WO2020003708A1 - 複合発電設備及びその運用方法 - Google Patents

複合発電設備及びその運用方法 Download PDF

Info

Publication number
WO2020003708A1
WO2020003708A1 PCT/JP2019/016792 JP2019016792W WO2020003708A1 WO 2020003708 A1 WO2020003708 A1 WO 2020003708A1 JP 2019016792 W JP2019016792 W JP 2019016792W WO 2020003708 A1 WO2020003708 A1 WO 2020003708A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
gas turbine
heat recovery
exhaust heat
recovery boiler
Prior art date
Application number
PCT/JP2019/016792
Other languages
English (en)
French (fr)
Inventor
孝志 麻尾
佐藤 和彦
吉田 正平
小金沢 知己
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020207036943A priority Critical patent/KR102400461B1/ko
Priority to CN201980043423.2A priority patent/CN112334636B/zh
Publication of WO2020003708A1 publication Critical patent/WO2020003708A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/26Starting; Ignition
    • F02C7/268Starting drives for the rotor, acting directly on the rotor of the gas turbine to be started
    • F02C7/27Fluid drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the present invention relates to a combined cycle power generation facility (combined cycle power generation facility: C / C) and an operation method thereof, and more particularly, to a gas turbine using high-humidity air that adds moisture to combustion air and humidifies it.
  • the present invention relates to a combined power generation facility and a method for operating the same.
  • the combined cycle power plant combines a gas turbine with a steam turbine and an exhaust heat recovery boiler, uses the exhaust heat from the gas turbine to generate steam in the exhaust heat recovery boiler, and supplies the steam to the steam turbine to generate electricity. (See Patent Document 1).
  • the combined cycle power generation facility is generally constituted by a gas turbine 3, a steam turbine 9, and an exhaust heat recovery boiler 5.
  • the gas turbine 3 is provided with a combustor 2 and a compressor 1.
  • the air taken in by the compressor 1 is pressurized, and a gas turbine fuel gas is added to the high-pressure air to generate a combustion gas in the combustor 2.
  • the gas turbine 3 is driven using the combustion gas as a driving gas.
  • the exhaust heat recovery boiler 5 exchanges heat between the exhaust gas from the gas turbine 3 and the water supplied from the low-pressure water supply pump 12 to generate steam for driving the steam turbine 9. Further, the exhaust heat recovery boiler 5 includes a high-pressure system including a high-pressure economizer, a high-pressure evaporator, and a superheater that generate steam having different pressure levels, and a low-pressure system including a low-pressure economizer and a low-pressure evaporator. Consists of a system.
  • the feedwater supplied to the high-pressure economizer of the exhaust heat recovery boiler 5 exchanges heat with the exhaust gas from the gas turbine 3 by the high-pressure economizer, and becomes saturated steam by the high-pressure drum 7 and the high-pressure evaporator. .
  • the saturated steam is heated by the superheater to become superheated steam, and is supplied to the steam turbine 9 as high-pressure steam.
  • the water supplied to the low-pressure economizer of the exhaust heat recovery boiler 5 exchanges heat with the exhaust gas from the gas turbine 3 in the low-pressure economizer, and becomes saturated steam in the low-pressure drum 6 and the low-pressure evaporator. .
  • the saturated steam is supplied to the steam turbine 9 as low-pressure steam.
  • the exhaust gas of the steam turbine 9 is discharged to the condenser 11.
  • reference numeral 4 denotes a gas turbine generator
  • 8 denotes a high-pressure feed pump
  • 10 denotes a steam turbine generator
  • 13 denotes a ground steam condenser
  • 14 denotes an exhaust tower for exhausting exhaust gas.
  • the metal matching of the steam turbine 9 as the bottoming equipment (the temperature change width and the temperature change rate due to the thermal stress limitation of the difference between the metal temperature of the steam turbine 9 and the temperature of the vented steam).
  • the rate of change in the speed of the gas turbine 3 and the rate of change in load It takes about 50 minutes after the ignition of the gas turbine 3 to reach the rated load as a combined power generation facility even in a hot start, and it takes a considerable time. Was required.
  • the partial load performance (power generation end efficiency) of the combined power generation facility at the time of starting the gas turbine 3 depends on the steam flow characteristic depending on the load on the gas turbine 3 (depending on the exhaust gas temperature characteristic), and the load increases sharply. The rate of increase in efficiency was also limited.
  • the present invention has been made in view of the above points, and an object of the present invention is to reduce the start-up time of a combined power generation facility (the time required to reach a rated load is reduced by applying a gas turbine utilizing high-humidity air). Combined power generation equipment and a method of operating the same that enable high-efficiency operation at startup.
  • the combined cycle power plant of the present invention is driven by a gas turbine, an exhaust heat recovery boiler that generates steam using exhaust gas of the gas turbine as a heat source, and steam generated by the exhaust heat recovery boiler. And a steam turbine that is configured to inject steam generated by the exhaust heat recovery boiler into a combustor.
  • the amount of generated steam injected into the high humidity combustion gas turbine is controlled by the control device, and the entire amount of steam generated by the exhaust heat recovery boiler is controlled by the high humidity Injected into the combustion gas turbine, characterized in that to start.
  • a method for operating a combined cycle power plant includes a gas turbine, an exhaust heat recovery boiler that generates steam using exhaust gas from the gas turbine as a heat source, and an exhaust heat recovery boiler generated by the exhaust heat recovery boiler. And a steam turbine driven by steam that has been applied, and as a gas turbine, a combined power generation facility employing a high-humidity combustion gas turbine configured to inject steam generated in the exhaust heat recovery boiler into a combustor.
  • An operation method wherein when starting the high-humidity combustion gas turbine, the entire amount of steam generated by the exhaust heat recovery boiler is injected into the high-humidity combustion gas turbine via the combustor and started.
  • FIG. 4 is a characteristic diagram showing a comparison between a startup characteristic when a high-humidity combustion gas turbine is applied and a startup characteristic of a conventional combined power generation facility in Embodiment 1 of the combined power generation facility of the present invention.
  • the load operation characteristics operation corresponding to high-speed load change
  • the load operation characteristics high-speed load change compatible operation
  • FIG. 2 shows a schematic configuration of the combined cycle power generation equipment according to the first embodiment of the present invention.
  • the combined cycle power plant of the present embodiment similar to the conventional combined cycle facility, generates a gas turbine, an exhaust heat recovery boiler 5 that generates steam by using exhaust gas as a heat source, and the heat generated by the exhaust heat recovery boiler 5.
  • the steam turbine 9 driven by steam is provided.
  • a high-humidity combustion gas turbine configured to inject steam generated in the exhaust heat recovery boiler 5 into a combustor as a gas turbine.
  • the compressor employs a high-humidity compressor 1a
  • the combustor employs a high-humidity combustor 2a.
  • a control device 32 is provided for controlling the amount of steam generated in the exhaust heat recovery boiler 5 to be injected into the high-humidity combustion gas turbine 3a via the high-humidity combustor 2a.
  • the controller 32 controls the amount of steam generated in the exhaust heat recovery boiler 5 to be injected into the high-humidity combustion gas turbine 3a. The whole amount is injected into the high-humidity combustion gas turbine 3a via the high-humidity combustor 2a, and the high-humidity combustion gas turbine 3a is started.
  • the steam turbine 9 is warmed up by the low-pressure steam generated in the exhaust heat recovery boiler, and the metal temperature of the steam turbine 9 is set to the difference of the ventilation steam temperature difference.
  • the steam (high-pressure steam) that has been passed through the high-humidity combustion gas turbine 3a is switched to ventilation through the steam turbine 9, and the combined power generation operation is performed.
  • the entire amount of steam (high-pressure steam) that has been passed through the steam turbine 9 is switched to ventilation with the high-humidity combustion gas turbine 3a. I have.
  • the control device 32 of the present embodiment includes a low-pressure drum outlet steam pressure P1, a low-pressure drum outlet steam temperature T1, a low-pressure drum outlet steam flow F1, a steam turbine inlet low-pressure steam pressure P2, a steam turbine inlet low-pressure steam of the exhaust heat recovery boiler 5.
  • the high-pressure steam bypass flow rate F4 is taken into the control device 32 as a cooperative control signal based on the stable operation of the turbine 9, and the high-pressure steam bypass flow rate F4 is used as a protection operation when the amount of steam flowing into the condenser 11 is excessive. .
  • the superheater outlet steam pressure P3, the superheater outlet steam temperature T3, and the superheater outlet steam flow rate F3 of the steam generated in the exhaust heat recovery boiler 5 are input to the control device 32. Is determined to have established the outlet steam conditions, the warm-up operation of the steam injection system is started. After the warm-up operation of the steam injection system is completed, the gas turbine steam injection valve 27 is controlled based on a command from the control device 32. And the entire amount of steam (high-pressure steam) generated in the exhaust heat recovery boiler 5 is injected into the high humidity combustion gas turbine 3a via the high humidity combustor 2a.
  • establishment of the outlet steam condition of the superheater 24 means establishment of conditions of the superheater outlet steam pressure P3, the superheater outlet steam temperature T3, and the superheater outlet steam flow rate F3, and these conditions have been established. Thereafter, the warm-up (warm pipe) warm-up operation of the steam injection system is started, and the opening operation of the gas turbine steam injection valve 27 is performed after the warm-up operation of the steam injection system is completed.
  • the control device 32 controls the high-pressure steam bypass valve 26 installed upstream of the condenser 11 so that the outlet steam pressure of the exhaust heat recovery boiler 5 does not decrease.
  • the gas turbine steam injection valve 27 is controlled to be open while the steam (high-pressure steam) generated in the exhaust heat recovery boiler 5 is finally discharged through the high humidity combustor 2a. Has been injected.
  • the opening of the gas turbine steam injection valve 27 is confirmed by the control device 32 that the gas turbine steam injection pressure P5 and the gas turbine steam injection temperature T5 have reached the ventilation conditions of the high humidity combustion gas turbine 3a. Done.
  • the control device 32 confirms that the gas turbine steam injection pressure P5 and the gas turbine steam injection temperature T5 at the inlet of the high humidity combustion gas turbine 3a have reached the gas turbine ventilation conditions. Then, the gas turbine steam injection valve 27 is opened.
  • gas turbine steam injection valve 27 is opened while controlling the high-pressure steam bypass valve 26 with the control device 32 so that the outlet steam pressure of the exhaust heat recovery boiler 5 does not drop.
  • the fuel-air ratio set by the ratio of the fuel flow rate F9 and the compressor inlet air pressure flow rate F7, the amount of steam required for NOx lower than the specified moisture content, and the amount of steam for increased output are calculated.
  • the gas turbine steam injection valve 27 is opened. At that time, the gas turbine steam injection flow rate F5 is used as a feedback signal for the opening control of the gas turbine steam injection valve 27.
  • the low-pressure steam bypass valve 25 and the high-pressure steam bypass valve 26 are opened after the gas turbine is ignited, and the high-pressure steam bypass valve 26 is opened by the gas turbine steam injection valve 27. Is fully closed with all the high-pressure steam generated in the above being ventilated.
  • the high-pressure steam control valve 28 After establishing the steam conditions at the outlet of the superheater 24 (superheater outlet steam pressure P3 and superheater outlet steam temperature T3), the high-pressure steam control valve 28 changes the steam turbine inlet high-pressure steam pressure P4 and the steam turbine inlet high-pressure steam temperature T4 to steam. Open control is performed after confirming that the ventilation condition of the turbine 9 has been reached.
  • the low-pressure steam bypass valve 25 controls the low-pressure steam control valve 29 after the warm-up operation of the steam turbine 9 is started, and is fully closed.
  • the steam generated by the exhaust heat recovery boiler 5 is not used until the ventilation conditions for the high-humidity combustion gas turbine 3a and the steam turbine 9 are established.
  • a bypass system is provided for discharging to the condenser 11 via the low-pressure steam bypass valve 25 and the high-pressure steam bypass valve 26.
  • the high-pressure steam control valve 28 provided on the upstream side of the steam turbine 9 and The steam turbine is provided with a steam turbine device that introduces steam generated by the exhaust heat recovery boiler 5 to the steam turbine 9 through the low-pressure steam control valve 29 and recovers steam energy as an electric output through the steam turbine generator 10.
  • a water recovery device 15 is provided downstream of the exhaust heat recovery boiler 5 and recovers steam that has passed through the high humidity combustion gas turbine 3a and steam generated by combustion generation. The steam recovered by the device 15 is reused as feed water for the exhaust heat recovery boiler 5.
  • the water recovery device 15 is provided with an exhaust tower 14 that is filled with the filling material 16 and exhausts the exhaust gas.
  • the water vapor in the water recovery device 15 is recovered by the water recovery circulation pump 17 and is recovered. After being cooled by the water cooler 18, it returns to the water recovery device 15 as circulating water.
  • a part of the circulating water (recovered water) after being cooled by the water recovery circulating water cooler 18 is stored in a make-up water tank 19, and the recovered water in the make-up water tank 19 is passed through a recovered water feed pump 20. Then, the boiler feedwater supplied by the low-pressure feedwater pump 12 is introduced into a system for supplying the exhaust heat recovery boiler 5, and is reused as the feedwater for the exhaust heat recovery boiler 5.
  • FIG. 4 shows a comparison between the startup characteristics when the high-humidity combustion gas turbine according to the present embodiment is applied and the startup characteristics of a conventional combined cycle power generation system.
  • FIG. 5 shows the high-humidity combustion gas turbine according to the present embodiment.
  • FIG. 3 shows a comparison of load operation characteristics (operation corresponding to high-speed load change) when the system is applied and load operation characteristics (operation corresponding to high-speed load change) of the conventional combined power generation system.
  • FIGS. 4 and 5A are time on the horizontal axis and the load operation ratio on the vertical axis
  • FIGS. 4 and 5B are time on the horizontal axis and power generation efficiency on the vertical axis
  • 5 (c) shows the time on the horizontal axis and the steam flow on the vertical axis.
  • the entire amount of steam (high-pressure steam) generated by the exhaust heat recovery boiler 5 is injected into the high-humidity combustion gas turbine 3a at the initial stage of starting the high-humidity combustion gas turbine 3a.
  • the 90% load ignition of the combined power generation facility at 100% load
  • the startup time up to the relative value (based on the output) to 1/5 (about 10 minutes).
  • the steam turbine 9 After stable operation of the high-humidity combustion gas turbine 3a, the steam turbine 9 is warmed up, and the metal temperature of the steam turbine 9 is reduced to the specified temperature of the temperature change width and the temperature change rate due to the thermal stress limitation of the ventilation steam temperature difference. After being raised, the remaining steam excluding the injected amount for reducing nitrogen oxides (NOx) discharged from the gas turbine is sent to the steam turbine 9 out of the steam that has passed through the high-humidity combustion gas turbine 3a.
  • NOx nitrogen oxides
  • the entire amount of steam (high-pressure steam) generated by the exhaust heat recovery boiler 5 is injected into the high-humidity combustion gas turbine 3a. It is possible to improve the start-up time and the performance at the time of partial load at the start-up (power generation end efficiency).
  • the operation state of the gas turbine at the start of the load operation of the steam turbine is a partial load operation due to the thermal stress limitation of the bottoming facility (steam turbine).
  • the operation was to increase the load from to the rating.
  • the high-humidity combustion turbine alone reaches the rated load before starting the load operation of the steam turbine (before the combined operation of the gas turbine and the steam turbine), and the state shifts to the combined operation. Let me. Therefore, the ratio of the rated load operation period of the gas turbine to the period in which the combined power generation facility reaches the rated load is increased, and an operation with improved thermal efficiency at the time of startup can be performed.
  • the control device of the combined cycle power plant in this embodiment has a startup time reduction operation mode and a fast load change operation mode in addition to the normal start mode and the normal load operation mode of the combined cycle power plant.
  • the startup mode when the combined cycle power plant is started, the entire amount of high-pressure steam generated by the exhaust heat recovery boiler is injected into the combustor of the high-humidity combustion gas turbine to raise the high-humidity combustion gas turbine to the rated load. At the same time, after the steam turbine has been warmed up by the low-pressure steam generated in the exhaust heat recovery boiler, the high-pressure steam is passed through the steam turbine.
  • the start-up time shortening operation mode the high-humidity combustion gas turbine can be quickly started up to the rated load as described above, and the start-up time can be greatly reduced. Further, it is possible to improve the thermal efficiency of the gas turbine at the time of starting.
  • the high-pressure steam gas turbine is operated independently by switching the supply destination of the high-pressure steam to be passed through the steam turbine to the combustor during the load operation after the start of the combined cycle power plant.
  • the operation shifts from the combined operation of the steam turbine and the gas turbine (operation with an emphasis on thermal performance) to the independent operation of the high humidity combustion gas turbine (operation with an emphasis on load response). Since the single operation is performed by the high humidity combustion gas turbine, the operation is not restricted by the thermal stress limitation of the bottoming equipment (steam turbine), and the high-speed load change operation can be performed.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment.
  • low-pressure evaporator 23 ... high-pressure evaporator, 24 ... superheater, 25 ... low-pressure steam bypass valve, 26 ... high-pressure steam bypass valve, 27 ... gas turbine steam injection valve, 28 ... high-pressure steam control valve , 29 ... low pressure steam control valve, 30 ... compressor inlet Inner blade, 31: fuel flow control valve, 32: control device, P1: low-pressure drum outlet steam pressure, T1: low-pressure drum outlet steam temperature, F1: low-pressure drum outlet steam flow, P2: steam turbine inlet low-pressure steam pressure, T2 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Abstract

本発明は、高湿分空気を利用したガスタービンを適用することによって、複合発電設備の起動時間短縮(定格負荷到達までの時間を短縮)及び起動時に高効率運用を可能とする複合発電設備の運用方法を提供する。 本発明の複合発電設備の運用方法は、ガスタービンと、該ガスタービンの排ガスを熱源として蒸気を発生させる排熱回収ボイラと、該排熱回収ボイラで発生した蒸気によって駆動される蒸気タービンとを備え、前記ガスタービンとして、前記排熱回収ボイラで発生した蒸気を燃焼器に注入するように構成された高湿分燃焼ガスタービンを適用した複合発電設備の運用方法であって、前記高湿分燃焼ガスタービンの起動時に、前記排熱回収ボイラで発生した蒸気の全量を、前記燃焼器を介して前記高湿分燃焼ガスタービンに注入し起動することを特徴とする。

Description

複合発電設備及びその運用方法
 本発明は複合発電設備(コンバインドサイクル発電設備:C/C)及びその運用方法に係り、特に、燃焼用空気に湿分を添加して加湿する高湿分空気を利用したガスタービンを適用したものに好適な複合発電設備及びその運用方法に関する。
 複合発電設備は、ガスタービンに蒸気タービンと排熱回収ボイラを組合せ、ガスタービンから出た排熱を利用して排熱回収ボイラで蒸気を発生させ、その蒸気を蒸気タービンに供給して発電させるものである(特許文献1を参照)。
 この複合発電設備の一構成例を、図1を用いて説明する。
 図1に示す如く、複合発電設備は、ガスタービン3と、蒸気タービン9と、排熱回収ボイラ5とから概略構成されている。
 ガスタービン3は、燃焼器2と圧縮機1を備え、圧縮機1で吸い込んだ空気を高圧化し、その高圧空気にガスタービン燃料ガスを加えて燃焼器2で燃焼ガスを生成し、この生成した燃焼ガスを駆動ガスとしてガスタービン3を駆動させている。
 この時、圧縮機1で圧縮した圧縮空気に水分を添加して、燃焼器2に供給する作動流体の流量を増加させることにより、ガスタービン3の出力を増加させるようにした技術が、高湿分利用ガスタービンシステムである。
 一方、排熱回収ボイラ5は、ガスタービン3からの排ガスと低圧給水ポンプ12からの給水との熱交換を行い、蒸気タービン9の駆動蒸気を発生させている。更に、排熱回収ボイラ5は、各々圧力レベルの異なる蒸気を発生する高圧節炭器、高圧蒸発器、過熱器から構成される高圧系と、低圧節炭器、低圧蒸発器から構成される低圧系から成り立っている。
 また、高圧ドラム7、低圧ドラム6に供給された給水は、高圧蒸発器、低圧蒸発器で飽和蒸気となる。高圧飽和蒸気は、過熱器で加熱されて高圧蒸気となる。高圧蒸気及び低圧蒸気は、駆動用蒸気として蒸気タービン9に供給される。
 次に、蒸気タービン9に、蒸気を供給する系統を説明する。
 先ず、排熱回収ボイラ5の高圧節炭器へと供給された給水は、高圧節炭器にてガスタービン3からの排ガスと熱交換を行い、高圧ドラム7及び高圧蒸発器で飽和蒸気となる。その飽和蒸気は、過熱器で加熱され過熱蒸気となり、高圧蒸気として蒸気タービン9に供給される。
 また、排熱回収ボイラ5の低圧節炭器へと供給された給水は、低圧節炭器にてガスタービン3からの排ガスと熱交換を行い、低圧ドラム6及び低圧蒸発器で飽和蒸気となる。その飽和蒸気は、低圧蒸気として蒸気タービン9に供給される。蒸気タービン9の排気は、復水器11へと排出される。
 なお、図1において、4はガスタービン用発電機、8は高圧給水ポンプ、10は蒸気タービン用発電機、13はグランド蒸気復水器、14は排ガスを排気する排気塔である。
特開平10-306708号公報
 しかしながら、従来の複合発電設備は、ガスタービン3の起動後、ボトミング設備である蒸気タービン9のメタルマッチング(蒸気タービン9のメタル温度と通気蒸気温度差の熱応力制限による温度変化幅及び温度変化率の制限)の観点より、ガスタービン3の昇速率、負荷変化率の制限があり、ホット起動でも複合発電設備としての定格負荷到達までは、ガスタービン3の点火後50分程度かかり、かなりの時間を要していた。
 また、ガスタービン3の起動時の複合発電設備の部分負荷時性能(発電端効率)は、ガスタービン3の負荷に依存する蒸気流量特性に依存(排ガス温度特性に依存)し、急激な負荷上昇ができないため、効率上昇率も制限されていた。
 本発明は上述の点に鑑みなされたもので、その目的とするところは、高湿分空気を利用したガスタービンを適用することによって、複合発電設備の起動時間短縮(定格負荷到達までの時間を短縮)、及び起動時に高効率運用を可能とする複合発電設備及びその運用方法を提供することにある。
 本発明の複合発電設備は、上記目的を達成するために、ガスタービンと、該ガスタービンの排ガスを熱源として蒸気を発生させる排熱回収ボイラと、該排熱回収ボイラで発生した蒸気によって駆動される蒸気タービンとを備え、前記ガスタービンとして、前記排熱回収ボイラで発生した蒸気を燃焼器に注入するように構成された高湿分燃焼ガスタービンを適用した複合発電設備であって、前記排熱回収ボイラで発生した蒸気の前記燃焼器を介して前記高湿分燃焼ガスタービンに注入する量を制御する制御装置を備え、前記高湿分燃焼ガスタービンの起動時に、前記排熱回収ボイラで発生した蒸気の前記高湿分燃焼ガスタービンに注入する量を前記制御装置で制御し、前記排熱回収ボイラで発生した蒸気の全量を前記燃焼器を介して前記高湿分燃焼ガスタービンに注入し起動することを特徴とする。
 また、本発明の複合発電設備の運用方法は、上記目的を達成するために、ガスタービンと、該ガスタービンの排ガスを熱源として蒸気を発生させる排熱回収ボイラと、該排熱回収ボイラで発生した蒸気によって駆動される蒸気タービンとを備え、前記ガスタービンとして、前記排熱回収ボイラで発生した蒸気を燃焼器に注入するように構成された高湿分燃焼ガスタービンを適用した複合発電設備の運用方法であって、前記高湿分燃焼ガスタービンの起動時に、前記排熱回収ボイラで発生した蒸気の全量を、前記燃焼器を介して前記高湿分燃焼ガスタービンに注入し起動することを特徴とする。
 本発明によれば、高湿分空気を利用したガスタービンを適用することによって、複合発電設備の起動時間短縮(定格負荷到達までの時間を短縮)、及び起動時に高効率運用を可能とすることができる。
従来の複合発電設備を示す概略構成図である。 本発明の複合発電設備の実施例1を示す概略構成図である。 本発明の複合発電設備の実施例1における高湿分燃焼ガスタービンを適用した際の複合発電設備の起動運転手順を示す図である。 本発明の複合発電設備の実施例1における高湿分燃焼ガスタービンを適用した際の起動特性と従来の複合発電設備の起動特性を比較して示す特性図である。 本発明の複合発電設備の実施例1における高湿分燃焼ガスタービンを適用した際の負荷運用特性(高速負荷変化対応運用)と従来の複合発電設備の負荷運用特性(高速負荷変化対応運用)を比較して示す特性図である。
 以下、図示した実施例に基づいて本発明の複合発電設備及びその運用方法を説明する。
なお、各図において、同一構成部品には同符号を使用する。
 図2に、本発明の複合発電設備の実施例1の概略構成を示す。
 図2に示す本実施例の複合発電設備は、従来の複合発電設備と同様に、ガスタービンと、排ガスを熱源として蒸気を発生させる排熱回収ボイラ5と、この排熱回収ボイラ5で発生した蒸気によって駆動される蒸気タービン9とを備えているが、本実施例では、ガスタービンとして、排熱回収ボイラ5で発生した蒸気を燃焼器に注入するように構成された高湿分燃焼ガスタービン3aを適用した複合発電設備である。これに伴い圧縮機は、高湿分圧縮機1a、燃焼器は高湿分燃焼器2aを適用している。
 そして、本実施例では、排熱回収ボイラ5で発生した蒸気の高湿分燃焼器2aを介して高湿分燃焼ガスタービン3aに注入する量を制御する制御装置32を備え、高湿分燃焼ガスタービン3aの起動時に、排熱回収ボイラ5で発生した蒸気の高湿分燃焼ガスタービン3aに注入する量を制御装置32で制御し、排熱回収ボイラ5で発生した蒸気(高圧蒸気)の全量を高湿分燃焼器2aを介して高湿分燃焼ガスタービン3aに注入し、高湿分燃焼ガスタービン3aを起動するようにしている。
 また、本実施例では、高湿分燃焼ガスタービン3aの安定運転後、排熱回収ボイラで発生する低圧蒸気により蒸気タービン9を暖機運転し、蒸気タービン9のメタル温度を通気蒸気温度差の熱応力制限による温度変化幅及び温度変化率の規定温度まで上げた後、高湿分燃焼ガスタービン3aへ通気していた蒸気(高圧蒸気)を蒸気タービン9への通気に切り替えて複合発電運用とし、高湿分燃焼ガスタービン3aの高速負荷変化運用時は、蒸気タービン9へ通気していた蒸気(高圧蒸気)の全量を高湿分燃焼ガスタービン3aへの通気に切り替えて運用するようにしている。
 本実施例の制御装置32には、排熱回収ボイラ5の低圧ドラム出口蒸気圧力P1、低圧ドラム出口蒸気温度T1、低圧ドラム出口蒸気流量F1、蒸気タービン入口低圧蒸気圧力P2、蒸気タービン入口低圧蒸気温度T2、低圧蒸気バイパス流量F2、過熱器出口蒸気圧力P3、過熱器出口蒸気温度T3、過熱器出口蒸気流量F3、蒸気タービン入口高圧蒸気圧力P4、蒸気タービン入口高圧蒸気温度T4、高圧蒸気バイパス流量F4、ガスタービン蒸気噴射圧力P5、ガスタービン蒸気噴射温度T5、ガスタービン蒸気噴射流量F5、後述する水回収装置15での回収水流量F6、圧縮機入口空気圧力P7、圧縮機入口空気流量F7、圧縮機出口空気圧力P8、燃料流量F9、ガスタービン排気圧力P10、ガスタービン排気温度T10、ガスタービン発電機出力E1、蒸気タービン発電機出力E2、ガスタービン発電機回転数R1及び蒸気タービン発電機回転数R2が計測信号として入力され、低圧蒸気バイパス弁25、高圧蒸気バイパス弁26、ガスタービン蒸気噴射弁27、高圧蒸気加減弁28、低圧蒸気加減弁29、圧縮機入口案内翼30及び燃料流量調節弁31の開閉を制御するようにしている。
 排熱回収ボイラ5の低圧ドラム出口蒸気圧力P1、低圧ドラム出口蒸気温度T1、低圧ドラム出口蒸気流量F1、蒸気タービン入口低圧蒸気圧力P2、蒸気タービン入口低圧蒸気温度T2、低圧蒸気バイパス流量F2、過熱器出口蒸気圧力P3、過熱器出口蒸気温度T3、過熱器出口蒸気流量F3、蒸気タービン入口高圧蒸気圧力P4、及び蒸気タービン入口高圧蒸気温度T4は、起動から負荷運転まで排熱回収ボイラ5と蒸気タービン9の安定運転を踏まえた協調制御信号として制御装置32に取り込まれ、高圧蒸気バイパス流量F4は、復水器11への流入蒸気量の過大時保護動作として信号を制御装置32に取り込んでいる。
 本実施例では、排熱回収ボイラ5で発生した蒸気の過熱器出口蒸気圧力P3、過熱器出口蒸気温度T3及び過熱器出口蒸気流量F3が制御装置32に入力され、制御装置32で過熱器24の出口蒸気条件を確立したと判断した後は蒸気噴射系統の暖機運転を開始し、蒸気噴射系統の暖機運転が終了した後に、制御装置32からの指令に基づいてガスタービン蒸気噴射弁27を開放し、排熱回収ボイラ5で発生した蒸気(高圧蒸気)の全量を高湿分燃焼器2aを介して高湿分燃焼ガスタービン3aに注入している。
 即ち、図3に示す如く、過熱器24の出口蒸気条件確立は、過熱器出口蒸気圧力P3、過熱器出口蒸気温度T3及び過熱器出口蒸気流量F3の条件確立を意味し、この条件が確立した後、蒸気噴射系統の暖機(暖管)暖気運転開始となり、ガスタービン蒸気噴射弁27の開動作は、蒸気噴射系統の暖機運転が終了した後となる。
 ガスタービン蒸気噴射弁27を開放した後は、排熱回収ボイラ5の出口蒸気圧力が下がらないように、制御装置32で復水器11の上流側に設置されている高圧蒸気バイパス弁26を制御しながらガスタービン蒸気噴射弁27を開制御し、最終的には、排熱回収ボイラ5で発生した蒸気(高圧蒸気)の全量を高湿分燃焼器2aを介して高湿分燃焼ガスタービン3aに注入している。
 また、ガスタービン蒸気噴射弁27の開放は、ガスタービン蒸気噴射圧力P5及びガスタービン蒸気噴射温度T5が、高湿分燃焼ガスタービン3aの通気条件に達していることを制御装置32で確認して行われる。
 即ち、排熱回収ボイラ5の出口から高湿分燃焼ガスタービン3aの入口、タービンバイパス系統の暖機運転完了(暖機運転完了条件は、蒸気タービン入口高圧蒸気温度T4とガスタービン蒸気噴射温度T5が規定温度以上で完了)後は、高湿分燃焼ガスタービン3aの入口のガスタービン蒸気噴射圧力P5及びガスタービン蒸気噴射温度T5が、ガスタービン通気条件に達していることを制御装置32で確認し、ガスタービン蒸気噴射弁27を開放する。
 但し、排熱回収ボイラ5の出口蒸気圧力が下がらないよう、高圧蒸気バイパス弁26を制御装置32で制御しながらガスタービン蒸気噴射弁27を開放する。
 また、負荷上昇時には、燃料流量F9と圧縮機入口空気圧力流量F7の比率で設定される燃空比と規定湿分量より低NOX上必要とされる蒸気量と増出力用蒸気量を演算し、ガスタービン蒸気噴射弁27を開放する。その際、ガスタービン蒸気噴射弁27の開制御のフィードバック信号として、ガスタービン蒸気噴射流量F5を使用する。
 また、図3に示すように、低圧蒸気バイパス弁25及び高圧蒸気バイパス弁26は、ガスタービン点火後は開動作し、高圧蒸気バイパス弁26は、ガスタービン蒸気噴射弁27で排熱回収ボイラ5で発生した高圧蒸気を全量通気状態で全閉となる。
 高圧蒸気加減弁28は、過熱器24の出口蒸気条件(過熱器出口蒸気圧力P3及び過熱器出口蒸気温度T3)確立後、蒸気タービン入口高圧蒸気圧力P4及び蒸気タービン入口高圧蒸気温度T4が、蒸気タービン9の通気条件に達していることを確認して開制御する。
 低圧蒸気バイパス弁25は、蒸気タービン9の暖機運転開始以降に低圧蒸気加減弁29を制御し全閉となる。
 また、高湿分燃焼ガスタービン3aの起動初期時には、排熱回収ボイラ5の発生蒸気が高湿分燃焼ガスタービン3a及び蒸気タービン9の通気条件確立までは、排熱回収ボイラ5の発生蒸気を低圧蒸気バイパス弁25、高圧蒸気バイパス弁26を介して復水器11に排出するバイパス系統設備を備えている。
 また、排熱回収ボイラ5の低圧蒸発器22及び高圧蒸発器23からの発生蒸気が蒸気タービン9の通気条件を確立した後は、蒸気タービン9の上流側に設けられた高圧蒸気加減弁28及び低圧蒸気加減弁29を介して排熱回収ボイラ5の発生蒸気を蒸気タービン9に導入し、蒸気エネルギーを蒸気タービン用発電機10を介して電気出力として回収する蒸気タービン設備を備えている。
 更に、本実施例では、排熱回収ボイラ5の下流側に設置され、高湿分燃焼ガスタービン3aへ通気した蒸気と燃焼生成で発生した水蒸気を回収する水回収装置15を備え、この水回収装置15で回収された水蒸気を、排熱回収ボイラ5の給水として再利用している。
 即ち、水回収装置15は、内部に充填物16が充填され、排気ガスを排気する排気塔14を備えており、水回収装置15内の水蒸気は、水回収循環ポンプ17で回収され水回収循環水冷却器18で冷却された後、循環水として水回収装置15に戻る。
 水回収循環水冷却器18で冷却された後の循環水の一部(回収水)は、補給水タンク19に貯留され、この補給水タンク19内の回収水を、回収水送水ポンプ20を介して、低圧給水ポンプ12で供給されるボイラ給水を排熱回収ボイラ5へ供給する系統に導入し、排熱回収ボイラ5の給水として再利用するものである。
 このような本実施例による効果を、図4及び図5を用いて説明する。
 図4は、本実施例における高湿分燃焼ガスタービンを適用した際の起動特性と従来の複合発電設備の起動特性を比較して示し、図5は、本実施例における高湿分燃焼ガスタービンを適用した際の負荷運用特性(高速負荷変化対応運用)と従来の複合発電設備の負荷運用特性(高速負荷変化対応運用)を比較して示すものである。
 図4及び図5の(a)は横軸に時間、縦軸に負荷運転の割合を、図4及び図5の(b)は横軸に時間、縦軸に発電端効率、図4及び図5の(c)は横軸に時間、縦軸に蒸気流量を示す。
 図4の高湿分燃焼ガスタービンを適用した際の起動特性及び図5の高湿分燃焼ガスタービンを適用した際の負荷運用特性(高速負荷変化対応運用)のいずれの場合も、本実施例(A)の方が従来の複合発電設備(B)より、高湿分燃焼ガスタービン3aの起動時間が短縮されていることがわかる。
 特に、本実施例(A)では、高湿分燃焼ガスタービン3aの起動初期段階に、排熱回収ボイラ5で発生した蒸気(高圧蒸気)の全量を高湿分燃焼ガスタービン3aに注入し、複合発電設備の負荷として約90%負荷相当まで高湿分燃焼ガスタービン3aを単独運転することで、高湿分燃焼ガスタービン3aの点火から90%負荷(複合発電設備の100%負荷時発電端出力を基準にした相対値)までの起動時間を1/5(約10分)に短縮することが可能となる。
 また、高湿分燃焼ガスタービン3aの安定運転後、蒸気タービン9を暖機運転し、蒸気タービン9のメタル温度を通気蒸気温度差の熱応力制限による温度変化幅及び温度変化率の規定温度まで上げた後、高湿分燃焼ガスタービン3aへ通気していた蒸気のうち、ガスタービンから排出される窒素酸化物(NOx)を低減するための注入分を除いた残りの蒸気を蒸気タービン9に通気して複合発電運用とすることで、複合発電設備の高効率運転が可能となる。
 また、高湿分燃焼ガスタービン3aの起動時に、排熱回収ボイラ5で発生した蒸気(高圧蒸気)の全量を高湿分燃焼ガスタービン3aに注入することで、高湿分燃焼ガスタービン3aの起動時間及び起動時の部分負荷時性能(発電端効率)を向上することが可能となる。
 即ち、一般的な複合発電設備における起動運転では、ボトミング設備(蒸気タービン)の熱応力制限によって、蒸気タービンの負荷運転の開始時点でのガスタービンの運転状態は部分負荷運転となっており、そこから定格に向けて負荷を上昇させる運用となっていた。
 これに対して、本実施例では、蒸気タービンの負荷運転開始前(ガスタービンと蒸気タービンの複合運用前)に高湿分燃焼タービンを単独で定格負荷まで到達させ、その状態から複合運用に移行させている。従って、複合発電設備が定格負荷まで到達する期間における、ガスタービンの定格負荷運転期間の比率が高まり、起動時の熱効率を向上させた運転が可能となる。
 更に、高湿分燃焼ガスタービン3aの高速負荷変化運用時は、蒸気タービン9へ通気していた蒸気(高圧蒸気)の全量を高湿分燃焼ガスタービン3aへの通気に切り替えて運用することで、高速負荷応答が可能となる。
 また、本実施例における複合発電設備の制御装置は、複合発電設備の通常起動モードと通常負荷運転モードに加えて、起動時間短縮運用モードと高速負荷変化運用モードを具備している。
 起動時間短縮運用モードは、複合発電設備の起動時、排熱回収ボイラで発生した高圧蒸気の全量を高湿分燃焼ガスタービンの燃焼器に注入して高湿分燃焼ガスタービンを定格負荷まで上昇させると共に、排熱回収ボイラで発生した低圧蒸気による蒸気タービンの暖機が完了した後、高圧蒸気を蒸気タービンに通気させる。起動時間短縮運用モードを稼働させることにより、上述のように高湿分燃焼ガスタービンを定格負荷まで急速起動させることが可能となり、起動時間を大幅に短縮することができる。更に、起動時におけるガスタービンの熱効率を向上させることが可能となる。
 また、高速負荷変化運用モードは、複合発電設備の起動完了後の負荷運転時、蒸気タービンに通気させる高圧蒸気の供給先を燃焼器に切り替えて、高湿分燃焼ガスタービンを単独運転させる。高速負荷変化運用モードでは、蒸気タービンとガスタービンの複合運転(熱性能重視運転)から高湿分燃焼ガスタービンの単独運転(負荷応答性重視運転)に移行する。高湿分燃焼ガスタービンによる単独運転であるため、ボトミング設備(蒸気タービン)の熱応力制限に拘束されることがなくなり、高速な負荷変化運転が可能となる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1…圧縮機、1a…高湿分圧縮機、2…燃焼器、2a…高湿分燃焼器、3…ガスタービン、3a…高湿分燃焼ガスタービン、4…ガスタービン用発電機、5…排熱回収ボイラ、6…低圧ドラム、7…高圧ドラム、8…高圧給水ポンプ、9…蒸気タービン、10…蒸気タービン用発電機、11…復水器、12…低圧給水ポンプ、13…グランド蒸気復水器、14…排気塔、15…水回収装置、16…充填物、17…水回収循環ポンプ、18…水回収循環水冷却器、19…補給水タンク、20…回収水送水ポンプ、21…節炭器、22…低圧蒸発器、23…高圧蒸発器、24…過熱器、25…低圧蒸気バイパス弁、26…高圧蒸気バイパス弁、27…ガスタービン蒸気噴射弁、28…高圧蒸気加減弁、29…低圧蒸気加減弁、30…圧縮機入口案内翼、31…燃料流量調節弁、32…制御装置、P1…低圧ドラム出口蒸気圧力、T1…低圧ドラム出口蒸気温度、F1…低圧ドラム出口蒸気流量、P2…蒸気タービン入口低圧蒸気圧力、T2…蒸気タービン入口低圧蒸気温度、F2…低圧蒸気バイパス流量、P3…過熱器出口蒸気圧力、T3…過熱器出口蒸気温度、F3…過熱器出口蒸気流量、P4…蒸気タービン入口高圧蒸気圧力、T4…蒸気タービン入口高圧蒸気温度、F4…高圧蒸気バイパス流量、P5…ガスタービン蒸気噴射圧力、T5…ガスタービン蒸気噴射温度、F5…ガスタービン蒸気噴射流量、F6…水回収装置での回収水流量、P7…圧縮機入口空気圧力、F7…圧縮機入口空気流量、P8…圧縮機出口空気圧力、F9…燃料流量、P10…ガスタービン排気圧力、T10…ガスタービン排気温度、E1…ガスタービン発電機出力、E2…蒸気タービン発電機出力、R1…ガスタービン発電機回転数、R2…蒸気タービン発電機回転数。

Claims (17)

  1.  ガスタービンと、該ガスタービンの排ガスを熱源として蒸気を発生させる排熱回収ボイラと、該排熱回収ボイラで発生した蒸気によって駆動される蒸気タービンとを備え、前記ガスタービンとして、前記排熱回収ボイラで発生した蒸気を燃焼器に注入するように構成された高湿分燃焼ガスタービンを適用した複合発電設備の運用方法であって、
     前記高湿分燃焼ガスタービンの起動時に、前記排熱回収ボイラで発生した蒸気の全量を、前記燃焼器を介して前記高湿分燃焼ガスタービンに注入し起動することを特徴とする複合発電設備の運用方法。
  2.  請求項1に記載の複合発電設備の運用方法であって、
     前記排熱回収ボイラで発生した蒸気の過熱器出口蒸気圧力及び過熱器出口蒸気温度が、過熱器の出口蒸気条件を確立した後は蒸気噴射系統の暖機運転を開始し、前記蒸気噴射系統の暖機運転が終了した後に、前記燃焼器の上流側に設置されたガスタービン蒸気噴射弁を開放し、前記排熱回収ボイラで発生した蒸気の全量を前記燃焼器を介して前記高湿分燃焼ガスタービンに注入することを特徴とする複合発電設備の運用方法。
  3.  請求項2に記載の複合発電設備の運用方法であって、
     前記ガスタービン蒸気噴射弁を開放した後は、前記排熱回収ボイラの出口蒸気圧力が下がらないように、復水器の上流側に設置されている高圧蒸気バイパス弁を制御しながら前記ガスタービン蒸気噴射弁を開制御することを特徴とする複合発電設備の運用方法。
  4.  請求項3に記載の複合発電設備の運用方法であって、
     前記ガスタービン蒸気噴射弁の開放は、ガスタービン蒸気噴射圧力及びガスタービン蒸気噴射温度が、前記高湿分燃焼ガスタービンの通気条件に達していることを確認して行われることを特徴とする複合発電設備の運用方法。
  5.  請求項1乃至4のいずれか1項に記載の複合発電設備の運用方法であって、
     前記高湿分燃焼ガスタービンへ通気した蒸気と燃焼生成で発生した水蒸気は、前記排熱回収ボイラの下流側に設置された水回収装置で回収され、前記排熱回収ボイラの給水として再利用することを特徴とする複合発電設備の運用方法。
  6.  請求項1乃至5のいずれか1項に記載の複合発電設備の運用方法であって、
     前記高湿分燃焼ガスタービンの安定運転後、前記蒸気タービンを暖機運転し、前記蒸気タービンのメタル温度を通気蒸気温度差の熱応力制限による温度変化幅及び温度変化率の規定温度まで上げた後、前記高湿分燃焼ガスタービンへ通気していた蒸気を前記蒸気タービンへの通気に切り替えて複合発電運用とすることを特徴とする複合発電設備の運用方法。
  7.  請求項6に記載の複合発電設備の運用方法燃焼器であって、
     前記高湿分燃焼ガスタービンの高速負荷変化運用時は、前記蒸気タービンへ通気していた蒸気の全量を前記高湿分燃焼ガスタービンへの通気に切り替えて運用することを特徴とする複合発電設備の運用方法。
  8.  請求項1に記載の複合発電設備の運用方法であって、
     前記排熱回収ボイラは高圧蒸気と低圧蒸気を発生させるものであって、前記複合発電設備の起動時、前記高圧蒸気を前記燃焼器を介して前記高湿分燃焼ガスタービンに注入すると共に、前記低圧蒸気を暖機蒸気として前記蒸気タービンに供給することを特徴とする複合発電設備の運用方法。
  9.  ガスタービンと、該ガスタービンの排ガスを熱源として蒸気を発生させる排熱回収ボイラと、該排熱回収ボイラで発生した蒸気によって駆動される蒸気タービンとを備え、前記ガスタービンとして、前記排熱回収ボイラで発生した蒸気を燃焼器に注入するように構成された高湿分燃焼ガスタービンを適用した複合発電設備であって、
     前記排熱回収ボイラで発生した蒸気の前記燃焼器を介して前記高湿分燃焼ガスタービンに注入する量を制御する制御装置を備え、
     前記高湿分燃焼ガスタービンの起動時に、前記排熱回収ボイラで発生した蒸気の前記高湿分燃焼ガスタービンに注入する量を前記制御装置で制御し、前記排熱回収ボイラで発生した蒸気の全量を前記燃焼器を介して前記高湿分燃焼ガスタービンに注入し起動することを特徴とする複合発電設備。
  10.  請求項9に記載の複合発電設備であって、
     前記燃焼器の上流側にガスタービン蒸気噴射弁が設置されていると共に、前記排熱回収ボイラで発生した蒸気の情報が前記制御装置に入力され、この情報を基に前記制御装置で前記ガスタービン蒸気噴射弁を開放し、前記排熱回収ボイラで発生した蒸気の全量を前記燃焼器を介して前記高湿分燃焼ガスタービンに注入することを特徴とする複合発電設備。
  11.  請求項10に記載の複合発電設備であって、
     前記排熱回収ボイラで発生した蒸気の過熱器出口蒸気圧力及び過熱器出口蒸気温度が前記制御装置に入力され、前記制御装置で過熱器の出口蒸気条件を確立したと判断した後は蒸気噴射系統の暖機運転を開始し、前記蒸気噴射系統の暖機運転が終了した後に、前記制御装置からの指令に基づいて前記ガスタービン蒸気噴射弁を開放し、前記排熱回収ボイラで発生した蒸気の全量を前記燃焼器を介して前記高湿分燃焼ガスタービンに注入することを特徴とする複合発電設備。
  12.  請求項10に記載の複合発電設備であって、
     前記ガスタービン蒸気噴射弁を開放した後は、前記排熱回収ボイラの出口蒸気圧力が下がらないように、前記制御装置で復水器の上流側に設置されている高圧蒸気バイパス弁を制御しながら前記ガスタービン蒸気噴射弁を開制御することを特徴とする複合発電設備。
  13.  請求項12に記載の複合発電設備であって、
     前記ガスタービン蒸気噴射弁の開放は、ガスタービン蒸気噴射圧力及びガスタービン蒸気噴射温度が、前記高湿分燃焼ガスタービンの通気条件に達していることを前記制御装置で確認して行われることを特徴とする複合発電設備。
  14.  請求項9乃至13のいずれか1項に記載の複合発電設備であって、
     前記高湿分燃焼ガスタービンの起動初期時には、前記排熱回収ボイラの発生蒸気が前記高湿分燃焼ガスタービン及び前記蒸気タービンの通気条件確立までは、前記排熱回収ボイラの発生蒸気を低圧蒸気バイパス弁、高圧蒸気バイパス弁を介して復水器に排出するバイパス系統設備を備えていることを特徴とする複合発電設備。
  15.  請求項14に記載の複合発電設備であって、
     前記排熱回収ボイラの発生蒸気が前記蒸気タービンの通気条件を確立した後は、前記蒸気タービンの上流側に設けられた高圧蒸気加減弁及び低圧蒸気加減弁を介して前記排熱回収ボイラの発生蒸気を前記蒸気タービンに導入し、蒸気エネルギーを蒸気タービン用発電機を介して電気出力として回収する蒸気タービン設備を備えていることを特徴とする複合発電設備。
  16.  請求項15に記載の複合発電設備であって、
     前記排熱回収ボイラの下流側に設置され、前記高湿分燃焼ガスタービンへ通気した蒸気と燃焼生成で発生した水蒸気を回収する水回収装置を備え、前記水回収装置で回収された前記水蒸気を、前記排熱回収ボイラの給水として再利用することを特徴とする複合発電設備。
  17.  請求項9乃至16のいずれか1項に記載の複合発電設備であって、
     前記制御装置は、
     前記複合発電設備の起動時、前記排熱回収ボイラで発生した高圧蒸気の全量を前記高湿分燃焼ガスタービンの前記燃焼器に注入して前記高湿分燃焼ガスタービンを定格負荷まで上昇させると共に、前記排熱回収ボイラで発生した低圧蒸気による前記蒸気タービンの暖機が完了した後、前記高圧蒸気を前記蒸気タービンに通気させる起動時間短縮運用モードと、
     前記複合発電設備の起動完了後の負荷運転時、前記蒸気タービンに通気させる前記高圧蒸気の供給先を前記燃焼器に切り替えて、前記高湿分燃焼ガスタービンを単独運転させる高速負荷変化運用モードを備えたことを特徴とする複合発電設備。
PCT/JP2019/016792 2018-06-29 2019-04-19 複合発電設備及びその運用方法 WO2020003708A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207036943A KR102400461B1 (ko) 2018-06-29 2019-04-19 복합 발전 설비 및 그 운용 방법
CN201980043423.2A CN112334636B (zh) 2018-06-29 2019-04-19 复合发电设备及其运用方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018124380A JP6800917B2 (ja) 2018-06-29 2018-06-29 複合発電設備及びその運用方法
JP2018-124380 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020003708A1 true WO2020003708A1 (ja) 2020-01-02

Family

ID=68987031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016792 WO2020003708A1 (ja) 2018-06-29 2019-04-19 複合発電設備及びその運用方法

Country Status (4)

Country Link
JP (1) JP6800917B2 (ja)
KR (1) KR102400461B1 (ja)
CN (1) CN112334636B (ja)
WO (1) WO2020003708A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252120A (zh) * 2021-04-21 2021-08-13 广西电网有限责任公司电力科学研究院 一种fcb功能火电机组的低压旁路容量测算机构

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7433381B1 (ja) 2022-08-10 2024-02-19 三菱重工業株式会社 水回収システム、ガスタービンコジェネレーションシステム、および、その運転方法
JP7471353B2 (ja) 2022-08-10 2024-04-19 三菱重工業株式会社 水回収システム、ガスタービンコジェネレーションシステム、および、その運転方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249930A (ja) * 1988-08-10 1990-02-20 Toshiba Corp 複合発電設備の蒸気噴射制御装置
JPH0275731A (ja) * 1988-09-09 1990-03-15 Mitsubishi Heavy Ind Ltd タービンプラント
JPH04342806A (ja) * 1991-05-17 1992-11-30 Toshiba Corp コンバインド発電プラントの蒸気タービン制御装置
JPH10288007A (ja) * 1997-04-15 1998-10-27 Mitsubishi Heavy Ind Ltd コンバインドサイクル発電プラントにおける冷却蒸気供給方法
JP2000045790A (ja) * 1998-07-27 2000-02-15 Toshiba Corp コンバインドサイクル発電プラント
JP2005054583A (ja) * 2003-08-01 2005-03-03 Hitachi Ltd 一軸コンバインドサイクル発電設備及びその運転方法
JP2013527370A (ja) * 2010-04-30 2013-06-27 シーメンス エナジー インコーポレイテッド 複合サイクル発電システムにおける出力増大のためのエネルギ回収および蒸気供給
JP2014047657A (ja) * 2012-08-30 2014-03-17 Hitachi Ltd 湿分利用ガスタービンシステム
JP2018009491A (ja) * 2016-07-12 2018-01-18 三菱日立パワーシステムズ株式会社 コンバインドサイクルプラント及びその制御装置、蒸気タービンの起動方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141089A (ja) * 1996-11-13 1998-05-26 Tokyo Gas Co Ltd ガスタービン発電システム
JP3925985B2 (ja) 1997-05-07 2007-06-06 株式会社東芝 コンバインドサイクル発電プラント
JP3967795B2 (ja) * 1997-08-01 2007-08-29 大阪瓦斯株式会社 2流体ガスタービンシステム
JP3897891B2 (ja) * 1998-01-19 2007-03-28 株式会社東芝 コンバインドサイクル発電プラント
JP2000130108A (ja) * 1998-10-28 2000-05-09 Toshiba Corp 複合サイクル発電プラントの起動方法
JP2003269188A (ja) * 2002-03-19 2003-09-25 Ishikawajima Harima Heavy Ind Co Ltd 蒸気噴射再熱ガスタービン発電装置
JP2003286859A (ja) * 2002-03-27 2003-10-10 Osaka Gas Co Ltd 二流体ガスタービンの起動方法
EP2119891B1 (en) * 2008-05-15 2023-09-13 Mitsubishi Heavy Industries, Ltd. Control of working fluid flow of a two-shaft gas turbine
JP6420729B2 (ja) * 2015-07-02 2018-11-07 三菱日立パワーシステムズ株式会社 排ガスから湿分を回収する火力発電設備及びその火力発電設備の回収水の処理方法
JP6607772B2 (ja) * 2015-12-03 2019-11-20 三菱日立パワーシステムズ株式会社 蒸気噴射機構を有する2軸式ガスタービン
JP6626797B2 (ja) * 2016-07-29 2019-12-25 三菱日立パワーシステムズ株式会社 蒸気注入ガスタービン及びその制御方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249930A (ja) * 1988-08-10 1990-02-20 Toshiba Corp 複合発電設備の蒸気噴射制御装置
JPH0275731A (ja) * 1988-09-09 1990-03-15 Mitsubishi Heavy Ind Ltd タービンプラント
JPH04342806A (ja) * 1991-05-17 1992-11-30 Toshiba Corp コンバインド発電プラントの蒸気タービン制御装置
JPH10288007A (ja) * 1997-04-15 1998-10-27 Mitsubishi Heavy Ind Ltd コンバインドサイクル発電プラントにおける冷却蒸気供給方法
JP2000045790A (ja) * 1998-07-27 2000-02-15 Toshiba Corp コンバインドサイクル発電プラント
JP2005054583A (ja) * 2003-08-01 2005-03-03 Hitachi Ltd 一軸コンバインドサイクル発電設備及びその運転方法
JP2013527370A (ja) * 2010-04-30 2013-06-27 シーメンス エナジー インコーポレイテッド 複合サイクル発電システムにおける出力増大のためのエネルギ回収および蒸気供給
JP2014047657A (ja) * 2012-08-30 2014-03-17 Hitachi Ltd 湿分利用ガスタービンシステム
JP2018009491A (ja) * 2016-07-12 2018-01-18 三菱日立パワーシステムズ株式会社 コンバインドサイクルプラント及びその制御装置、蒸気タービンの起動方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252120A (zh) * 2021-04-21 2021-08-13 广西电网有限责任公司电力科学研究院 一种fcb功能火电机组的低压旁路容量测算机构
CN113252120B (zh) * 2021-04-21 2022-07-12 广西电网有限责任公司电力科学研究院 一种fcb功能火电机组的低压旁路容量测算机构

Also Published As

Publication number Publication date
CN112334636B (zh) 2022-10-28
CN112334636A (zh) 2021-02-05
JP6800917B2 (ja) 2020-12-16
KR102400461B1 (ko) 2022-05-20
JP2020002895A (ja) 2020-01-09
KR20210011017A (ko) 2021-01-29

Similar Documents

Publication Publication Date Title
KR101644764B1 (ko) 발전 시스템 및 발전 시스템의 운전 방법
US6782703B2 (en) Apparatus for starting a combined cycle power plant
US7621133B2 (en) Methods and apparatus for starting up combined cycle power systems
WO2020003708A1 (ja) 複合発電設備及びその運用方法
KR101594323B1 (ko) 통합형 연료 가스 예열을 갖는 발전소
US7509794B2 (en) Waste heat steam generator
JP6830049B2 (ja) 制御装置とそれを備えたガスタービンコンバインドサイクル発電システム、プログラム、およびガスタービンコンバインドサイクル発電システムの制御方法
CN106089341B (zh) 增强多燃气涡轮联合循环装置中冷蒸汽涡轮启动的方法
EP0754266A1 (en) Split stream boiler for combined cycle power plants
US20150369125A1 (en) Method for increasing the power of a combined-cycle power plant, and combined-cycle power plant for conducting said method
US6957540B1 (en) Multi-mode complex cycle power plant
JPH08260912A (ja) コンバインドサイクル発電プラント
JP2017503105A (ja) ロータ空気冷却に適用するための圧力選択式ケトル型ボイラ
JP2000130108A (ja) 複合サイクル発電プラントの起動方法
US8813506B2 (en) Method for quickly connecting a steam generator
CN103975143B (zh) 燃气涡轮冷却系统及燃气涡轮冷却方法
CN107075977A (zh) 用于联合循环发电设备的低负载调降
JP3641518B2 (ja) コンバインドサイクルプラントの蒸気温度制御方法及び装置
JP2019173697A (ja) コンバインドサイクル発電プラント及びその運転方法
JP2019027387A (ja) コンバインドサイクル発電プラント、その運転方法並びに改造方法
Berezinets et al. Technology used to operate the 300-MW power unit topped with a GTE-110 gas turbine
JP6625848B2 (ja) 蒸気加減弁制御装置、発電プラントおよび蒸気加減弁制御方法
JP2003129860A (ja) 熱電可変合成ガスタービン
JP2003049665A (ja) ガスタービンコージェネレーションシステム
JP2004346945A (ja) コンバインドサイクルプラントの蒸気温度制御方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207036943

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19827071

Country of ref document: EP

Kind code of ref document: A1