの傾斜角度θと傾斜面311bの傾斜角度θとは互いに異なっていてもよい。さらに、傾斜面311aと傾斜面311bとは、1つの連続する曲面を構成してもよい。例えば、溝31は、その横断面において、半円形状であってもよい。

 また、溝31の開口面積がランド3の平面積に占める割合は、特に限定されないが、20~70%程度であることが好ましく、30~60%程度であることがより好ましい。溝31の開口面積を前記範囲に設定することにより、溶融はんだSの溝31内への流入効率をより高めることができる。

 さらに、溝31の内面に対して、ランド3の表面(上面)よりも溶融はんだSに対する濡れ性を向上させる処理を施してもよい。この処理によっても、溶融はんだSの溝31内への流入効率をより高めることができる。かかる処理としては、例えば、酸化被膜除去処理、フラックス付与処理、粗面化処理、めっき処理等が挙げられる。

 <第2実施形態>

 次に、本発明の第2実施形態について説明する。以下、第2実施形態について説明するが、前記第1実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。図4(a)は、第2実施形態に係るランドの構成を示す斜視図である。なお、図4(a)において、前記第1実施形態と同様の構成については、同一符号を付している。

 図4(a)に示すように、第2実施形態に係るランド3では、溝31の構成が異なること以外は、前記第1実施形態に係るランド3と同様である。すなわち、第2実施形態の溝31では、2つの傾斜面311a、311bがY軸方向の中側において、Z軸方向に直交する底面312(平坦な底面312)を介して繋がっている。

 溝31の内面が平坦な底面312を含むことにより、溝31をランド3により容易に形成し得るとともに、ランド3に保持し得るはんだSの量を増大させることができる。このような第2実施形態においても、前記第1実施形態と同様の作用・効果が得られる。

 <第3実施形態>

 次に、本発明の第3実施形態について説明する。以下、第3実施形態について説明するが、前記第1実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。図4(b)は、第3実施形態に係るランドの構成を示す斜視図である。なお、図4(b)において、前記第1実施形態と同様の構成については、同一符号を付している。

 図4(b)に示すように、第3実施形態に係るランド3では、溝31の構成が異なること以外は、前記第1実施形態に係るランド3と同様である。すなわち、第3実施形態の溝31は、その深さがX軸方向の内側から外側に向かって連続的に小さく(外側から内側に向かって連続的に大きく)なっている。これにより、溶融はんだSを電子部品10の電極30の下方に効率よく流入させ、集めることができる。また、溝31の深さは、X軸方向の内側の端部において最も大きい。これにより、電極30直下に集まる溶融はんだSの量を多くすることができる。

 したがって、溝31は、そのX軸方向の内側の容積が外側の容積より大きくなっている。これにより、配線基板1に電子部品10を実装した状態で、電子部品10の電極30の下方に位置するはんだSの量を多くすることができる。このため、表面張力により電子部品10を下方に押し付ける力が大きくなり、チップ立ち不良が発生し難くなる。また、電極30側のはんだSの量が十分に多くなる。このため、電子部品10の熱膨張係数と配線基板1(ランド3)の熱膨張係数との差に起因する接合部の歪みを緩和することができる。その結果、配線基板1と電子部品10との接合部におけるはんだSの疲労破壊の発生を抑制して、電子部品10の配線基板1に対する実装信頼性をより高めることができる。

 また、溝31は、Z軸方向から見たとき(平面視において)、X軸方向の内側を底辺とする二等辺三角形状をなしている。溝31の平面視における形状が二等辺三角形状であるため、溝31内のY軸方向におけるはんだSの量のバランスが適切となる。これにより、電子部品10の配線基板1に対する実装信頼性の向上に寄与する。

 溝31は、Z軸方向から見たとき(平面視において)、多角形状をなしている。多角形状は、円形状に比べ、外周長が長い。なお、セルフアライメント効果を高める観点からは、溝31の平面視における形状の外周長を長くすることが好ましい。このため、溝31の平面視における形状を多角形状とすることにより、セルフアライメント効果を高めることができる。溝31の平面視における形状は、五角形状、六角形状、七角形状、T字形状のような多角形状としてもよい。ただし、溝31内のY軸方向におけるはんだSの量のバランスを考慮する場合には、X軸方向に沿った対象軸を有する線対称な形状であることが好ましく、さらに形成加工性を考慮する場合には、三角形状(特に、二等辺三角形状)であることがより好ましい。

 このような第3実施形態においても、前記第1実施形態と同様の作用・効果が得られる。なお、溝31は、その深さがX軸方向の内側から外側に向かって小さくなる部分を有していればよく、当該部分よりX軸方向の内側および/または外側に、深さがX軸方向に沿って一定であるか、もしくは深さがX軸方向の内側から外側に向かって大きくなる第2部分を有していてもよい。

 また、溝31は、そのX軸方向の内側の容積が外側の容積より大きくなっていればよく、その幅が一定で、かつその深さがX軸方向の内側から外側に向かって小さくなっていてもよく、あるいはその深さが一定で、かつその幅がX軸方向の内側から外側に向かって小さくなっていてもよい。さらに、溝31の容積は、X軸方向に沿って、連続的に変化しても、段階的に変化してもよい。

 以上、本発明の配線基板および電子部品実装基板について説明したが、本発明は、これらに限定されるものではなく、本発明の技術的思想の範囲内において様々な変形が可能である。例えば、本発明の配線基板および電子部品実装基板は、それぞれ他の任意の構成を有していてもよいし、同様の機能を発揮する任意の構成と置換されていてよい。さらに、本発明では、前記第1~第3実施形態のうちの任意の構成を組み合わせるようにしてもよい。

 <シミュレーションの例>

 以下に示す解析モデルを構築し、温度サイクル試験ではんだに発生する歪みをシミュレーションにより解析した。なお、本発明は、以下に示す形態に限定されるものではない。

 (解析モデル1:溝あり)

 まず、前記第3実施形態をモデル化した溝を、基板上に設けられたランドの表面に形成するものとした。なお、溝の縦(X軸方向の長さ)を150μm、横(Y軸方向の長さ)を500μm、深さ(Z軸方向の長さ)を60μmに設定した。次に、ランド上に、はんだを供給するものとした。

 その後、はんだに電極が接触するように、チップコンデンサを基板上に配置し、リフローによりチップコンデンサを基板に実装することとした。なお、図5に示すようなチップコンデンサ実装基板が得られるものとした。

 (解析モデル2:溝なし)

 溝を省略した以外は、解析モデル1と同様にして、解析モデル2を構築した。

 以上のようにして構築した解析モデルに対して、-40℃から120℃の間で温度サイクル試験を行った。

 この温度サイクル試験中に、はんだに発生する歪みを解析した。なお、解析にあたり、基板の物性およびはんだの物性については、温度依存性を考慮したが、チップコンデンサの物性については、熱による影響を受け難いため、温度依存性を無視した。

 図6(a)は、解析モデル1の歪みコンター図であり、図6(b)は、解析モデル2の歪みコンター図である。これらのコンター図に示すように、溝を形成した解析モデル1では、溝を形成しない解析モデル2よりも歪みの発生が低減されている。

 また、図7は、図6(a)および図6(b)中の白丸で示す測定点において測定された歪みの時間変化を示すグラフである。このグラフに示すように、解析モデル1では、解析モデル2よりも歪みの発生が約25%低減されている。

 100…電子部品実装基板、1…配線基板、2…基板、3…ランド、31…溝、311a、311b…傾斜面、312…底面、4…レジスト層、10…電子部品、20…部品本体、30…電極、S…はんだ、θ…傾斜角度、D…最大深さ

Claims (12)


  1.  はんだを介して電子部品の電極が接合される、対向して配置された一対のランドを有する配線基板であって、

     各前記ランドは、前記一対のランドが対向する方向に沿って延び、かつ厚さ方向に窪む溝を備え、

     前記溝は、その幅方向の両端側から中側に向けて深さが大きくなっていることを特徴とする配線基板。

  2.  前記溝の内面は、前記溝の幅方向の両端側から中側に向けて、前記溝の深さが大きくなるように傾斜する2つの傾斜面を含む請求項1に記載の配線基板。

  3.  各前記傾斜面の傾斜角度は、前記溝の幅方向に沿った断面において、一定である請求項2に記載の配線基板。

  4.  前記2つの傾斜面は、前記溝の幅方向の中側において、直接繋がっている請求項2または3に記載の配線基板。

  5.  前記2つの傾斜面は、前記溝の幅方向の中側において、前記ランドの厚さ方向に直交する底面を介して繋がっている請求項2または3に記載の配線基板。

  6.  前記溝は、その幅方向に沿った断面において、線対称な形状をなしている請求項1~5のいずれか1項に記載の配線基板。

  7.  一方の前記ランドが備える前記溝は、他方の前記ランドに近い側の容積が、前記他方のランドから遠い側の容積より大きい請求項1~6のいずれか1項に記載の配線基板。

  8.  一方の前記ランドが備える前記溝は、その深さが他方の前記ランドに近い側から前記他方のランドから遠い側に向かって小さくなる部分を有する請求項1~7のいずれか1項に記載の配線基板。

  9.  一方の前記ランドが備える前記溝は、その深さが前記他方のランドに近い側の端部において最も大きい請求項8に記載の配線基板。

  10.  前記溝は、前記ランドの厚さ方向から見たとき、多角形状をなしている請求項1~9のいずれか1項に記載の配線基板。

  11.  一方の前記ランドが備える前記溝は、前記ランドの厚さ方向から見たとき、他方の前記ランドに近い側を底辺とする二等辺三角形状をなしている請求項1~10のいずれか1項に記載の配線基板。

  12.  請求項1~11のいずれか1項に記載の配線基板と、

     前記配線基板の前記ランドに、はんだを介して電極が接合された電子部品とを有することを特徴とする電子部品実装基板。
PCT/JP2019/021917 2018-06-29 2019-06-03 配線基板および電子部品実装基板 WO2020003907A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018123877 2018-06-29
JP2018-123877 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020003907A1 true WO2020003907A1 (ja) 2020-01-02

Family

ID=68986447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021917 WO2020003907A1 (ja) 2018-06-29 2019-06-03 配線基板および電子部品実装基板

Country Status (1)

Country Link
WO (1) WO2020003907A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053412A1 (ja) * 2021-09-30 2023-04-06 株式会社メイコー はんだ実装用ランドを有する基板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151368A (ja) * 2009-12-24 2011-08-04 Furukawa Electric Co Ltd:The 射出成形基板と実装部品との取付構造
JP2014093360A (ja) * 2012-11-01 2014-05-19 Toyota Industries Corp 基板
JP2014220336A (ja) * 2013-05-07 2014-11-20 株式会社デンソー 回路基板
JP2014229863A (ja) * 2013-05-27 2014-12-08 株式会社デンソー チップ部品の表面実装構造

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151368A (ja) * 2009-12-24 2011-08-04 Furukawa Electric Co Ltd:The 射出成形基板と実装部品との取付構造
JP2014093360A (ja) * 2012-11-01 2014-05-19 Toyota Industries Corp 基板
JP2014220336A (ja) * 2013-05-07 2014-11-20 株式会社デンソー 回路基板
JP2014229863A (ja) * 2013-05-27 2014-12-08 株式会社デンソー チップ部品の表面実装構造

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053412A1 (ja) * 2021-09-30 2023-04-06 株式会社メイコー はんだ実装用ランドを有する基板

Similar Documents

Publication Publication Date Title
JP6041043B2 (ja) コンタクト部品、および半導体モジュール
JP4452196B2 (ja) 金属板抵抗器
US6181544B1 (en) Ceramic electronic component
JP4560645B2 (ja) 複数の半導体基板を搭載するための放熱板およびそれを用いた半導体基板接合体
TW201539698A (zh) 改良至基板中之導通孔之連接之可靠性的方法及設備
US8076771B2 (en) Semiconductor device having metal cap divided by slit
KR20180124211A (ko) 홈이 형성된 칩 부품
WO2020003907A1 (ja) 配線基板および電子部品実装基板
JP2019179869A (ja) 電子部品
JP2010123693A (ja) 端子構造体
TWI634823B (zh) 電子裝置
JP2001230362A (ja) 半導体素子、そのはんだ付け方法および回路基板
TWI550767B (zh) 形成跡線上凸塊(bot)組件的方法 以及跡線上凸塊內連線
JP4766458B2 (ja) チップ部品の実装基板への実装方法
WO2020003908A1 (ja) 配線基板および電子部品実装基板
JP2008182078A (ja) チップ型金属板抵抗器
JP2006294932A (ja) 回路実装基板のランドおよび表面実装部品が搭載された回路実装基板
WO2021112073A1 (ja) 電子部品実装用基体、電子部品実装体およびその製造方法、ならびに電子機器
JP2007142165A (ja) チップ抵抗器とその製造方法
JPH0633366U (ja) ターミナルピン
JP2019179867A (ja) 電子部品
JP2018179207A (ja) ナット及び接合構造
JP2017212509A (ja) 圧電デバイス
JP6183578B1 (ja) 半導体装置
JPH03209793A (ja) ガラス基板の半田接続構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19827555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP