WO2020003605A1 - 電極構造体及び非水電解質二次電池 - Google Patents

電極構造体及び非水電解質二次電池 Download PDF

Info

Publication number
WO2020003605A1
WO2020003605A1 PCT/JP2019/006875 JP2019006875W WO2020003605A1 WO 2020003605 A1 WO2020003605 A1 WO 2020003605A1 JP 2019006875 W JP2019006875 W JP 2019006875W WO 2020003605 A1 WO2020003605 A1 WO 2020003605A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
resistant layer
negative electrode
resistant
aqueous electrolyte
Prior art date
Application number
PCT/JP2019/006875
Other languages
English (en)
French (fr)
Inventor
一洋 吉井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020527194A priority Critical patent/JP7203360B2/ja
Priority to CN201980031426.4A priority patent/CN112106231A/zh
Priority to US16/973,622 priority patent/US20210249642A1/en
Publication of WO2020003605A1 publication Critical patent/WO2020003605A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a technology of an electrode structure and a nonaqueous electrolyte secondary battery.
  • a non-aqueous electrolyte secondary battery that includes a positive electrode, a negative electrode, and a non-aqueous electrolyte, and performs charge and discharge by moving lithium ions and the like between the positive electrode and the negative electrode Batteries are widely used.
  • Patent Document 1 includes a positive electrode, a negative electrode, a porous heat-resistant layer interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte, wherein the negative electrode includes a negative electrode current collector and the negative electrode current collector.
  • the porous heat-resistant layer includes magnesium oxide particles, the average particle size of the magnesium oxide particles is A nonaqueous electrolyte secondary battery has been proposed in which the active material density of the negative electrode mixture layer is 1.5 g / ml to 1.8 g / ml.
  • the porous film is made of an electrolytic solution, the porous film is adhered to at least the surface of the negative electrode, the thickness of the porous film is 0.5 ⁇ m or more and 20 ⁇ m or less, and the surface roughness of the porous film is The porous film is smaller than the surface roughness of the surface of the bonded electrode, and the porous film is composed of an inorganic filler and a first binder.
  • the content of the first binder in the porous film is per 100 parts by weight of the filler.
  • the filler is at least one selected from the group consisting of alumina and titanium oxide, and the thickness of the separator is 8 ⁇ m or more and 30 ⁇ m or less.
  • a lithium ion secondary battery including the second binder containing second rubber particles and a water-soluble polymer has been proposed.
  • Patent Document 3 proposes a positive electrode active material in which fine particles containing W and Li are formed on the surface of primary particles of a lithium metal composite oxide powder.
  • Patent Document 3 it is impossible to prevent an increase in short-circuit area due to contraction of the separator at the time of internal short-circuit, and it is difficult to suppress a rise in battery temperature.
  • an object of the present disclosure is to provide an electrode structure and a nonaqueous electrolyte secondary battery that can suppress an increase in battery internal resistance while suppressing an increase in battery temperature during an internal short circuit. .
  • a non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a heat-resistant layer formed on at least one of the positive electrode and the negative electrode, and a non-aqueous electrolyte.
  • the heat-resistant layer contains heat-resistant particles having at least a surface made of a metal compound, the average thickness of the heat-resistant layer is in the range of 0.5 ⁇ m to 5 ⁇ m, and the porosity of the heat-resistant layer is 25% to 55%.
  • the average surface roughness (Ra) of the heat-resistant layer is 0.35 ⁇ m or less, and the electronegativity of metal ions of the metal compound is 13.5 or more.
  • An electrode structure includes an electrode used as a positive electrode or a negative electrode of a nonaqueous electrolyte secondary battery, and a heat-resistant layer formed on the electrode, wherein the heat-resistant layer has at least a surface.
  • Heat-resistant particles comprising a metal compound, wherein the average thickness of the heat-resistant layer is in the range of 0.5 ⁇ m to 5 ⁇ m, the porosity of the heat-resistant layer is 25% to 55%, and the average surface roughness of the heat-resistant layer (Ra) is 0.35 ⁇ m or less, and the electronegativity of metal ions of the metal compound is 13.5 or more.
  • FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery as an example of an embodiment.
  • FIG. 3 is a flowchart illustrating an example of a method for forming an electrode structure including an electrode (a negative electrode or a positive electrode) and a heat-resistant layer on the electrode.
  • a non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a heat-resistant layer formed on at least one of the positive electrode and the negative electrode, and a non-aqueous electrolyte.
  • the heat-resistant layer contains heat-resistant particles having at least a surface made of a metal compound, the average thickness of the heat-resistant layer is in the range of 0.5 ⁇ m to 5 ⁇ m, and the porosity of the heat-resistant layer is 25% to 55%.
  • the average surface roughness (Ra) of the heat-resistant layer is 0.35 ⁇ m or less, and the electronegativity of metal ions of the metal compound is 13.5 or more.
  • the electrode structure according to one embodiment of the present disclosure includes an electrode used as a positive electrode or a negative electrode of a nonaqueous electrolyte secondary battery, and a heat-resistant layer formed on the electrode, wherein the heat-resistant layer is at least The surface contains heat-resistant particles made of a metal compound, the average thickness of the heat-resistant layer is in the range of 0.5 ⁇ m to 5 ⁇ m, the porosity of the heat-resistant layer is 25% to 55%, and the average surface of the heat-resistant layer is The roughness (Ra) is 0.35 ⁇ m or less, and the electronegativity of metal ions of the metal compound is 13.5 or more.
  • the heat-resistant layer of the present disclosure has been smoothed and compressed by rolling or the like so as to have the average thickness, porosity and average surface roughness in the above ranges.
  • the heat-resistant layer smoothed and compressed by rolling or the like functions as a high-resistance component interposed between the positive electrode and the negative electrode when the battery is short-circuited internally, thereby suppressing an increase in battery temperature during the internal short-circuit.
  • the heat-resistant particles contained in the heat-resistant layer of the present disclosure are heat-resistant particles having at least a surface made of a metal compound and having a metal ion electronegativity of 13.5 or more of the metal compound.
  • the heat-resistant particles having the composition have a property that they hardly hinder the movement of ions because of little inquiries with the non-aqueous electrolyte. Therefore, the heat-resistant layer containing the heat-resistant particles has a higher ion permeability than the heat-resistant layer not containing the heat-resistant particles. Is suppressed, and an increase in the internal resistance of the battery is suppressed.
  • FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery as an example of the embodiment.
  • the non-aqueous electrolyte secondary battery 10 shown in FIG. 1 includes a wound electrode element 14 in which a positive electrode 11 and a negative electrode 12 are wound via a separator 13, a non-aqueous electrolyte, and an upper and lower electrode element 14. It has insulating plates 18 and 19 arranged and a battery case 15 for housing the above members.
  • the non-aqueous electrolyte secondary battery 10 includes a heat-resistant layer formed on at least one of the positive electrode 11 and the negative electrode 12. That is, the heat-resistant layer is arranged between at least one of between the positive electrode 11 and the separator 13 and between the negative electrode 12 and the separator 13.
  • the battery case 15 is composed of a case body 16 having a cylindrical shape with a bottom and a sealing body 17 closing an opening of the case body 16.
  • a wound electrode element 14 another type of electrode element such as a laminated electrode element in which a positive electrode and a negative electrode are alternately laminated via a separator may be applied.
  • the battery case 15 include a metal case having a cylindrical shape, a square shape, a coin shape, a button shape, and the like, and a resin case (laminated type) formed by laminating a resin sheet.
  • the case body 16 is, for example, a cylindrical metal container having a bottom.
  • a gasket 28 is provided between the case body 16 and the sealing body 17 to ensure the tightness of the inside of the battery.
  • the case body 16 has a projecting portion 22 that supports the sealing body 17, for example, a portion of the side portion projects inward.
  • the overhang portion 22 is preferably formed in an annular shape along the circumferential direction of the case body 16, and supports the sealing body 17 on the upper surface thereof.
  • the sealing body 17 has a structure in which a filter 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are stacked in this order from the electrode element 14 side.
  • Each member constituting the sealing body 17 has, for example, a disk shape or a ring shape, and each member except the insulating member 25 is electrically connected to each other.
  • the lower valve body 24 and the upper valve body 26 are connected to each other at their respective central portions, and an insulating member 25 is interposed between the respective peripheral portions.
  • the lower valve body 24 When the internal pressure rises due to heat generated due to an internal short circuit or the like, the lower valve body 24 is deformed and broken to push up the upper valve body 26 to the cap 27 side, and the current path between the lower valve body 24 and the upper valve body 26 is reduced. Will be shut off. When the internal pressure further increases, the upper valve body 26 breaks, and gas is discharged from the opening of the cap 27.
  • the positive electrode lead 20 attached to the positive electrode 11 extends toward the sealing body 17 through the through hole of the insulating plate 18, and the negative electrode lead 21 attached to the negative electrode 12 is insulated. It extends to the bottom side of the case body 16 through the outside of the plate 19.
  • the positive electrode lead 20 is connected to the lower surface of the filter 23 as a bottom plate of the sealing body 17 by welding or the like, and a cap 27 as a top plate of the sealing body 17 electrically connected to the filter 23 serves as a positive electrode terminal.
  • the negative electrode lead 21 is connected to the bottom inner surface of the case body 16 by welding or the like, and the case body 16 serves as a negative electrode terminal.
  • the positive electrode lead may be provided at the center of the positive electrode 11 instead of the end in the longitudinal direction.
  • the central portion is an uncoated region of the positive electrode active material layer on which the positive electrode active material layer is not applied (uncoated portion), and the positive electrode active material layer is formed on both sides of the uncoated portion in the longitudinal direction of the positive electrode 11. Layer has been applied.
  • a positive electrode lead is provided at the center, the positive electrode lead is joined to the uncoated portion.
  • the positive electrode 11, the negative electrode 12, the heat-resistant layer, the separator 13, and the non-aqueous electrolyte will be described in detail.
  • the positive electrode 11 includes, for example, a positive electrode current collector such as a metal foil and a positive electrode active material layer formed on the positive electrode current collector.
  • a positive electrode current collector such as a metal foil and a positive electrode active material layer formed on the positive electrode current collector.
  • a metal foil such as aluminum, which is stable in the potential range of the positive electrode, a film in which the metal is disposed on a surface layer, or the like can be used.
  • the positive electrode active material layer contains a positive electrode active material.
  • the positive electrode active material layer preferably contains a conductive material and a binder in addition to the positive electrode active material.
  • the positive electrode active material examples include a lithium transition metal oxide containing a transition metal element such as Co, Mn, and Ni.
  • the lithium transition metal oxide examples include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1 ⁇ y O z , and Li x Ni 1 ⁇ y M y O z, Li x Mn 2 O 4, Li x Mn 2-y M y O 4, LiMPO 4, Li 2 MPO 4 F (M; Na, Mg, Sc, Y, Mn, Fe, Co, Ni , Cu, Zn, Al, Cr, Pb, Sb, and B, at least one of 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.9, and 2.0 ⁇ z ⁇ 2.3).
  • the positive electrode active material is Li x NiO 2 , Li x Co y Ni 1-y O 2 , Li x Ni 1- y My O z ( M: at least one of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb and B, 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0 2.9, 2.0 ⁇ z ⁇ 2.3) and the like.
  • Examples of the conductive material include carbon materials such as carbon black, acetylene black, Ketjen black, and graphite. These may be used alone or in combination of two or more.
  • binder examples include fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide, acrylic resin, and polyolefin. These may be used alone or in combination of two or more.
  • fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide, acrylic resin, and polyolefin. These may be used alone or in combination of two or more.
  • the negative electrode 12 includes a negative electrode current collector made of, for example, a metal foil and the like, and a negative electrode active material layer formed on the current collector.
  • a negative electrode current collector a metal foil, such as copper, which is stable in the potential range of the negative electrode, a film in which the metal is disposed on a surface layer, or the like can be used.
  • the negative electrode active material layer contains a negative electrode active material. Further, the negative electrode active material layer preferably contains a binder in addition to the negative electrode active material.
  • the negative electrode active material is not particularly limited as long as it can reversibly occlude and release lithium ions.
  • carbon materials such as natural graphite and artificial graphite, and alloys with lithium such as silicon (Si) and tin (Sn) Metal, an alloy containing a metal element such as Si or Sn, a composite oxide, or the like. These may be used alone or in combination of two or more.
  • the binder used for the positive electrode 11 can be used.
  • Other examples include CMC or a salt thereof, styrene-butadiene rubber (SBR), polyacrylic acid (PAA) or a salt thereof, and polyvinyl alcohol (PVA).
  • the heat-resistant layer contains heat-resistant particles.
  • the heat-resistant layer preferably contains a binder.
  • the binder the binder used for the positive electrode 11 and the negative electrode 12 can be used.
  • the heat-resistant particles are heat-resistant particles having at least a surface formed of a metal compound and having a metal ion of the metal compound having an electronegativity of 13.5 or more, preferably 17.1 or more.
  • the metal compound is a composite metal compound containing a plurality of types of metals
  • the electronegativity of at least one metal ion may be 13.5 or more, but in terms of improving the ion permeability of the heat-resistant layer, It is preferable that the electronegativity of all metal ions is 13.5 or more.
  • Examples of the metal compound having a metal ion having an electronegativity of 13.5 or more include oxides and hydroxides containing at least one of Ti, Sn, W, Nb, Mo, Si, B, Ge, and Bi. And oxyhydroxides. Among them, oxides containing at least one of Ti, Sn, W, Nb, Mo, and Si are preferable in terms of low reactivity with a non-aqueous electrolyte and electrochemical stability. Hydroxides and oxyhydroxides are preferred.
  • the heat-resistant particles are obtained, for example, by coating the surface of the core particles with the metal compound.
  • the core particles are not particularly limited, and include, for example, inorganic particles and resin particles.
  • the method for coating the metal compound is not particularly limited, and examples thereof include a mechanochemical method, an ion plating method, a sputtering method, and a plasma deposition method.
  • the heat-resistant particles may be, for example, the metal compound itself.
  • the heat-resistant particles are, for example, at least one of Ti, Sn, W, Nb, Mo, Si, B, and GeBi, and preferably at least one of Ti, Sn, W, Nb, Mo, and Si. Oxides, hydroxides and oxyhydroxides containing one may be used.
  • the average particle size of the heat-resistant particles is preferably in the range of 0.05 to 1 ⁇ m from the viewpoint that the porosity of the heat-resistant layer can be easily adjusted to a desired range.
  • the average particle diameter is a volume average particle diameter measured by a laser diffraction method, and means a median diameter at which a volume integrated value becomes 50% in a particle diameter distribution.
  • the average particle size can be measured using, for example, a laser diffraction type particle size distribution measuring device (Microtrack HRA, manufactured by JGC Corporation).
  • the shape of the heat-resistant particles may be spherical or non-spherical.
  • the non-spherical shape include a polyhedral shape, a needle shape, and a necking shape.
  • the necking shape means a structure in which a plurality of particles are connected (partial surface contact structure).
  • Polyhedral, needle-like or necking-like heat-resistant particles are preferred in that the porosity of the heat-resistant layer can be easily adjusted to a desired range.
  • the content of the heat-resistant particles is preferably at least 90% by mass, more preferably at least 95% by mass, based on the total mass of the heat-resistant layer.
  • the heat-resistant layer may contain inorganic particles other than the heat-resistant particles.
  • the heat-resistant layer may include a metal compound or the like having an electronegativity of metal ions of less than 13.5.
  • the content of the inorganic particles other than the heat-resistant particles is preferably 5% by mass or less based on the total mass of the heat-resistant layer.
  • the average thickness of the heat-resistant layer may be in the range of 0.5 ⁇ m to 5 ⁇ m, but is preferably in the range of 1 ⁇ m to 3 ⁇ m in order to further suppress an increase in the internal resistance of the battery and an increase in the battery temperature during an internal short circuit. Preferably, there is.
  • the average thickness of the heat-resistant layer is an average value of thicknesses at arbitrary 30 points when a cross section of the heat-resistant layer is observed with a scanning electron microscope.
  • the cross section of the heat-resistant layer can be obtained, for example, by cutting out a part of the electrode on which the heat-resistant layer is formed, and processing it with an ion milling device (for example, IM4000PLUS, manufactured by Hitachi High-Tech Co., Ltd.).
  • the porosity of the heat-resistant layer may be in the range of 25% to 55%. Preferably, it is within the range.
  • the average surface roughness (Ra) of the heat-resistant layer may be 0.35 ⁇ m or less, but is preferably 0.20 ⁇ m or less from the viewpoint of suppressing a rise in battery temperature during an internal short circuit.
  • the average surface roughness (Ra) of the heat-resistant layer can be determined by observing the surface of the heat-resistant layer with a laser microscope (VK9700, manufactured by Keyence Corporation) and using analysis software (VK-Analyzer, manufactured by Keyence Software Corporation) according to JIS B0601-1994. It can be obtained under the conditions according to.
  • FIG. 2 is a flowchart showing an example of a method for forming an electrode structure including electrodes (a negative electrode and a positive electrode) and a heat-resistant layer on the electrodes.
  • A The mixture slurry is applied on the current collector 30 and dried to form the active material layer 32.
  • a positive electrode mixture slurry containing a positive electrode active material, a binder, and the like is applied and dried on the positive electrode current collector, and when the negative electrode active material layer is formed, the negative electrode On the current collector, a negative electrode mixture slurry containing a negative electrode active material, a binder, and the like is applied and dried.
  • the formed active material layer 32 is rolled by a rolling roller or the like.
  • step (B) may be omitted.
  • step (C) A heat-resistant layer slurry containing heat-resistant particles, a binder, and the like is applied on the active material layer 32 and dried to form a heat-resistant layer 34.
  • the mixture slurry and the slurry for the heat-resistant layer may be simultaneously applied using a two-head type die. In this case, the step of drying the mixture slurry can also be omitted.
  • D) The formed heat-resistant layer 34 is rolled by a rolling roller or the like. In the step (D), the average thickness, the porosity, and the average surface roughness (Ra) of the heat-resistant layer 34 are adjusted to the predetermined ranges by rolling while adjusting the linear pressure applied to the heat-resistant layer 34.
  • a plurality of exposed portions where the electrode (substantially the active material layer 32) is exposed below the heat-resistant layer 34 may be formed on the surface of the heat-resistant layer 34.
  • the length of the exposed portion can be observed, for example, by using a scanning electron microscope on a cross section of the electrode on which the heat-resistant layer 34 is formed.
  • the maximum length per exposed portion is 30 ⁇ m or less, and the total length of the exposed portions is 20% or less with respect to the entire length of the electrode cross section on which the heat-resistant layer 34 is formed. preferable.
  • the battery temperature at the time of the internal short circuit may increase as compared with the case where the above range is satisfied. Since the exposed portion is easily formed when the above-described step (B) is omitted, the step (B) is desirably performed in terms of suppressing the formation of the exposed portion.
  • the heat-resistant layer 34 may be formed on a part of the active material layer 32, but is preferably formed on the entire surface of the active material layer 32, particularly preferably on the entire surface of the negative electrode active material layer.
  • the internal short circuit occurs between the positive electrode lead and its periphery (the uncoated portion of the positive electrode active material layer) and the negative electrode facing them, but naturally also occurs between the other positive and negative electrodes. Therefore, by forming the heat-resistant layer 34 on the entire surface of the negative electrode active material layer, it is possible to more effectively suppress a rise in battery temperature during an internal short circuit.
  • the separator 13 for example, a porous sheet or the like having ion permeability and insulating properties is used.
  • the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric.
  • Suitable materials for the separator include olefin resins such as polyethylene and polypropylene, and cellulose.
  • the separator 13 may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin.
  • a polyethylene layer, a polypropylene layer and a multilayer separator including a mixture layer of polyethylene and polypropylene may be used, and an adhesive resin, an aramid resin, and a ceramic or other material coated on the surface of the separator may be used.
  • the porous sheet may contain an inorganic filler.
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous electrolyte is not limited to a liquid electrolyte (non-aqueous electrolyte), and may be a solid electrolyte using a gel polymer or the like.
  • the non-aqueous solvent for example, esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and a mixed solvent of two or more thereof can be used.
  • the non-aqueous solvent may contain a halogen-substituted product obtained by substituting at least a part of hydrogen of these solvents with a halogen atom such as fluorine.
  • esters examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), and methyl propyl carbonate.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), and methyl propyl carbonate.
  • Carbonates such as ethyl propyl carbonate and methyl isopropyl carbonate, cyclic carboxylic esters such as ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL), methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP ), Linear carboxylic esters such as ethyl propionate and ⁇ -butyrolactone.
  • cyclic carboxylic esters such as ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL)
  • methyl acetate ethyl acetate
  • propyl acetate propyl acetate
  • MP methyl propionate
  • Linear carboxylic esters such as ethyl propionate and ⁇ -butyrolactone.
  • ethers examples include 1,3-dioxolan, 4-methyl-1,3-dioxolan, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4 -Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineole and crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , Dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxytoluene, benzyl ethyl ether, diphenyl ether, diphen
  • a fluorinated cyclic carbonate such as fluoroethylene carbonate (FEC), a fluorinated chain carbonate, a fluorinated chain carboxylate such as methyl fluoropropionate (FMP), or the like.
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylate
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylate
  • the electrolyte salt is preferably a lithium salt.
  • the lithium salt LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3 SO 3, LiCF 3 CO 2, Li (P (C 2 O 4) F 4), LiPF 6-x (C n F 2n + 1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, lithium chloroborane, lithium lower aliphatic carboxylate, Li 2 B 4 O 7 , borates such as Li (B (C 2 O 4 ) F 2 ), LiN (SO 2 CF 3 ) 2 , LiN (C 1 F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) ⁇ 1 , M represents an imide salt such as an integer of 0 or more.
  • lithium salts may be used alone or in combination of two or more.
  • LiPF 6 is preferably used from the viewpoints of ion conductivity, electrochemical stability and the like.
  • concentration of the lithium salt is preferably 0.8 to 1.8 mol per liter of the non-aqueous solvent.
  • Example 1 [Preparation of positive electrode] 100 parts by mass of lithium composite oxide particles (LiNi 0.88 Co 0.09 Al 0.03 O 2 ) as a positive electrode active material, 1 part by mass of acetylene black as a conductive material, and polyolefin as a binder One part by mass of vinylidene chloride was mixed with NMP, and an appropriate amount of NMP was added to prepare a positive electrode mixture slurry. Next, the positive electrode mixture slurry was applied to both surfaces of a positive electrode current collector made of aluminum foil (0.028 g / cm 2 per side) and dried. This was cut into a predetermined electrode size, and rolled at a linear pressure of 3300 kgf / cm using a roll press to produce a positive electrode having a positive electrode active material layer formed on both surfaces of a positive electrode current collector.
  • lithium composite oxide particles LiNi 0.88 Co 0.09 Al 0.03 O 2
  • heat-resistant particles spherical titanium oxide particles having an average particle diameter of 0.6 ⁇ m (the electronegativity ( ⁇ i) of titanium ions is 13.5) were used. Then, 100 parts by mass of the titanium oxide particles, 3 parts by mass of polyvinylidene fluoride as a binder, and an appropriate amount of NMP are stirred with a dispersing machine (Primix, Filmix) to prepare a slurry for a heat-resistant layer. did. Next, the slurry for a heat-resistant layer was applied on the positive electrode active material layer, dried, and then rolled at a linear pressure of 200 kgf / cm using a roll press to form a heat-resistant layer.
  • a dispersing machine Principal, Filmix
  • the average thickness of the heat-resistant layer was 3 ⁇ m, the porosity was 33%, and the average surface roughness (Ra) was 0.12 ⁇ m.
  • the measuring method is as described above.
  • the cross section of the heat-resistant layer thus prepared was observed by SEM, but no exposed portion was observed.
  • Example 2 In the production of the positive electrode, the rolling by the roll press was not performed. In the production of the heat-resistant layer, the linear pressure at the time of the rolling by the roll press was set to 3300 kgf / cm, and the basis weight was set so that the average thickness of the heat-resistant layer was 5 ⁇ m. A non-aqueous electrolyte secondary battery was fabricated in the same manner as in Example 1, except for the adjustment. The porosity of the heat-resistant layer of Example 2 was 33%, and the average surface roughness (Ra) was 0.12 ⁇ m. When the cross section of the produced heat-resistant layer was observed by SEM, an exposed portion was observed. The maximum length per exposed portion (hereinafter, the maximum length of the exposed portion) is 1 ⁇ m, and the ratio of the total length of the exposed portion to the entire length of the surface of the electrode (hereinafter, the ratio of the exposed portion) is Was 1%.
  • Example 3 In the production of the positive electrode, the rolling by the roll press was not performed. In the production of the heat-resistant layer, the linear pressure at the time of rolling by the roll press was set to 3300 kgf / cm, and the weight of the heat-resistant layer was adjusted to 0.5 ⁇ m. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the amount was adjusted. The porosity of the heat-resistant layer of Example 3 was 33%, and the average surface roughness (Ra) was 0.12 ⁇ m. When the cross section of the produced heat-resistant layer was observed by SEM, an exposed portion was observed. The maximum length of the exposed portion was 30 ⁇ m, and the ratio of the exposed portion was 20%.
  • Example 4 In the production of the positive electrode, rolling by a roll press was not performed. In the production of a heat-resistant layer, spherical titanium oxide particles having an average particle diameter of 1 ⁇ m were used. The linear pressure at the time of rolling by a roll press was 3300 kgf / cm. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, except that the basis weight was adjusted so that the average thickness of the heat-resistant layer was 3 ⁇ m. The porosity of the heat-resistant layer of Example 4 was 25%, and the average surface roughness (Ra) was 0.25 ⁇ m. When the cross section of the produced heat-resistant layer was observed by SEM, an exposed portion was observed. The maximum length of the exposed portion was 9 ⁇ m, and the ratio of the exposed portion was 6%.
  • Example 5 In the preparation of the positive electrode, rolling by a roll press was not performed. In the preparation of a heat-resistant layer, spherical titanium oxide particles having an average particle diameter of 0.05 ⁇ m were used. The linear pressure during rolling by a roll press was 3300 kgf / cm. A non-aqueous electrolyte secondary battery was fabricated in the same manner as in Example 1, except that the basis weight was adjusted so that the average thickness of the heat-resistant layer was 2 ⁇ m. The porosity of the heat-resistant layer of Example 5 was 45%, and the average surface roughness (Ra) was 0.09 ⁇ m. When the cross section of the produced heat-resistant layer was observed by SEM, an exposed portion was observed. The maximum length of the exposed portion was 7 ⁇ m, and the ratio of the exposed portion was 8%.
  • Example 6> In the production of the positive electrode, rolling by a roll press was not performed. In the production of a heat-resistant layer, spherical SnO 2 particles having an average particle diameter of 0.9 ⁇ m ( ⁇ i of tin ion was 18) were used. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, except that the linear pressure was 3300 kgf / cm, and the basis weight was adjusted so that the average thickness of the heat-resistant layer was 2 ⁇ m. The porosity of the heat-resistant layer of Example 6 was 30%, and the average surface roughness (Ra) was 0.11 ⁇ m. When the cross section of the produced heat-resistant layer was observed by SEM, an exposed portion was observed. The maximum length of the exposed portion was 12 ⁇ m, and the ratio of the exposed portion was 9%.
  • Example 7 In the production of the positive electrode, rolling by a roll press was not performed. In the production of a heat-resistant layer, granular WO 3 particles having an average particle diameter of 0.3 ⁇ m ((i of tungsten ion was 31.2) were used. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the linear pressure during rolling was set to 3300 kgf / cm, and the basis weight was adjusted so that the average thickness of the heat-resistant layer was 2 ⁇ m. . The porosity of the heat-resistant layer of Example 7 was 33%, and the average surface roughness (Ra) was 0.12 ⁇ m. When the cross section of the produced heat-resistant layer was observed by SEM, an exposed portion was observed. The maximum length of the exposed portion was 9 ⁇ m, and the ratio of the exposed portion was 8%.
  • Example 8 In the production of the positive electrode, rolling by a roll press was not performed, and in the production of a heat-resistant layer, granular Nb 2 O 5 particles having an average particle diameter of 1 ⁇ m ( ⁇ i of niobium ion was 17.6) was used.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the linear pressure during rolling was set to 3300 kgf / cm, and the basis weight was adjusted so that the average thickness of the heat-resistant layer was 2 ⁇ m. .
  • the porosity of the heat-resistant layer of Example 8 was 34%, and the average surface roughness (Ra) was 0.17 ⁇ m.
  • Ra average surface roughness
  • Example 9 In the production of the positive electrode, rolling was not performed by a roll press. In the production of the heat-resistant layer, granular MoO 3 particles having an average particle diameter of 0.6 ⁇ m ( ⁇ i of molybdenum ion was 28.6) were used. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the linear pressure during rolling was set to 3300 kgf / cm, and the basis weight was adjusted so that the average thickness of the heat-resistant layer was 2 ⁇ m. . The porosity of the heat-resistant layer of Example 9 was 31%, and the average surface roughness (Ra) was 0.13 ⁇ m. When the cross section of the produced heat-resistant layer was observed by SEM, an exposed portion was observed. The maximum length of the exposed portion was 7 ⁇ m, and the ratio of the exposed portion was 9%.
  • Example 10> In the production of the positive electrode, rolling was not performed by a roll press. In the production of the heat-resistant layer, spherical SiO 2 particles having an average particle diameter of 0.6 ⁇ m ((i of silicon ions was 17.1) were used. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, except that the linear pressure during rolling was set to 3300 kgf / cm, and the basis weight was adjusted so that the average thickness of the heat-resistant layer was 2 ⁇ m. . The porosity of the heat-resistant layer of Example 10 was 35%, and the average surface roughness (Ra) was 0.11 ⁇ m. When the cross section of the produced heat-resistant layer was observed by SEM, an exposed portion was observed. The maximum length of the exposed portion was 5 ⁇ m, and the ratio of the exposed portion was 3%.
  • Example 11> In the preparation of the positive electrode, rolling by a roll press was not performed. In the preparation of a heat-resistant layer, polyhedral TiO 2 particles having an average particle diameter of 0.8 ⁇ m were used. The linear pressure during rolling by a roll press was 3300 kgf / cm, and a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the basis weight was adjusted so that the average thickness of the heat-resistant layer was 2 ⁇ m. The porosity of the heat-resistant layer of Example 11 was 46%, and the average surface roughness (Ra) was 0.08 ⁇ m. When the cross section of the produced heat-resistant layer was observed by SEM, an exposed portion was observed. The maximum length of the exposed portion was 5 ⁇ m, and the ratio of the exposed portion was 7%.
  • Example 12 In the production of the positive electrode, rolling was not performed by a roll press. In the production of a heat-resistant layer, needle-like TiO 2 particles having an average particle size of 0.09 ⁇ m were used. The linear pressure during rolling by a roll press was 3300 kgf / cm, and a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the basis weight was adjusted so that the average thickness of the heat-resistant layer was 2 ⁇ m. The porosity of the heat-resistant layer of Example 12 was 55%, and the average surface roughness (Ra) was 0.05 ⁇ m. When the cross section of the produced heat-resistant layer was observed by SEM, an exposed portion was observed. The maximum length of the exposed portion was 3 ⁇ m, and the ratio of the exposed portion was 5%.
  • Example 13> In the preparation of the positive electrode, rolling by a roll press was not performed. In the preparation of a heat-resistant layer, necked TiO 2 particles having an average particle diameter of 0.8 ⁇ m were used. The linear pressure during rolling by a roll press was 3300 kgf / cm, and a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the basis weight was adjusted so that the average thickness of the heat-resistant layer was 2 ⁇ m. The porosity of the heat-resistant layer of Example 13 was 51%, and the average surface roughness (Ra) was 0.35 ⁇ m. When the cross section of the produced heat-resistant layer was observed by SEM, an exposed portion was observed. The maximum length of the exposed portion was 6 ⁇ m, and the ratio of the exposed portion was 5%.
  • Example 14 In the preparation of the negative electrode, a non-aqueous electrolyte was prepared in the same manner as in Example 1 except that rolling by a roll press was not performed, and a heat-resistant layer was formed on the negative electrode without forming a heat-resistant layer on the positive electrode. A secondary battery was manufactured.
  • the average thickness of the heat-resistant layer of Example 14 was 2 ⁇ m, the porosity was 33%, and the average surface roughness (Ra) was 0.2 ⁇ m.
  • Ra average surface roughness
  • Example 1 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that spherical MgO particles having an average particle diameter of 0.6 ⁇ m ( ⁇ i of magnesium ion was 6.5) were used in the preparation of the heat-resistant layer. did.
  • the average thickness of the heat-resistant layer of Comparative Example 1 was 3 ⁇ m, the porosity was 40%, and the average surface roughness (Ra) was 0.15 ⁇ m. When the cross section of the produced heat-resistant layer was observed by SEM, no exposed portion was observed.
  • ⁇ Comparative Example 2> A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, except that rolling by a roll press was not performed in producing the heat-resistant layer.
  • the average thickness of the heat-resistant layer of Comparative Example 2 was 3 ⁇ m, the porosity was 60%, and the average surface roughness (Ra) was 1.22 ⁇ m. When the cross section of the produced heat-resistant layer was observed by SEM, no exposed portion was observed.
  • Table 1 summarizes the results of the battery temperature and the internal resistance of the batteries in each example and comparative example when an internal short circuit occurs.
  • Each of Examples 1 to 14 had a lower battery temperature at the time of internal short circuit than Comparative Example 2. Further, in each of Examples 1 to 14, the internal resistance of the battery was lower than that of Comparative Example 1. That is, a positive electrode, a negative electrode, and a heat-resistant layer formed on at least one of the positive electrode and the negative electrode, and a non-aqueous electrolyte, and the heat-resistant layer has at least a surface made of a metal compound.
  • the heat-resistant layer contains heat-resistant particles, the average thickness of the heat-resistant layer is 0.5 ⁇ m to 5 ⁇ m, the porosity of the heat-resistant layer is 25% to 55%, and the average surface roughness (Ra) of the heat-resistant layer is According to the non-aqueous electrolyte secondary battery, which has an electronegativity of metal ions of the metal compound of not more than 0.35 ⁇ m and not less than 13.5, the increase in internal resistance of the battery is suppressed, and the battery at the time of internal short circuit is suppressed. It can be said that the rise in temperature can be suppressed.
  • nonaqueous electrolyte secondary battery 11 positive electrode, 12 negative electrode, 13 separator, 14 electrode element, 15 battery case, 16 case body, 17 sealing body, 18, 19 insulating plate, 20 positive electrode lead, 21 negative electrode lead, 22 overhang , 23 ° filter, 24 ° lower valve, 25 ° insulating member, 26 ° upper valve, 27 ° cap, 28 ° gasket, 30 ° current collector, 32 ° active material layer, 34 ° heat resistant layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

本開示の一態様である非水電解質二次電池は、正極と、負極と、前記正極上及び前記負極上のうちの少なくともいずれか一方に形成された耐熱層と、非水電解質と、を備え、前記耐熱層は、少なくとも表面が金属化合物からなる耐熱性粒子を含み、前記耐熱層の平均厚みは0.5μm~5μmの範囲であり、前記耐熱層の空隙率は25%~55%であり、前記耐熱層の平均表面粗さ(Ra)は0.35μm以下であり、前記金属化合物の金属イオンの電気陰性度は13.5以上である。

Description

電極構造体及び非水電解質二次電池
 本開示は、電極構造体及び非水電解質二次電池の技術に関する。
 近年、高出力、高エネルギー密度の二次電池として、正極と、負極と、非水電解質とを備え、正極と負極との間でリチウムイオン等を移動させて充放電を行う非水電解質二次電池が広く利用されている。
 例えば、特許文献1には、正極、負極、前記正極と前記負極との間に介在する多孔質耐熱層、および、非水電解質を含み、前記負極は、負極集電体および前記負極集電体の表面に担持された負極合剤層を含み、前記多孔質耐熱層は、前記負極に担持されており、前記多孔質耐熱層は、酸化マグネシウム粒子を含み、前記酸化マグネシウム粒子の平均粒径が、0.5μm~2μmであり、前記負極合剤層の活物質密度が、1.5g/ml~1.8g/mlである、非水電解質二次電池が提案されている。
 また、例えば、特許文献2には、正極と、負極と、前記正極と負極との間に介在する多孔膜(耐熱層)と、前記正極と前記負極との間に介在するセパレータと、非水電解液からなり、前記多孔膜は、少なくとも負極の表面に接着されており、前記多孔膜の厚みは、0.5μm以上20μm以下であり、かつ前記多孔膜の表面粗さは、前記多孔膜が接着されている電極表面の表面粗さよりも小さく、前記多孔膜は、無機フィラーおよび第1結着剤からなり、前記多孔膜における前記第1結着剤の含有量は、前記フィラー100重量部あたり、1.5~8重量部であり、かつ前記フィラーは、アルミナおよび酸化チタンよりなる群から選択される少なくとも1種であり、前記セパレータの厚みは、8μm以上30μm以下であり、前記第1結着剤は、アクリロニトリル単位を含む第1ゴムからなり、前記第1ゴムは、非水溶性であり、かつ、250℃以上の分解開始温度を有し、前記負極は、負極活物質および第2結着剤からなり、前記第2結着剤は、第2ゴム粒子および水溶性高分子を含むリチウムイオン二次電池が提案されている。
 また、例えば、特許文献3には、リチウム金属複合酸化物粉末の一次粒子の表面にWおよびLiを含む微粒子を表面に形成された正極活物質が提案されている。
特許第4476254号公報 特許第4602254号公報 特許第5035712号公報
 ところで、電極上に形成した耐熱層を圧縮し密着性を高めると内部短絡時には、電池温度の上昇を効果的に抑制することが可能となるが、通常時における電池の内部抵抗が上昇してしまう。一方、電極上に形成した耐熱層を圧縮しなければ、イオン透過性が高くなるため、通常時における電池の内部抵抗の上昇は抑えられるが、内部短絡時における電池温度の上昇を抑制することが困難となる。したがって、電極上に耐熱層を形成した場合には、電池の内部抵抗の上昇の抑制と、内部短絡時における電池温度の上昇の抑制との両立を図ることは困難であった。
 特許文献3においても、内部短絡時に、セパレータの収縮による短絡面積の拡大を防ぐことはできず、電池温度の上昇を抑制することが困難である。
 そこで、本開示の目的は、電池の内部抵抗の上昇を抑制すると共に、内部短絡時における電池温度の上昇を抑制することが可能な電極構造体及び非水電解質二次電池を提供することにある。
 本開示の一態様である非水電解質二次電池は、正極と、負極と、前記正極上及び前記負極上のうちの少なくともいずれか一方に形成された耐熱層と、非水電解質と、を備え、前記耐熱層は、少なくとも表面が金属化合物からなる耐熱性粒子を含み、前記耐熱層の平均厚みは0.5μm~5μmの範囲であり、前記耐熱層の空隙率は25%~55%であり、前記耐熱層の平均表面粗さ(Ra)は0.35μm以下であり、前記金属化合物の金属イオンの電気陰性度は13.5以上である。
 本開示の一態様である電極構造体は、非水電解質二次電池の正極又は負極として用いられる電極と、前記電極上に形成された耐熱層と、を備え、前記耐熱層は、少なくとも表面が金属化合物からなる耐熱性粒子を含み、前記耐熱層の平均厚みは0.5μm~5μmの範囲であり、前記耐熱層の空隙率は25%~55%であり、前記耐熱層の平均表面粗さ(Ra)は0.35μm以下であり、前記金属化合物の金属イオンの電気陰性度は13.5以上である。
 本開示の一態様によれば、電池の内部抵抗の上昇を抑制すると共に、内部短絡時における電池温度の上昇を抑制することが可能となる。
実施形態の一例である非水電解質二次電池の断面図である。 電極(負極や正極)及び電極上の耐熱層を備える電極構造体の形成方法の一例を示すフロー図である。
 前述したように、電極上に耐熱層を形成した場合には、電池の内部抵抗の上昇の抑制と、内部短絡時における電池温度の上昇の抑制との両立を図ることは困難であった。しかし、本発明者らが鋭意検討した結果、耐熱層を構成する材料に電気陰性度の高い金属イオンを含む材料を用いること、さらには、耐熱層の厚み、空隙率及び表面粗さを所定範囲に調整することで、電池の内部抵抗の上昇の抑制、内部短絡時における電池温度の上昇の抑制の両立を図ることができることを見出し、以下に説明する態様の非水電解質二次電池を想到するに至った。
 本開示の一態様である非水電解質二次電池は、正極と、負極と、前記正極上及び前記負極上のうちの少なくともいずれか一方に形成された耐熱層と、非水電解質と、を備え、前記耐熱層は、少なくとも表面が金属化合物からなる耐熱性粒子を含み、前記耐熱層の平均厚みは0.5μm~5μmの範囲であり、前記耐熱層の空隙率は25%~55%であり、前記耐熱層の平均表面粗さ(Ra)は0.35μm以下であり、前記金属化合物の金属イオンの電気陰性度は13.5以上である。
 また、本開示の一態様である電極構造体は、非水電解質二次電池の正極又は負極として用いられる電極と、前記電極上に形成された耐熱層と、を備え、前記耐熱層は、少なくとも表面が金属化合物からなる耐熱性粒子を含み、前記耐熱層の平均厚みは0.5μm~5μmの範囲であり、前記耐熱層の空隙率は25%~55%であり、前記耐熱層の平均表面粗さ(Ra)は0.35μm以下であり、前記金属化合物の金属イオンの電気陰性度は13.5以上である。
 本開示の耐熱層は、上記範囲の平均厚み、空隙率及び平均表面粗さとなるように、圧延等によって、平滑化・圧縮されたものである。このように、圧延等によって平滑化・圧縮された耐熱層は、電池の内部短絡時には、正負極間に介在する高抵抗成分として機能するため、内部短絡時の電池温度の上昇が抑えられる。また、本開示の耐熱層に含まれる耐熱性粒子は、少なくとも表面が金属化合物からなり、前記金属化合物の金属イオンの電気陰性度が13.5以上である耐熱性粒子であるが、このような組成の耐熱性粒子は、非水電解質との引き合いが小さいため、イオンの移動を阻害し難いという性質を有する。したがって、上記耐熱性粒子を含む耐熱層は、上記耐熱性粒子を含まない耐熱層と比べて、高いイオン透過性を有するため、圧延等によって平滑化・圧縮しても、耐熱層のイオン透過性の低下が抑えられ、電池の内部抵抗の上昇が抑制される。
 以下、実施形態の一例について詳細に説明する。実施形態の説明で参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。
 図1は、実施形態の一例である非水電解質二次電池の断面図である。図1に示す非水電解質二次電池10は、正極11及び負極12がセパレータ13を介して巻回されてなる巻回型の電極素子14と、非水電解質と、電極素子14の上下にそれぞれ配置された絶縁板18,19と、上記部材を収容する電池ケース15と、を備える。
 図1では不図示であるが、非水電解質二次電池10は、正極11上及び負極12上のうちの少なくともいずれか一方に形成された耐熱層を備える。すなわち、耐熱層は、正極11とセパレータ13との間、負極12とセパレータ13との間のうちの少なくともいずれか一方に配置されている。
 電池ケース15は、有底円筒形状のケース本体16と、ケース本体16の開口部を塞ぐ封口体17とにより構成される。なお、巻回型の電極素子14の代わりに、正極及び負極がセパレータを介して交互に積層されてなる積層型の電極素子など、他の形態の電極素子が適用されてもよい。また、電池ケース15としては、円筒形、角形、コイン形、ボタン形等の金属製ケース、樹脂シートをラミネートして形成された樹脂製ケース(ラミネート型)などが例示できる。
 ケース本体16は、例えば有底円筒形状の金属製容器である。ケース本体16と封口体17との間にはガスケット28が設けられ、電池内部の密閉性が確保される。ケース本体16は、例えば側面部の一部が内側に張出した、封口体17を支持する張り出し部22を有する。張り出し部22は、ケース本体16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。
 封口体17は、電極素子14側から順に、フィルタ23、下弁体24、絶縁部材25、上弁体26、及びキャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続されている。下弁体24と上弁体26は各々の中央部で互いに接続され、各々の周縁部の間には絶縁部材25が介在している。内部短絡等による発熱で内圧が上昇すると、例えば下弁体24が上弁体26をキャップ27側に押し上げるように変形して破断し、下弁体24と上弁体26の間の電流経路が遮断される。さらに内圧が上昇すると、上弁体26が破断し、キャップ27の開口部からガスが排出される。
 図1に示す非水電解質二次電池10では、正極11に取り付けられた正極リード20が絶縁板18の貫通孔を通って封口体17側に延び、負極12に取り付けられた負極リード21が絶縁板19の外側を通ってケース本体16の底部側に延びている。正極リード20は封口体17の底板であるフィルタ23の下面に溶接等で接続され、フィルタ23と電気的に接続された封口体17の天板であるキャップ27が正極端子となる。負極リード21はケース本体16の底部内面に溶接等で接続され、ケース本体16が負極端子となる。なお、正極リードは、正極11の長手方向の端部ではなく中央部に設けられる場合もある。中央部は、正極活物質層が塗布されていない正極活物質層の未塗工な領域(未塗工部)であり、正極11の長手方向において未塗工部の両サイドには正極活物質層が塗布されている。該中央部に正極リードを設ける場合、該未塗工部に正極リードは接合される。
 以下、正極11、負極12、耐熱層、セパレータ13、非水電解質について詳述する。
[正極]
 正極11は、例えば、金属箔等の正極集電体と、正極集電体上に形成された正極活物質層とを備える。正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。
 正極活物質層は、正極活物質を含む。また、正極活物質層は、正極活物質の他に、導電材及び結着材を含むことが好適である。
 正極活物質としては、Co、Mn、Ni等の遷移金属元素を含有するリチウム遷移金属酸化物が例示できる。リチウム遷移金属酸化物は、例えばLiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo1-y、LiNi1-y、LiMn、LiMn2-y、LiMPO、LiMPOF(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)である。これらは、1種単独で用いてもよいし、複数種を混合して用いてもよい。非水電解質二次電池の高容量化を図ることができる点で、正極活物質は、LiNiO、LiCoNi1-y、LiNi1-y(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)等のリチウムニッケル複合酸化物を含むことが好ましい。
 導電材としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料が挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 結着材としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド、アクリル樹脂、ポリオレフィン等が挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
[負極]
 負極12は、例えば金属箔等からなる負極集電体と、当該集電体上に形成された負極活物質層とを備える。負極集電体には、銅などの負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極活物質層は、負極活物質を含む。また、負極活物質層は、負極活物質の他に、結着材を含むことが好適である。
 負極活物質としては、リチウムイオンを可逆的に吸蔵、放出できるものであれば特に限定されず、例えば天然黒鉛、人造黒鉛等の炭素材料、ケイ素(Si)、錫(Sn)等のリチウムと合金化する金属、又はSi、Sn等の金属元素を含む合金、複合酸化物等が挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 結着材としては、正極11で用いられる結着材を用いることができる。その他には、例えば、CMC又はその塩、スチレン-ブタジエンゴム(SBR)、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコール(PVA)等が挙げられる。
[耐熱層]
 耐熱層は、耐熱性粒子を含む。また、耐熱層は、結着材を含むことが好適である。結着材としては、正極11や負極12で用いられる結着材を用いることができる。
 耐熱性粒子は、少なくとも表面が金属化合物からなり、金属化合物の金属イオンの電気陰性度が13.5以上であり、好ましくは17.1以上である耐熱性粒子である。金属化合物が複数種の金属を含む複合金属化合物である場合には、少なくとも1つの金属イオンの電気陰性度が13.5以上であればよいが、耐熱層のイオン透過性を向上させる点で、全ての金属イオンの電気陰性度が13.5以上であることが好ましい。金属イオンの電気陰性度(χi)は、以下の式により求められる。
 χi=(1+2Z)χp
 Z:価数
 χp:ポーリングの電気陰性度
 金属イオンの電気陰性度が13.5以上である金属化合物としては、Ti、Sn、W、Nb、Mo、Si、B、Ge、Biのうち少なくともいずれか1つを含む酸化物、水酸化物、オキシ水酸化物が挙げられる。これらの中では、非水電解質との反応性が低く、電気化学的に安定である等の点で、Ti、Sn、W、Nb、Mo、Siのうち少なくともいずれか1つを含む酸化物、水酸化物、オキシ水酸化物が好ましい。
 耐熱性粒子は、例えば、コア粒子の表面に上記金属化合物を被覆することにより得られる。コア粒子は、特に制限されるものではなく、例えば、無機粒子、樹脂粒子等が挙げられる。上記金属化合物の被覆方法としては、特に制限されるものではなく、例えば、メカノケミカル法、イオンプレーティング法、スパッタリング法、プラズマ蒸着法等が挙げられる。
 また、耐熱性粒子は、例えば、上記金属化合物そのものでもよい。耐熱性粒子は、例えば、Ti、Sn、W、Nb、Mo、Si、B、GeBi、のうち少なくともいずれか1つ、好ましくはTi、Sn、W、Nb、Mo、Siのうちの少なくともいずれか1つを含む酸化物、水酸化物、オキシ水酸化物でもよい。
 耐熱性粒子の平均粒径は、耐熱層の空隙率を所望の範囲に調整することが容易となる等の点で、0.05~1μmの範囲であることが好ましい。ここで、平均粒径とは、レーザ回折法によって測定される体積平均粒径であって、粒子径分布において体積積算値が50%となるメジアン径を意味する。平均粒径は、例えば、レーザ回折式粒度分布測定装置(日揮装社製、マイクロトラックHRA)を用いて測定できる。
 耐熱性粒子の形状は、球状であってもよいし、非球形状であってもよい。非球形状としては、例えば、多面体状、針状、ネッキング状等が挙げられる。ネッキング状とは、粒子が複数個連なった構造(部分的な面接触構造)を意味する。耐熱層の空隙率を所望の範囲に調整することが容易となる等の点で、多面体状、針状又はネッキング状の耐熱性粒子が好ましい。
 耐熱性粒子の含有量は、耐熱層の総質量に対して90質量%以上であることが好ましく、95質量%以上であることがより好ましい。なお、耐熱層には、上記耐熱性粒子以外の無機粒子等を含んでいてもよい。例えば、耐熱層は、金属イオンの電気陰性度が13.5未満である金属化合物等を含んでいてもよい。上記耐熱性粒子以外の無機粒子の含有量は、耐熱層の総質量に対して5質量%以下であることが好ましい。
 耐熱層の平均厚みは、0.5μm~5μmの範囲であればよいが、電池の内部抵抗の上昇や内部短絡時の電池温度の上昇をより抑制する等の点で、1μm~3μmの範囲であることが好ましい。耐熱層の平均厚みは、耐熱層の断面を走査型電子顕微鏡で観察し、任意の30点の厚さの平均値である。耐熱層の断面は、例えば、耐熱層を形成した電極の一部を切り取り、イオンミリング装置(例えば、日立ハイテク社製、IM4000PLUS)で加工することにより得られる。
 耐熱層の空隙率は、25%~55%の範囲であればよいが、電池の内部抵抗の上昇や内部短絡時の電池温度の上昇をより抑制する等の点で、30%~45%の範囲であることが好ましい。耐熱層の空隙率は以下のようにして求められる。まず、既知の目付け量の耐熱粒子の塗工膜の蛍光X線強度から導いた検量線を用い、活物質層上に形成された耐熱粒子の目付け量を蛍光X線強度から求める。耐熱粒子の真密度と目付け量から、耐熱粒子の真体積(Vt)を求める。電極上に形成した耐熱層の面積及び平均厚みから、耐熱層の見かけ上の体積(Va)を求める。これらを、以下の式に当てはめて、耐熱層の空隙率(P)を求める。
 P=100-100Vt/Va
 耐熱層の平均表面粗さ(Ra)は、0.35μm以下であればよいが、内部短絡時の電池温度の上昇をより抑制する等の点で、0.20μm以下であることが好ましい。耐熱層の平均表面粗さ(Ra)は、レーザ顕微鏡(キーエンス社製、VK9700)により、耐熱層の表面を観察して、解析ソフト(キーエンスソフトウェア社製  VK―Analyzer)を用いてJIS  B0601-1994に準じた条件で求めることができる。
 図2は、電極(負極や正極)及び電極上の耐熱層を備える電極構造体の形成方法の一例を示すフロー図である。(A)集電体30上に合材スラリーを塗布、乾燥して活物質層32を形成する。正極活物質層を形成する場合には、正極集電体上に、正極活物質、結着材等を含む正極合材スラリーを塗布、乾燥し、負極活物質層を形成する場合には、負極集電体上に、負極活物質、結着材等を含む負極合材スラリーを塗布、乾燥する。(B)形成した活物質層32を圧延ローラ等により圧延する。但し(B)工程は省略してもよい。(C)活物質層32上に、耐熱性粒子、結着材等を含む耐熱層用スラリーを塗布、乾燥し、耐熱層34を形成する。または、2ヘッド型のダイを用いて合材スラリーと耐熱層用スラリーを同時塗布してもよい。この場合、合剤スラリーの乾燥工程も省略することができる。(D)形成した耐熱層34を圧延ローラ等により圧延する。(D)工程において、耐熱層34に掛ける線圧を調節して圧延することにより、耐熱層34の平均厚み、空隙率、平均表面粗さ(Ra)を上記所定の範囲に調整する。
 耐熱層34を圧延することによって、耐熱層34の表面に、耐熱層の下の電極(実質的には活物質層32)が露出した露出部が複数形成される場合がある。前記露出部の長さは、例えば耐熱層34が形成された電極断面を走査型電子顕微鏡を用いて観察することができる。この場合、露出部1個当たりの最大長さは30μm以下であり、露出部の長さの合計が、耐熱層34が形成された電極断面全体の長さに対して20%以下であることが好ましい。露出部の最大長さ及び露出部の割合が上記範囲を満たさない場合、上記範囲を満たす場合と比較して、内部短絡時の電池温度が上昇する場合がある。露出部は、前述した(B)工程を省略した場合に形成され易いため、露出部の形成を抑える点等では、(B)工程を行うことが望ましい。
 耐熱層34は、活物質層32の一部に形成してもよいが、活物質層32の表面全体に形成することが好ましく、特に、負極活物質層の表面全体に形成することが好ましい。内部短絡は、正極リード及びその周辺(正極活物質層の未塗工部)とそれらに対向する負極との間でも起こるが、それ以外の正負極間でも当然起こる。したがって、負極活物質層の表面全体に耐熱層34を形成することで、内部短絡時の電池温度の上昇をより効果的に抑制することが可能となる。
[セパレータ]
 セパレータ13には、例えば、イオン透過性及び絶縁性を有する多孔性シート等が用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロースなどが好適である。セパレータ13は、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。また、ポリエチレン層、ポリプロピレン層及びポリエチレンとポリプロピレンの混合物層を含む多層セパレータであってもよく、セパレータの表面に接着性樹脂、アラミド系樹脂、セラミック等の材料が塗布されたものを用いてもよく、多孔性シート中に無機フィラーを含んでもよい。
[非水電解質]
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水電解質は、液体電解質(非水電解液)に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル、γ-ブチロラクトン等の鎖状カルボン酸エステルなどが挙げられる。
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等の鎖状エーテル類などが挙げられる。
 上記ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステル等を用いることが好ましい。
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiAlCl、LiSCN、LiCFSO、LiCFCO、Li(P(C)F)、LiPF6-x(C2n+1(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li、Li(B(C)F)等のホウ酸塩類、LiN(SOCF、LiN(C2l+1SO)(C2m+1SO){l,mは0以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPFを用いることが好ましい。リチウム塩の濃度は、非水溶媒1L当り0.8~1.8molとすることが好ましい。
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
<実施例1>
[正極の作製]
 正極活物質としてのリチウム複合酸化物粒子(LiNi0.88Co0.09Al0.03)を100質量部と、導電材としてのアセチレンブラックを1質量部と、結着材としてのポリフッ化ビニリデンを1質量部とを混合し、さらにNMPを適量加えて、正極合材スラリーを調製した。次いで、上記正極合材スラリーを、アルミニウム箔からなる正極集電体の両面に塗布し(片面当たり0.028g/cm)、これを乾燥させた。これを所定の電極サイズに切り取り、ロールプレスを用いて3300kgf/cmの線圧で圧延することにより、正極集電体の両面に正極活物質層が形成された正極を作製した。
[耐熱層の作製]
 耐熱性粒子として、平均粒径が0.6μmで、球状の酸化チタン粒子(チタンイオンの電気陰性度(χi)は13.5)を用いた。そして、酸化チタン粒子を100質量部と、結着材としてのポリフッ化ビニリデン3質量部と、適量のNMPとを、分散機(プライミクス社製、フィルミクス)で撹拌し、耐熱層用スラリーを調製した。次いで、上記耐熱層用スラリーを正極活物質層上に塗布し、これを乾燥させた後、ロールプレスを用いて200kgf/cmの線圧で圧延することにより、耐熱層を形成した。耐熱層の平均厚みは3μmであり、空隙率は33%であり、平均表面粗さ(Ra)は0.12μmであった。測定方法は前述した通りである。作製した耐熱層の断面をSEMにより観察したが、露出部は観察されなかった。
[負極の作製]
 負極活物質としての黒鉛粉末を98.7質量部と、CMC(カルボキシメチルセルロースナトリウム)を0.7質量部と、SBR(スチレン-ブタジエンゴム)を0.6質量部とを混合し、さらに水を適量加えて、負極合材スラリーを調製した。次に、この負極合材スラリーを銅箔からなる負極集電体の両面に塗布し(片面当たり0.013g/cm)、これを乾燥させた。これを所定の電極サイズに切り取り、ロールプレスを用いて200kgf/cmの線圧で圧延することにより、負極集電体の両面に負極活物質層が形成された負極を作製した。
[非水電解質の調製]
 エチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)と、ジメチルカーボネート(DMC)とを、3:3:4の体積比で混合した混合溶媒に対して、六フッ化リン酸リチウム(LiPF)を1.2モル/リットルの濃度になるように溶解させた。これを非水電解質として用いた。
[非水電解質二次電池の作製]
 上記正極にアルミリードを、上記負極にニッケルリードをそれぞれ取り付け、厚さ14μmのポリエチレン製セパレータを介して正極及び負極を巻回することにより、巻回型の電極素子を作製した。この電極素子を、円筒形状の電池ケース本体に収容し、非水電解質を注入した後、ガスケット及び封口体によって、電池ケース本体を密閉した。これを非水電解質二次電池とした。
<実施例2>
 正極の作製において、ロールプレスによる圧延を行わなかったこと、耐熱層の作製において、ロールプレスによる圧延時の線圧を3300kgf/cmとしたこと、耐熱層の平均厚みが5μmとなるよう目付け量を調整したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。実施例2の耐熱層の空隙率は33%であり、平均表面粗さ(Ra)は0.12μmであった。作製した耐熱層の断面をSEMにより観察したところ、露出部が観察された。露出部1個当たりの最大長さ(以下、露出部の最大長さ)は1μmであり、電極の表面全体の長さに対する露出部の長さの合計の割合(以下、露出部の割合)は、1%であった。
<実施例3>
 正極の作製において、ロールプレスによる圧延を行わなかったこと、耐熱層の作製において、ロールプレスによる圧延時の線圧を3300kgf/cmとしたこと、耐熱層の平均厚みが0.5μmとなるよう目付け量を調整したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。実施例3の耐熱層の空隙率は33%であり、平均表面粗さ(Ra)は0.12μmであった。作製した耐熱層の断面をSEMにより観察したところ、露出部が観察された。露出部の最大長さは30μmであり、露出部の割合は、20%であった。
<実施例4>
 正極の作製において、ロールプレスによる圧延を行わなかったこと、耐熱層の作製において、平均粒径1μmの球状の酸化チタン粒子を用いたこと、ロールプレスによる圧延時の線圧を3300kgf/cmとしたこと、耐熱層の平均厚みが3μmとなるよう目付け量を調整したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。実施例4の耐熱層の空隙率は25%であり、平均表面粗さ(Ra)は0.25μmであった。作製した耐熱層の断面をSEMにより観察したところ、露出部が観察された。露出部の最大長さは9μmであり、露出部の割合は、6%であった。
<実施例5>
 正極の作製において、ロールプレスによる圧延を行わなかったこと、耐熱層の作製において、平均粒径0.05μmの球状の酸化チタン粒子を用いたこと、ロールプレスによる圧延時の線圧を3300kgf/cmとしたこと、耐熱層の平均厚みが2μmとなるよう目付け量を調整したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。実施例5の耐熱層の空隙率は45%であり、平均表面粗さ(Ra)は0.09μmであった。作製した耐熱層の断面をSEMにより観察したところ、露出部が観察された。露出部の最大長さは7μmであり、露出部の割合は、8%であった。
<実施例6>
 正極の作製において、ロールプレスによる圧延を行わなかったこと、耐熱層の作製において、平均粒径0.9μmの球状のSnO粒子(スズイオンのχiは18)を用いたこと、ロールプレスによる圧延時の線圧を3300kgf/cmとしたこと、耐熱層の平均厚みが2μmとなるよう目付け量を調整したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。実施例6の耐熱層の空隙率は30%であり、平均表面粗さ(Ra)は0.11μmであった。作製した耐熱層の断面をSEMにより観察したところ、露出部が観察された。露出部の最大長さは12μmであり、露出部の割合は、9%であった。
<実施例7>
 正極の作製において、ロールプレスによる圧延を行わなかったこと、耐熱層の作製において、平均粒径0.3μmの粒状のWO粒子(タングステンイオンのχiは31.2)を用いたこと、ロールプレスによる圧延時の線圧を3300kgf/cmとしたこと、耐熱層の平均厚みが2μmとなるよう目付け量を調整したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。実施例7の耐熱層の空隙率は33%であり、平均表面粗さ(Ra)は0.12μmであった。作製した耐熱層の断面をSEMにより観察したところ、露出部が観察された。露出部の最大長さは9μmであり、露出部の割合は、8%であった。
<実施例8>
 正極の作製において、ロールプレスによる圧延を行わなかったこと、耐熱層の作製において、平均粒径1μmの粒状のNb粒子(ニオブイオンのχiは17.6)を用いたこと、ロールプレスによる圧延時の線圧を3300kgf/cmとしたこと、耐熱層の平均厚みが2μmとなるよう目付け量を調整したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。実施例8の耐熱層の空隙率は34%であり、平均表面粗さ(Ra)は0.17μmであった。作製した耐熱層の断面をSEMにより観察したところ、露出部が観察された。露出部の最大長さは10μmであり、露出部の割合は、11%であった。
<実施例9>
 正極の作製において、ロールプレスによる圧延を行わなかったこと、耐熱層の作製において、平均粒径0.6μmの粒状のMoO粒子(モリブデンイオンのχiは28.6)を用いたこと、ロールプレスによる圧延時の線圧を3300kgf/cmとしたこと、耐熱層の平均厚みが2μmとなるよう目付け量を調整したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。実施例9の耐熱層の空隙率は31%であり、平均表面粗さ(Ra)は0.13μmであった。作製した耐熱層の断面をSEMにより観察したところ、露出部が観察された。露出部の最大長さは7μmであり、露出部の割合は、9%であった。
<実施例10>
 正極の作製において、ロールプレスによる圧延を行わなかったこと、耐熱層の作製において、平均粒径0.6μmの球状のSiO粒子(ケイ素イオンのχiは17.1)を用いたこと、ロールプレスによる圧延時の線圧を3300kgf/cmとしたこと、耐熱層の平均厚みが2μmとなるよう目付け量を調整したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。実施例10の耐熱層の空隙率は35%であり、平均表面粗さ(Ra)は0.11μmであった。作製した耐熱層の断面をSEMにより観察したところ、露出部が観察された。露出部の最大長さは5μmであり、露出部の割合は、3%であった。
<実施例11>
 正極の作製において、ロールプレスによる圧延を行わなかったこと、耐熱層の作製において、平均粒径0.8μmの多面体状のTiO粒子を用いたこと、ロールプレスによる圧延時の線圧を3300kgf/cmとしたこと、耐熱層の平均厚みが2μmとなるよう目付け量を調整したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。実施例11の耐熱層の空隙率は46%であり、平均表面粗さ(Ra)は0.08μmであった。作製した耐熱層の断面をSEMにより観察したところ、露出部が観察された。露出部の最大長さは5μmであり、露出部の割合は、7%であった。
<実施例12>
 正極の作製において、ロールプレスによる圧延を行わなかったこと、耐熱層の作製において、平均粒径0.09μmの針状のTiO粒子を用いたこと、ロールプレスによる圧延時の線圧を3300kgf/cmとしたこと、耐熱層の平均厚みが2μmとなるよう目付け量を調整したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。実施例12の耐熱層の空隙率は55%であり、平均表面粗さ(Ra)は0.05μmであった。作製した耐熱層の断面をSEMにより観察したところ、露出部が観察された。露出部の最大長さは3μmであり、露出部の割合は、5%であった。
<実施例13>
 正極の作製において、ロールプレスによる圧延を行わなかったこと、耐熱層の作製において、平均粒径0.8μmのネッキング状のTiO粒子を用いたこと、ロールプレスによる圧延時の線圧を3300kgf/cmとしたこと、耐熱層の平均厚みが2μmとなるよう目付け量を調整したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。実施例13の耐熱層の空隙率は51%であり、平均表面粗さ(Ra)は0.35μmであった。作製した耐熱層の断面をSEMにより観察したところ、露出部が観察された。露出部の最大長さは6μmであり、露出部の割合は、5%であった。
<実施例14>
 負極の作製において、ロールプレスによる圧延を行わなかったこと、正極上に耐熱層を形成せずに、負極上に耐熱層を形成したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。実施例14の耐熱層の平均厚みは2μmであり、空隙率は33%であり、平均表面粗さ(Ra)は0.2μmであった。作製した耐熱層の断面をSEMにより観察したところ、露出部が観察された。露出部の最大長さは16μmであり、露出部の割合は、10%であった。
<比較例1>
 耐熱層の作製において、平均粒径0.6μmの球状のMgO粒子(マグネシウムイオンのχiは6.5)を用いたこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。比較例1の耐熱層の平均厚みは3μmであり、空隙率は40%であり、平均表面粗さ(Ra)は0.15μmであった。作製した耐熱層の断面をSEMにより観察したところ、露出部は観察されなかった。
<比較例2>
 耐熱層の作製において、ロールプレスによる圧延を行わなかったこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。比較例2の耐熱層の平均厚みは3μmであり、空隙率は60%であり、平均表面粗さ(Ra)は1.22μmであった。作製した耐熱層の断面をSEMにより観察したところ、露出部は観察されなかった。
[内部短絡試験]
 各実施例及び比較例の非水電解質二次電池を、500mAの電流値で電池電圧が4.20Vとなるまで定電流充電を行なった後、4.2Vの電圧で60分間、定電圧充電を行った。その後、正極上に異物を仕込み、JIS C 8714に従い、強制的に短絡させた時の電池の側部の温度を熱電対で測定した。測定した電池温度の最高温度を内部短絡時の電池温度とした。
[内部抵抗の測定]
 各実施例及び比較例の非水電解質二次電池を、500mAの電流値で電池電圧が3.7Vとなるまで定電流充電を行った後、3.7Vの電圧で60分間、低電圧充電を行った。その後、1500mAで10秒間放電した。放電前の開回路電圧をV1、10秒間放電後の開回路電圧をV2として、以下の式により電池の内部抵抗R(mΩ)を求めた。
 R=(V1-V2)/1.5
 表1に、各実施例及び比較例の内部短絡時の電池温度及び電池の内部抵抗の結果をまとめた。
Figure JPOXMLDOC01-appb-T000001
 実施例1~14はいずれも、比較例2より、内部短絡時の電池温度が低かった。また、実施例1~14はいずれも、比較例1より、電池の内部抵抗が低かった。すなわち、正極と、負極と、前記正極上及び前記負極上のうちの少なくともいずれか一方に形成された耐熱層と、非水電解質と、を備え、前記耐熱層は、少なくとも表面が金属化合物からなる耐熱性粒子を含み、前記耐熱層の平均厚みは0.5μm~5μmの範囲であり、前記耐熱層の空隙率は25%~55%であり、前記耐熱層の平均表面粗さ(Ra)は0.35μm以下であり、前記金属化合物の金属イオンの電気陰性度は13.5以上である、非水電解質二次電池によれば、電池の内部抵抗の上昇を抑え、且つ内部短絡時の電池温度の上昇を抑制することができると言える。
 10 非水電解質二次電池、11 正極、12 負極、13 セパレータ、14 電極素子、15 電池ケース、16 ケース本体、17 封口体、18,19 絶縁板、20 正極リード、21 負極リード、22 張り出し部、23 フィルタ、24 下弁体、25 絶縁部材、26 上弁体、27 キャップ、28 ガスケット、30 集電体、32 活物質層、34 耐熱層。

Claims (8)

  1.  正極と、負極と、前記正極上及び前記負極上のうちの少なくともいずれか一方に形成された耐熱層と、非水電解質と、を備え、
     前記耐熱層は、少なくとも表面が金属化合物からなる耐熱性粒子を含み、
     前記耐熱層の平均厚みは0.5μm~5μmの範囲であり、前記耐熱層の空隙率は25%~55%であり、前記耐熱層の平均表面粗さ(Ra)は0.35μm以下であり、
     前記金属化合物の金属イオンの電気陰性度は13.5以上である、非水電解質二次電池。
  2.  前記耐熱性粒子の平均粒径は0.05μm~1μmである、請求項1に記載の非水電解質二次電池。
  3.  前記金属化合物は、Ti、Sn、W、Nb、Mo、Siのうちの少なくともいずれか1つを含む酸化物、水酸化物又はオキシ水酸化物である、請求項1又は2に記載の非水電解質二次電池。
  4.  前記耐熱性粒子は、Ti、Sn、W、Nb、Mo、Siのうちの少なくともいずれか1つを含む酸化物、水酸化物又はオキシ水酸化物である、請求項1~3のいずれか1項に記載の非水電解質二次電池。
  5.  前記耐熱性粒子の形状は、多面体状、針状又はネッキング状である、請求項1~4のいずれか1項に記載の非水電解質二次電池。
  6.  前記耐熱層の表面には、前記耐熱層の下の電極の一部が露出した露出部が複数存在し、
     前記電極の任意の断面において、前記露出部1個当たりの最大長さは30μm以下であり、前記露出部の長さの合計が、前記電極の表面全体の長さに対して20%以下である、請求項1~5のいずれか1項に記載の非水電解質二次電池。
  7.  前記負極は、負極集電体と、負極集電体上に形成された負極活物質層を備え、
     前記耐熱層は、前記負極活物質層の表面全体に形成されている、請求項1~6のいずれか1項に記載の非水電解質二次電池。
  8.  非水電解質二次電池の正極又は負極として用いられる電極と、前記電極上に形成された耐熱層と、を備え、
     前記耐熱層は、少なくとも表面が金属化合物からなる耐熱性粒子を含み、
     前記耐熱層の平均厚みは0.5μm~5μmの範囲であり、前記耐熱層の空隙率は25%~55%であり、前記耐熱層の平均表面粗さ(Ra)は0.35μm以下であり、
     前記金属化合物の金属イオンの電気陰性度は13.5以上である、電極構造体。
PCT/JP2019/006875 2018-06-28 2019-02-22 電極構造体及び非水電解質二次電池 WO2020003605A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020527194A JP7203360B2 (ja) 2018-06-28 2019-02-22 電極構造体及び非水電解質二次電池
CN201980031426.4A CN112106231A (zh) 2018-06-28 2019-02-22 电极结构体和非水电解质二次电池
US16/973,622 US20210249642A1 (en) 2018-06-28 2019-02-22 Electrode structure and non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-122882 2018-06-28
JP2018122882 2018-06-28

Publications (1)

Publication Number Publication Date
WO2020003605A1 true WO2020003605A1 (ja) 2020-01-02

Family

ID=68986418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006875 WO2020003605A1 (ja) 2018-06-28 2019-02-22 電極構造体及び非水電解質二次電池

Country Status (4)

Country Link
US (1) US20210249642A1 (ja)
JP (1) JP7203360B2 (ja)
CN (1) CN112106231A (ja)
WO (1) WO2020003605A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181756A (ja) * 2008-01-30 2009-08-13 Hitachi Maxell Ltd リチウムイオン二次電池およびこれを用いた電子機器
JP4476254B2 (ja) * 2005-09-14 2010-06-09 パナソニック株式会社 非水電解質二次電池
JP4602254B2 (ja) * 2003-09-18 2010-12-22 パナソニック株式会社 リチウムイオン二次電池
JP2013191550A (ja) * 2012-03-13 2013-09-26 Hitachi Ltd 非水電解質二次電池用電極、非水電解質二次電池及びその製造方法
JP2017073317A (ja) * 2015-10-08 2017-04-13 トヨタ自動車株式会社 非水電解液二次電池
WO2018179900A1 (ja) * 2017-03-31 2018-10-04 パナソニックIpマネジメント株式会社 二次電池
JP2018160420A (ja) * 2017-03-23 2018-10-11 株式会社東芝 電極複合体、二次電池、電池パック及び車両

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4933270B2 (ja) * 2004-12-07 2012-05-16 パナソニック株式会社 セパレータおよびそれを用いた非水電解液二次電池
KR100772305B1 (ko) * 2005-03-02 2007-11-02 마쯔시다덴기산교 가부시키가이샤 리튬이온 이차전지 및 그 제조법
CN100426562C (zh) * 2005-09-14 2008-10-15 松下电器产业株式会社 非水电解质二次电池
JP5055865B2 (ja) * 2006-07-19 2012-10-24 パナソニック株式会社 リチウムイオン二次電池
JP2008234879A (ja) 2007-03-19 2008-10-02 Hitachi Maxell Ltd リチウムイオン二次電池
JP5287520B2 (ja) * 2008-09-02 2013-09-11 住友化学株式会社 電極活物質、電極および非水電解質二次電池
JP2010267475A (ja) * 2009-05-14 2010-11-25 Panasonic Corp リチウムイオン二次電池
WO2013136426A1 (ja) * 2012-03-13 2013-09-19 株式会社日立製作所 非水電解質二次電池及びその製造方法
JP6590652B2 (ja) * 2015-11-16 2019-10-16 キヤノン株式会社 現像部材、その製造方法、プロセスカートリッジおよび電子写真画像形成装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4602254B2 (ja) * 2003-09-18 2010-12-22 パナソニック株式会社 リチウムイオン二次電池
JP4476254B2 (ja) * 2005-09-14 2010-06-09 パナソニック株式会社 非水電解質二次電池
JP2009181756A (ja) * 2008-01-30 2009-08-13 Hitachi Maxell Ltd リチウムイオン二次電池およびこれを用いた電子機器
JP2013191550A (ja) * 2012-03-13 2013-09-26 Hitachi Ltd 非水電解質二次電池用電極、非水電解質二次電池及びその製造方法
JP2017073317A (ja) * 2015-10-08 2017-04-13 トヨタ自動車株式会社 非水電解液二次電池
JP2018160420A (ja) * 2017-03-23 2018-10-11 株式会社東芝 電極複合体、二次電池、電池パック及び車両
WO2018179900A1 (ja) * 2017-03-31 2018-10-04 パナソニックIpマネジメント株式会社 二次電池

Also Published As

Publication number Publication date
JPWO2020003605A1 (ja) 2021-07-15
JP7203360B2 (ja) 2023-01-13
CN112106231A (zh) 2020-12-18
US20210249642A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
JP2019220493A (ja) 非水電解質二次電池用正極及び非水電解質二次電池
JP6945169B2 (ja) 二次電池
US11450852B2 (en) Positive electrode for secondary battery, and secondary battery
CN111201649B (zh) 非水电解质二次电池
WO2019097951A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
US20200168907A1 (en) Nonaqueous electrolyte secondary battery
US11462773B2 (en) Secondary battery positive electrode and secondary battery
JP7361340B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
WO2019021581A1 (ja) 二次電池用正極、及び二次電池
JP7361339B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
CN112640156B (zh) 二次电池用正极和二次电池
US11749806B2 (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US11742492B2 (en) Secondary battery positive electrode, secondary battery positive electrode current collector, and secondary battery
WO2020003605A1 (ja) 電極構造体及び非水電解質二次電池
JP7432850B2 (ja) 正極及び二次電池
CN113169336B (zh) 非水电解质二次电池用负极和非水电解质二次电池
JP7153890B2 (ja) 非水電解質二次電池用正極、及び非水電解質二次電池
WO2022118737A1 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
WO2022158375A1 (ja) 非水電解質二次電池
WO2021106727A1 (ja) 非水電解質二次電池用負極、非水電解質二次電池、及び非水電解質二次電池用負極の製造方法
WO2021117615A1 (ja) 非水電解質二次電池
US20220115671A1 (en) Positive electrode and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527194

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826363

Country of ref document: EP

Kind code of ref document: A1