WO2020001328A1 - 基于金属氧化物氧浓度梯度的高性能忆阻器件及其制备 - Google Patents

基于金属氧化物氧浓度梯度的高性能忆阻器件及其制备 Download PDF

Info

Publication number
WO2020001328A1
WO2020001328A1 PCT/CN2019/091747 CN2019091747W WO2020001328A1 WO 2020001328 A1 WO2020001328 A1 WO 2020001328A1 CN 2019091747 W CN2019091747 W CN 2019091747W WO 2020001328 A1 WO2020001328 A1 WO 2020001328A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional layer
sputtering
metal oxide
lower electrode
electrode
Prior art date
Application number
PCT/CN2019/091747
Other languages
English (en)
French (fr)
Inventor
孙华军
王标
李兆男
缪向水
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2020001328A1 publication Critical patent/WO2020001328A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching

Definitions

  • the invention belongs to the technical field of microelectronic devices, and more particularly, relates to a high-performance memristive device based on a metal oxide oxygen concentration gradient and a preparation thereof.
  • the memristor can use oxygen concentration gradients such as TaOx, HfOx, AlOx, CuOx, etc.
  • the dielectric material is a resistance change function layer, which realizes the device function of the memristor.
  • Memristor can be divided into continuous adjustable resistance value gradation and resistance value mutation according to its different performance characteristics.
  • the former has proved to have great application prospects in simulating neuronal synapses, and the latter can be applied to data storage; due to its non-volatile, low power consumption and high switching characteristics at the nanosecond level, it can not only be used as a replacement for Flash One generation of memory, and has great potential in achieving computational storage convergence.
  • memristors based on the conductive wire theory have the advantages of fast speed, large resistance change window, and low operating voltage, and have great commercial potential, which is a hot topic at home and abroad.
  • the on-off of the conductive wire is difficult to control, the localized on-off of the conductive path is very random, so the on / off voltage and high and low resistance value distribution are discrete, which can be used for integrated crossbar structures due to electrical crosstalk ( The problem of crosstalk) is easy to cause misreading and increase in power consumption caused by leakage current.
  • an object of the present invention is to provide a high-performance memristive device based on a metal oxide oxygen concentration gradient and a preparation thereof, wherein the interior of a key functional layer in the memristor is provided by The composition and preparation method are improved.
  • the metal oxide with a gradient change in oxygen content is used as a functional layer.
  • the on / off of the localized conductive wire is in the high-oxygen content region. Resistance device stability, consistency and switching speed. Can reduce the current limit while increasing the high / low resistance state to reduce power consumption.
  • the functional layer based on the oxygen concentration gradient is easy to form a tapered conductive channel, and the top of the conductive channel cone with high oxygen content is easy to open and close, which can achieve high-speed resistance change under low voltage operation.
  • the memristor in the present invention further improves the resistance state by turning on and off the localized conductive wire, and shows good stability. Under the high-speed tests of 100ns and 50ns, it exhibits a voltage lower than 1V. And further achieved an operating voltage of less than 3.3V with a pulse width of 10ns.
  • a memristor based on a metal oxide oxygen concentration gradient characterized in that the device unit of the memristor includes an upper electrode, a functional layer, and The lower electrode, the functional layer is a metal oxide, and the oxygen content in the functional layer changes in a gradient, and the oxygen content in the functional layer changes gradually or gradually along the direction from the lower electrode to the upper electrode.
  • the metal oxide is an oxide of Ta, an oxide of Hf, an oxide of Al, or an oxide of Cu.
  • the gradient change of the oxygen content in the functional layer is a continuous change.
  • the upper electrode is an inert electrode, the inert electrode is preferably Pt, Pd or Ir; the lower electrode is an active electrode, and the active electrode is preferably Ta, Hf, Al, Cu, Ti, Ag At least one of.
  • the memristor includes a plurality of device units, and the plurality of device units correspond to a plurality of the upper electrodes and share the same functional layer and the same lower electrode;
  • the upper electrode is projected as a square on the plane on which the outer surface of the lower electrode is located;
  • the thickness of the lower electrode is 50 nm-200 nm, and the thickness of the functional layer is 10 nm-100 nm; the thickness of any one of the upper electrodes is 50 nm-500 nm.
  • the present invention provides a method for preparing a memristor based on a metal oxide oxygen concentration gradient, which is characterized by including the following steps:
  • a metal oxide is sputtered on the lower electrode by a sputtering method, and a metal oxide having a gradient distribution of oxygen content is obtained by gradually increasing or decreasing the oxygen content in the ambient atmosphere where the sputtering is located during the sputtering process.
  • a metal oxide having a gradient distribution of oxygen content is obtained by gradually increasing or decreasing the oxygen content in the ambient atmosphere where the sputtering is located during the sputtering process.
  • An upper electrode is prepared on the functional layer, so as to finally obtain a memristor based on a metal oxide oxygen concentration gradient.
  • the lower electrode in the step (2), before the sputtering starts, the lower electrode further forms a photoresist layer corresponding to a lithographic pattern on a surface of the lower electrode by a photolithography process. So that the lower electrode is not completely covered by the functional layer during the sputtering process, and a part of the lower electrode that is not covered by the functional layer is used for testing;
  • the photoresist layer is first stripped by acetone immersion and ultrasonic cleaning, and then sequentially washed with absolute ethanol and deionized water, and dried with a nitrogen gun to obtain the functional layer.
  • the functional layer before the preparation of the upper electrode, the functional layer further forms a photoresist corresponding to a photolithographic pattern on a surface of the functional layer by a photolithography process. Layer, so that the functional layer is not completely covered by the upper electrode during the process of preparing the upper electrode;
  • the photoresist layer is stripped by immersion in acetone followed by ultrasonic cleaning, and then sequentially washed with absolute ethanol and deionized water, and dried with a nitrogen gun to obtain the memristive.
  • the photoresist layer is used to form an upper electrode projected as a square on a plane on which the surface of the substrate is located; the upper electrode is preferably a plurality.
  • the ambient atmosphere in which the sputtering is located is a mixed gas of O 2 and Ar; preferably, the atmospheric pressure in the ambient atmosphere where the sputtering is located is maintained constant;
  • the content of oxygen in the ambient atmosphere where the sputtering is gradually increased is preferably increased according to the flow ratio of O 2 and Ar 0/40, 2/60, 3/60, 3/45, 6/60. ;
  • the substrate is a Si substrate with a SiO 2 insulating layer grown on a single surface polished;
  • the step (1) is specifically preparing the lower electrode by using a method of direct current magnetron sputtering on the substrate;
  • the step (3) specifically uses a method of direct current magnetron sputtering to prepare the upper electrode.
  • a metal oxide having a gradient change in oxygen content is used as a functional layer, for example, a functional layer whose oxygen content gradually increases from a lower electrode to an electrode (the oxygen content of the functional layer) It can be a gradual change (continuous change), an inert electrode that can be used for the upper electrode, and an active electrode can be used as the oxygen reservoir for the lower electrode.
  • the obtained oxygen concentration gradient is based on a metal oxide oxygen concentration gradient thin film memristor
  • the memristor can suppress the random on / off of the conductive channel, can effectively regulate the nano-conductive path in the high oxygen content region, and can achieve stable high high and low impedance, low voltage and high speed operation.
  • a functional layer can be prepared by a sputtering method.
  • an oxygen gradient metal oxide film can be obtained by adjusting the content of oxygen in the working gas. the ratio of argon and oxygen, to obtain an oxygen-containing metal oxide concentration gradient of the functional layer; the present invention by increasing the content of the functional layer sputtering working gas O 2 to Ar in the mixed gas of O 2, may be achieved by The content of oxygen in the functional layer gradually increases from the lower electrode to the upper electrode.
  • the functional layer in the memristor is a metal oxide such as an oxide of Ta, an oxide of Hf, an oxide of Al, or an oxide of Cu.
  • the oxygen content in the functional layer from the upper electrode to the lower electrode is gradient.
  • Change that is, the oxide of Ta in TaOx, the oxide of HfOx, the oxide of Al, AlOx, and the oxide of Cu in CuOx change in a gradient.
  • x in TaOx can be changed within 0 to 2.5
  • HfOx X in XO can be changed from 0 to 2
  • x in AlOx can be changed in 0 to 1.5
  • x in CuOx can be changed in 0 to 2.
  • the invention can adopt a sputtering process, and finally obtain the oxygen content by gradually increasing the oxygen content in the ambient atmosphere where the sputtering is located during the sputtering process.
  • Gradient distribution of metal oxide functional layers Taking the mixed atmosphere of O 2 and Ar as an example, the flow rate of O 2 and Ar can be 0/40, 2/60, 3/60, 3/45, 6 during sputtering. / 60 sequentially increases the oxygen content in the ambient atmosphere where the sputtering is located, and can obtain a functional layer with a gradual change in oxygen content.
  • the low-resistance value of the gradient memristor of the present invention is increased to more than 10 4 ⁇ , and a further increase in high resistance is achieved, thereby reducing leakage current.
  • the functional layer based on the oxygen content concentration gradient is easier to achieve multi-level resistance change under the control of electric field; high-speed pulses at 100ns and 50ns Under the test, this type of memristor showed an operating voltage lower than 1V, and further achieved an operating voltage lower than 3.3V with a pulse width of 10ns; the resistive function layer is an oxygen gradient memristor unit The overall performance is significantly better than existing memristive devices.
  • the invention can be applied to chip design for high-speed and low-power consumption operation, and has important guiding significance for high-density information storage, neuromorphic simulation and calculation.
  • the metal oxide oxygen gradient thin film memristor in the present invention can be applied to the next-generation storage technology replacing Flash; the data storage requires a large capacity, requires a long holding time, and is nonvolatile.
  • Memristors can achieve stable binary resistance changes, which can be used to store the values "1" and "0" (ie, logically true and logically false), and are faster than traditional Flash.
  • the memristor can be used in the design of low-voltage logic circuits. The logic calculation requires high calculation speed and low power consumption. This memristor is due to the effect of the oxygen concentration gradient during the set process and the obvious focus during the reset process. The Herr effect makes the on-off to the conductive filament can be realized under the action of a low electric field, so that high-speed operation and low operating voltage can be achieved, and the increase in the resistance state reduces the leakage current and reduces the power consumption.
  • FIG. 1 is a schematic structural diagram of a metal oxide oxygen concentration gradient memristor unit according to the present invention.
  • (A) is an HRTEM image of an initial thin film
  • (b) is a schematic diagram of an EDS line scan of a corresponding O element.
  • Fig. 3 is a graph of 100 times I / V DC characteristic curve scanning of a memristor under a current limit of 100uA.
  • Figure 4 is a high-speed pulse test at 100ns.
  • Figure 5 is a high-speed pulse test at 50ns.
  • Figure 6 is a high-speed pulse test at 10ns.
  • Figure 7 shows the multi-value modulation under different current limit.
  • Figure 8 shows the multi-value modulation at different reset voltage amplitudes at 80 ns.
  • FIG. 9 is a graph of 100 times I / V DC characteristic curve scanning of a memristor of a uniform oxide film in Comparative Example 1.
  • each reference numeral in FIG. 1 is as follows: 1 is an upper electrode, 2 is a functional layer, 3 is a lower electrode, 4 is a SiO 2 layer in a substrate, and 5 is a single crystal silicon layer in a substrate.
  • the high-performance memristive device based on the metal oxide oxygen concentration gradient in the present invention may be a memristor unit with a three-layer pad structure.
  • the schematic diagram of the structure is shown in FIG. 1, and it mainly includes an upper electrode, a functional layer, and a lower layer. The electrode and the functional layer are placed between the upper electrode and the lower electrode to form a sandwich structure.
  • a lower electrode can be prepared by sputtering
  • a functional layer can be prepared by photolithography, sputtering, and peeling on the lower electrode
  • an upper electrode can be prepared by photolithography, sputtering, and peeling on the functional layer.
  • a memristor device having a three-layer structure is formed.
  • the oxygen concentration gradient functional layer needs to be adjusted by adjusting the ratio of Ar to O 2 during the sputtering process. For example, you can include the following steps:
  • a metal lower electrode is grown on a single-crystal silicon substrate with SiO 2 polished and grown on one side, and the obtained lower electrode film can cover the entire substrate surface with a total thickness of 50 nm-200 nm;
  • the photolithography process can be used to prepare a photolithographic pattern on the surface of the lower electrode, and then a metal oxide functional layer can be prepared by a sputtering process.
  • a photoresist can be used to cover a part of the edge of the lower electrode to expose the lower electrode.
  • Lithography A lithographic pattern is prepared on the lower electrode by a photolithographic process, so that a part of the lower electrode is exposed after peeling, wherein the steps of photolithography include leveling, pre-baking, front-exposing, post-baking, post-exposing, and developing;
  • the content of oxygen in the working gas is gradually increased to realize the content of oxygen in the functional layer is gradually increased from the lower electrode to the upper electrode, and the total thickness can be maintained at 10nm-100nm;
  • the upper electrode is grown on a square photolithographic pattern by a magnetron sputtering method.
  • the sputtering pressure can be 0.5Pa
  • the DC power can be 35W
  • the total thickness is 50nm-500nm.
  • the lower electrode can cover the entire substrate surface, the functional layer area is smaller than the lower electrode but can be connected together as a whole layer, and the upper electrode can be a single square structure.
  • test method for the prepared device unit can adopt the following specific steps:
  • step (b) applying multiple bidirectional DC I / V voltage scans to the unit initialized in step (a) until the unit exhibits stable resistance change characteristics and its low resistance value is improved to a certain extent;
  • step (c) Test the switching characteristics of the memristor under pulses. First, based on the low resistance state obtained in step (b), adjust the pulse width and amplitude of the pulse to obtain a resistance change of about 10 times. The high resistance value of the window; and then based on the high resistance value, adjust the pulse width and amplitude of the pulse so that the device resistance changes back to the original low resistance value;
  • the corresponding preparation method may include the following steps:
  • Ta was selected as the lower electrode, and a layer of the lower electrode was grown on a single crystal silicon substrate with SiO 2 polished and grown on one side by a method of magnetron sputtering.
  • Substrate cleaning first use acetone for 10 minutes in an ultrasonic environment, then use alcohol for 10 minutes in an ultrasonic environment, and finally use ultrasonic deionized water for 10 minutes.
  • the ultrasonic power is 60W;
  • the functional layer uses TaOx material, and the TaOx material with an oxygen concentration gradient is obtained by controlling the oxygen content in the sputtering working gas;
  • Lithography A lithographic pattern is prepared on the lower electrode by a photolithographic process, so that a part of the lower electrode is exposed after peeling, wherein the steps of photolithography include leveling, pre-baking, front-exposing, post-baking, post-exposing, and developing;
  • the oxygen content is gradually increased to realize that the oxygen content in the functional layer is gradually increased from the lower electrode to the upper electrode.
  • the flow rate ratio of O 2 to Ar may be, for example, 0 / 40,2 / 60,3. / 60,3 / 45,6 / 60 increase in sequence (the total sputtering pressure of Ar and O 2 can be maintained constant, and the flow unit can be sccm), using TaOx target sputtering (x in TaOx target can be 1.5), the total The thickness is kept at 15nm, which is equivalent to the sputtering thickness of 3nm for each working atmosphere.
  • the gradual concentration gradient is formed by the diffusion of the interface between different components, as shown in Figure 2; it can be seen from (b) in Figure 2 From the a position to the b position, the O element content changes gradually (wherein the O element content near the b position has an unexpected decrease. This decrease is caused by the test jitter. The actual oxygen content in the functional layer Is still increasing);
  • the sputtering process conditions are: the sputtering pressure is 0.5pa, and the power is 120W;
  • step (b) Apply multiple bidirectional DC I / V voltage scans to the unit initialized in step (a).
  • the voltage scan range is -2 to 2.2V, the limit current is set to 100uA, and a low resistance value of 10k ⁇ is obtained. Until the unit shows stable resistance change characteristics;
  • step (c) Test the switching characteristics of the memristor under pulses. First, adjust the pulse widths to 100ns, 50ns, and 10ns based on the low-impedance state obtained in step (b), and then adjust the corresponding resets.
  • the voltage amplitude is 0.96V, 0.98V, 3.2V, so that the unit is reset to about 100k ⁇ , and the corresponding set voltage amplitude is adjusted to -0.64V, -0.67V, -2.3V, so that the unit is set to about 10k ⁇ ;
  • the above test results show that the low resistance value of the memristor increases to more than 10 4 ⁇ under the current limit of 100uA, and shows good stability.
  • the leakage current is further suppressed in the high resistance state, and the resistance state is improved;
  • high-speed pulse testing shows By precisely adjusting the voltage and amplitude to achieve the precise regulation of the conductive filament, stable low resistance and a certain window value can be obtained.
  • the nanosecond-level pulse modulation realizes the high-speed operation of the device, with a pulse width of 100ns and 50ns.
  • the obtained amplitude of less than 1V and an amplitude of less than 3.3V at 10ns achieve a low operating voltage; it has been successfully verified that the present invention can indeed regulate the on and off of the localized conductive wire in a region with high oxygen content through a gradient change in oxygen content In order to achieve a stable high resistance state at low current limit, the leakage current is reduced, and the low power consumption memristive characteristic operation under high-speed pulse operation is realized.
  • the corresponding preparation method may include the following steps:
  • Ta was selected as the lower electrode, and a layer of the lower electrode was grown on a single crystal silicon substrate with SiO 2 polished and grown on one side by a method of magnetron sputtering.
  • Substrate cleaning first use acetone for 10 minutes in an ultrasonic environment, then use alcohol for 10 minutes in an ultrasonic environment, and finally use ultrasonic deionized water for 10 minutes.
  • the ultrasonic power is 60W;
  • the functional layer uses TaOx material, and the TaOx material with an oxygen concentration gradient is obtained by controlling the oxygen content in the sputtering working gas;
  • Lithography A lithographic pattern is prepared on the lower electrode by a photolithographic process, so that a part of the lower electrode is exposed after peeling, wherein the steps of photolithography include leveling, pre-baking, front-exposing, post-baking, post-exposing, and developing;
  • the total sputtering air pressure during the sputtering process can be maintained constant.
  • TaOx target sputtering is used (x in the TaOx target can be 1.5), and the total thickness is maintained at 15 nm;
  • the sputtering process conditions are: the sputtering pressure is 0.5pa, and the power is 120W;
  • step (b) Apply multiple bidirectional DC I / V voltage scans to the unit initialized in step (a).
  • the voltage scan range is -2 to 2.2V, and the limit current is set to 100uA.
  • the test results are shown in Figure 9;
  • the Agilent B1500 is used to perform I / V scanning under DC and high-speed switching characteristic tests under pulses on the memristor unit.
  • rhenium-based, aluminum-based, and copper-based memristive devices can also be prepared based on the preparation method of the present invention.
  • the TaOx material used in the functional layer can be replaced with the corresponding rhenium-based material, aluminum-based material, or copper-based material, and the way of changing the atmosphere during the sputtering of the functional layer can remain unchanged (of course, because of the lower electrode and the functional layer (The metal materials of the electrodes may be different, and the Ta element used in the lower electrode in Embodiment 1 can be flexibly adjusted or kept unchanged).

Landscapes

  • Semiconductor Memories (AREA)

Abstract

本发明公开了一种基于金属氧化物氧浓度梯度的高性能忆阻器件及其制备,其中忆阻器的器件单元自上而下包括上电极、功能层和下电极,所述功能层为金属氧化物,该功能层中的氧含量呈梯度变化。本发明通过对该忆阻器中关键的功能层的内部组成及其制备方式等进行改进,利用氧含量呈梯度变化的金属氧化物作为功能层,局域化导电丝的通断于高氧含量区,抑制了导电通道的随机性通断,可提高忆阻器件的稳定性、一致性和开关速度。能够在降低限流的同时,提升高/低阻态,以降低功耗。基于氧浓度梯度的功能层易形成锥形导电通道,氧含量高的导电通道锥顶具有易通断的特性,可实现低压操作下的高速阻变。

Description

基于金属氧化物氧浓度梯度的高性能忆阻器件及其制备 【技术领域】
本发明属于微电子器件技术领域,更具体地,涉及一种基于金属氧化物氧浓度梯度的高性能忆阻器件及其制备,该忆阻器可利用TaOx、HfOx、AlOx、CuOx等氧浓度梯度的介质材料为阻变功能层,实现忆阻器的器件功能。
【背景技术】
忆阻器根据其不同的性能特性可分为连续可调的阻值渐变与阻值突变。前者在模拟神经元突触方面被证明具有重大的应用前景,后者可应用与数据存储方面;由于其非易失性、低功耗以及纳秒级别的高开关特性不仅可作为替代Flash的下一代存储器,而且在实现计算存储融合方面具有极大潜力。
然而现阶段,基于导电丝理论的忆阻器,具有速度快、阻变窗口大、操作电压低等优势,商用潜力极大,是国内外研究的热点。但是,由于导电丝的通断难以控制,局域化的导电通路通断具有很大的随机性,所以导致开/关电压和高低阻值分布离散,可用于集成化的crossbar结构由于电串扰(crosstalk)的问题容易造成误读和漏电流导致的功耗增大,通常需要设计复杂的外围电路来提高识别精度,不仅增加成本且使电路面积增大;为了提高稳定性,可增大其限制电流至mA级别以得到较低的阻态,但同时也增大了功耗,这使得器件在集成方面功耗较大难以实现商业化;再者,根据忆阻器开关特性的能量要求,即电压脉宽×电压幅值,当脉宽降到100ns甚至10ns时,电压幅值则大幅增加,难以实现芯片的低功耗,不利于高速芯片电路的集成以及计算存储的融合。
【发明内容】
针对现有技术的以上缺陷或改进需求,本发明的目的在于提供一种基于金属氧化物氧浓度梯度的高性能忆阻器件及其制备,其中通过对该忆阻器中关键的功能层的内部组成及其制备方式等进行改进,利用氧含量呈梯度变化的金属氧化物作为功能层,局域化导电丝的通断于高氧含量区,抑制了导电通道的随机性通断,可提高忆阻器件的稳定性、一致性和开关速度。能够在降低限流的同时,提升高/低阻态,以降低功耗。基于氧浓度梯度的功能层易形成锥形导电通道,氧含量高的导电通道锥顶具有易通断的特性,可实现低压操作下的高速阻变。本发明中的忆阻器通过局域化导电丝的通断,使得阻态进一步提高,并且表现出了较好的稳定性,在100ns以及50ns的高速测试下,表现出低于1V的电压,并进一步的在10ns的脉宽下实现了低于3.3V的操作电压。
为实现上述目的,按照本发明的一个方面,提供了一种基于金属氧化物氧浓度梯度的忆阻器,其特征在于,该忆阻器的器件单元自上而下包括上电极、功能层和下电极,所述功能层为金属氧化物,该功能层中的氧含量呈梯度变化,沿由所述下电极指向所述上电极的方向该功能层中的氧含量呈递增或递减变化。
作为本发明的进一步优选,所述金属氧化物为Ta的氧化物、Hf的氧化物、Al的氧化物或Cu的氧化物。
作为本发明的进一步优选,所述功能层中氧含量的梯度变化为连续变化。
作为本发明的进一步优选,所述上电极为惰性电极,该惰性电极优选为Pt、Pd或Ir;所述下电极为活性电极,该活性电极优选为Ta、Hf、Al、Cu、Ti、Ag中的至少一种。
作为本发明的进一步优选,所述忆阻器包括多个器件单元,这多个器件单元对应多个所述上电极,并共用同一个所述功能层及同一个所述下电 极;任意一个所述上电极在下电极外表面所在平面上投影为正方形;
优选的,所述下电极的厚度为50nm-200nm,所述功能层的厚度为10nm-100nm;任意一个所述上电极的厚度为50nm-500nm。
按照本发明的另一方面,本发明提供了一种制备基于金属氧化物氧浓度梯度的忆阻器的方法,其特征在于,包括以下步骤:
(1)在衬底上制备下电极;
(2)制备功能层:
利用溅射的方法在所述下电极上溅射形成金属氧化物,通过在溅射过程中逐渐增加或减小溅射所处环境气氛中氧气的含量得到氧含量呈梯度分布的金属氧化物,从而得到功能层;
(3)在所述功能层上制备上电极,从而最终得到基于金属氧化物氧浓度梯度的忆阻器。
作为本发明的进一步优选,在所述步骤(2)中,在所述溅射开始前,所述下电极还先通过光刻工艺在该下电极的表面形成对应光刻图形的光刻胶层,从而使该下电极在所述溅射过程中不完全被所述功能层覆盖,而未被所述功能层覆盖的下电极部分区域则供测试使用;
此外,在所述溅射完成后,是先采用丙酮浸泡加超声清洗的方法剥离光刻胶层,再依次用无水乙醇和去离子水清洗,并用氮气枪干燥后获得所述功能层。
作为本发明的进一步优选,在所述步骤(3)中,在所述制备上电极开始前,所述功能层还先通过光刻工艺在该功能层的表面形成对应光刻图形的光刻胶层,从而使该功能层在所述制备上电极的过程中不完全被所述上电极覆盖;
此外,在所述上电极制备完成后,是先采用丙酮浸泡加超声清洗的方法以剥离光刻胶层,再依次用无水乙醇和去离子水清洗,并用氮气枪干燥后获得所述忆阻器;
优选的,所述光刻胶层用于形成在所述衬底表面所在平面上投影为正方形的上电极;所述上电极优选为多个。
作为本发明的进一步优选,所述步骤(2)中,所述溅射所处环境气氛为O 2与Ar的混合气体;优选的,所述溅射所处环境气氛其气压维持固定;
在溅射过程中逐渐增加溅射所处环境气氛中氧气的含量优选是按O 2与Ar两者流量比0/40、2/60、3/60、3/45、6/60依次增加的;
在溅射过程中逐渐减小溅射所处环境气氛中氧气的含量优选是按O 2与Ar两者流量比6/60、3/45、3/60、2/60、0/40依次减小的。
作为本发明的进一步优选,所述步骤(1)中,所述衬底为在单面抛光的生长有SiO 2绝缘层的Si衬底;
所述步骤(1)具体是在所述衬底上利用直流磁控溅射的方法制备所述下电极;
所述步骤(3)具体是利用直流磁控溅射的方法制备所述上电极。
通过本发明所构思的以上技术方案,与现有技术相比,由于采用氧含量呈梯度变化的金属氧化物作为功能层,如氧含量从下电极向上电极逐渐增加的功能层(功能层氧含量可以为渐变即连续变化),上电极可以采用的惰性电极,下电极可以采用活性电极作为蓄氧池(oxygen reservoir),得到的基于金属氧化物氧浓度梯度薄膜的忆阻器这种氧浓度梯度型的忆阻器可抑制导电通道的随机通断,可有效调控纳米导电通路于高氧含量区,可实现稳定的较高的高低阻抗、低压高速操作。本发明中的金属氧化物优选选取CMOS工艺兼容的Ta、Hf、Al、Cu等的氧化物作为梯度功能阻变层。本发明可采用溅射方法制备功能层,在功能层的溅射制备过程中,通过调整工作气体中氧气的含量以得到氧梯度型的金属氧化物薄膜,例如,可通过调控溅射过程中不同氩气和氧气的比例,制得含有氧浓度梯度的金属氧化物功能层;本发明可以通过逐渐增加功能层溅射过程中工作气体O 2与Ar的混合气体中O 2的含量,可以实现所述功能层中氧的含量从下电极至上 电极逐渐增加。
本发明中忆阻器中的功能层为Ta的氧化物、Hf的氧化物、Al的氧化物或Cu的氧化物等金属氧化物,由上电极至下电极该功能层中的氧含量呈梯度变化,即,Ta的氧化物TaOx、Hf的氧化物HfOx、Al的氧化物AlOx、Cu的氧化物CuOx中的x呈梯度变化,例如,TaOx中的x可以在0~2.5内变化,HfOx中的x可以在0~2内变化,AlOx中的x可以在0~1.5内变化,CuOx中的x可以在0~2内变化。
本发明在制备金属氧化物中氧含量呈梯度分布的忆阻器功能层时,可以采用溅射工艺,并通过在溅射过程中逐渐增加溅射所处环境气氛中氧气的含量最终得到氧含量呈梯度分布的金属氧化物功能层。以溅射所处环境气氛为O 2与Ar的混合气体为例,在溅射过程中可按O 2与Ar两者流量比0/40、2/60、3/60、3/45、6/60依次增加溅射所处环境气氛中氧气的含量,能够得到氧含量呈渐变梯度变化的功能层。当然,也可以根据实际需要调整溅射所处环境气氛的组成变化,制得氧含量呈突变梯度变化的功能层。
在忆阻器的性能方面,在低于100uA低限制电流下,本发明梯度型的忆阻器低阻值提高到10 4Ω以上,并且实现了高阻的进一步增大,从而降低了漏电流,可防止阻变单元间的电串扰,抑制了set电压和reset电压的离散性;同时基于氧含量浓度梯度的功能层更易于在电场操控下实现多级阻变;在100ns与50ns的高速脉冲测试下,该类忆阻器表现出了低于1V的操作电压,并进一步的在10ns的脉宽下实现了低于3.3V的操作电压;该阻变功能层为氧梯度的忆阻器单元的综合性能显著优于现有的忆阻器件。本发明可应用于高速、低功耗操作的芯片设计,对于高密度信息存储、神经形态模拟和计算都具有重要的指导意义。
可见,本发明中基于金属氧化物氧梯度型薄膜忆阻器,可应用于替代Flash的下一代存储技术;数据存储所需容量大,且要求保持时间较长,具有非易失性,此种忆阻器能够实现稳定的二值阻变,可分别用来存储数值 “1”和“0”(即逻辑真与逻辑假),且相比传统的Flash速度更快。并且,该忆阻器可应用于低压逻辑电路的设计中,逻辑计算要求高得计算速度和低的功耗,此种忆阻器由于set过程中氧浓度梯度的作用以及reset过程中明显的焦尔热效应使得到导电细丝的通断在低电场作用下即可实现,从而能够实现高速操作且操作电压低,并且阻态的提高降低了漏电流使得功耗降低。
【附图说明】
图1是本发明金属氧化物氧浓度梯度忆阻器单元的结构示意图。
图2中(a)是初始薄膜的HRTEM图,(b)是对应的O元素的EDS线扫示意图。
图3是100uA限流下忆阻器的100次I/V直流特性曲线扫描图。
图4是100ns下的高速脉冲测试。
图5是50ns下的高速脉冲测试。
图6是10ns下的高速脉冲测试。
图7是不同限流下的多值调制。
图8是80ns下不同reset电压幅值下的多值调制。
图9是对比例1中均匀氧化物薄膜的忆阻器100次I/V直流特性曲线扫描图。
图1中各附图标记的含义如下:1为上电极,2为功能层,3为下电极,4为衬底中的SiO 2层,5为衬底中的单晶硅层。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明中基于金属氧化物氧浓度梯度的高性能忆阻器件可以是三层pad结构的忆阻器单元,其结构示意图如图1所示,自上而下主要包括上电极、功能层及下电极,功能层置于上电极与下电极之间可形成三明治结构。
其制备方法概括来说,具体可以是通过溅射制备出下电极,在下电极上通过光刻、溅射、剥离制备出功能层,在功能层上通过光刻、溅射、剥离制备出上电极,从而形成三层结构的忆阻器器件;其中,在溅射制备功能层时,需要通过在溅射过程中调节Ar与O 2的比例来实现氧浓度梯度功能层。例如,可包括以下步骤:
(1)制备下电极;
通过磁控溅射的方法,在单面抛光生长有SiO 2的单晶硅衬底上生长一层金属下电极,得到的下电极薄膜可覆盖整个衬底表面,总厚度可以为50nm-200nm;
(2)制备功能层;
可以先通过光刻工艺先在下电极的表面上制备光刻图形,再利用溅射工艺制备金属氧化物功能层;例如,可以将光刻胶遮盖下电极边缘的一部分用以暴露出下电极以供后续测试;
(2.1)光刻:通过光刻工艺下电极上制备光刻图形,使得剥离后下电极暴露出一部分,其中光刻的步骤包括匀胶、前烘、前曝、后烘、后曝、显影;
(2.2)溅射:调节溅射工作气体中Ar与O 2的比例(Ar也可以用其他惰性气体替换),在光刻得到的图形上溅射功能层;
溅射过程中,逐渐增加工作气体中氧气的含量以实现所述功能层中氧的含量从下电极至上电极逐渐增加,总厚度可保持在10nm-100nm;
(2.3)剥离:使用丙酮浸泡步骤(2.2)所制备出的薄膜样品,其间辅助以超声清洗,再依次用无水乙醇和去离子水清洗,最后用氮气枪干燥;
(3)制备上电极;
(3.1)光刻:通过光刻工艺在步骤(2)所得到的功能层样品上制备正方形的光刻图形,光刻步骤同(2.1);
(3.2)溅射:通过磁控溅射的方法在正方形的光刻图形上生长上电极,溅射气压可以为0.5Pa,直流功率可以为35W,总厚度为50nm-500nm;
(3.3)剥离:使用丙酮浸泡步骤(3.2)所制备出的薄膜样品,其间辅助以超声清洗,再依次用无水乙醇和去离子水清洗,最后用氮气枪干燥;
经过以上工艺步骤即可获得三层结构的忆阻器单元。在忆阻器中,下电极可覆盖整个衬底表面,功能层面积小于下电极但可以同样连接一起为整个一层,上电极可以为单个的正方形结构。
而对上述所制备出的器件单元的测试方法可以采用以下具体步骤:
(a)对初始的单元首先进行初始化操作,将其下电极接地,上电极施加负向电压,其目的是先形成连接上下电极的导电通路,以便后续阻变过程的进行;
(b)对步骤(a)中初始化后的单元施加多次双向直流I/V电压扫描,直至该单元表现出稳定的阻变特性且其低阻值得到一定的提高;
(c)对该忆阻器进行脉冲下的开关特性测试,首先以步骤(b)中所得到的低阻态为基准,调节脉冲的脉宽与幅值的大小来得到10倍左右的阻变窗口的高阻值;再以此高阻值为基准,调节脉冲的脉宽与幅值的大小使得器件阻变回原来的低阻值;
(d)在直流I-V扫描模式下,调节不同的限流值得到不同的多值阻态;
(e)在一定的纳秒脉宽下,调节reset电压幅值,调节不同的中间阻态,得到多值,从而可实现多值存储特性;
以下为具体实施例:
实施例1
以钽基忆阻器件为例,相应制备方法可以包括以下步骤:
(1)制备下电极;
实验中选用Ta作为下电极,通过磁控溅射的方法,在单面抛光生长有SiO 2的单晶硅衬底上生长一层下电极。
(1.1)衬底清洗:先使用丙酮在超声环境下清洗10分钟,之后再用酒精在超声环境下清洗10分钟,最后用去离子水超声清洗10分钟,超声功率为60W;
(1.2)溅射:在100W的直流溅射功率下,0.5Pa的Ar气氛围中溅射370s生长100nm的Ta底电极;
(2)制备功能层;
功能层采用TaOx材料,通过控制溅射工作气体中氧气的含量来得到氧浓度梯度的TaOx材料;
(2.1)光刻:通过光刻工艺下电极上制备光刻图形,使得剥离后下电极暴露出一部分,其中光刻的步骤包括匀胶、前烘、前曝、后烘、后曝、显影;
(2.2)溅射:调节溅射工作气体中Ar与O 2的比例,在光刻得到的图形上溅射功能层;
溅射工作气体环境中逐渐提高氧气的含量以实现所述功能层中氧的含量从下电极至上电极逐渐增加,实验中O 2与Ar的流量比例可以按例如0/40,2/60,3/60,3/45,6/60依次增加(Ar与O 2的总溅射气压可以维持一定,流量单位可以为sccm),采用TaOx靶溅射(TaOx靶中的x可以为1.5),总厚度保持在15nm,即相当于每种工作气氛溅射的厚度为3nm,通过不同组分之间界面的扩散以形成渐变的浓度梯度,如图2所示;从图2中的(b)可见,由a位置到b位置之间,O元素含量呈递增变化(其中在靠近b位置附近的O元素含量有个非预期的下降,这一下降是由于测试抖动造成的,功能层中氧含量实际仍是递增变化的);
溅射的工艺条件为:溅射气压为0.5pa,功率为120W;
(2.3)剥离:使用丙酮浸泡步骤(2.2)所制备出的薄膜样品,其间辅 助以超声清洗,再依次用无水乙醇和去离子水清洗,最后用氮气枪干燥;
(3)制备上电极;
(3.1)光刻:通过光刻工艺在步骤(2)所得到的功能层样品上制备正方形的光刻图形,光刻步骤同(2.1);
(3.2)溅射:实验使用金属Pt靶,在35W的溅射功率下,0.5Pa的Ar气氛围中溅射700s生长100nm的上电极;
(3.3)剥离:使用丙酮浸泡步骤(3.2)所制备出的薄膜样品,其间辅助以超声清洗,再依次用无水乙醇和去离子水清洗,最后用氮气枪干燥;得到最终的忆阻器样品。
上述实施例可采用以下方法进行测试:
(a)对初始的单元首先进行初始化操作,将其下电极接地,上电极施加0V~-7V的负向电压,限制电流设为10uA,其目的是先形成连接上下电极的导电通路,以便后续阻变过程的进行;
(b)对步骤(a)中初始化后的单元施加多次双向直流I/V电压扫描,电压扫描范围为-2~2.2V,限制电流设为100uA,得到10kΩ的低阻值。直至该单元表现出稳定的阻变特性;
(c)对该忆阻器进行脉冲下的开关特性测试,首先以步骤(b)中所得到的低阻态为基准,调节脉宽分别为100ns、50ns、10ns,,再分别调节对应的reset电压幅值至0.96V、0.98V、3.2V,使得单元reset到100kΩ左右,分别调节对应的set电压幅值至-0.64V、-0.67V、-2.3V,使得单元set到10kΩ左右;
(d)调节限流值30uA-200uA,扫描电压范围固定在-2V-2.2V,测得不同限流下的多值阻态,如图7所示;
(e)调节脉宽为80ns,set电压至-0.57V,固定低阻在2kΩ左右,调节reset电压幅值分别为0.7、0.8、0.85、0.94V,分别得到5kΩ、10kΩ、20kΩ、50kΩ的多种阻态,如图8所示。
通过上述测试结果表明,忆阻器在100uA的限流下低阻值提高到了10 4Ω以上,并表现出良好的稳定性,高阻态下漏电流进一步被抑制,阻态提高;高速脉冲测试表明通过精确调节电压与幅值的匹配来实现导电细丝的精准调控可得到稳定的低阻值和一定的窗口值,纳秒数量级的脉冲调制实现了器件的高速操作,100ns与50ns的脉宽下得到的小于1V的幅值及10ns下小于3.3V的幅值实现了低操作电压;成功验证了本发明确实能够通过氧含量的梯度变化调控局域化导电丝的通断于氧含量高的区域,实现在低限流下,得到稳定的较高的阻态,从而降低漏电流,并实现高速脉冲操作下的低功耗忆阻特性操作。
对比例1
以钽基忆阻器件为例,相应制备方法可以包括以下步骤:
(1)制备下电极;
实验中选用Ta作为下电极,通过磁控溅射的方法,在单面抛光生长有SiO 2的单晶硅衬底上生长一层下电极。
(1.1)衬底清洗:先使用丙酮在超声环境下清洗10分钟,之后再用酒精在超声环境下清洗10分钟,最后用去离子水超声清洗10分钟,超声功率为60W;
(1.2)溅射:在100W的直流溅射功率下,0.5Pa的Ar气氛围中溅射370s生长100nm的Ta底电极;
(2)制备功能层;
功能层采用TaOx材料,通过控制溅射工作气体中氧气的含量来得到氧浓度梯度的TaOx材料;
(2.1)光刻:通过光刻工艺下电极上制备光刻图形,使得剥离后下电极暴露出一部分,其中光刻的步骤包括匀胶、前烘、前曝、后烘、后曝、显影;
(2.2)溅射:在纯Ar气氛下溅射,在光刻得到的图形上溅射功能层;
溅射过程总溅射气压可以维持一定,采用TaOx靶溅射(TaOx靶中的x可以为1.5),总厚度保持在15nm;
溅射的工艺条件为:溅射气压为0.5pa,功率为120W;
(2.3)剥离:使用丙酮浸泡步骤(2.2)所制备出的薄膜样品,其间辅助以超声清洗,再依次用无水乙醇和去离子水清洗,最后用氮气枪干燥;
(3)制备上电极;
(3.1)光刻:通过光刻工艺在步骤(2)所得到的功能层样品上制备正方形的光刻图形,光刻步骤同(2.1);
(3.2)溅射:实验使用金属Pt靶,在35W的溅射功率下,0.5Pa的Ar气氛围中溅射700s生长100nm的上电极;
(3.3)剥离:使用丙酮浸泡步骤(3.2)所制备出的薄膜样品,其间辅助以超声清洗,再依次用无水乙醇和去离子水清洗,最后用氮气枪干燥;得到最终的忆阻器样品。
上述对比例1可采用以下方法进行测试:
(a)对初始的单元首先进行初始化操作,将其下电极接地,上电极施加0V~-7V的负向电压,限制电流设为10uA,其目的是先形成连接上下电极的导电通路,以便后续阻变过程的进行;
(b)对步骤(a)中初始化后的单元施加多次双向直流I/V电压扫描,电压扫描范围为-2~2.2V,限制电流设为100uA,测试结果如图9所示;
在本发明实施例和对比例中,均采用Agilent B1500对忆阻器单元进行直流下的I/V扫描与脉冲下的高速开关特性测试。
除了上述钽基忆阻器件外,根据实际需求,基于本发明中的制备方法还可以制备出铪基、铝基及铜基的忆阻器件,例如只需要将上述制备方法中出现的钽基材料(如功能层所采用的TaOx材料)替换成相应铪基材料、铝基材料或铜基材料即可,功能层溅射过程中气氛的变换方式可保持不变(当然,由于下电极和功能层的金属材质可以不一样,实施例1中下电极 所采用的Ta单质既可以灵活调整,也可以保持不变)。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于金属氧化物氧浓度梯度的忆阻器,其特征在于,该忆阻器的器件单元自上而下包括上电极、功能层和下电极,所述功能层为金属氧化物,该功能层中的氧含量呈梯度变化,沿由所述下电极指向所述上电极的方向该功能层中的氧含量呈递增或递减变化。
  2. 如权利要求1所述基于金属氧化物氧浓度梯度的忆阻器,其特征在于,所述金属氧化物为Ta的氧化物、Hf的氧化物、Al的氧化物或Cu的氧化物。
  3. 如权利要求1所述基于金属氧化物氧浓度梯度的忆阻器,其特征在于,所述功能层中氧含量的梯度变化为连续变化。
  4. 如权利要求1所述基于金属氧化物氧浓度梯度的忆阻器,其特征在于,所述上电极为惰性电极,该惰性电极优选为Pt、Pd或Ir;所述下电极为活性电极,该活性电极优选为Ta、Hf、Al、Cu、Ti、Ag中的至少一种。
  5. 如权利要求1所述基于金属氧化物氧浓度梯度的忆阻器,其特征在于,所述忆阻器包括多个器件单元,这多个器件单元对应多个所述上电极,并共用同一个所述功能层及同一个所述下电极;任意一个所述上电极在下电极外表面所在平面上投影为正方形;
    优选的,所述下电极的厚度为50nm-200nm,所述功能层的厚度为10nm-100nm;任意一个所述上电极的厚度为50nm-500nm。
  6. 一种制备基于金属氧化物氧浓度梯度的忆阻器的方法,其特征在于,包括以下步骤:
    (1)在衬底上制备下电极;
    (2)制备功能层:
    利用溅射的方法在所述下电极上溅射形成金属氧化物,通过在溅射过程中逐渐增加或减小溅射所处环境气氛中氧气的含量得到氧含量呈梯度分 布的金属氧化物,从而得到功能层;
    (3)在所述功能层上制备上电极,从而最终得到基于金属氧化物氧浓度梯度的忆阻器。
  7. 如权利要求6所述制备方法,其特征在于,在所述步骤(2)中,在所述溅射开始前,所述下电极还先通过光刻工艺在该下电极的表面形成对应光刻图形的光刻胶层,从而使该下电极在所述溅射过程中不完全被所述功能层覆盖,而未被所述功能层覆盖的下电极部分区域则供测试使用;
    此外,在所述溅射完成后,是先采用丙酮浸泡加超声清洗的方法剥离光刻胶层,再依次用无水乙醇和去离子水清洗,并用氮气枪干燥后获得所述功能层。
  8. 如权利要求6所述制备方法,其特征在于,在所述步骤(3)中,在所述制备上电极开始前,所述功能层还先通过光刻工艺在该功能层的表面形成对应光刻图形的光刻胶层,从而使该功能层在所述制备上电极的过程中不完全被所述上电极覆盖;
    此外,在所述上电极制备完成后,是先采用丙酮浸泡加超声清洗的方法以剥离光刻胶层,再依次用无水乙醇和去离子水清洗,并用氮气枪干燥后获得所述忆阻器;
    优选的,所述光刻胶层用于形成在所述衬底表面所在平面上投影为正方形的上电极;所述上电极优选为多个。
  9. 如权利要求6所述制备方法,其特征在于,所述步骤(2)中,所述溅射所处环境气氛为O 2与Ar的混合气体;优选的,所述溅射所处环境气氛其气压维持固定;
    在溅射过程中逐渐增加溅射所处环境气氛中氧气的含量优选是按O 2与Ar两者流量比0/40、2/60、3/60、3/45、6/60依次增加的;
    在溅射过程中逐渐减小溅射所处环境气氛中氧气的含量优选是按O 2与Ar两者流量比6/60、3/45、3/60、2/60、0/40依次减小的。
  10. 如权利要求6所述制备方法,其特征在于,所述步骤(1)中,所述衬底为在单面抛光的生长有SiO 2绝缘层的Si衬底;
    所述步骤(1)具体是在所述衬底上利用直流磁控溅射的方法制备所述下电极;
    所述步骤(3)具体是利用直流磁控溅射的方法制备所述上电极。
PCT/CN2019/091747 2018-06-25 2019-06-18 基于金属氧化物氧浓度梯度的高性能忆阻器件及其制备 WO2020001328A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810662587.0A CN108807668B (zh) 2018-06-25 2018-06-25 基于金属氧化物氧浓度梯度的高性能忆阻器件及其制备
CN201810662587.0 2018-06-25

Publications (1)

Publication Number Publication Date
WO2020001328A1 true WO2020001328A1 (zh) 2020-01-02

Family

ID=64071215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091747 WO2020001328A1 (zh) 2018-06-25 2019-06-18 基于金属氧化物氧浓度梯度的高性能忆阻器件及其制备

Country Status (2)

Country Link
CN (1) CN108807668B (zh)
WO (1) WO2020001328A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112701220A (zh) * 2020-10-23 2021-04-23 大连理工大学 一种带有金属Hf缓冲层的HfO2基忆阻器及其制作方法
CN112909165A (zh) * 2021-01-22 2021-06-04 江苏集萃脑机融合智能技术研究所有限公司 一种梯度金属氧化物忆阻器的制备方法
CN114188478A (zh) * 2021-12-07 2022-03-15 厦门大学 一种具有信息存储功能的生物可降解忆阻器阵列及制备方法
CN116615091A (zh) * 2023-05-25 2023-08-18 清华大学 一种氧化钨多电阻态调控方法
CN113054103B (zh) * 2021-03-16 2024-01-23 江苏集萃脑机融合智能技术研究所有限公司 快速寻找最佳合金氧化物忆阻材料的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108807668B (zh) * 2018-06-25 2020-07-10 华中科技大学 基于金属氧化物氧浓度梯度的高性能忆阻器件及其制备
CN110911559B (zh) * 2019-11-08 2021-10-15 华中科技大学 一种模拟型HfOx/HfOy同质结忆阻器及其调控方法
CN111341909A (zh) * 2020-02-07 2020-06-26 中国科学院微电子研究所 一种存储器件及其制作方法、存储器及电子设备
CN112289930B (zh) * 2020-10-29 2022-08-05 华中科技大学 一种兼具易失性与非易失性的CuxO忆阻器及其调控方法
CN112467027B (zh) * 2020-11-04 2023-05-30 华中科技大学 一种基于界面掺杂的忆阻器及其制备方法
CN113346016A (zh) * 2021-05-20 2021-09-03 华中科技大学 一种忆阻器及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577309A (zh) * 2008-05-06 2009-11-11 旺宏电子股份有限公司 应用于电阻式随机存取存储器的电脉冲电压操作方法
CN101621114A (zh) * 2009-07-21 2010-01-06 中国科学院上海硅酸盐研究所 一类氧化物多层梯度薄膜及其构建的rram元器件
CN101989644A (zh) * 2009-07-31 2011-03-23 复旦大学 一种提高电阻随机存储器数据保持能力的方法
CN103606625A (zh) * 2013-11-28 2014-02-26 北京大学 高一致性低功耗阻变存储器及制备方法
CN104067391A (zh) * 2012-01-20 2014-09-24 美光科技公司 存储器单元及形成存储器单元的方法
CN105552219A (zh) * 2015-12-10 2016-05-04 上海交通大学 具有自整流特性的rram存储单元结构及其制备方法
CN107293642A (zh) * 2017-06-07 2017-10-24 华中科技大学 一种基于HfO2‑x的二值和多值忆阻器、制备方法及其应用
CN108807668A (zh) * 2018-06-25 2018-11-13 华中科技大学 基于金属氧化物氧浓度梯度的高性能忆阻器件及其制备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5543819B2 (ja) * 2010-03-26 2014-07-09 株式会社東芝 抵抗変化素子、メモリセルアレイ、及び抵抗変化装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577309A (zh) * 2008-05-06 2009-11-11 旺宏电子股份有限公司 应用于电阻式随机存取存储器的电脉冲电压操作方法
CN101621114A (zh) * 2009-07-21 2010-01-06 中国科学院上海硅酸盐研究所 一类氧化物多层梯度薄膜及其构建的rram元器件
CN101989644A (zh) * 2009-07-31 2011-03-23 复旦大学 一种提高电阻随机存储器数据保持能力的方法
CN104067391A (zh) * 2012-01-20 2014-09-24 美光科技公司 存储器单元及形成存储器单元的方法
CN103606625A (zh) * 2013-11-28 2014-02-26 北京大学 高一致性低功耗阻变存储器及制备方法
CN105552219A (zh) * 2015-12-10 2016-05-04 上海交通大学 具有自整流特性的rram存储单元结构及其制备方法
CN107293642A (zh) * 2017-06-07 2017-10-24 华中科技大学 一种基于HfO2‑x的二值和多值忆阻器、制备方法及其应用
CN108807668A (zh) * 2018-06-25 2018-11-13 华中科技大学 基于金属氧化物氧浓度梯度的高性能忆阻器件及其制备

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112701220A (zh) * 2020-10-23 2021-04-23 大连理工大学 一种带有金属Hf缓冲层的HfO2基忆阻器及其制作方法
CN112701220B (zh) * 2020-10-23 2024-02-06 大连理工大学 一种带有金属Hf缓冲层的HfO2基忆阻器及其制作方法
CN112909165A (zh) * 2021-01-22 2021-06-04 江苏集萃脑机融合智能技术研究所有限公司 一种梯度金属氧化物忆阻器的制备方法
CN113054103B (zh) * 2021-03-16 2024-01-23 江苏集萃脑机融合智能技术研究所有限公司 快速寻找最佳合金氧化物忆阻材料的方法
CN114188478A (zh) * 2021-12-07 2022-03-15 厦门大学 一种具有信息存储功能的生物可降解忆阻器阵列及制备方法
CN116615091A (zh) * 2023-05-25 2023-08-18 清华大学 一种氧化钨多电阻态调控方法

Also Published As

Publication number Publication date
CN108807668B (zh) 2020-07-10
CN108807668A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2020001328A1 (zh) 基于金属氧化物氧浓度梯度的高性能忆阻器件及其制备
TWI422025B (zh) 應用於電阻式隨機存取記憶體之電脈衝電壓操作方法
US6949435B2 (en) Asymmetric-area memory cell
US9525133B2 (en) Resistive random access memory with high uniformity and low power consumption and method for fabricating the same
US8058097B2 (en) Methods of forming resistive memory devices
TW201143081A (en) Memory element and memory device
JP2005064464A (ja) 高度結晶化シード層と一体化される場合にpcmo薄膜上に可逆性抵抗スイッチを得る方法
CN110911559B (zh) 一种模拟型HfOx/HfOy同质结忆阻器及其调控方法
CN112289930B (zh) 一种兼具易失性与非易失性的CuxO忆阻器及其调控方法
US8900421B2 (en) Method of fabricating resistance memory
Liu et al. Retention mechanism of Cu-doped SiO2-based resistive memory
CN107681049B (zh) 一种避免误读的阻变存储器及制备方法
WO2013123704A1 (zh) 一种阻变存储器的制备方法
CN110783453A (zh) 一种双模阻变存储器件及其制备方法
Adam et al. Highly-uniform multi-layer ReRAM crossbar circuits
CN113113538B (zh) 一种基于铝掺杂氧化铌的抗串扰阻变器件及其制备方法
CN106374040B (zh) 一种多层阻变存储器单元及其制备方法
KR20120022218A (ko) 버퍼층을 가지는 저항변화 메모리 및 이의 제조방법
CN113224235A (zh) 一种具有超低阈值电压的双向选通器及其制备方法
CN109065711B (zh) 一种固态电解质阻变存储器及其制备方法
TWI545816B (zh) 儲存裝置及儲存單元
KR101009441B1 (ko) 높은 소자 수율을 나타내는 상온 공정에 의한 저항 변화 기억 소자용 다층의 금속 산화물 박막 구조물의 제조 방법
CN105932154B (zh) 具有稳定阈值电阻转变特性的材料以及动态随机存储器件
CN112420922B (zh) 一种基于钛银合金的低功耗cbram器件及其制备方法和应用
CN113793899B (zh) 一种基于调控导电丝生长的选择器性能优化方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826102

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19826102

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.09.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19826102

Country of ref document: EP

Kind code of ref document: A1