WO2020000610A1 - 一种催化剂增强的MgAl基储氢材料 - Google Patents

一种催化剂增强的MgAl基储氢材料 Download PDF

Info

Publication number
WO2020000610A1
WO2020000610A1 PCT/CN2018/101867 CN2018101867W WO2020000610A1 WO 2020000610 A1 WO2020000610 A1 WO 2020000610A1 CN 2018101867 W CN2018101867 W CN 2018101867W WO 2020000610 A1 WO2020000610 A1 WO 2020000610A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy ingot
raw materials
metal
hydrogen storage
metal raw
Prior art date
Application number
PCT/CN2018/101867
Other languages
English (en)
French (fr)
Inventor
邵鹏
Original Assignee
邵鹏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 邵鹏 filed Critical 邵鹏
Priority to US16/560,957 priority Critical patent/US20190390307A1/en
Publication of WO2020000610A1 publication Critical patent/WO2020000610A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the invention relates to the technical field of new energy materials, in particular to a catalyst-enhanced MgAl-based hydrogen storage material.
  • Metal hydride hydrogen storage materials realize the absorption and release of hydrogen through a reversible reaction between hydrogen and hydrogenated metal. When the hydride is heated by the outside world, it breaks down into the corresponding metal phase and releases hydrogen. Most of the metals used to store hydrogen are alloys composed of various elements. At present, the alloys that have been successfully researched in the world are roughly divided into rare earth series, magnesium series and so on. Compared with gaseous hydrogen storage and liquid hydrogen storage, metal hydride hydrogen storage has the advantages of large hydrogen storage mass density ratio, large hydrogen storage volume ratio, stable pressure, simple hydrogen charging, convenience, and safety, and at the same temperature and pressure conditions The density of hydrogen per unit volume is 1000 times that of gaseous hydrogen.
  • the existing problems are also urgently needed to improve the hydrogen storage capacity of hydrogen storage materials, reduce material costs, and save precious metals in large-scale applications; at the same time, improve the absorption of materials at relatively low temperatures Thermodynamic and kinetic properties of hydrogen evolution.
  • the U.S. Department of Energy proposed in 2015 that the vehicle's hydrogen storage material has a hydrogen storage capacity of 5.5 wt%, a minimum maximum temperature of minus 40 to 80 degrees, a service life of 1500 times, a hydrogen absorption time of 3.3 minutes, and a hydrogen storage purity of 99.97%. Standard, most hydrogen storage alloys still cannot meet this performance requirement.
  • the magnesium-based hydrogen storage material uses magnesium as a matrix and adds other metals to have a high hydrogen storage capacity.
  • MgH2 The theoretical mass and volume hydrogen storage density of MgH2 are 7.6% by weight and 110 kg / m3, respectively.
  • Magnesium is abundant in nature, low in price, and has a large space for application and development, but its alloy hydride (MgH2) has major obstacles in both thermodynamics and kinetics. Thermodynamically, the enthalpy of MgH2 generation is high; kinetically, MgH2 has a high hydrogen activation energy and a slow hydrogen release rate at lower temperatures. This requires further optimization to improve the hydrogen absorption and desorption performance of magnesium alloys.
  • the object of the present invention is to provide a catalyst-enhanced MgAl-based hydrogen storage material, thereby overcoming the disadvantages of the prior art.
  • the first vacuum melting process is specifically: the vacuum degree is less than 0.01 Pa, the melting time is 20-30 minutes, and the alloy ingot is reversed once every 80-100s during the melting process.
  • the predetermined weight parts are: 100-150 parts of primary magnesium alloy blocks, 2-4 parts of metal Ti, 3-5 parts of metal Zr, and 1-3 parts of metal V.
  • ball milling of the primary magnesium alloy block and Ti, Zr and V metal raw materials after the weight is specifically: the ball-to-material ratio is 10: 1-15: 1, the grinding atmosphere is an argon atmosphere, and the grinding speed 900-1300r / min, grinding time is 40-60h.
  • ball milling of the primary magnesium alloy block and Ti, Zr, and V metal raw materials after symmetrical weighting further includes: each ball milling during the milling process is 50-60 minutes, the ball milling is suspended for 8-15 minutes, and the ball milling is controlled during the ball milling
  • the temperature in the tank was below 500 ° C.
  • hot-pressing a loose alloy ingot to obtain a dense alloy ingot is specifically: the hot-pressing air pressure is less than 0.03Pa, the hot-pressing temperature is 600-700 ° C, the hot-pressing pressure is 50-70MPa, and the hot-pressing is The time is 30-50min.
  • the heat treatment of the dense alloy ingot is specifically: the heat treatment pressure is lower than 0.01 Pa, the heat treatment temperature is 150-200 ° C, the heat treatment time is 30-40h, and the heating rate is 2-4 ° C / min.
  • the present invention has the following beneficial effects:
  • hydrogen storage materials include rare earth-based materials and magnesium-based materials. Because rare earth is a valuable strategic resource, under the current distribution of mineral resources, it is difficult to use rare earth materials on a large scale as civilian hydrogen storage materials.
  • magnesium-based materials are expected to become large-scale hydrogen storage materials, there are still many shortcomings in magnesium-based materials: 1. Poor hydrogen storage capacity and narrow applicable temperature range. Some hydrogen storage materials are used in extreme situations, and the use temperature may be higher than 100 ° C. At this time, general magnesium-based hydrogen storage materials will not be able to exert hydrogen storage performance, which greatly limits the use of hydrogen storage materials. 2. Difficult to modify.
  • the present application achieves the stable doping of a variety of catalyst elements for the first time, which makes the cyclic hydrogen storage effect of the present application significantly better than the materials of the prior art, and the effect is stable and suitable for long-term service. Due to the addition of a catalyst, this application can be used under high temperature conditions, which greatly expands the application prospects of the materials of this application.
  • the first vacuum melting is performed to obtain a primary Mg alloy ingot; the primary Mg alloy ingot is crushed to obtain a primary magnesium alloy ingot; Ti, Zr and V metal raw materials are provided; the primary magnesium alloy ingot and Ti, Zr and V metal raw materials are weighed; the primary magnesium alloy blocks and Ti, Zr, and V metal raw materials are weighed after being weighed to obtain composite metal powder; the composite metal powder is pressed into a loose alloy ingot by cold isostatic pressing; The ingot is hot-pressed to obtain a dense alloy ingot; the dense alloy ingot is heat-treated; the dense alloy ingot after the heat treatment is wire-cut.
  • the first vacuum melting process is as follows: the vacuum degree is less than 0.01 Pa, and the melting time is 20 minutes. In the melting process, the alloy ingot is inverted once every 80s of melting. Among them, the predetermined parts by weight are: 100 parts of primary magnesium alloy ingots, 2 parts of metal Ti, 3 parts of metal Zr, and 1 part of metal V.
  • the ball-milling of the primary magnesium alloy block and Ti, Zr, and V metal raw materials after the symmetrical weighting is as follows: the ball-to-material ratio is 10: 1, the grinding atmosphere is an argon atmosphere, the grinding speed is 900 r / min, and the grinding time is 40 h.
  • Ball milling of primary magnesium alloy ingots and Ti, Zr, and V metal raw materials after symmetrical weighting further includes: each ball milling during the milling process is suspended for 50 minutes, the ball milling is suspended for 8 minutes, and the temperature in the ball milling tank is controlled to be lower than 500 ° C during the ball milling.
  • the hot pressing of the loose alloy ingot to obtain the dense alloy ingot is as follows: the hot pressing air pressure is less than 0.03Pa, the hot pressing temperature is 600 ° C., the hot pressing pressure is 50 MPa, and the hot pressing time is 30 min.
  • the heat treatment of the dense alloy ingot is specifically: the heat treatment pressure is lower than 0.01 Pa, the heat treatment temperature is 150 ° C., the heat treatment time is 30 h, and the heating rate is 2 ° C./min.
  • the first vacuum melting is performed to obtain a primary Mg alloy ingot; the primary Mg alloy ingot is crushed to obtain a primary magnesium alloy ingot; Ti, Zr and V metal raw materials are provided; the primary magnesium alloy ingot and Ti, Zr and V metal raw materials are weighed; the primary magnesium alloy blocks and Ti, Zr, and V metal raw materials are weighed after being weighed to obtain composite metal powder; the composite metal powder is pressed into a loose alloy ingot by cold isostatic pressing; The ingot is hot-pressed to obtain a dense alloy ingot; the dense alloy ingot is heat-treated; the dense alloy ingot after the heat treatment is wire-cut.
  • the first vacuum melting process is as follows: the degree of vacuum is less than 0.01 Pa, and the melting time is 30 minutes. During the melting process, the alloy ingot is inverted once every 100 seconds of melting. Among them, the predetermined weight parts are: 150 parts of primary magnesium alloy ingots, 4 parts of metal Ti, 5 parts of metal Zr, and 3 parts of metal V.
  • the ball-milling of the primary magnesium alloy block and Ti, Zr and V metal raw materials after the symmetrical weighting are as follows: the ball-to-material ratio is 15: 1, the grinding atmosphere is an argon atmosphere, the grinding speed is 1300r / min, and the grinding time is 60h.
  • Ball milling of primary magnesium alloy ingots and Ti, Zr and V metal raw materials after symmetrical weighting further includes: each ball milling during the grinding process for 60 minutes, the ball milling is suspended for 15 minutes, and the temperature in the ball milling tank is controlled below 500 ° C during the ball milling.
  • the hot pressing of the loose alloy ingot to obtain the dense alloy ingot is as follows: the hot pressing air pressure is lower than 0.03Pa, the hot pressing temperature is 700 ° C., the hot pressing pressure is 70 MPa, and the hot pressing time is 50 min.
  • the heat treatment of the dense alloy ingot is specifically: the heat treatment pressure is lower than 0.01 Pa, the heat treatment temperature is 200 ° C., the heat treatment time is 40 h, and the heating rate is 4 ° C./min.
  • the first vacuum melting is performed to obtain a primary Mg alloy ingot; the primary Mg alloy ingot is crushed to obtain a primary magnesium alloy ingot; Ti, Zr and V metal raw materials are provided; the primary magnesium alloy ingot and Ti, Zr and V metal raw materials are weighed; the primary magnesium alloy blocks and Ti, Zr, and V metal raw materials are weighed after being weighed to obtain composite metal powder; the composite metal powder is pressed into a loose alloy ingot by cold isostatic pressing; The ingot is hot-pressed to obtain a dense alloy ingot; the dense alloy ingot is heat-treated; the dense alloy ingot after the heat treatment is wire-cut.
  • the first vacuum melting process is as follows: the degree of vacuum is less than 0.01 Pa, and the melting time is 25 minutes. During the melting process, the alloy ingot is inverted once every 90 seconds of melting. Among them, the predetermined weight parts are: 120 parts of primary magnesium alloy ingots, 3 parts of metal Ti, 4 parts of metal Zr, and 2 parts of metal V.
  • the ball-milling of the primary magnesium alloy block and Ti, Zr and V metal materials after the symmetrical weighting are as follows: the ball-to-material ratio is 12: 1, the grinding atmosphere is an argon atmosphere, the grinding speed is 1100r / min, and the grinding time is 50h.
  • Ball milling of primary magnesium alloy ingots and Ti, Zr and V metal raw materials after symmetrical weighing further includes: each ball milling during the milling process is 55 minutes, the ball milling is suspended for 10 minutes, and the temperature in the ball milling tank is controlled to be lower than 500 ° C during the ball milling.
  • the hot pressing of the loose alloy ingot to obtain the dense alloy ingot is specifically: the hot pressing air pressure is less than 0.03Pa, the hot pressing temperature is 650 ° C, the hot pressing pressure is 60MPa, and the hot pressing time is 40min.
  • the heat treatment of the compact alloy ingot is specifically: the heat treatment pressure is lower than 0.01 Pa, the heat treatment temperature is 180 ° C, the heat treatment time is 35h, and the heating rate is 3 ° C / min.
  • the first vacuum melting is performed to obtain a primary Mg alloy ingot; the primary Mg alloy ingot is crushed to obtain a primary magnesium alloy ingot; Ti, Zr and V metal raw materials are provided; the primary magnesium alloy ingot and Ti, Zr and V metal raw materials are weighed; the primary magnesium alloy blocks and Ti, Zr, and V metal raw materials are weighed after being weighed to obtain composite metal powder; the composite metal powder is pressed into a loose alloy ingot by cold isostatic pressing; The ingot is hot-pressed to obtain a dense alloy ingot; the dense alloy ingot is heat-treated; the dense alloy ingot after the heat treatment is wire-cut.
  • the first vacuum melting process is as follows: the vacuum degree is less than 0.01 Pa, and the melting time is 40 minutes. In the melting process, the alloy ingot is inverted once every 150 s of melting. Among them, the predetermined weight parts are: 120 parts of primary magnesium alloy ingots, 3 parts of metal Ti, 4 parts of metal Zr, and 2 parts of metal V.
  • the ball-milling of the primary magnesium alloy block and Ti, Zr and V metal materials after the symmetrical weighting are as follows: the ball-to-material ratio is 12: 1, the grinding atmosphere is an argon atmosphere, the grinding speed is 1100r / min, and the grinding time is 50h.
  • Ball milling of primary magnesium alloy ingots and Ti, Zr and V metal raw materials after symmetrical weighing further includes: each ball milling during the milling process is 55 minutes, the ball milling is suspended for 10 minutes, and the temperature in the ball milling tank is controlled to be lower than 500 ° C during the ball milling.
  • the hot pressing of the loose alloy ingot to obtain the dense alloy ingot is specifically: the hot pressing air pressure is less than 0.03Pa, the hot pressing temperature is 650 ° C, the hot pressing pressure is 60MPa, and the hot pressing time is 40min.
  • the heat treatment of the dense alloy ingot is specifically: the heat treatment pressure is lower than 0.01 Pa, the heat treatment temperature is 180 ° C., the heat treatment time is 35 h, and the heating rate is 3 ° C./min.
  • the first vacuum melting is performed to obtain a primary Mg alloy ingot; the primary Mg alloy ingot is crushed to obtain a primary magnesium alloy ingot; Ti, Zr and V metal raw materials are provided; the primary magnesium alloy ingot and Ti, Zr and V metal raw materials are weighed; the primary magnesium alloy blocks and Ti, Zr, and V metal raw materials are weighed after being weighed to obtain composite metal powder; the composite metal powder is pressed into a loose alloy ingot by cold isostatic pressing; The ingot is hot-pressed to obtain a dense alloy ingot; the dense alloy ingot is heat-treated; the dense alloy ingot after the heat treatment is wire-cut.
  • the first vacuum melting process is as follows: the degree of vacuum is less than 0.01 Pa, and the melting time is 25 minutes. During the melting process, the alloy ingot is inverted once every 90 seconds of melting. Among them, the predetermined weight parts are: 100 parts of the primary magnesium alloy block, 5 parts of metal Ti, 6 parts of metal Zr, and 4 parts of metal V.
  • the ball-milling of the primary magnesium alloy block and Ti, Zr and V metal materials after the symmetrical weighting are as follows: the ball-to-material ratio is 12: 1, the grinding atmosphere is an argon atmosphere, the grinding speed is 1100r / min, and the grinding time is 50h.
  • Ball milling of primary magnesium alloy ingots and Ti, Zr and V metal raw materials after symmetrical weighing further includes: each ball milling during the milling process is 55 minutes, the ball milling is suspended for 10 minutes, and the temperature in the ball milling tank is controlled to be lower than 500 ° C during the ball milling.
  • the hot pressing of the loose alloy ingot to obtain the dense alloy ingot is specifically: the hot pressing air pressure is less than 0.03Pa, the hot pressing temperature is 650 ° C, the hot pressing pressure is 60MPa, and the hot pressing time is 40min.
  • the heat treatment of the dense alloy ingot is specifically: the heat treatment pressure is lower than 0.01 Pa, the heat treatment temperature is 180 ° C., the heat treatment time is 35 h, and the heating rate is 3 ° C./min.
  • the first vacuum melting is performed to obtain a primary Mg alloy ingot; the primary Mg alloy ingot is crushed to obtain a primary magnesium alloy ingot; Ti, Zr and V metal raw materials are provided; the primary magnesium alloy ingot and Ti, Zr and V metal raw materials are weighed; the primary magnesium alloy blocks and Ti, Zr, and V metal raw materials are weighed after being weighed to obtain composite metal powder; the composite metal powder is pressed into a loose alloy ingot by cold isostatic pressing; The ingot is hot-pressed to obtain a dense alloy ingot; the dense alloy ingot is heat-treated; the dense alloy ingot after the heat treatment is wire-cut.
  • the first vacuum melting process is as follows: the degree of vacuum is less than 0.01 Pa, and the melting time is 25 minutes. During the melting process, the alloy ingot is inverted once every 90 seconds of melting. Among them, the predetermined weight parts are: 120 parts of primary magnesium alloy ingots, 3 parts of metal Ti, 4 parts of metal Zr, and 2 parts of metal V.
  • the ball-milling of the primary magnesium alloy block and Ti, Zr, and V metal raw materials after the weighing is as follows: the ball-to-material ratio is 20: 1, the grinding atmosphere is an argon atmosphere, the grinding speed is 1500 r / min, and the grinding time is 70 h.
  • Ball milling of primary magnesium alloy ingots and Ti, Zr and V metal raw materials after symmetrical weighting further includes: during the milling process, each ball milling is 100 minutes, the ball milling is suspended for 20 minutes, and the ball milling tank temperature is not limited.
  • the hot pressing of the loose alloy ingot to obtain the dense alloy ingot is specifically: the hot pressing air pressure is less than 0.03Pa, the hot pressing temperature is 650 ° C, the hot pressing pressure is 60MPa, and the hot pressing time is 40min.
  • the heat treatment of the dense alloy ingot is specifically: the heat treatment pressure is lower than 0.01 Pa, the heat treatment temperature is 180 ° C., the heat treatment time is 35 h, and the heating rate is 3 ° C./min.
  • the first vacuum melting is performed to obtain a primary Mg alloy ingot; the primary Mg alloy ingot is crushed to obtain a primary magnesium alloy ingot; Ti, Zr and V metal raw materials are provided; the primary magnesium alloy ingot and Ti, Zr and V metal raw materials are weighed; the primary magnesium alloy blocks and Ti, Zr, and V metal raw materials are weighed after being weighed to obtain composite metal powder; the composite metal powder is pressed into a loose alloy ingot by cold isostatic pressing; The ingot is hot-pressed to obtain a dense alloy ingot; the dense alloy ingot is heat-treated; the dense alloy ingot after the heat treatment is wire-cut.
  • the first vacuum melting process is as follows: the degree of vacuum is less than 0.01 Pa, and the melting time is 25 minutes. During the melting process, the alloy ingot is inverted once every 90 seconds of melting. Among them, the predetermined weight parts are: 120 parts of primary magnesium alloy ingots, 3 parts of metal Ti, 4 parts of metal Zr, and 2 parts of metal V.
  • the ball-milling of the primary magnesium alloy block and Ti, Zr and V metal materials after the symmetrical weighting are as follows: the ball-to-material ratio is 12: 1, the grinding atmosphere is an argon atmosphere, the grinding speed is 1100r / min, and the grinding time is 50h.
  • Ball milling of primary magnesium alloy ingots and Ti, Zr and V metal raw materials after symmetrical weighing further includes: each ball milling during the milling process is 55 minutes, the ball milling is suspended for 10 minutes, and the temperature in the ball milling tank is controlled to be lower than 500 ° C during the ball milling.
  • the hot pressing of the loose alloy ingot to obtain the dense alloy ingot is specifically: the hot pressing air pressure is less than 0.03Pa, the hot pressing temperature is 800 ° C., the hot pressing pressure is 30 MPa, and the hot pressing time is 20 min.
  • the heat treatment of the dense alloy ingot is specifically: the heat treatment pressure is lower than 0.01 Pa, the heat treatment temperature is 300 ° C., the heat treatment time is 20 h, and the heating rate is 5 ° C./min.
  • the preparation method refers to a method in the prior art.
  • the alloy was subjected to a hydrogen absorption mass percentage test at 150 ° C and a hydrogen absorption mass percentage test after 100 cycles (100 hydrogen absorption and desorption) at room temperature.
  • the test method is a method known in the art, and the test results are based on Example 1. Normalized, the test results are listed in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种催化剂增强的MgAl基储氢材料,催化剂增强的MgAl基储氢材料由如下方法制备:提供Mg以及Al金属原料;按照摩尔比Mg:Al=(16-18):(11-13)对Mg以及Al金属原料进行称重;将称重之后的Mg、Al金属原料进行第一真空熔炼,得到初级Mg合金锭;对初级Mg合金锭进行破碎,得到初级镁合金块;提供Ti、Zr以及V金属原料;按照预定的重量份对初级镁合金块以及Ti、Zr以及V金属原料进行称重;对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨,得到复合金属粉;利用冷等静压法将复合金属粉压成松散合金锭;对松散合金锭进行热压,得到密实合金锭;对密实合金锭进行热处理;对热处理之后的密实合金锭进行线切割。

Description

一种催化剂增强的MgAl基储氢材料 技术领域
本发明涉及新能源材料技术领域,特别涉及一种催化剂增强的MgAl基储氢材料。
背景技术
金属氢化物储氢材料是通过氢和氢化金属之间的可逆反应来实现氢气的吸收和释放。当外界给氢化物加热时,它就分解为相应的金属相并释放出氢气。用来储氢的金属大多是由多种元素构成的合金,目前世界上研究成功的合金大致分为:稀土系、镁系等。与气态储氢和液态储氢相比,金属氢化物储氢具备储氢质量密度比大、储氢体积比大、压力平稳、充氢简单、便利、安全等优点,并且在相同温度、压力条件下,其单位体积贮氢的密度是气态氢的1000倍。虽然它具有许多优点,但存在的问题也是如今急需解决的难题,以提高储氢材料的储氢能力,降低材料成本,在大规模应用中节约贵金属;同时改善材料在相对较低温度下的吸放氢热力学和动力学性能。美国能源部在2015年提出车载储氢材料的储氢量为5.5wt%、最低最高温度分别为零下40至80度、使用寿命1500次、吸氢时间3.3min和储氢纯度99.97%的这一标准,目前大多数储氢合金仍无法满足该性能要求。镁系储氢材料是以镁作为基体,再添加其它金属,具有较高的储氢量,MgH2的理论质量和体积储氢密度分别为7.6wt%和110kg/m3。镁在自然界储存量丰富,价格低廉,具有较大的应用发展空间,但是其合金氢化物(MgH2)无论是热力学还是动力学都有较大的障碍。热力学上来说,MgH2生成焓较高;动力学上看,MgH2放氢活化能高,较低的温度下放氢速率慢。这就需要做进一步的优化,改善镁系合金吸放氢性能。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解, 而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的目的在于提供一种催化剂增强的MgAl基储氢材料,从而克服现有技术的缺点。
为实现上述目的,本发明提供了一种催化剂增强的MgAl基储氢材料,其特征在于:催化剂增强的MgAl基储氢材料由如下方法制备:提供Mg以及Al金属原料;按照摩尔比Mg:Al=(16-18):(11-13)对Mg以及Al金属原料进行称重;将称重之后的Mg、Al金属原料进行第一真空熔炼,得到初级Mg合金锭;对初级Mg合金锭进行破碎,得到初级镁合金块;提供Ti、Zr以及V金属原料;按照预定的重量份对初级镁合金块以及Ti、Zr以及V金属原料进行称重;对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨,得到复合金属粉;利用冷等静压法将复合金属粉压成松散合金锭;对松散合金锭进行热压,得到密实合金锭;对密实合金锭进行热处理;对热处理之后的密实合金锭进行线切割。
优选地,上述技术方案中,第一真空熔炼工艺具体为:真空度低于0.01Pa,熔炼时间为20-30min,在熔炼过程中,每熔炼80-100s将合金锭进行一次翻转。
优选地,上述技术方案中,其中,预定的重量份为:初级镁合金块占100-150份,金属Ti占2-4份、金属Zr占3-5份、金属V占1-3份。
优选地,上述技术方案中,对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨具体为:球料比为10:1-15:1,研磨气氛为氩气气氛,研磨速度为900-1300r/min,研磨时间为40-60h。
优选地,上述技术方案中,对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨进一步包括:在研磨过程中每球磨50-60min,暂停球磨8-15min,球磨过程中控制球磨罐中的温度低于500℃。
优选地,上述技术方案中,对松散合金锭进行热压,得到密实合金锭具 体为:热压气压低于0.03Pa,热压温度为600-700℃,热压压力为50-70MPa,热压时间为30-50min。
优选地,上述技术方案中,对密实合金锭进行热处理具体为:热处理气压低于0.01Pa,热处理温度为150-200℃,热处理时间为30-40h,升温速率为2-4℃/min。
与现有技术相比,本发明具有如下有益效果:如背景技术中提到的,目前研制成功的储氢材料有稀土系材料和镁基材料。由于稀土是宝贵的战略资源,在目前的矿藏分布条件下,稀土系材料难以大规模用作民用储氢材料。镁基材料虽然有望成为大规模使用的储氢材料,但是目前镁基材料仍然存在较多缺点:1、储氢能力差,适用温度范围窄。一些储氢材料的使用场合较为极端,使用温度可能高于100℃,此时一般的镁基储氢材料将不能发挥储氢性能,这就大大限制了储氢材料的用途。2、改性困难。目前针对镁基合金适用范围窄的缺陷,设计了一些催化剂增强的镁基合金。受限于工艺制程,目前成熟的该类合金只能掺杂一种催化剂(某些专利文献和论文提出过多种元素掺杂的工艺,但是效果很差,成品率很低),一种催化剂容易出现催化剂中毒,从而严重影响材料的效能。针对现有技术的问题,本申请设计了一种催化剂增强的MgAl基储氢材料,本申请的材料无需添加稀土材料,原料廉价易得,制造成本低。同时本申请首次实现了多种催化剂元素的稳定掺杂,这使得本申请的循环储氢效果明显好于现有技术的材料,效果稳定适于长期服役。本申请由于加入了催化剂,能够在高温条件下使用,极大的拓展了本申请的材料的应用前景。
具体实施方式
提供以下实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
实施例1
催化剂增强的MgAl基储氢材料由如下方法制备:提供Mg以及Al金属 原料;按照摩尔比Mg:Al=16:11对Mg以及Al金属原料进行称重;将称重之后的Mg、Al金属原料进行第一真空熔炼,得到初级Mg合金锭;对初级Mg合金锭进行破碎,得到初级镁合金块;提供Ti、Zr以及V金属原料;按照预定的重量份对初级镁合金块以及Ti、Zr以及V金属原料进行称重;对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨,得到复合金属粉;利用冷等静压法将复合金属粉压成松散合金锭;对松散合金锭进行热压,得到密实合金锭;对密实合金锭进行热处理;对热处理之后的密实合金锭进行线切割。第一真空熔炼工艺具体为:真空度低于0.01Pa,熔炼时间为20min,在熔炼过程中,每熔炼80s将合金锭进行一次翻转。其中,预定的重量份为:初级镁合金块占100份,金属Ti占2份、金属Zr占3份、金属V占1份。对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨具体为:球料比为10:1,研磨气氛为氩气气氛,研磨速度为900r/min,研磨时间为40h。对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨进一步包括:在研磨过程中每球磨50min,暂停球磨8min,球磨过程中控制球磨罐中的温度低于500℃。对松散合金锭进行热压,得到密实合金锭具体为:热压气压低于0.03Pa,热压温度为600℃,热压压力为50MPa,热压时间为30min。对密实合金锭进行热处理具体为:热处理气压低于0.01Pa,热处理温度为150℃,热处理时间为30h,升温速率为2℃/min。
实施例2
催化剂增强的MgAl基储氢材料由如下方法制备:提供Mg以及Al金属原料;按照摩尔比Mg:Al=18:13对Mg以及Al金属原料进行称重;将称重之后的Mg、Al金属原料进行第一真空熔炼,得到初级Mg合金锭;对初级Mg合金锭进行破碎,得到初级镁合金块;提供Ti、Zr以及V金属原料;按照预定的重量份对初级镁合金块以及Ti、Zr以及V金属原料进行称重;对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨,得到复合金属粉;利用冷等静压法将复合金属粉压成松散合金锭;对松散合金锭进行热压,得到密实合金锭;对密实合金锭进行热处理;对热处理之后的密实合金锭进行线切割。第一真空熔炼工艺具体为:真空度低于0.01Pa,熔炼时间为30min,在 熔炼过程中,每熔炼100s将合金锭进行一次翻转。其中,预定的重量份为:初级镁合金块占150份,金属Ti占4份、金属Zr占5份、金属V占3份。对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨具体为:球料比为15:1,研磨气氛为氩气气氛,研磨速度为1300r/min,研磨时间为60h。对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨进一步包括:在研磨过程中每球磨60min,暂停球磨15min,球磨过程中控制球磨罐中的温度低于500℃。对松散合金锭进行热压,得到密实合金锭具体为:热压气压低于0.03Pa,热压温度为700℃,热压压力为70MPa,热压时间为50min。对密实合金锭进行热处理具体为:热处理气压低于0.01Pa,热处理温度为200℃,热处理时间为40h,升温速率为4℃/min。
实施例3
催化剂增强的MgAl基储氢材料由如下方法制备:提供Mg以及Al金属原料;按照摩尔比Mg:Al=17:12对Mg以及Al金属原料进行称重;将称重之后的Mg、Al金属原料进行第一真空熔炼,得到初级Mg合金锭;对初级Mg合金锭进行破碎,得到初级镁合金块;提供Ti、Zr以及V金属原料;按照预定的重量份对初级镁合金块以及Ti、Zr以及V金属原料进行称重;对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨,得到复合金属粉;利用冷等静压法将复合金属粉压成松散合金锭;对松散合金锭进行热压,得到密实合金锭;对密实合金锭进行热处理;对热处理之后的密实合金锭进行线切割。第一真空熔炼工艺具体为:真空度低于0.01Pa,熔炼时间为25min,在熔炼过程中,每熔炼90s将合金锭进行一次翻转。其中,预定的重量份为:初级镁合金块占120份,金属Ti占3份、金属Zr占4份、金属V占2份。对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨具体为:球料比为12:1,研磨气氛为氩气气氛,研磨速度为1100r/min,研磨时间为50h。对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨进一步包括:在研磨过程中每球磨55min,暂停球磨10min,球磨过程中控制球磨罐中的温度低于500℃。对松散合金锭进行热压,得到密实合金锭具体为:热压气压低于0.03Pa,热压温度为650℃,热压压力为60MPa,热压时间为40min。对密实 合金锭进行热处理具体为:热处理气压低于0.01Pa,热处理温度为180℃,热处理时间为35h,升温速率为3℃/min。
实施例4
催化剂增强的MgAl基储氢材料由如下方法制备:提供Mg以及Al金属原料;按照摩尔比Mg:Al=20:10对Mg以及Al金属原料进行称重;将称重之后的Mg、Al金属原料进行第一真空熔炼,得到初级Mg合金锭;对初级Mg合金锭进行破碎,得到初级镁合金块;提供Ti、Zr以及V金属原料;按照预定的重量份对初级镁合金块以及Ti、Zr以及V金属原料进行称重;对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨,得到复合金属粉;利用冷等静压法将复合金属粉压成松散合金锭;对松散合金锭进行热压,得到密实合金锭;对密实合金锭进行热处理;对热处理之后的密实合金锭进行线切割。第一真空熔炼工艺具体为:真空度低于0.01Pa,熔炼时间为40min,在熔炼过程中,每熔炼150s将合金锭进行一次翻转。其中,预定的重量份为:初级镁合金块占120份,金属Ti占3份、金属Zr占4份、金属V占2份。对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨具体为:球料比为12:1,研磨气氛为氩气气氛,研磨速度为1100r/min,研磨时间为50h。对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨进一步包括:在研磨过程中每球磨55min,暂停球磨10min,球磨过程中控制球磨罐中的温度低于500℃。对松散合金锭进行热压,得到密实合金锭具体为:热压气压低于0.03Pa,热压温度为650℃,热压压力为60MPa,热压时间为40min。对密实合金锭进行热处理具体为:热处理气压低于0.01Pa,热处理温度为180℃,热处理时间为35h,升温速率为3℃/min。
实施例5
催化剂增强的MgAl基储氢材料由如下方法制备:提供Mg以及Al金属原料;按照摩尔比Mg:Al=17:12对Mg以及Al金属原料进行称重;将称重之后的Mg、Al金属原料进行第一真空熔炼,得到初级Mg合金锭;对初级Mg合金锭进行破碎,得到初级镁合金块;提供Ti、Zr以及V金属原料;按照预 定的重量份对初级镁合金块以及Ti、Zr以及V金属原料进行称重;对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨,得到复合金属粉;利用冷等静压法将复合金属粉压成松散合金锭;对松散合金锭进行热压,得到密实合金锭;对密实合金锭进行热处理;对热处理之后的密实合金锭进行线切割。第一真空熔炼工艺具体为:真空度低于0.01Pa,熔炼时间为25min,在熔炼过程中,每熔炼90s将合金锭进行一次翻转。其中,预定的重量份为:初级镁合金块占100份,金属Ti占5份、金属Zr占6份、金属V占4份。对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨具体为:球料比为12:1,研磨气氛为氩气气氛,研磨速度为1100r/min,研磨时间为50h。对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨进一步包括:在研磨过程中每球磨55min,暂停球磨10min,球磨过程中控制球磨罐中的温度低于500℃。对松散合金锭进行热压,得到密实合金锭具体为:热压气压低于0.03Pa,热压温度为650℃,热压压力为60MPa,热压时间为40min。对密实合金锭进行热处理具体为:热处理气压低于0.01Pa,热处理温度为180℃,热处理时间为35h,升温速率为3℃/min。
实施例6
催化剂增强的MgAl基储氢材料由如下方法制备:提供Mg以及Al金属原料;按照摩尔比Mg:Al=17:12对Mg以及Al金属原料进行称重;将称重之后的Mg、Al金属原料进行第一真空熔炼,得到初级Mg合金锭;对初级Mg合金锭进行破碎,得到初级镁合金块;提供Ti、Zr以及V金属原料;按照预定的重量份对初级镁合金块以及Ti、Zr以及V金属原料进行称重;对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨,得到复合金属粉;利用冷等静压法将复合金属粉压成松散合金锭;对松散合金锭进行热压,得到密实合金锭;对密实合金锭进行热处理;对热处理之后的密实合金锭进行线切割。第一真空熔炼工艺具体为:真空度低于0.01Pa,熔炼时间为25min,在熔炼过程中,每熔炼90s将合金锭进行一次翻转。其中,预定的重量份为:初级镁合金块占120份,金属Ti占3份、金属Zr占4份、金属V占2份。对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨具体为:球料比 为20:1,研磨气氛为氩气气氛,研磨速度为1500r/min,研磨时间为70h。对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨进一步包括:在研磨过程中每球磨100min,暂停球磨20min,不限制球磨罐温度。对松散合金锭进行热压,得到密实合金锭具体为:热压气压低于0.03Pa,热压温度为650℃,热压压力为60MPa,热压时间为40min。对密实合金锭进行热处理具体为:热处理气压低于0.01Pa,热处理温度为180℃,热处理时间为35h,升温速率为3℃/min。
实施例7
催化剂增强的MgAl基储氢材料由如下方法制备:提供Mg以及Al金属原料;按照摩尔比Mg:Al=17:12对Mg以及Al金属原料进行称重;将称重之后的Mg、Al金属原料进行第一真空熔炼,得到初级Mg合金锭;对初级Mg合金锭进行破碎,得到初级镁合金块;提供Ti、Zr以及V金属原料;按照预定的重量份对初级镁合金块以及Ti、Zr以及V金属原料进行称重;对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨,得到复合金属粉;利用冷等静压法将复合金属粉压成松散合金锭;对松散合金锭进行热压,得到密实合金锭;对密实合金锭进行热处理;对热处理之后的密实合金锭进行线切割。第一真空熔炼工艺具体为:真空度低于0.01Pa,熔炼时间为25min,在熔炼过程中,每熔炼90s将合金锭进行一次翻转。其中,预定的重量份为:初级镁合金块占120份,金属Ti占3份、金属Zr占4份、金属V占2份。对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨具体为:球料比为12:1,研磨气氛为氩气气氛,研磨速度为1100r/min,研磨时间为50h。对称重后的初级镁合金块以及Ti、Zr以及V金属原料进行球磨进一步包括:在研磨过程中每球磨55min,暂停球磨10min,球磨过程中控制球磨罐中的温度低于500℃。对松散合金锭进行热压,得到密实合金锭具体为:热压气压低于0.03Pa,热压温度为800℃,热压压力为30MPa,热压时间为20min。对密实合金锭进行热处理具体为:热处理气压低于0.01Pa,热处理温度为300℃,热处理时间为20h,升温速率为5℃/min。
实施例8
提供Mg以及Al金属原料;按照摩尔比Mg:Al=17:12对Mg以及Al金属原料进行称重,仅提供Ti金属原料。制备方法参照某现有技术的方法。
对合金进行150℃下吸氢质量百分数的测试和室温下100次循环(100次吸放氢)之后的吸氢质量百分数测试,测试方式是本领域公知的方式,测试结果基于实施例1进行归一化,测试结果列于表1。
表1
  150℃下吸氢质量百分数 循环后的吸氢质量百分数
实施例1 100% 100%
实施例2 102% 106%
实施例3 101% 104%
实施例4 70% 62%
实施例5 83% 74%
实施例6 79% 72%
实施例7 78% 71%
实施例8 56% 17%
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (7)

  1. 一种催化剂增强的MgAl基储氢材料,其特征在于:所述催化剂增强的MgAl基储氢材料由如下方法制备:
    提供Mg以及Al金属原料;
    按照摩尔比Mg:Al=(16-18):(11-13)对所述Mg以及Al金属原料进行称重;
    将称重之后的所述Mg、Al金属原料进行第一真空熔炼,得到初级Mg合金锭;
    对所述初级Mg合金锭进行破碎,得到初级镁合金块;
    提供Ti、Zr以及V金属原料;
    按照预定的重量份对所述初级镁合金块以及所述Ti、Zr以及V金属原料进行称重;
    对称重后的所述初级镁合金块以及所述Ti、Zr以及V金属原料进行球磨,得到复合金属粉;
    利用冷等静压法将所述复合金属粉压成松散合金锭;
    对所述松散合金锭进行热压,得到密实合金锭;
    对所述密实合金锭进行热处理;
    对热处理之后的密实合金锭进行线切割。
  2. 如权利要求1所述的催化剂增强的MgAl基储氢材料,其特征在于:所述第一真空熔炼工艺具体为:真空度低于0.01Pa,熔炼时间为20-30min,在熔炼过程中,每熔炼80-100s将合金锭进行一次翻转。
  3. 如权利要求1所述的催化剂增强的MgAl基储氢材料,其特征在于:其中,所述预定的重量份为:初级镁合金块占100-150份,金属Ti占2-4份、金属Zr占3-5份、金属V占1-3份。
  4. 如权利要求1所述的催化剂增强的MgAl基储氢材料,其特征在于:对称重后的所述初级镁合金块以及所述Ti、Zr以及V金属原料进行球磨具体为:球料比为10:1-15:1,研磨气氛为氩气气氛,研磨速度为900-1300r/min,研磨时间为40-60h。
  5. 如权利要求4所述的催化剂增强的MgAl基储氢材料,其特征在于:对称重后的所述初级镁合金块以及所述Ti、Zr以及V金属原料进行球磨进一步包括:在研磨过程中每球磨50-60min,暂停球磨8-15min,球磨过程中控制球磨罐中的温度低于500℃。
  6. 如权利要求1所述的催化剂增强的MgAl基储氢材料,其特征在于:对所述松散合金锭进行热压,得到密实合金锭具体为:热压气压低于0.03Pa,热压温度为600-700℃,热压压力为50-70MPa,热压时间为30-50min。
  7. 如权利要求1所述的催化剂增强的MgAl基储氢材料,其特征在于:对所述密实合金锭进行热处理具体为:热处理气压低于0.01Pa,热处理温度为150-200℃,热处理时间为30-40h,升温速率为2-4℃/min。
PCT/CN2018/101867 2018-06-29 2018-08-23 一种催化剂增强的MgAl基储氢材料 WO2020000610A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/560,957 US20190390307A1 (en) 2018-06-29 2019-09-04 Catalyst enhanced MgAl-based hydrogen storage material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810699799.6A CN108796326B (zh) 2018-06-29 2018-06-29 一种催化剂增强的MgAl基储氢材料
CN201810699799.6 2018-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/560,957 Continuation US20190390307A1 (en) 2018-06-29 2019-09-04 Catalyst enhanced MgAl-based hydrogen storage material

Publications (1)

Publication Number Publication Date
WO2020000610A1 true WO2020000610A1 (zh) 2020-01-02

Family

ID=64073819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101867 WO2020000610A1 (zh) 2018-06-29 2018-08-23 一种催化剂增强的MgAl基储氢材料

Country Status (2)

Country Link
CN (1) CN108796326B (zh)
WO (1) WO2020000610A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862536B (zh) * 2021-09-14 2022-07-08 钢铁研究总院 一种Mg-Al-Y基储氢材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152866A (ja) * 1989-11-08 1991-06-28 Sanyo Electric Co Ltd 水素電極用水素吸蔵合金
CN101457321A (zh) * 2008-12-25 2009-06-17 浙江大学 一种镁基复合储氢材料及制备方法
CN101538660A (zh) * 2009-04-21 2009-09-23 中国科学院长春应用化学研究所 A112Mg17为镁源制备低残单的RE-Mg-Ni系储氢合金的方法
CN102634714A (zh) * 2012-04-19 2012-08-15 重庆大学 添加铜元素的镁铝系储氢合金及制备方法
CN105695828A (zh) * 2016-01-18 2016-06-22 钢铁研究总院 一种 Mg 基高容量贮氢合金及其制备方法
CN107760947A (zh) * 2017-09-18 2018-03-06 西北工业大学 Mg‑Al‑Ni系储氢颗粒及其催化改性制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114322A (zh) * 1974-02-20 1975-09-08
JP2006336055A (ja) * 2005-05-31 2006-12-14 Toyota Motor Corp マグネシウム合金多孔質体およびその製造方法
JP2008266781A (ja) * 2007-03-24 2008-11-06 Tokai Univ Mg−Al系水素吸蔵合金粉末の製造方法、及び当該製造方法により得られたMg−Al系水素吸蔵合金粉末
CN105132838B (zh) * 2015-09-25 2017-03-29 广西大学 一种Mg17Al12氢化反应的调控方法
CN105584989B (zh) * 2016-03-02 2018-01-02 浙江大学 一种非晶镁铝基复合储氢材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152866A (ja) * 1989-11-08 1991-06-28 Sanyo Electric Co Ltd 水素電極用水素吸蔵合金
CN101457321A (zh) * 2008-12-25 2009-06-17 浙江大学 一种镁基复合储氢材料及制备方法
CN101538660A (zh) * 2009-04-21 2009-09-23 中国科学院长春应用化学研究所 A112Mg17为镁源制备低残单的RE-Mg-Ni系储氢合金的方法
CN102634714A (zh) * 2012-04-19 2012-08-15 重庆大学 添加铜元素的镁铝系储氢合金及制备方法
CN105695828A (zh) * 2016-01-18 2016-06-22 钢铁研究总院 一种 Mg 基高容量贮氢合金及其制备方法
CN107760947A (zh) * 2017-09-18 2018-03-06 西北工业大学 Mg‑Al‑Ni系储氢颗粒及其催化改性制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU, FAN: "V, Ti, Zr (Effects of V, Ti and Zr Based Catalysts on the Hydrogen Storage Properties of Mgl7A112)", CHINESE MASTER'S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE & TECHNOLOGY 1, 15 June 2017 (2017-06-15), ISSN: 1674-0246 *

Also Published As

Publication number Publication date
CN108796326A (zh) 2018-11-13
CN108796326B (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
Lin et al. Recent advances in metastable alloys for hydrogen storage: a review
Morioka et al. Reversible hydrogen decomposition of KAlH4
CN109972010B (zh) 一种纳米镁基复合储氢材料及制备方法
CN111636012B (zh) 一种La-Mg-Ni系储氢材料及其制备方法
CN104726745A (zh) 一种Ti-Zr基轻质量高容量吸氢材料及其制备和使用方法
CN108193107B (zh) 一种有机包覆核-壳纳米复合储氢材料的制备方法
CN113215467B (zh) 加氢站用固态储氢材料及其制备方法与应用
CN111636022B (zh) 一种长寿命高容量钒基储氢合金及其氢化制粉方法
CN103101880A (zh) 一种硼氢化锂/稀土镁基合金复合储氢材料及其制备方法
Silva et al. Hydrogen storage properties of filings of the ZK60 alloy modified with 2.5 wt% mischmetal
Pan et al. Hydrogen storage properties of Mg–TiO2 composite powder prepared by arc plasma method
WO2020000610A1 (zh) 一种催化剂增强的MgAl基储氢材料
CN108097947B (zh) 一种高容量Mg-Zn-Ni三元贮氢合金及其制备方法
CN105668515B (zh) 一种CaMg2基合金氢化物水解制氢材料及其制备方法和应用
CN112899548A (zh) 一种钇-锆-铁-铝合金材料、制备方法及应用
CN109768255A (zh) 一种稀土储氢合金/硼氢化物复合储氢材料及其制备方法
US20190390307A1 (en) Catalyst enhanced MgAl-based hydrogen storage material
CN101994028A (zh) 一种太阳能热利用真空管吸氢材料及其使用方法
CN108193113B (zh) 一种纳米限域富镁合金的制备方法
CN101487092B (zh) 一种氢压缩机材料
CN114671403B (zh) 一种Ti-Mn-Fe储氢材料及其制备方法
CN105108158A (zh) 一种钕铁硼氢破碎工艺氢气收集系统及应用方法
CN101740767B (zh) 一种镍氢电池负极用的复合储氢合金
Ivey et al. Hydriding properties of Zr (FexCr1− x) 2 intermetallic compounds
CN114101683B (zh) 一种储氢合金块体材料的破碎方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924906

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18924906

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC