WO2020003417A1 - 電力増幅器及びフィルタ - Google Patents

電力増幅器及びフィルタ Download PDF

Info

Publication number
WO2020003417A1
WO2020003417A1 PCT/JP2018/024414 JP2018024414W WO2020003417A1 WO 2020003417 A1 WO2020003417 A1 WO 2020003417A1 JP 2018024414 W JP2018024414 W JP 2018024414W WO 2020003417 A1 WO2020003417 A1 WO 2020003417A1
Authority
WO
WIPO (PCT)
Prior art keywords
stub
transmission line
harmonic
resonator
power amplifier
Prior art date
Application number
PCT/JP2018/024414
Other languages
English (en)
French (fr)
Inventor
拓海 杉谷
政毅 半谷
山中 宏治
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020526788A priority Critical patent/JP6815564B2/ja
Priority to PCT/JP2018/024414 priority patent/WO2020003417A1/ja
Publication of WO2020003417A1 publication Critical patent/WO2020003417A1/ja
Priority to US17/039,140 priority patent/US11381206B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/601Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators using FET's, e.g. GaAs FET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/212Frequency-selective devices, e.g. filters suppressing or attenuating harmonic frequencies
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/171A filter circuit coupled to the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/423Amplifier output adaptation especially for transmission line coupling purposes, e.g. impedance adaptation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to a power amplifier and a filter that resonate with each of odd-order harmonics and even-order harmonics.
  • Patent Document 1 discloses a power amplifier including a second-harmonic resonator that resonates with a second harmonic and a third-harmonic resonator that resonates with a third harmonic.
  • the power amplifier disclosed in Patent Literature 1 includes a transmission line that transmits an amplified signal output from an amplification element. Further, the power amplifier disclosed in Patent Document 1 is arranged in parallel with the transmission line, and a second harmonic resonator which is a coupling line electromagnetically coupled to the transmission line, and is arranged in parallel with the transmission line. And a third harmonic resonator which is a coupling line electromagnetically coupled to the transmission line.
  • the second harmonic resonator resonates with the second harmonic included in the amplified signal output from the amplification element, thereby suppressing the second harmonic, and the third harmonic resonator is output from the amplification element. By resonating with the third harmonic included in the amplified signal, the third harmonic is suppressed.
  • the power amplifier disclosed in Patent Literature 1 can suppress each of the second harmonic and the third harmonic included in the amplified signal.
  • the present invention has been made to solve the above problems, and if a space for arranging two lines in parallel can be secured, an electric power capable of suppressing each of odd-order harmonics and even-order harmonics can be obtained. It aims at obtaining an amplifier and a filter.
  • a power amplifier amplifies a signal to be amplified and outputs an amplified signal.
  • One end of the power amplifier is connected to an output terminal of the amplification element, and the amplification output from the output terminal of the amplification element.
  • a transmission line that transmits a subsequent signal a stub having one end connected to one end of the transmission line, and a coupling that is disposed in parallel with each of the transmission line and the stub and electromagnetically coupled to each of the transmission line and the stub.
  • a stub and a coupling line operate as a first resonator that resonates with an odd-order harmonic included in the amplified signal, and the transmission line, the stub and the coupling line function as a first resonator in the amplified signal. It operates as a second resonator that resonates with the included even-order harmonics.
  • a stub having one end connected to one end of the transmission line, and a coupling line disposed in parallel with each of the transmission line and the stub and electromagnetically coupled to each of the transmission line and the stub.
  • the stub and the coupling line operate as a first resonator that resonates with the odd harmonic contained in the amplified signal
  • the transmission line, the stub and the coupling line are included in the amplified signal.
  • the power amplifier was configured to operate as a second resonator that resonates with even harmonics. Therefore, in the power amplifier according to the present invention, if a space for arranging two lines in parallel can be secured, each of the odd-order harmonic and the even-order harmonic can be suppressed.
  • FIG. 2 is a configuration diagram illustrating a power amplifier according to a first embodiment.
  • FIG. 2A is a Smith chart showing a simulation result
  • FIG. 2B is a graph showing a relationship between frequency and signal strength as a simulation result.
  • FIG. 9 is a perspective view showing a power amplifier according to a second embodiment.
  • FIG. 1 is a configuration diagram showing a power amplifier according to the first embodiment.
  • an amplification element 1 amplifies a high-frequency signal (amplification target signal) input from an input terminal 1 a and outputs the amplified high-frequency signal to a filter 2 from an output terminal 1 b.
  • a field effect transistor FET
  • HBT Heterojunction Bipolar Transistor
  • the source terminal or the emitter terminal of the amplifier 1 is grounded.
  • this is only an example, and a transistor in which the drain terminal or the collector terminal of the amplification element 1 is grounded may be used.
  • the filter 2 includes a transmission line 11, a stub 12, and a coupling line 13.
  • Each of the transmission line 11, the stub 12, and the coupling line 13 is formed on the semiconductor substrate by, for example, a metal pattern.
  • the series line of the transmission line 11 and the stub 12 is regarded as one line. Therefore, the configuration of the filter 2 is such that two lines, that is, the series line of the transmission line 11 and the stub 12 and the coupling line 13 are arranged in parallel.
  • the filter 2 suppresses each of the second harmonic and the third harmonic contained in the amplified high-frequency signal output from the output terminal 1b of the amplifying element 1, and suppresses the fundamental wave contained in the high-frequency signal. Is output.
  • the transmission line 11 is connected to the output terminal 1 b of the amplifier 1, and is a line for transmitting the amplified high-frequency signal output from the output terminal 1 b of the amplifier 1.
  • the stub 12 is an open stub having one end connected to one end of the transmission line 11.
  • the transmission line 11 and the stub 12 are illustrated as being separated from each other, but the transmission line 11 and the stub 12 are actually connected at a connection point C.
  • the coupling line 13 has an open end 13a on the stub 12 side and an open end 13b on the transmission line 11 side.
  • the coupling line 13 is arranged in parallel with each of the transmission line 11 and the stub 12, and is a line that is electromagnetically coupled to each of the transmission line 11 and the stub 12.
  • Coupling line 13, the first electrical length of 8 of the wavelength lambda f of the fundamental wave f which is included in the high-frequency signal after amplification outputted from the output terminal 1b of the amplification element 1 (L1 + L2) ( ⁇ f / 8 )have.
  • the electrical length L2 is an electrical length of the transmission line 11, and is a length ⁇ f / 24 of a length of 24 times the wavelength ⁇ f of the fundamental wave f.
  • the stub 12 and the coupling line 13 operate as a first resonator 21 that resonates with the third harmonic (odd-order harmonic) included in the amplified high-frequency signal.
  • the transmission line 11, the stub 12, and the coupling line 13 operate as a second resonator 22 that resonates with a second harmonic (even harmonic) included in the amplified high-frequency signal.
  • the amplification element 1 When the high frequency signal is input from the input terminal 1a, the amplification element 1 amplifies the high frequency signal, and outputs the amplified high frequency signal to the filter 2 from the output terminal 1b.
  • a stub 12 is connected to one end of the transmission line 11, and the electrical length L1 of the stub 12 is equal to the wavelength ⁇ of the fundamental wave f included in the amplified high-frequency signal output from the output terminal 1b of the amplifier 1.
  • the length is one-twelfth of f , ⁇ f / 12.
  • the electrical length L1 of the stub 12 is a quarter wavelength ⁇ 3f / 4 of the wavelength ⁇ 3f of the third harmonic contained in the amplified high-frequency signal. Therefore, the stub 12 and the coupling line 13 operate as the first resonator 21 that resonates with the third harmonic included in the high-frequency signal, so that the third harmonic is suppressed by the first resonator 21. You.
  • the coupling line 13 is arranged in parallel with each of the transmission line 11 and the stub 12, and is electromagnetically coupled to each of the transmission line 11 and the stub 12.
  • the electrical length (L1 + L2) of the coupling line 13 is equal to the length ⁇ f / 1/8 of the wavelength ⁇ f of the fundamental wave f included in the amplified high-frequency signal output from the output terminal 1b of the amplification element 1. 8
  • the electrical length (L1 + L2) of the coupling line 13 is a quarter wavelength ⁇ 2f / 4 of the wavelength ⁇ 2f of the second harmonic contained in the amplified high-frequency signal.
  • the transmission line 11, the stub 12, and the coupling line 13 operate as the second resonator 22 that resonates with the second harmonic included in the high-frequency signal, the second harmonic is generated by the second resonator. 22 is suppressed.
  • the fundamental wave f included in the amplified high-frequency signal output from the output terminal 1b of the amplification element 1 is transmitted through the transmission line 11 and output to the outside.
  • FIG. 2 is an explanatory diagram showing a simulation result when each of the second harmonic processing and the third harmonic processing is performed by the filter 2.
  • FIG. 2A is a Smith chart showing a simulation result
  • FIG. 2B is a graph showing a relationship between frequency and signal strength as a simulation result.
  • the simulation result shown in FIG. 2 shows the result of processing the second harmonic contained in the high frequency signal of the 30 GHz band and the result of processing the third harmonic included in the filter 2.
  • FIG. 2A shows that the frequency of the second harmonic, 60 Hz, is open and the frequency of the third harmonic, 90 Hz, is short-circuited.
  • FIG. 2B shows that the signal strength of each of the second harmonic and the third harmonic included in the high-frequency signal is attenuated.
  • the stub 12 having one end connected to one end of the transmission line 11 and the transmission line 11 and the stub 12 are arranged in parallel with each other.
  • a stub 12 and the coupling line 13 operate as a first resonator 21 that resonates with an odd-order harmonic included in the amplified signal, and the transmission line 11 and the stub 12
  • the power amplifier is configured such that the coupling line 13 operates as the second resonator 22 that resonates with the even harmonic contained in the amplified signal. Accordingly, the power amplifier can suppress each of the odd-order harmonics and the even-order harmonics if a space for arranging the two lines in parallel can be secured.
  • the first resonator 21 resonates at the third harmonic
  • the second resonator resonates at the second harmonic.
  • the first resonator 21 resonates at odd harmonics such as the fifth harmonic or the seventh harmonic
  • the second resonator resonates at the fourth harmonic or the sixth harmonic.
  • Such an element may resonate at even harmonics.
  • the electrical length L1 of the stub 12 is equal to the fundamental wave f included in the amplified high-frequency signal output from the output terminal 1b of the amplifier 1. It is sufficient if the length is ⁇ f / 20, which is 1/20 of the wavelength ⁇ f .
  • the electrical length (L1 + L2) of the coupling line 13 is included in the amplified high-frequency signal output from the output terminal 1b of the amplifier 1.
  • the length ⁇ f / 16 may be 1/16 of the wavelength ⁇ f of the fundamental wave f.
  • Embodiment 2 FIG.
  • the transmission line 11, the stub 12, and the coupling line 13 are formed on the same plane of the semiconductor substrate.
  • the coupling line 13 is formed in a layer different from the layer of the semiconductor substrate (circuit board) on which the transmission line 11 and the stub 12 are formed.
  • FIG. 3 is a perspective view showing a power amplifier according to the second embodiment.
  • the semiconductor substrate 40 is a multilayer substrate including a first layer 41 and a second layer 42.
  • the coupling line 13 is formed on the first layer 41.
  • the shape of the coupling line 13 is L-shaped.
  • Each of the transmission line 11 and the stub 12 is formed on the second layer 42.
  • the transmission line 11 and the stub 12 are connected in an L shape according to the shape of the coupling line 13.
  • the coupling line 13 is arranged at a position where the transmission line 11 and the stub 12 overlap.
  • the power amplifier is configured such that the coupling line 13 is formed on a layer different from the layer of the circuit board on which the transmission line 11 and the stub 12 are formed. Therefore, the power amplifier according to the second embodiment can reduce the area occupied by filter 2 on one plane in the circuit board, as compared with the power amplifier according to the first embodiment.
  • any combination of the embodiments, a modification of an arbitrary component of each embodiment, or an omission of any component in each embodiment is possible within the scope of the invention. .
  • the present invention is suitable for power amplifiers and filters that resonate with odd-order harmonics and even-order harmonics, respectively.
  • 1 amplifying element 1a input terminal, 1b output terminal, 2 filter, 11 transmission line, 12 stub, 13 coupling line, 13a, 13b end, 21 first resonator, 22 second resonator, 40 semiconductor substrate, 41 ⁇ first layer, 42 ⁇ second layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microwave Amplifiers (AREA)
  • Amplifiers (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一端が伝送線路(11)の一端と接続されているスタブ(12)と、伝送線路(11)及びスタブ(12)のそれぞれと平行に配置されており、伝送線路(11)及びスタブ(12)のそれぞれと電磁結合される結合線路(13)とを備え、スタブ(12)及び結合線路(13)が、増幅後の信号に含まれている奇数次高調波に共振する第1の共振器(21)として動作し、伝送線路(11)、スタブ(12)及び結合線路(13)が、増幅後の信号に含まれている偶数次高調波に共振する第2の共振器(22)として動作するように、電力増幅器を構成した。

Description

電力増幅器及びフィルタ
 この発明は、奇数次高調波及び偶数次高調波のそれぞれに共振する電力増幅器及びフィルタに関するものである。
 以下の特許文献1には、2倍波に共振する2倍波共振器と、3倍波に共振する3倍波共振器とを備える電力増幅器が開示されている。
 特許文献1に開示されている電力増幅器は、増幅素子から出力された増幅後の信号を伝送する伝送線路を備えている。
 また、特許文献1に開示されている電力増幅器は、伝送線路と平行に配置されており、伝送線路と電磁結合される結合線路である2倍波共振器と、伝送線路と平行に配置されており、伝送線路と電磁結合される結合線路である3倍波共振器とを備えている。
 2倍波共振器が、増幅素子から出力された増幅後の信号に含まれている2倍波に共振することで、2倍波を抑圧し、3倍波共振器が、増幅素子から出力された増幅後の信号に含まれている3倍波に共振することで、3倍波を抑圧する。
特開平8-139535号公報
 特許文献1に開示されている電力増幅器は、増幅後の信号に含まれている2倍波及び3倍波のそれぞれを抑圧することができる。
 しかし、特許文献1に開示されている電力増幅器では、2倍波共振器である結合線路と、3倍波共振器である結合線路とを伝送線路と平行に配置する必要があり、3本の線路を平行に配置するスペースを確保しなければならない。
 したがって、特許文献1に開示されている電力増幅器は、3本の線路を平行に配置するスペースを確保できない場合、2倍波及び3倍波のそれぞれを抑圧することができないという課題があった。
 この発明は上記のような課題を解決するためになされたもので、2本の線路を平行に配置するスペースを確保できれば、奇数次高調波及び偶数次高調波のそれぞれを抑圧することができる電力増幅器及びフィルタを得ることを目的とする。
 この発明に係る電力増幅器は、増幅対象の信号を増幅し、増幅後の信号を出力する増幅素子と、一端が増幅素子の出力端子と接続されており、増幅素子の出力端子から出力された増幅後の信号を伝送する伝送線路と、一端が伝送線路の一端と接続されているスタブと、伝送線路及びスタブのそれぞれと平行に配置されており、伝送線路及びスタブのそれぞれと電磁結合される結合線路とを備え、スタブ及び結合線路が、増幅後の信号に含まれている奇数次高調波に共振する第1の共振器として動作し、伝送線路、スタブ及び結合線路が、増幅後の信号に含まれている偶数次高調波に共振する第2の共振器として動作するようにしたものである。
 この発明によれば、一端が伝送線路の一端と接続されているスタブと、伝送線路及びスタブのそれぞれと平行に配置されており、伝送線路及びスタブのそれぞれと電磁結合される結合線路とを備え、スタブ及び結合線路が、増幅後の信号に含まれている奇数次高調波に共振する第1の共振器として動作し、伝送線路、スタブ及び結合線路が、増幅後の信号に含まれている偶数次高調波に共振する第2の共振器として動作するように、電力増幅器を構成した。したがって、この発明に係る電力増幅器は、2本の線路を平行に配置するスペースを確保できれば、奇数次高調波及び偶数次高調波のそれぞれを抑圧することができる。
実施の形態1による電力増幅器を示す構成図である。 図2Aは、シミュレーション結果を示すスミスチャート、図2Bは、シミュレーション結果として、周波数と信号強度の関係を示すグラフである。 実施の形態2による電力増幅器を示す斜視図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1による電力増幅器を示す構成図である。
 図1において、増幅素子1は、入力端子1aから入力された高周波信号(増幅対象の信号)を増幅し、出力端子1bから増幅後の高周波信号をフィルタ2に出力する。
 増幅素子1としては、電界効果トランジスタ(FET: Field Effect Transistor)又はヘテロ接合バイポーラトランジスタ(HBT:Heterojunction Bipolar Transistor)などを用いることができる。
 図1に示す電力増幅器では、増幅素子1のソース端子又はエミッタ端子が接地されている。しかし、これは一例に過ぎず、増幅素子1のドレイン端子又はコレク タ端子が接地されているトランジスタであってもよい。
 フィルタ2は、伝送線路11、スタブ12及び結合線路13を備えている。
 伝送線路11、スタブ12及び結合線路13のそれぞれは、例えば、メタルパターンで半導体基板に形成されている。
 伝送線路11とスタブ12の直列線路は、1本の線路であるとみなされる。したがって、フィルタ2の構成は、伝送線路11及びスタブ12の直列線路と、結合線路13との2本の線路が平行に配置されているものである。
 フィルタ2は、増幅素子1の出力端子1bから出力された増幅後の高周波信号に含まれている2次高調波及び3次高調波のそれぞれを抑圧して、高周波信号に含まれている基本波を出力する。
 伝送線路11は、一端が増幅素子1の出力端子1bと接続されており、増幅素子1の出力端子1bから出力された増幅後の高周波信号を伝送する線路である。
 スタブ12は、一端が伝送線路11の一端と接続されているオープンスタブである。
 スタブ12は、増幅素子1の出力端子1bから出力された増幅後の高周波信号に含まれている基本波fの波長λの12分の1の電気長L1(=λ/12)を有している。
 図1に示す電力増幅器では、伝送線路11とスタブ12が離れているように表記しているが、実際には、接続点Cにおいて、伝送線路11とスタブ12が接続されている。
 結合線路13は、スタブ12側の端部13aが開放され、伝送線路11側の端部13bが接地されている。
 結合線路13は、伝送線路11及びスタブ12のそれぞれと平行に配置されており、伝送線路11及びスタブ12のそれぞれと電磁結合される線路である。
 結合線路13は、増幅素子1の出力端子1bから出力された増幅後の高周波信号に含まれている基本波fの波長λの8分の1の電気長(L1+L2)(=λ/8)を有している。
 電気長L2は、伝送線路11が有する電気長であり、基本波fの波長λの24分の1の長さλ/24である。
 スタブ12及び結合線路13は、増幅後の高周波信号に含まれている3次高調波(奇数次高調波)に共振する第1の共振器21として動作する。
 伝送線路11、スタブ12及び結合線路13は、増幅後の高周波信号に含まれている2次高調波(偶数次高調波)に共振する第2の共振器22として動作する。
 次に、図1に示す電力増幅器の動作について説明する。
 増幅素子1は、入力端子1aから高周波信号が入力されると、高周波信号を増幅し、出力端子1bから増幅後の高周波信号をフィルタ2に出力する。
 伝送線路11の一端にはスタブ12が接続されており、スタブ12の電気長L1は、増幅素子1の出力端子1bから出力された増幅後の高周波信号に含まれている基本波fの波長λの12分の1の長さλ/12である。また、スタブ12の電気長L1は、増幅後の高周波信号に含まれている3次高調波の波長λ3fの4分の1の長さλ3f/4である。
 したがって、スタブ12及び結合線路13は、高周波信号に含まれている3次高調波に共振する第1の共振器21として動作するため、3次高調波は、第1の共振器21によって抑圧される。
 結合線路13は、伝送線路11及びスタブ12のそれぞれと平行に配置されており、伝送線路11及びスタブ12のそれぞれと電磁結合される。
 結合線路13の電気長(L1+L2)は、増幅素子1の出力端子1bから出力された増幅後の高周波信号に含まれている基本波fの波長λの8分の1の長さλ/8である。また、結合線路13の電気長(L1+L2)は、増幅後の高周波信号に含まれている2次高調波の波長λ2fの4分の1の長さλ2f/4である。
 したがって、伝送線路11、スタブ12及び結合線路13は、高周波信号に含まれている2次高調波に共振する第2の共振器22として動作するため、2次高調波は、第2の共振器22によって抑圧される。
 増幅素子1の出力端子1bから出力された増幅後の高周波信号に含まれている基本波fは、伝送線路11を伝送されて、外部に出力される。
 ここで、図2は、フィルタ2によって、2次高調波処理及び3次高調波処理のそれぞれが実施された場合のシミュレーション結果を示す説明図である。
 図2Aは、シミュレーション結果を示すスミスチャートであり、図2Bは、シミュレーション結果として、周波数と信号強度の関係を示すグラフである。
 図2に示すシミュレーション結果は、フィルタ2が、30GHz帯の高周波信号に含まれている2次高調波を処理した結果と、3次高調波を処理した結果とを示している。
 図2Aは、2次高調波の周波数である60HHzが開放され、3次高調波の周波数である90HHzが短絡されていることを示している。
 図2Bは、高周波信号に含まれている2次高調波及び3次高調波のそれぞれの信号強度が減衰されていることを示している。
 以上の実施の形態1は、一端が伝送線路11の一端と接続されているスタブ12と、伝送線路11及びスタブ12のそれぞれと平行に配置されており、伝送線路11及びスタブ12のそれぞれと電磁結合される結合線路13とを備え、スタブ12及び結合線路13が、増幅後の信号に含まれている奇数次高調波に共振する第1の共振器21として動作し、伝送線路11、スタブ12及び結合線路13が、増幅後の信号に含まれている偶数次高調波に共振する第2の共振器22として動作するように、電力増幅器を構成した。したがって、電力増幅器は、2本の線路を平行に配置するスペースを確保できれば、奇数次高調波及び偶数次高調波のそれぞれを抑圧することができる。
 図1に示す電力増幅器では、第1の共振器21が3次高調波に共振し、第2の共振器が2次高調波に共振している。しかし、これは一例に過ぎず、第1の共振器21が5次高調波又は7次高調波などの奇数次高調波に共振し、第2の共振器が4次高調波又は6次高調波などの偶数次高調波に共振するものであってもよい。
 第1の共振器21が例えば5次高調波に共振するには、スタブ12の電気長L1が、増幅素子1の出力端子1bから出力された増幅後の高周波信号に含まれている基本波fの波長λの20分の1の長さλ/20であればよい。
 第2の共振器22が例えば4次高調波に共振するには、結合線路13の電気長(L1+L2)が、増幅素子1の出力端子1bから出力された増幅後の高周波信号に含まれている基本波fの波長λの16分の1の長さλ/16であればよい。
実施の形態2.
 図1に示す電力増幅器では、伝送線路11、スタブ12及び結合線路13が、半導体基板の同一平面に形成されている。
 実施の形態2では、結合線路13が、伝送線路11及びスタブ12のそれぞれが形成されている半導体基板(回路基板)の層と別の層に形成されている電力増幅器について説明する。
 図3は、実施の形態2による電力増幅器を示す斜視図である。図3において、図1と同一符号は同一又は相当部分を示すので説明を省略する。
 図3では、増幅素子1の記載を省略している。
 半導体基板40は、第1の層41と第2の層42とを備える多層基板である。
 結合線路13は、第1の層41に形成されている。図3に示す電力増幅器では、結合線路13の形状がL字型である。
 伝送線路11及びスタブ12のそれぞれは、第2の層42に形成されている。図3に示す電力増幅器では、結合線路13の形状に合わせて、伝送線路11とスタブ12がL字型に接続されている。
 第1の層41から第2の層42を見たとき、結合線路13と、伝送線路11及びスタブ12とが重なる位置に配置されている。
 以上の実施の形態2は、結合線路13が、伝送線路11及びスタブ12のそれぞれが形成されている回路基板の層と別の層に形成されているように、電力増幅器を構成した。したがって、実施の形態2の電力増幅器は、実施の形態1の電力増幅器よりも、回路基板における1つの平面でのフィルタ2の占有面積を縮小することができる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明は、奇数次高調波及び偶数次高調波のそれぞれに共振する電力増幅器及びフィルタに適している。
 1 増幅素子、1a 入力端子、1b 出力端子、2 フィルタ、11 伝送線路、12 スタブ、13 結合線路、13a,13b 端部、21 第1の共振器、22 第2の共振器、40 半導体基板、41 第1の層、42 第2の層。

Claims (6)

  1.  増幅対象の信号を増幅し、増幅後の信号を出力する増幅素子と、
     一端が前記増幅素子の出力端子と接続されており、前記増幅素子の出力端子から出力された増幅後の信号を伝送する伝送線路と、
     一端が前記伝送線路の一端と接続されているスタブと、
     前記伝送線路及び前記スタブのそれぞれと平行に配置されており、前記伝送線路及び前記スタブのそれぞれと電磁結合される結合線路とを備え、
     前記スタブ及び前記結合線路は、前記増幅後の信号に含まれている奇数次高調波に共振する第1の共振器として動作し、
     前記伝送線路、前記スタブ及び前記結合線路は、前記増幅後の信号に含まれている偶数次高調波に共振する第2の共振器として動作することを特徴とする電力増幅器。
  2.  前記スタブは、前記増幅後の信号に含まれている基本波の波長の12分の1の電気長を有しており、
     前記スタブ及び前記結合線路は、前記増幅後の信号に含まれている3次高調波に共振する第1の共振器として動作することを特徴とする請求項1記載の電力増幅器。
  3.  前記結合線路は、前記増幅後の信号に含まれている基本波の波長の8分の1の電気長を有しており、
     前記伝送線路、前記スタブ及び前記結合線路は、前記増幅後の信号に含まれている2次高調波に共振する第2の共振器として動作することを特徴とする請求項1記載の電力増幅器。
  4.  前記スタブがオープンスタブであり、
     前記結合線路は、前記スタブ側の端部が開放され、前記伝送線路側の端部が接地されていることを特徴とする請求項1記載の電力増幅器。
  5.  前記結合線路は、前記伝送線路及び前記スタブのそれぞれが形成されている回路基板の層と別の層に形成されていることを特徴とする請求項1記載の電力増幅器。
  6.  一端が増幅素子の出力端子と接続されており、前記増幅素子の出力端子から出力された増幅後の信号を伝送する伝送線路と、
     一端が前記伝送線路の一端と接続されているスタブと、
     前記伝送線路及び前記スタブのそれぞれと平行に配置されており、前記伝送線路及び前記スタブのそれぞれと電磁結合される結合線路とを備え、
     前記スタブ及び前記結合線路は、前記増幅後の信号に含まれている奇数次高調波に共振する第1の共振器として動作し、
     前記伝送線路、前記スタブ及び前記結合線路は、前記増幅後の信号に含まれている偶数次高調波に共振する第2の共振器として動作することを特徴とするフィルタ。
PCT/JP2018/024414 2018-06-27 2018-06-27 電力増幅器及びフィルタ WO2020003417A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020526788A JP6815564B2 (ja) 2018-06-27 2018-06-27 電力増幅器及びフィルタ
PCT/JP2018/024414 WO2020003417A1 (ja) 2018-06-27 2018-06-27 電力増幅器及びフィルタ
US17/039,140 US11381206B2 (en) 2018-06-27 2020-09-30 Power amplifier and filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024414 WO2020003417A1 (ja) 2018-06-27 2018-06-27 電力増幅器及びフィルタ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/039,140 Continuation US11381206B2 (en) 2018-06-27 2020-09-30 Power amplifier and filter

Publications (1)

Publication Number Publication Date
WO2020003417A1 true WO2020003417A1 (ja) 2020-01-02

Family

ID=68986715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024414 WO2020003417A1 (ja) 2018-06-27 2018-06-27 電力増幅器及びフィルタ

Country Status (3)

Country Link
US (1) US11381206B2 (ja)
JP (1) JP6815564B2 (ja)
WO (1) WO2020003417A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139535A (ja) * 1994-11-11 1996-05-31 Fujitsu Ltd 高効率の電力増幅器
JP2006185936A (ja) * 2004-12-24 2006-07-13 Fujitsu Ltd 半導体装置および半導体装置の調整方法
JP2007251403A (ja) * 2006-03-14 2007-09-27 Mitsubishi Electric Corp 高周波抑圧回路
JP2011066822A (ja) * 2009-09-18 2011-03-31 Fujitsu Ltd フィルタ及び増幅回路
US9130511B2 (en) * 2010-10-20 2015-09-08 Nanyang Technological University Power amplifier and linearization techniques using active and passive devices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145850A (ja) * 1984-12-20 1986-07-03 Fujitsu Ltd マイクロ波集積回路
US5969575A (en) * 1997-12-11 1999-10-19 Alcatel Class A/F amplifier having second and third order harmonic input and output filtering and self bias distortion correction
JP5177675B2 (ja) * 2006-08-08 2013-04-03 国立大学法人電気通信大学 高調波処理回路及びこれを用いた増幅回路
WO2011007529A1 (ja) * 2009-07-14 2011-01-20 パナソニック株式会社 高周波電力増幅器
JP5979559B2 (ja) * 2011-08-29 2016-08-24 国立大学法人電気通信大学 高効率電力増幅器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139535A (ja) * 1994-11-11 1996-05-31 Fujitsu Ltd 高効率の電力増幅器
JP2006185936A (ja) * 2004-12-24 2006-07-13 Fujitsu Ltd 半導体装置および半導体装置の調整方法
JP2007251403A (ja) * 2006-03-14 2007-09-27 Mitsubishi Electric Corp 高周波抑圧回路
JP2011066822A (ja) * 2009-09-18 2011-03-31 Fujitsu Ltd フィルタ及び増幅回路
US9130511B2 (en) * 2010-10-20 2015-09-08 Nanyang Technological University Power amplifier and linearization techniques using active and passive devices

Also Published As

Publication number Publication date
JP6815564B2 (ja) 2021-01-20
US20210013849A1 (en) 2021-01-14
JPWO2020003417A1 (ja) 2020-12-17
US11381206B2 (en) 2022-07-05

Similar Documents

Publication Publication Date Title
US20110068882A1 (en) Filter and amplifying circuit
JP5958834B2 (ja) 高周波電力増幅器
JP6901108B2 (ja) デュアルバンド増幅器
JP2012119819A (ja) 周波数逓倍器
JP2007158803A (ja) 周波数逓倍器および無線通信装置
JP4472652B2 (ja) 高周波抑圧回路
WO2020003417A1 (ja) 電力増幅器及びフィルタ
JP6156148B2 (ja) 逆f級増幅回路及び逆f級増幅回路の寄生回路補償方法
US20160211815A1 (en) High-frequency power amplifier
JPH11261314A (ja) 高調波抑圧回路
US11336235B2 (en) Amplifier
JPH08139535A (ja) 高効率の電力増幅器
WO2017199400A1 (ja) 高周波電力増幅器
JP2009246871A (ja) 2倍高調波抑圧回路
JP2016181788A (ja) 電力増幅器
JP2015103957A (ja) インピーダンス整合回路及び高周波増幅器
JPH0946148A (ja) 電力増幅器
KR101537870B1 (ko) 고주파대역의 광대역 전력증폭모듈 정합회로
JP6973068B2 (ja) 増幅器
US11283415B2 (en) High-frequency amplifier
JP2008005422A (ja) 低雑音増幅器
KR100541966B1 (ko) 밀리미터파 대역 증폭 장치 및 정합 회로
Sneijers et al. Doherty Architectures in UHF White Paper
WO2022249380A1 (ja) ドハティ増幅器
JP2005223502A (ja) マイクロ波装置用バイアス回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526788

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924283

Country of ref document: EP

Kind code of ref document: A1