WO2019244924A1 - 光トランシーバ - Google Patents

光トランシーバ Download PDF

Info

Publication number
WO2019244924A1
WO2019244924A1 PCT/JP2019/024268 JP2019024268W WO2019244924A1 WO 2019244924 A1 WO2019244924 A1 WO 2019244924A1 JP 2019024268 W JP2019024268 W JP 2019024268W WO 2019244924 A1 WO2019244924 A1 WO 2019244924A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
housing
positioning member
optical
optical transceiver
Prior art date
Application number
PCT/JP2019/024268
Other languages
English (en)
French (fr)
Inventor
山本 弘毅
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN201980038760.2A priority Critical patent/CN112262334B/zh
Priority to JP2020525765A priority patent/JPWO2019244924A1/ja
Priority to US16/973,232 priority patent/US20210239926A1/en
Publication of WO2019244924A1 publication Critical patent/WO2019244924A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/424Mounting of the optical light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4245Mounting of the opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4272Cooling with mounting substrates of high thermal conductivity

Definitions

  • the present invention relates to an optical transceiver.
  • the housing of the optical transceiver used for optical communication contains a heat-generating component, an optical component, and a positioning member.
  • the heat-generating component is a component that generates heat when the optical transceiver is operated.
  • the characteristics of the optical component may be degraded at high temperatures, so it is necessary to efficiently radiate the heat generated from the heat-generating component.
  • heat generated from the heat generating component is radiated to the housing via a heat radiating member provided in a gap between the heat generating component and the housing.
  • heat generated from the heat-generating component is radiated by using a heat-radiating member that is in contact with the heat-generating component.
  • optical transceivers used for optical communication have been miniaturized.
  • the heat-generating component, the optical component, and the positioning member are mounted in the housing at high density, the temperature in the housing may increase, and the characteristics of the optical component may deteriorate. Therefore, it is necessary to efficiently radiate the heat generated from the heat-generating components.
  • the present invention has been made in view of the above problems, and has as its object to provide an optical transceiver capable of mounting optical components at high density and efficiently radiating heat generated from the heat generating components.
  • An optical transceiver includes a housing, a positioning member for positioning an optical component in the housing, and a board housed in the housing and having a heat-generating component mounted thereon.
  • the positioning member is configured to determine a position of the optical component in the housing and to thermally connect the substrate and the housing.
  • an optical transceiver capable of mounting optical components at high density and efficiently radiating heat generated from the heat-generating components.
  • FIG. 2 is a cross-sectional view of the optical transceiver according to the first embodiment.
  • FIG. 6 is a cross-sectional view of an optical transceiver according to a second embodiment.
  • FIG. 11 is a sectional view of an optical transceiver according to a third embodiment.
  • FIG. 14 is a sectional view of an optical transceiver according to a fourth embodiment. It is a perspective view of an optical component and a positioning member. It is a top view of the optical transceiver concerning a 5th embodiment.
  • FIG. 1 is a sectional view of the optical transceiver according to the first embodiment.
  • the optical transceiver 11 includes housings 4a and 4b, a board 5, a heat-generating component 6a, an optical component 7a, and a positioning member 8a.
  • arrows indicate paths through which heat generated in the heat-generating component 6a is conducted.
  • the housings 4a and 4b are a pair of housings arranged to face each other.
  • the shapes of the housings 4a and 4b are not particularly limited.
  • the housings 4a and 4b are, for example, plate-like members provided with protruding portions protruding inward at their respective edges, as shown in FIG.
  • a board 5 is housed in the housings 4a and 4b.
  • the substrate 5 is fixed in the housings 4a and 4b.
  • a heat-generating component 6a is mounted on the board 5 as shown in FIG.
  • the heat generating component 6a is a component that generates heat when the optical transceiver 11 is operated.
  • the heat generating component 6a is, for example, a driver for driving the optical component 7a or a processor for controlling the optical transceiver 11.
  • the heat generating component 6a is mounted on the board 5 by, for example, soldering.
  • the heat generating component 6a is preferably soldered to the substrate 5 by a reflow method.
  • the optical component 7a is a light receiving element in the example shown in FIG. Note that the optical component 7a may be a variable optical attenuator (Variable Optical Attenuator, VOA), a light emitting element, a WDM filter, a laser light source, an optical fiber, or the like.
  • VOA variable optical attenuator
  • the position of the optical component 7a in the housings 4a and 4b is determined using the positioning member 8a.
  • the positioning member 8a is in contact with the housing 4a as shown in FIG.
  • the positioning member 8a may be fixed to the housing 4a or may only be in contact therewith.
  • the positioning member 8a is fixed to the substrate 5.
  • the positioning member 8a abuts on the housing 4a and is fixed to the substrate 5, so that the housing 4a and the substrate 5 can be thermally connected.
  • the positioning member 8a is fixed using, for example, a fixing pad (not shown) provided on the substrate 5.
  • the positioning member 8a is fixed to a fixing pad provided on the substrate 5 by, for example, soldering.
  • soldering When the positioning member 8a is soldered, the positioning member 8a and the fixing pad are formed using a solderable metal material such as copper.
  • the positioning member 8a is preferably soldered by a reflow method. More preferably, the positioning member 8a is soldered to the substrate 5 by a reflow method at the same time as the heat-generating component 6a. When the heat generating component 6a and the positioning member 8a are simultaneously soldered by the reflow method, the number of steps required for mounting the heat generating component 6a and the positioning member 8a can be reduced.
  • the positioning member 8a may be manually soldered to the substrate 5.
  • a shield cover that covers the optical component 7a may be provided.
  • the positioning member 8a may be fixed to the substrate 5 by screwing.
  • the positioning member 8a is fixed to the substrate 5 by screwing, there is no need to provide fixing pads on the substrate 5.
  • the positioning member 8a can be configured using a material that is difficult to solder.
  • the positioning member 8a may be formed using only one material. Further, the positioning member 8a may be formed by integrating different materials. Specifically, the positioning member 8a is formed using metal only in a region to be soldered or a region in contact with the housings 4a and 4b, and the other region is formed using a thermally conductive resin. You may.
  • the heat generating component 6a When the optical transceiver 11 is operated, the heat generating component 6a generates heat. As shown in FIG. 1, the heat generated by the heat-generating component 6a is transmitted to the substrate 5, the positioning member 8a, and the housing 4a in this order. The heat conducted to the housing 4a is radiated from the surface of the housing 4a to the atmosphere.
  • the housing 4a may be provided with a radiation fin or the like. When the heat radiating fins are provided on the housing 4a, the heat radiating efficiency of the housing 4a is improved.
  • the heat-generating component 6a is preferably provided near the position where the positioning member 8a and the substrate 5 are thermally connected. Specifically, in the example shown in FIG. 1, the heat generating component 6a is preferably mounted near the position where the positioning member 8a is mounted. If the heat-generating component 6a is provided near the position where the positioning member 8a and the substrate 5 are thermally connected, the length of the heat-radiating path from the heat-generating component 6a to the positioning member 8a can be shortened. Therefore, heat generated from the heat-generating component 6a can be efficiently conducted to the housing 4a.
  • optical transceivers used for optical communication have been miniaturized.
  • the heat-generating component, the optical component, and the positioning member are mounted at high density in the housing, the temperature in the housing may increase, and the characteristics of the optical component may be degraded. Therefore, it is necessary to efficiently radiate the heat generated from the heat-generating components.
  • the optical transceiver 11 radiates heat generated from the heat-generating component 6a using the positioning member 8a. That is, the positioning member 8a forms a heat radiating path for positioning the optical component 7a and radiating heat generated by the heat generating component 6a. Therefore, the optical components can be mounted at high density and the heat generated from the heat-generating components can be efficiently radiated.
  • the heat generated from the heat-generating component is radiated by providing a heat-radiating member for radiating the heat generated from the heat-generating component in the housing.
  • a heat-radiating member for radiating the heat generated from the heat-generating component in the housing.
  • the optical transceiver 11 forms the heat radiation path by using the positioning member 8a instead of separately providing the heat radiation member in the housings 4a and 4b, so that the heat generating component 6a is used.
  • the generated heat is dissipated. Therefore, high-density mounting of optical components and heat radiation inside the housing can be realized at the same time.
  • FIG. 2 is a sectional view of the optical transceiver according to the second embodiment.
  • the optical transceiver 12 includes a heat conductive sheet 9a in addition to the configuration shown in FIG. Note that, in FIG. 2, arrows indicate paths through which heat generated from the heat-generating component 6a is conducted.
  • the other configuration is the same as the configuration described in the first embodiment, and a repeated description will be appropriately omitted.
  • the heat conductive sheet 9a is provided between the positioning member 8a and the housing 4a as shown in FIG.
  • the heat conductive sheet 9a is, for example, a cool sheet. Cool sheets are excellent in insulation and thermal conductivity.
  • the heat conductive sheet 9a may be a shield cover. The shield cover has excellent electrical conductivity and thermal conductivity. When the heat conductive sheet 9a is a shield cover, if the positioning member 8a and the optical component 7a are covered, magnetic noise of the optical component 7a can be suppressed.
  • the housing 4a and the substrate 5 can be thermally connected.
  • the heat generating component 6a When the optical transceiver 12 is operated, the heat generating component 6a generates heat. As shown in FIG. 2, heat generated from the heat-generating component 6a is conducted in the order of the substrate 5, the positioning member 8a, the heat conductive sheet 9a, and the housing 4a. The heat conducted to the housing 4a is radiated from the surface of the housing 4a to the atmosphere.
  • the heat conductive sheet 9a is provided between the positioning member 8a and the housing 4a is shown.
  • the position where the heat conductive sheet 9a is provided is not particularly limited as long as it is on a path for conducting heat generated from the heat generating component 6a.
  • the heat conductive sheet 9a may be provided between the positioning member 8a and the substrate 5, for example.
  • the thickness of the heat conductive sheet 9a is appropriately changed according to the gap between the positioning member 8a and the housing 4a. Therefore, even when a plurality of positioning members 8a having different thicknesses are mounted on the substrate 5, the optical transceiver 12 can thermally connect each of the positioning members 8a to the housing 4a. Therefore, the optical transceiver 12 can more efficiently radiate the heat generated from the heat-generating component 6a. Further, the optical transceiver 12 can achieve the same effects as those described in the first embodiment.
  • FIG. 3 is a sectional view of the optical transceiver according to the third embodiment.
  • the optical transceiver 13 includes a heat conductive member 10b in addition to the configuration shown in FIG. Note that, in FIG. 3, arrows indicate paths through which heat generated from the heat generating component 6a is conducted.
  • the other configuration is the same as the configuration described in the first and second embodiments, and a duplicate description will be appropriately omitted.
  • the heat conductive member 10b is provided between the housing 4b and the substrate 5, as shown in FIG.
  • the heat conductive member 10b can be configured using, for example, a metal material or a resin material having high heat conductivity. Since the heat conductive member 10b is in contact with the housing 4b and the substrate 5, it thermally connects the housing 4b and the substrate 5.
  • the heat generating component 6a When the optical transceiver 13 is operated, the heat generating component 6a generates heat. As shown in FIG. 3, a part of the heat generated from the heat generating component 6a is conducted in the order of the board 5, the heat conductive member 10b, and the housing 4b. The heat conducted to the housing 4b is radiated from the surface of the housing 4b to the atmosphere.
  • the optical transceiver 13 uses the heat conductive sheet 9a and the heat conductive member 10b in combination, heat generated from the heat generating component 6a is more efficiently applied to the housings 4a and 4b than the optical transceiver 12 shown in FIG. Can conduct. Further, the optical transceiver 13 can achieve the same effects as those described in the first and second embodiments.
  • FIG. 4 is a sectional view of the optical transceiver according to the fourth embodiment.
  • FIG. 5 is a perspective view of an optical component and a positioning member.
  • the optical transceiver 14 includes a heat generating component 6b, a positioning member 8b, heat conductive sheets 9c and 9d, and a heat conductive member 10e in addition to the configuration shown in FIG.
  • the other configuration is the same as the configuration described in the first to third embodiments, and a repeated description will be appropriately omitted.
  • the heat-generating component 6a is a driver for driving the optical component 7a in the example shown in FIG.
  • the heat generating component 6b is a processor that controls the optical transceiver 14.
  • the heat generating component 6b is mounted on the board 5, as shown in FIG.
  • the optical component 7a is a light receiving element.
  • a groove 81 for fixing the optical component 7a is formed in the positioning member 8a.
  • the optical component 7a is fixed to the groove 81 of the positioning member 8a.
  • the positioning member 8a to which the optical component 7a is fixed is fixed to the substrate 5.
  • the positioning member 8a is thermally connected to the housing 4a using a heat conductive sheet 9a.
  • the positioning member 8b accommodates an optical fiber not shown in FIG.
  • the optical fiber is fixed in the positioning member 8b.
  • the positioning member 8b is mounted on the board 5, as shown in FIG. Therefore, when the optical fiber is fixed using the positioning member 8b, the position in the housings 4a and 4b is determined.
  • the heat conductive sheet 9c is provided between the housing 4b and the positioning member 8b as shown in FIG. Since the heat conductive sheet 9c is in contact with the housing 4b and the positioning member 8b, the housing 4b and the positioning member 8b can be thermally connected.
  • the heat conductive sheet 9d is provided between the heat generating component 6b and the positioning member 8b, as shown in FIG. Since the heat conductive sheet 9d is in contact with the heat generating component 6b and the positioning member 8b, the heat generating component 6b and the positioning member 8b can be thermally connected.
  • the heat generating component 6b When the optical transceiver 14 is operated, the heat generating component 6b generates heat. As shown in FIG. 4, a part of the heat generated from the heat generating component 6b is conducted in the order of the heat conductive sheet 9d, the positioning member 8b, the heat conductive sheet 9c, and the housing 4b. A part of the heat generated from the heat-generating component 6b is transmitted to the substrate 5, the positioning member 8a, the heat conductive sheet 9a, and the housing 4a in this order. Therefore, the heat generated from the heat generating component 6b can be radiated using the plurality of heat radiating paths.
  • the heat conductive member 10e is provided between the heat generating component 6a and the housing 4a as shown in FIG. Since the heat conductive member 10e is in contact with the heat-generating component 6a and the housing 4a, it thermally connects the heat-generating component 6a and the housing 4a.
  • the heat generating component 6a When the optical transceiver 14 is operated, the heat generating component 6a generates heat. Part of the heat generated from the heat generating component 6a is conducted in the order of the heat conductive member 10e and the housing 4a. Part of the heat generated from the heat-generating component 6a is transmitted to the housings 4a and 4b via the board 5, the positioning members 8a and 8b, and the heat conductive sheets 9a and 9c. Therefore, heat generated from the heat-generating component 6a can be radiated using the plurality of heat-radiating paths.
  • the optical transceiver 14 uses the plurality of heat dissipation paths described above in combination, the heat generated from the heat-generating components 6a and 6b can be efficiently dissipated. Further, the optical transceiver 14 can provide the same effects as those described in the first to third embodiments.
  • FIG. 6 is a plan view of the optical transceiver according to the fifth embodiment.
  • the optical transceiver 15 includes an optical component 7b in addition to the configuration shown in FIG. In FIG. 6, the housing 4b shown in FIGS. 1 to 4 is not shown.
  • the optical component 7b is an optical fiber.
  • the optical component 7b is housed in a positioning member 8b as shown in FIG.
  • the positioning member 8b is provided with a fixing part (not shown).
  • the fixing portion provided on the positioning member 8b is, for example, a plurality of protrusions. Since the optical component 7b is wound around a plurality of protrusions, the position in the positioning member 8b is determined.
  • the positioning member 8b thermally connects the board 5 and the housing 4b (not shown in FIG. 6). Therefore, the heat generated from the heat generating component can be efficiently radiated.
  • an optical transceiver capable of mounting optical components at high density and efficiently radiating heat generated from the heat generating components.
  • Optical transceiver 4a Housing 5 Substrate 6a, 6b Heating component 7a, 7b Optical component 8a, 8b Positioning member 81 Groove 9a, 9c, 9d Thermal conductive sheet 10b, 10e Thermal conductivity Element

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

光部品を高密度に実装すると共に発熱部品から発生する熱を放熱することができる光トランシーバを提供することを目的とする。本発明に係る光トランシーバ(11)は、筐体(4a)、(4b)と、筐体(4a)、(4b)内において光部品(7a)の位置決めをする位置決め部材(8a)と、筐体(4a)、(4b)内に収容され、発熱部品(6a)が実装された基板(5)と、を備え、位置決め部材(8a)は、光部品(7a)の筐体(4a)、(4b)内における位置を決定するとともに、基板(5)と筐体(4a)、(4b)とを熱的に接続するように構成されている。

Description

光トランシーバ
 本発明は、光トランシーバに関する。
 光通信に使用される光トランシーバの筐体内には、発熱部品、光部品、及び位置決め部材が収容されている。発熱部品は、光トランシーバを作動させると発熱する部品である。光部品は、高温になると特性が低下する虞があるため、発熱部品から発生する熱を効率的に放熱する必要がある。
 例えば、特許文献1及び特許文献2に開示されている技術では、発熱部品と筐体との間隙に設けられた放熱部材を介して、発熱部品から発生する熱を筐体に放熱している。
 また、特許文献3及び特許文献4に開示されている技術では、発熱部品に当接している放熱部材を用いて、発熱部品から発生する熱を放熱している。
実開平03-083991号公報 特開平09-283886号公報 特開平08-148801号公報 特開平05-315776号公報
 近年、光通信に使用される光トランシーバの小型化が進んでいる。光トランシーバを小型化するためには、筐体内において発熱部品、光部品、及び位置決め部材を高密度に実装する必要がある。しかしながら、筐体内において発熱部品、光部品、及び位置決め部材を高密度に実装すると筐体内の温度が上昇し、光部品の特性が低下する虞がある。このため、発熱部品から発生する熱を効率的に放熱する必要がある。
 本発明は、このような問題点に鑑みなされたものであり、光部品を高密度に実装すると共に発熱部品から発生する熱を効率的に放熱することが可能な光トランシーバを提供することを目的とする。
 本発明の一態様に係る光トランシーバは、筐体と、前記筐体内において光部品の位置決めをする位置決め部材と、前記筐体内に収容され、発熱部品が実装された基板と、を備える。前記位置決め部材は、前記光部品の前記筐体内における位置を決定するとともに、前記基板と前記筐体とを熱的に接続するように構成されている。
 本発明によれば、光部品を高密度に実装すると共に発熱部品から発生する熱を効率的に放熱することが可能な光トランシーバを提供することができる。
第1の実施形態に係る光トランシーバの断面図である。 第2の実施形態に係る光トランシーバの断面図である。 第3の実施形態に係る光トランシーバの断面図である。 第4の実施形態に係る光トランシーバの断面図である。 光部品及び位置決め部材の斜視図である。 第5の実施形態に係る光トランシーバの平面図である。
 以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。
 (第1の実施形態)
 まず、図1を参照して本発明の第1の実施形態に係る光トランシーバの構成について説明する。図1は、第1の実施形態に係る光トランシーバの断面図である。光トランシーバ11は、図1に示すように、筐体4a、4b、基板5、発熱部品6a、光部品7a、及び位置決め部材8aを備える。なお、図1において、矢印は、発熱部品6aで発生した熱が伝導する経路を示す。
 筐体4a、4bは、対向配置された一対の筐体である。筐体4a、4bの形状は、特に限定されない。筐体4a、4bは、例えば図1に示すように、内部に向かって突出する突起部がそれぞれの縁部に設けられた板状部材である。筐体4a、4b内には、基板5が収容されている。
 基板5は、筐体4a、4b内に固定されている。基板5には、図1に示すように発熱部品6aが実装されている。発熱部品6aは、光トランシーバ11を作動させると発熱する部品である。発熱部品6aは、例えば、光部品7aを駆動するためのドライバや、光トランシーバ11を制御するためのプロセッサである。発熱部品6aは、例えば、半田付けで基板5に実装されている。発熱部品6aは、好ましくはリフロー方式で基板5に半田付けされる。
 光部品7aは、図1に示した例では、受光素子である。なお、光部品7aは、可変光減衰器(Variable Optical Attenuator、VOA)、発光素子、WDMフィルタ、レーザ光源、及び光ファイバ等であってもよい。光部品7aは、位置決め部材8aを用いて、筐体4a、4b内における位置が決定される。
 位置決め部材8aは、図1に示すように、筐体4aに当接している。位置決め部材8aは、筐体4aに固定されていてもよいし、接触しているのみでもよい。また、位置決め部材8aは、基板5に固定されている。位置決め部材8aは、筐体4aに当接すると共に基板5に固定されているため、筐体4a及び基板5を熱的に接続することができる。
 位置決め部材8aは、例えば、基板5に設けられた固定用パッド(不図示)を用いて固定される。位置決め部材8aは、例えば、半田付けで基板5に設けられた固定用パッドに固定される。位置決め部材8aを半田付けする場合、位置決め部材8a及び固定用パッドは、銅等の半田付け可能な金属材料を用いて構成される。
 位置決め部材8aを半田付けする場合、基板5に固定用の孔を設ける必要がない。したがって、基板5の両面に部品を実装することができる。つまり、発熱部品6a及び位置決め部材8aを基板5に半田付けすると、基板5自体を大きくすることなく基板5の実装面積を広くすることができる。
 位置決め部材8aは、好ましくはリフロー方式で半田付けされる。位置決め部材8aは、さらに好ましくは発熱部品6aと同時にリフロー方式で基板5に半田付けされる。発熱部品6a及び位置決め部材8aをリフロー方式で同時に半田付けすると、発熱部品6aや位置決め部材8a等の実装に要する工程数を削減することができる。
 位置決め部材8aは、基板5に人手で半田付けされてもよい。人手で位置決め部材8aを基板に半田付けする場合、例えば、光部品7aを覆うシールドカバーを設けてもよい。また、位置決め部材8aは、ねじ止めで基板5に固定されてもよい。ねじ止めで位置決め部材8aを基板5に固定する場合、基板5に固定用パッドを設ける必要がない。また、半田付けすることが困難な材料を用いて位置決め部材8aを構成することができる。
 位置決め部材8aは、1つの材料のみを用いて形成されていてもよい。また、位置決め部材8aは、異なる材料を一体化して形成されていてもよい。具体的には、位置決め部材8aは、半田付けされる領域や、筐体4a、4bに接触する領域のみ金属を用いて形成されるとともに、その他の領域を熱伝導性樹脂を用いて形成されていてもよい。
 光トランシーバ11を作動させると、発熱部品6aが発熱する。発熱部品6aで発生した熱は、図1に示すように、基板5、位置決め部材8a、筐体4aの順に伝導する。筐体4aに伝導した熱は、筐体4aの表面から大気中に放熱される。筐体4aには、放熱フィン等が設けられていてもよい。筐体4aに放熱フィンを設けると、筐体4aの放熱効率が向上する。
 なお、光トランシーバ11において、発熱部品6aは、位置決め部材8aと基板5とが熱的に接続されている位置の近傍に設けられていることが好ましい。具体的には、図1に示す例では、発熱部品6aは、位置決め部材8aが実装されている位置の近傍に実装されることが好ましい。位置決め部材8aと基板5とが熱的に接続されている位置の近傍に発熱部品6aを設けると、発熱部品6aから位置決め部材8aへの放熱経路の経路長を短くすることができる。したがって、発熱部品6aから発生する熱を効率良く筐体4aに伝導することができる。
 上述のように、近年、光通信に使用される光トランシーバの小型化が進んでいる。光トランシーバを小型化するためには、筐体内において発熱部品、光部品、及び位置決め部材を高密度に実装する必要がある。しかしながら、筐体内において発熱部品、光部品、及び位置決め部材を高密度に実装すると筐体内の温度が上昇し、光部品の特性が低下する虞があった。このため、発熱部品から発生する熱を効率的に放熱する必要があった。
 このような問題に鑑み第1の実施形態にかかる光トランシーバ11は、発熱部品6aから発生する熱を位置決め部材8aを用いて放熱している。つまり、位置決め部材8aは、光部品7aの位置決めを行うと共に発熱部品6aで発生した熱を放熱するための放熱経路を形成している。したがって、光部品を高密度に実装すると共に発熱部品から発生する熱を効率的に放熱することができる。
 また、特許文献1~4に開示されている技術では、発熱部品から発生する熱を放熱するための放熱部材を筐体内に設けることで、発熱部品から発生する熱を放熱していた。しかしながら、放熱部品を筐体内に設けた場合は、筐体内に設ける部品の数が増加するため、光トランシーバを小型化することが困難であった。
 これに対して第1の実施形態にかかる光トランシーバ11は、筐体4a、4b内に放熱部材を別途設けるのではなく、位置決め部材8aを用いて放熱経路を形成することで、発熱部品6aで発生した熱を放熱している。したがって、光部品の高密度実装と、筐体内部の放熱とを同時に実現することができる。
 (第2の実施形態)
 次に、図2を参照して、本発明の第2の実施形態に係る光トランシーバの構成について説明する。図2は、第2の実施形態に係る光トランシーバの断面図である。光トランシーバ12は、図2に示すように、図1に示した構成に加えて、熱伝導性シート9aを備える。なお、図2において、矢印は、発熱部品6aから発生する熱が伝導する経路を示す。その他の構成については、第1の実施形態で説明した構成と同様であるため、重複した説明は適宜省略する。
 熱伝導性シート9aは、図2に示すように、位置決め部材8aと筐体4aとの間に設けられている。熱伝導性シート9aは、例えば、クールシートである。クールシートは、絶縁性及び熱伝導性に優れている。熱伝導性シート9aは、シールドカバーであってもよい。シールドカバーは、導電性及び熱伝導性に優れている。熱伝導性シート9aがシールドカバーである場合、位置決め部材8a及び光部品7aを覆うと、光部品7aの磁気ノイズを抑制することができる。
 熱伝導性シート9aは、図2に示すように、位置決め部材8a及び筐体4aに接触しているため、筐体4a及び基板5を熱的に接続することができる。光トランシーバ12を作動させると、発熱部品6aが発熱する。発熱部品6aから発生する熱は、図2に示すように、基板5、位置決め部材8a、熱伝導性シート9a、筐体4aの順に伝導する。筐体4aに伝導した熱は、筐体4aの表面から大気中に放熱される。図2に示す例では、位置決め部材8aと筐体4aとの間に熱伝導性シート9aを設ける場合を示した。しかしながら、熱伝導性シート9aが設けられる位置は、発熱部品6aから発生する熱を伝導する経路上であれば特に限定されない。熱伝導性シート9aは、例えば、位置決め部材8aと基板5との間に設けられていてもよい。
 熱伝導性シート9aの厚みは、位置決め部材8aと筐体4aとの間隙に応じて適宜変更される。したがって、光トランシーバ12は、厚みの異なる複数の位置決め部材8aが基板5に実装されている場合であっても、位置決め部材8aのそれぞれと筐体4aとを熱的に接続することができる。したがって、光トランシーバ12は、発熱部品6aから発生する熱をより効率良く放熱することができる。さらに、光トランシーバ12は、第1の実施形態において説明した効果と同様の効果を奏することができる。
 (第3の実施形態)
 次に、図3を参照して、本発明の第3の実施形態に係る光トランシーバの構成について説明する。図3は、第3の実施形態に係る光トランシーバの断面図である。光トランシーバ13は、図3に示すように、図2に示した構成に加えて、熱伝導性部材10bを備える。なお、図3において、矢印は、発熱部品6aから発生する熱が伝導する経路を示す。その他の構成については、第1及び第2の実施の形態で説明した構成と同様であるため、重複した説明は適宜省略する。
 熱伝導性部材10bは、図3に示すように、筐体4bと基板5との間に設けられている。熱伝導性部材10bは、例えば、熱伝導率の高い金属材料や樹脂材料を用いて構成することができる。熱伝導性部材10bは、筐体4b及び基板5に接触しているため、筐体4b及び基板5を熱的に接続している。光トランシーバ13を作動させると、発熱部品6aが発熱する。発熱部品6aから発生する熱の一部は、図3に示すように、基板5、熱伝導性部材10b、筐体4bの順に伝導する。筐体4bに伝導された熱は、筐体4bの表面から大気中に放熱される。
 光トランシーバ13は、熱伝導性シート9aと熱伝導性部材10bとを併用しているため、図2に示した光トランシーバ12よりも効率良く発熱部品6aから発生する熱を筐体4a、4bに伝導することができる。さらに、光トランシーバ13は、第1及び第2の実施形態において説明した効果と同様の効果を奏することができる。
 (第4の実施形態)
 次に、図4及び図5を参照して、本発明の第4の実施形態に係る光トランシーバの構成について説明する。本発明の第4の実施形態は、第3の実施形態に係る光トランシーバの構成をさらに具体的に説明したものである。図4は、第4の実施形態に係る光トランシーバの断面図である。図5は、光部品及び位置決め部材の斜視図である。
 光トランシーバ14は、図4に示すように、図3に示した構成に加えて、発熱部品6b、位置決め部材8b、熱伝導性シート9c、9d、及び熱伝導性部材10eを備える。その他の構成については、第1~第3の実施形態で説明した構成と同様であるため、重複した説明は適宜省略する。
 発熱部品6aは、図4に示す例では、光部品7aを駆動するドライバである。発熱部品6bは、光トランシーバ14を制御するプロセッサである。発熱部品6bは、図4に示すように、基板5に実装されている。光部品7aは、受光素子である。
 図5の斜視図を用いて具体的に説明すると、位置決め部材8aには光部品7aを固定するための溝81が形成されている。光部品7aは位置決め部材8aの溝81に固定されている。光部品7aが固定された位置決め部材8aは、基板5に固定されている。また、位置決め部材8aは、熱伝導性シート9aを用いて筐体4aに熱的に接続されている。
 位置決め部材8bは、図4に図示しない光ファイバを収容している。光ファイバは、位置決め部材8b内において固定される。位置決め部材8bは、図4に示すように、基板5に実装されている。したがって、光ファイバは、位置決め部材8bを用いて固定されると、筐体4a、4b内における位置が決定される。
 熱伝導性シート9cは、図4に示すように、筐体4bと位置決め部材8bとの間に設けられている。熱伝導性シート9cは、筐体4b及び位置決め部材8bに接触しているため、筐体4bと位置決め部材8bとを熱的に接続することができる。熱伝導性シート9dは、図4に示すように、発熱部品6bと位置決め部材8bとの間に設けられている。熱伝導性シート9dは、発熱部品6b及び位置決め部材8bに接触しているため、発熱部品6bと位置決め部材8bとを熱的に接続することができる。
 光トランシーバ14を作動させると、発熱部品6bが発熱する。発熱部品6bから発生する熱の一部は、図4に示すように、熱伝導性シート9d、位置決め部材8b、熱伝導性シート9c、筐体4bの順に伝導する。また、発熱部品6bから発生する熱の一部は、基板5、位置決め部材8a、熱伝導性シート9a、筐体4aの順に伝導する。よって、発熱部品6bから発生した熱を複数の放熱経路を用いて放熱することができる。
 熱伝導性部材10eは、図4に示すように、発熱部品6aと筐体4aとの間に設けられている。熱伝導性部材10eは、発熱部品6a及び筐体4aに接触しているため、発熱部品6aと筐体4aとを熱的に接続している。光トランシーバ14を作動させると、発熱部品6aが発熱する。発熱部品6aから発生する熱の一部は、熱伝導性部材10e、筐体4aの順に伝導する。また、発熱部品6aから発生する熱の一部は、基板5、位置決め部材8a、8b、熱伝導性シート9a、9cを介して筐体4a、4bに伝導する。よって、発熱部品6aから発生した熱を複数の放熱経路を用いて放熱することができる。
 光トランシーバ14は、以上で説明した複数の放熱経路を併用しているため、発熱部品6a、6bから発生する熱を効率良く放熱することができる。さらに、光トランシーバ14は、第1乃至第3の実施形態において説明した効果と同様の効果を奏することができる。
 (第5の実施形態)
 次に、図6を参照して、本発明の第5の実施形態に係る光トランシーバの構成について説明する。図6は、第5の実施形態に係る光トランシーバの平面図である。光トランシーバ15は、図6に示すように、図4に示した構成に加えて、光部品7bを備える。なお、図6においては、図1~図4に示した筐体4bを不図示としている。
 光部品7bは、光ファイバである。光部品7bは、図6に示すように、位置決め部材8bに収容されている。位置決め部材8bには、図示しない固定部が設けられている。位置決め部材8bに設けられた固定部は、例えば、複数の突起である。光部品7bは、複数の突起に巻き付けられているため、位置決め部材8b内における位置が決定される。
 第5の実施形態に係る光トランシーバにおいても、位置決め部材8bは、基板5と筐体4b(図6において不図示)とを熱的に接続している。したがって、発熱部品から発生した熱を効率的に放熱することができる。
 以上で説明した本実施の形態に係る発明により、光部品を高密度に実装すると共に発熱部品から発生する熱を効率的に放熱することができる光トランシーバを提供することができる。
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2018年6月19日に出願された日本出願特願2018-116068を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 11、12、13、14、15 光トランシーバ
 4a、4b 筐体
 5 基板
 6a、6b 発熱部品
 7a、7b 光部品
 8a、8b 位置決め部材
 81 溝
 9a、9c、9d 熱伝導性シート
 10b、10e 熱伝導性部材

Claims (9)

  1.  筐体と、
     前記筐体内において光部品の位置決めをする位置決め部材と、
     前記筐体内に収容され、発熱部品が実装された基板と、を備え、
     前記位置決め部材は、前記光部品の前記筐体内における位置を決定するとともに、前記基板と前記筐体とを熱的に接続するように構成されている、
     光トランシーバ。
  2.  前記位置決め部材は、前記基板及び前記筐体に当接することで前記基板と前記筐体とを熱的に接続している、請求項1に記載の光トランシーバ。
  3.  前記位置決め部材と前記基板との間、及び前記位置決め部材と前記筐体との間の少なくとも一方には熱伝導性シートが設けられており、
     前記位置決め部材は、前記基板と前記筐体とを前記熱伝導性シートを介して熱的に接続している、
     請求項1に記載の光トランシーバ。
  4.  前記位置決め部材は金属材料を用いて構成されている、請求項1~3のいずれか一項に記載の光トランシーバ。
  5.  前記位置決め部材は前記基板に半田付けされている、請求項4に記載の光トランシーバ。
  6.  前記光部品は光ファイバであり、
     前記位置決め部材は、前記光ファイバの前記筐体内における位置を決定するとともに、前記基板と前記筐体とを熱的に接続している、請求項1~5のいずれか一項に記載の光トランシーバ。
  7.  前記光部品は受光素子であり、
     前記位置決め部材は、前記受光素子を前記基板に固定するとともに、前記基板と前記筐体とを熱的に接続している、請求項1~6のいずれか一項に記載の光トランシーバ。
  8.  前記発熱部品と前記筐体とを熱的に接続する熱伝導性部材を更に備える、請求項1~7のいずれか一項に記載の光トランシーバ。
  9.  前記発熱部品は、前記光部品を駆動するためのドライバ、及び前記光トランシーバを制御するためのプロセッサの少なくとも一つである、請求項1~8のいずれか一項に記載の光トランシーバ。
PCT/JP2019/024268 2018-06-19 2019-06-19 光トランシーバ WO2019244924A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980038760.2A CN112262334B (zh) 2018-06-19 2019-06-19 光收发器
JP2020525765A JPWO2019244924A1 (ja) 2018-06-19 2019-06-19 光トランシーバ
US16/973,232 US20210239926A1 (en) 2018-06-19 2019-06-19 Optical transceiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-116068 2018-06-19
JP2018116068 2018-06-19

Publications (1)

Publication Number Publication Date
WO2019244924A1 true WO2019244924A1 (ja) 2019-12-26

Family

ID=68984081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024268 WO2019244924A1 (ja) 2018-06-19 2019-06-19 光トランシーバ

Country Status (4)

Country Link
US (1) US20210239926A1 (ja)
JP (1) JPWO2019244924A1 (ja)
CN (1) CN112262334B (ja)
WO (1) WO2019244924A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12013583B2 (en) * 2022-02-02 2024-06-18 Prime World International Holdings Ltd. Optical transceiver with separated heat dissipation components

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080049458A1 (en) * 2002-01-02 2008-02-28 Pozzuoli Marzio P Environmentally hardened ethernet switch
JP2011205102A (ja) * 2010-03-25 2011-10-13 Furukawa Electric Co Ltd:The モジュール内蔵コネクタ
JP2013084006A (ja) * 2013-01-15 2013-05-09 Hitachi Cable Ltd 光送受信器
US20150198776A1 (en) * 2013-06-13 2015-07-16 Mellanox Technologies Ltd. Integrated optical cooling core for optoelectronic interconnect modules
JP2017072697A (ja) * 2015-10-07 2017-04-13 ホシデン株式会社 光ファイバアッセンブリ
US9781863B1 (en) * 2015-09-04 2017-10-03 Microsemi Solutions (U.S.), Inc. Electronic module with cooling system for package-on-package devices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287850A (ja) * 2006-04-14 2007-11-01 Sumitomo Electric Ind Ltd 光トランシーバ
US20130064512A1 (en) * 2011-09-08 2013-03-14 Nayana Ghantiwala Cooling system for an optical module
CN103782211B (zh) * 2011-09-15 2015-12-02 日本电气株式会社 光发送器/接收器设备及其制造方法
JP5708816B2 (ja) * 2011-09-29 2015-04-30 富士通株式会社 光モジュール
JP2015029043A (ja) * 2013-06-26 2015-02-12 京セラ株式会社 電子装置および光モジュール
JP6459615B2 (ja) * 2015-02-24 2019-01-30 住友電気工業株式会社 光データリンク
EP3121630B1 (en) * 2015-07-21 2023-04-05 Tyco Electronics Svenska Holdings AB Optoelectronic module with improved heat management

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080049458A1 (en) * 2002-01-02 2008-02-28 Pozzuoli Marzio P Environmentally hardened ethernet switch
JP2011205102A (ja) * 2010-03-25 2011-10-13 Furukawa Electric Co Ltd:The モジュール内蔵コネクタ
JP2013084006A (ja) * 2013-01-15 2013-05-09 Hitachi Cable Ltd 光送受信器
US20150198776A1 (en) * 2013-06-13 2015-07-16 Mellanox Technologies Ltd. Integrated optical cooling core for optoelectronic interconnect modules
US9781863B1 (en) * 2015-09-04 2017-10-03 Microsemi Solutions (U.S.), Inc. Electronic module with cooling system for package-on-package devices
JP2017072697A (ja) * 2015-10-07 2017-04-13 ホシデン株式会社 光ファイバアッセンブリ

Also Published As

Publication number Publication date
CN112262334A (zh) 2021-01-22
US20210239926A1 (en) 2021-08-05
JPWO2019244924A1 (ja) 2021-07-08
CN112262334B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
US10617034B2 (en) Heat dissipation system of enclosed electronic module with single/multiple active components
JP2006074853A (ja) 車載用電力変換装置
JP5533431B2 (ja) 光モジュール
JP2008270609A (ja) 電子部品の放熱装置
CN107006136B (zh) 散热机构及具有该散热机构的电子调速器、电子装置
JP2012064936A (ja) 光モジュールおよびその組立方法
KR20100099734A (ko) 콤팩트 하우징
US20040105633A1 (en) Optical module
WO2016163135A1 (ja) 電子モジュール及び電子装置
WO2019244924A1 (ja) 光トランシーバ
JP5473261B2 (ja) 撮像装置
JP2006093546A (ja) 放熱シート、放熱筒状体およびそれらを用いた放熱構造
JP2008034640A (ja) 半導体装置及び該半導体装置における放熱方法
WO2021187535A1 (ja) 光電気伝送複合モジュール
JP2008090091A (ja) プラガブル光トランシーバ
JP2006066725A (ja) 放熱構造を備える半導体装置及びその組立方法
JP2016015405A (ja) 光モジュール、及び光アクティブケーブル
JP2002247594A (ja) 撮像装置
JP2020047565A (ja) 灯具ユニットおよび車両用灯具
JP5901258B2 (ja) 光モジュール、光送受信器及び光送受信器製造方法
JP2005093507A (ja) 光伝送モジュール
JP2013149667A (ja) 光モジュールおよび光送信器
JP3989179B2 (ja) 光学ヘッドにおけるレーザードライバー放熱装置
JP2001244669A (ja) 電子部品の放熱構造
JPWO2020100685A1 (ja) 光トランシーバ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525765

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822644

Country of ref document: EP

Kind code of ref document: A1