WO2019244495A1 - 携帯機位置推定システム - Google Patents

携帯機位置推定システム Download PDF

Info

Publication number
WO2019244495A1
WO2019244495A1 PCT/JP2019/018473 JP2019018473W WO2019244495A1 WO 2019244495 A1 WO2019244495 A1 WO 2019244495A1 JP 2019018473 W JP2019018473 W JP 2019018473W WO 2019244495 A1 WO2019244495 A1 WO 2019244495A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
portable device
area
sensitivity error
error
Prior art date
Application number
PCT/JP2019/018473
Other languages
English (en)
French (fr)
Inventor
秀太郎 ▲徳▼永
齋藤 隆
哲也 楠本
卓士 篠田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019244495A1 publication Critical patent/WO2019244495A1/ja
Priority to US17/123,669 priority Critical patent/US11202165B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/20Means to switch the anti-theft system on or off
    • B60R25/24Means to switch the anti-theft system on or off using electronic identifiers containing a code not memorised by the user
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B49/00Electric permutation locks; Circuits therefor ; Mechanical aspects of electronic locks; Mechanical keys therefor

Definitions

  • the present invention relates to a portable device position estimation system, and more particularly, to an improvement in the position estimation accuracy of a portable device.
  • Patent Literature 1 the distance between the in-vehicle device and the portable device is estimated from the received signal strength of the radio wave received by the portable device from three or more in-vehicle devices.
  • the position of the portable device is estimated from the three or more distances.
  • the distance obtained from the received signal strength is used as the radius, and it is estimated that the portable device exists on a circle centered on the signal source. If there are three circles, ideally, the three circles intersect at one point, and that point is estimated as the position of the portable device.
  • the portable device when estimating the position of the portable device based on the received signal strength, the portable device is set not in a circle whose radius is the distance obtained from the received signal strength but in an annular region determined in consideration of the error range of the received signal strength. Is assumed to exist.
  • the present disclosure aims to provide a portable device position estimation system capable of reducing an area where a portable device is estimated to be present.
  • a portable device position estimation system includes a portable device provided with three or more vehicle-mounted antennas for transmitting radio waves, and a portable device carried by a user using the vehicle. Is estimated.
  • the portable device includes a reception strength detection unit that detects a received signal strength of the radio wave when receiving a radio wave transmitted by the vehicle-mounted antenna.
  • One of the vehicle-mounted device and the portable device includes a reception signal strength detected by the reception strength detection unit.
  • the portable device detection area which is the area where the presence of the portable device is detected for each in-vehicle antenna, is determined, and the portable device detection area determined for each in-vehicle antenna is determined.
  • a sensitivity error determining unit that determines a reception sensitivity error so as to be closest to a state where the signal intersects at one point.
  • An error range of the reception signal strength is set as an error range when the reception sensitivity error is corrected.
  • An annular area determining unit that determines an annular area where the portable device is present for each in-vehicle antenna based on the error range of the received signal strength and the position of the in-vehicle antenna; Overlapping area in which a plurality of annular areas determined for each antenna overlaps, and a portable device area estimation unit that estimates that the portable device exists areas the portable device is present.
  • the sensitivity error determination unit is a portable device detection area that detects the presence of a portable device for each in-vehicle antenna based on the corrected received signal intensity obtained by correcting the received signal intensity detected by the received intensity detection unit with the reception sensitivity error of the portable device. Determine the area.
  • the mobile device detection area determined for each in-vehicle antenna is closest to the state where the mobile device crosses at one point when the reception sensitivity error can be corrected best. Therefore, the reception sensitivity error is determined so that the mobile device detection area determined for each vehicle-mounted antenna is closest to a state where the mobile device detection area intersects at one point.
  • the annular area where the portable device exists for each vehicle-mounted antenna. Since the reception sensitivity error is reflected in the corrected reception signal strength, the error range of the reception signal strength can be the error range when the reception sensitivity error is corrected. This error range is smaller than the error range when the reception sensitivity error is not corrected because the reception sensitivity error is not considered. Therefore, the annular area has a smaller annular shape as compared with the case where the error range when the reception sensitivity error is not corrected is applied.
  • the annular area becomes a thin annular area, the overlapping area where the annular area overlaps becomes smaller. Since the overlap area is estimated as the portable device existing area where the portable device exists, the portable device existing area can be narrowed.
  • FIG. 1 is a diagram showing a schematic configuration of an electronic key position estimation system according to the first embodiment
  • FIG. 2 is a diagram showing the position of the LF antenna in the vehicle
  • FIG. 3 is a diagram showing a key detection area corresponding to each LF antenna.
  • FIG. 4 is a diagram conceptually showing an RSSI distance relationship.
  • FIG. 5 is a diagram illustrating an error factor of RSSI.
  • FIG. 6 is a diagram showing an annular area that is a distance range in which an electronic key exists.
  • FIG. 7 is a diagram showing an overlap area
  • FIG. 8 is a diagram showing the annular area and the overlapping area created using the corrected RSSI
  • FIG. 9 is a flowchart illustrating a process performed by the key-side control unit of the electronic key.
  • FIG. 10 is a flowchart illustrating on-vehicle device-side processing executed by the vehicle-side control unit of the on-vehicle device;
  • FIG. 11 is a flowchart showing a detailed process of S150 in FIG.
  • FIG. 12 is a diagram illustrating the position of the inside area determination antenna.
  • the portable device is an electronic key. That is, the embodiment described below is an electronic key position estimation system.
  • FIG. 1 shows a schematic configuration of an electronic key position estimation system 1 according to the first embodiment.
  • the electronic key position estimating system 1 executes verification of the electronic key 200 by the verification ECU 110 based on wireless communication between the on-vehicle device 100 and the electronic key 200, and executes or permits a predetermined process when the verification is established.
  • ECU is an abbreviation for electronic control unit.
  • the verification of the electronic key 200 is to confirm whether the electronic key 200 is a legitimate electronic key 200 previously associated with the vehicle-mounted device 100, and is executed as follows, for example.
  • the verification ECU 110 of the on-vehicle device 100 transmits request signals from the front LF antenna 181F, the right LF antenna 181R, the left LF antenna 181L, and the rear LF antenna 181B.
  • the front LF antenna 181F, the right LF antenna 181R, the left LF antenna 181L, and the rear LF antenna 181B are not distinguished, they are described as the LF antenna 181.
  • the LF antenna 181 is a vehicle-mounted antenna.
  • the electronic key 200 When receiving the request signal, the electronic key 200 transmits a response signal including an ID unique to itself.
  • the on-vehicle RF antenna 195 receives a response signal as a response to the request signal, the on-vehicle device 100 collates the electronic key 200 by collating the ID included in the response signal.
  • the predetermined processing permitted or executed when the verification is successful includes, for example, the following.
  • the start of the vehicle engine is permitted.
  • the unlocking of the vehicle door is permitted when the authorized electronic key 200 is located in a predetermined area outside the vehicle.
  • a welcome process for turning on a hazard lamp of the vehicle 5 is executed.
  • the electronic key position estimation system 1 permits or executes different processing according to the position of the electronic key 200 with respect to the vehicle 5.
  • the electronic key position estimating system 1 estimates the position of the electronic key 200 with respect to the vehicle 5 when executing or permitting the predetermined process based on the collation.
  • the configuration of the electronic key position estimation system 1 for estimating the position of the electronic key 200 with respect to the vehicle 5 will be described.
  • the electronic key position estimating system 1 includes an in-vehicle device 100 and an electronic key 200.
  • the vehicle-mounted device 100 is provided in the vehicle 5, and the electronic key 200 is carried by the user.
  • the in-vehicle device 100 includes a verification ECU 110, an input unit 140, a vehicle-side transmitting unit 180, a front LF antenna 181F, a right LF antenna 181R, a left LF antenna 181L, a rear LF antenna 181B, and a vehicle-side receiving unit 190. And a vehicle-mounted RF antenna 195.
  • the verification ECU 110 is mainly composed of a microcomputer.
  • the verification ECU 110 cooperates with the electronic key 200 in various processes including the verification of the electronic key 200 and the position estimation of the electronic key 200 by executing a program stored in a storage device such as a ROM by a processor such as a CPU. Run. Note that at least a part of the function of the verification ECU 110 may be provided by a dedicated IC or the like.
  • the input unit 140 is operated when the user performs an error estimation start operation.
  • the input unit 140 is, for example, a switch provided in the cabin of the vehicle 5.
  • the vehicle-side transmitting unit 180 modulates and amplifies the vehicle signal with the LF wave or the VLF wave under the control of the verification ECU 110, and transmits the signal as a radio wave from the LF antenna 181.
  • the radio wave transmitted from the LF antenna 181 is a vehicle-mounted antenna radio wave.
  • LF is an abbreviation for Low @ Frequency
  • VLF is an abbreviation for Very @ Low @ Frequency.
  • the term LF is used, including VLF.
  • FIG. 2 shows the position of the LF antenna 181.
  • the front LF antenna 181F is provided near the center in the vehicle width direction at the front end of the vehicle compartment.
  • the right LF antenna 181R is provided on the inside door knob of the right door of the vehicle.
  • the rear LF antenna 181B is provided near the center in the vehicle width direction at the rear end of the passenger compartment.
  • the left LF antenna 181L is provided on the outside door knob of the left door.
  • the position of the LF antenna 181 can be variously changed, and the number of the LF antennas 181 can be variously changed.
  • detectable areas 300 are respectively formed. Specifically, a front detectable area 300F is formed around the front LF antenna 181F. A right detectable area 300R is formed around the right LF antenna 181R. A rear detectable area 300B is formed around the rear LF antenna 181B, and a left detectable area 300L is formed around the left LF antenna 181L. When the front detectable area 300F, the right detectable area 300R, the rear detectable area 300B, and the left detectable area 300L are not distinguished, the detectable area 300 is described.
  • the detectable area 300 is an area where the electronic key 200 can receive the vehicle signal transmitted from the LF antenna 181 with a received signal strength (hereinafter, RSSI) equal to or higher than a predetermined threshold.
  • RSSI received signal strength
  • the shapes of the detectable areas 300 are both circular and simplified to the same size.
  • the size of the detectable area 300 can be adjusted to some extent by setting the transmission output of the LF antenna 181, the reception sensitivity of the electronic key 200, and the like.
  • the shape of the detectable area 300 can be adjusted by changing the shape of the antenna or the like.
  • the detectable area 300 is formed both inside and outside the vehicle.
  • the detectable area 300 formed inside and outside the vehicle is realized by restricting the electromagnetic shielding function of the vehicle body, for example, by forming the vehicle body with resin. Since all of the four detectable areas 300 are formed inside and outside the vehicle, the overlap of the four detectable areas 300 occurs not only inside the vehicle but also outside the vehicle 5 over 360 degrees around the vehicle 5. I have.
  • the vehicle-side receiving unit 190 receives a key signal transmitted from the electronic key 200 by an RF (Radio Frequency) wave via the on-vehicle RF antenna 195.
  • the vehicle-side receiving section 190 amplifies the electric signal acquired from the on-vehicle RF antenna 195, demodulates a key signal from the electric signal, and outputs the key signal to the verification ECU 110.
  • the in-vehicle RF antenna 195 is provided at a position appropriately set in the vehicle 5.
  • the in-vehicle RF antenna 195 is provided at a position near the center of the vehicle 5 in the vehicle interior.
  • the key signal including the unique ID transmitted from the electronic key 200 as a reply of the request signal is a response signal.
  • the key signal may further include RSSI information indicating the RSSI when the electronic key 200 receives the vehicle signal.
  • the RSSI information includes identification information that enables identification of which LF antenna 181 is the source of the RSSI and vehicle signal.
  • the configuration of the electronic key 200 will be described.
  • the electronic key 200 includes a key-side receiving unit 210, a key-side LF antenna 215, a key-side transmitting unit 220, a key-side RF antenna 221, and a key-side control unit 230.
  • the key-side receiving unit 210 acquires an electric signal indicating the vehicle-mounted antenna radio wave transmitted from the LF antenna 181 via the key-side LF antenna 215. Key-side receiving section 210 demodulates and amplifies the electric signal to extract a vehicle signal, and outputs the signal to key-side control section 230.
  • the RSSI detection circuit 211 is provided in the key-side receiver 210.
  • the RSSI detection circuit 211 is a circuit that detects the in-vehicle antenna radio wave received by the key-side LF antenna 215, that is, the RSSI of the vehicle signal.
  • the RSSI detection circuit 211 outputs the detected RSSI to the key-side control unit 230.
  • the RSSI detection circuit 211 corresponds to a reception strength detection unit.
  • the key-side transmitting section 220 modulates and amplifies a key signal with an RF wave under the control of the key-side control section 230 and causes the key-side RF antenna 221 to transmit the key signal.
  • the key signal is generated by the key-side control unit 230.
  • the key signal includes RSSI information indicating the RSSI of the vehicle signal and the unique ID of the electronic key 200. Since the response signal is also a key signal, the response signal also includes the unique ID.
  • the key-side control unit 230 is mainly composed of a microcomputer.
  • the key-side control unit 230 executes various processes including verification of the electronic key 200 and positioning of the electronic key 200, which will be described later, by executing a program stored in a storage device such as a ROM by a processor such as a CPU. It has a function to execute in cooperation with the H.100. At least a part of the function of the key-side control unit 230 may be provided by a dedicated IC or the like.
  • the verification ECU 110 includes a vehicle-side control unit 120 and a storage unit 130.
  • the vehicle-side control unit 120 includes, as functional blocks, an RSSI acquisition unit 121, a sensitivity error determination unit 122, an annular area determination unit 123, and a key area estimation unit 124.
  • the RSSI obtaining unit 121 obtains the RSSI when the electronic key 200 receives the vehicle signal from the RSSI information.
  • the RSSI when the electronic key 200 receives the vehicle signal transmitted from the front LF antenna 181F is referred to as the front RSSI
  • the RSSI when the electronic signal 200 receives the vehicle signal transmitted from the right LF antenna 181R is the right.
  • RSSI when the electronic key 200 receives the vehicle signal transmitted from the rear LF antenna 181B is defined as the rear RSSI
  • the RSSI when the electronic key 200 receives the vehicle signal transmitted from the left LF antenna 181L Let it be the left RSSI.
  • the sensitivity error determination unit 122 determines a reception sensitivity error of the electronic key 200. Therefore, based on the corrected RSSI obtained by adding the reception sensitivity error of the electronic key 200 to the RSSI obtained by the RSSI obtaining unit 121 (that is, the corrected received signal strength), the area where the presence of the electronic key 200 is detected is determined for each LF antenna 181. I do. This area is hereinafter referred to as a key detection area 302.
  • the key detection area 302 corresponds to a portable device detection area.
  • FIG. 3 shows a key detection area 302 corresponding to each LF antenna 181.
  • the key detection area 302F corresponds to the LF antenna 181F
  • the key detection area 302R corresponds to the LF antenna 181R
  • the key detection area 302B corresponds to the LF antenna 181B
  • the key detection area 302L corresponds to the LF antenna 181L.
  • FIG. 4 is a diagram conceptually showing the RSSI distance relationship 135.
  • the horizontal axis in the RSSI distance relationship 135 is distance. This distance is the distance from the LF antenna 181 to the electronic key 200.
  • the vertical axis is the RSSI detected when the electronic key 200 receives the vehicle signal transmitted from the LF antenna 181.
  • the RSSI distance relationship 135 is a relationship between the RSSI and the communication distance.
  • the RSSI distance relationship 135 is a relationship determined based on an experiment, and is stored in the storage unit 130 or the like.
  • each key detection area 302 is circular.
  • the key detection area 302 means that the electronic key 200 exists on the circumference of this circle.
  • the key detection area 302 does not necessarily have to be circular, and may have a shape other than a circle such as an ellipse.
  • the distance obtained by applying the RSSI distance relationship 135 to the detected RSSI is multiplied by a coefficient for each direction determined based on the directivity of the LF antenna 181. Key detection area 302 may be created.
  • Each key detection area 302 shown in FIG. 3 shows an ideal state, and all key detection areas 302 intersect at a position where the electronic key 200 exists.
  • the RSSI detected by the RSSI detection circuit 211 needs to be a true value in order to be in an ideal state.
  • the RSSI fluctuates due to various errors even when the distance between the LF antenna 181 and the electronic key 200 is the same.
  • the RSSI error factors are roughly divided into transmission errors and reception errors.
  • the transmission error refers to a range of variation in transmission output
  • the reception error refers to a range of variation in reception sensitivity.
  • Transmission errors are divided into transmission individual errors and transmission repetition errors.
  • the transmission individual error is a fluctuation range caused by the individual difference of the vehicle-side transmission unit 180.
  • the transmission repetition error is a fluctuation range when the same vehicle-side transmission unit 180 repeatedly transmits the same signal.
  • the reception error is divided into a reception sensitivity error and a key repetition error.
  • the reception sensitivity error is a fluctuation range caused by an individual difference of the key-side receiving unit 210.
  • the key repetition error is a fluctuation range when the same key-side receiving unit 210 repeatedly receives radio waves of the same power.
  • the RSSI detected by the RSSI detection circuit 211 may deviate from the true value.
  • the true value means a value when there is no error on both the transmitting side and the receiving side.
  • the upper limit of the RSSI error is determined by the design specifications. Each numerical value shown in FIG. 5 shows an example of the upper limit.
  • the reception sensitivity error is within ⁇ 2.4 dB
  • the key repetition error is within ⁇ 0.4 dB.
  • the reception error is within ⁇ 2.8 dB.
  • the transmission error is within ⁇ 0.8 dB.
  • the error range of the RSSI including the transmission error and the reception error is within ⁇ 3.6 dB.
  • the error of RSSI is 3.6 dB, which is an allowable error range.
  • the RSSI detected by the RSSI detection circuit 211 may deviate from the true value within this allowable error range.
  • the true value of RSSI is in the range of ⁇ 3.6 dB of the detected value of RSSI.
  • the true value of the RSSI is in the range from the detected value of RSSI-3.6 dB to the detected value of RSSI + 3.6 dB.
  • the minimum value of this range is defined as the minimum RSSI
  • the maximum value of the range is defined as the maximum RSSI.
  • a minimum distance Dmin and a maximum distance Dmax are obtained.
  • the distance from each LF antenna 181 to the electronic key 200 is between the minimum distance Dmin and the maximum distance Dmax.
  • FIG. 6 shows a circle centered on the LF antenna 181 and having a radius of the maximum distance Dmax, and a circle centered on the LF antenna 181 and having a radius of the minimum distance Dmin.
  • the electronic key 200 exists in the annular area 310 defined by these two circles.
  • FIG. 7 shows the overlapping area 320.
  • two circles indicating the key detection area 302F are shown.
  • a range defined by these two key detection areas 302F is an annular area 310F corresponding to the front LF antenna 181F.
  • the range determined by the two key detection areas 302R is the annular area 310R corresponding to the right LF antenna 181R.
  • the range determined by the two key detection areas 302B is the annular area 310B corresponding to the rear LF antenna 181B.
  • the range determined by the two key detection areas 302L is the annular area 310L corresponding to the left LF antenna 181L.
  • a range in which these four annular areas 310F, 310R, 310B, and 310L overlap is an overlap area 320.
  • Each annular area 310 shown in FIG. 7 is an annular area 310 when the RSSI error range is the maximum allowable error range, that is, ⁇ 3.6 dB in the example of FIG.
  • the error range of the RSSI can be made smaller than the allowable error range, the difference between the maximum distance Dmax and the minimum distance Dmin that define each annular area 310 can be reduced.
  • the number of the key-side receiving units 210 is one, and is a fixed value determined for each individual. Therefore, among the various errors shown in FIG. 5, the reception sensitivity error has the same value when the key-side receiving unit 210 detects the vehicle signal transmitted by any of the LF antennas 181.
  • the sensitivity error determination unit 122 determines the reception sensitivity error. Specifically, the value is changed within a range of ⁇ 2.4 dB, which is a fluctuation range of the reception sensitivity error, and a value added to the RSSI at which the reception sensitivity error is detected is set as a correction RSSI (that is, a correction reception signal strength). The same RSSI is added to all detected RSSIs to calculate a corrected RSSI. Then, the distance is calculated by applying the corrected RSSI to FIG. Each key detection area 302 is created using this distance as a radius.
  • the key detection areas 302 do not intersect at one point. If the distance becomes larger than the actual distance due to the influence of the error, there occurs an area where all the key detection areas 302 overlap each other. On the other hand, if the distance is shorter than the actual distance due to the influence of the error, there is no area where all the key detection areas 302 overlap. Therefore, when the value of the reception sensitivity error added to the detected RSSI is the value closest to the true reception sensitivity error, all the key detection areas 302 are closest to the state where they intersect at one point.
  • the key detection areas 302 are respectively created by the corrected RSSIs obtained by adding the same reception sensitivity error value to the RSSI of the vehicle signal received from each LF antenna 181. .
  • the value of the reception sensitivity error when all of the key detection areas 302 intersect at a single point is determined as the reception sensitivity error of the electronic key 200 that has detected the RSSI. Then, the determined reception sensitivity error is stored in storage section 130.
  • the annular area determination unit 123 determines the annular area 310 for each LF antenna 181. Therefore, the corrected RSSI is obtained by adding the reception sensitivity error stored in the storage unit 130 to the RSSI acquired by the RSSI acquisition unit 121.
  • the minimum RSSI and the maximum RSSI are calculated by adding the minimum value and the maximum value of the error range of the RSSI to the corrected RSSI.
  • the RSSI error range here is an error range caused by an error factor excluding the reception sensitivity error among the error factors shown in FIG. This is because the reception sensitivity error is determined and reflected in the corrected RSSI.
  • the error range here is ⁇ 1.2 dB.
  • FIG. 8 shows each of the determined annular areas 310.
  • Each of the annular areas 310 shown in FIG. 8 has a narrower ring than the annular areas 310 shown in FIG.
  • the key area estimating unit 124 sets an overlapping area 320 in which all the annular areas 310 determined by the annular area determining unit 123 overlap, as an area where the electronic key 200 exists, that is, a portable device existing area.
  • the key area estimating unit 124 is a portable device area estimating unit.
  • the key-side control unit 230 When the key-side control unit 230 acquires the vehicle signal via the key-side reception unit 210, the key-side control unit 230 has a function of specifying which LF antenna 181 has transmitted the vehicle signal based on the identification information included in the vehicle signal. Have.
  • the key-side controller 230 has a function of determining whether or not the key-side receiver 210 has received a vehicle signal from three or more LF antennas 181 within a predetermined time.
  • the predetermined time can be determined in advance from the transmission time required when all the LF antennas 181 sequentially transmit the vehicle signal.
  • the key-side controller 230 has a function of acquiring the RSSI of the vehicle signal transmitted from each LF antenna 181 and received by the key-side receiver 210.
  • the key-side control unit 230 has a function of transmitting a key signal including RSSI of a vehicle signal and RSSI information indicating the LF antenna 181 that transmitted the vehicle signal from the key-side RF antenna 221.
  • the key-side processing executed by the key-side control unit 230 of the electronic key 200 to perform the position estimation of the electronic key 200 with respect to the vehicle 5 in cooperation with the verification ECU 110 will be described with reference to FIG.
  • the key-side processing is periodically executed at a predetermined cycle.
  • S10 it is determined whether or not the key-side receiving section 210 has received the vehicle signal sequentially transmitted from each of the LF antennas 181 at predetermined time intervals.
  • the process proceeds to S20.
  • a negative determination is made in S10, the current key-side processing ends.
  • the RSSI detected by the RSSI detection circuit 211 when the vehicle signal from each LF antenna 181 is received is acquired.
  • the key-side transmitting unit 220 is controlled to transmit a key signal including RSSI information indicating the front RSSI, the right RSSI, the rear RSSI, and the left RSSI from the key-side RF antenna 221 and terminate the key-side processing.
  • the in-vehicle device-side processing executed by the vehicle-side control unit 120 of the verification ECU 110 to perform the position estimation of the electronic key 200 with respect to the vehicle 5 in cooperation with the electronic key 200 will be described with reference to FIG.
  • the on-vehicle device-side processing is periodically executed at a predetermined cycle.
  • the start may be started when a start condition is satisfied at any time, such as when a push switch for starting a vehicle engine provided in the vehicle compartment is pressed, when an error estimation start operation is performed on the input unit 140, or the like. .
  • An operation of pressing the push switch for starting the vehicle engine may be used as an error estimation start operation.
  • vehicle signals are sequentially transmitted from all LF antennas 181 at predetermined time intervals.
  • Each vehicle signal or one of the vehicle signals includes information requesting the electronic key 200 to return a key signal including RSSI information.
  • S120 it is determined whether or not a key signal including RRSI information indicating RSSI when the electronic key 200 receives each of the vehicle signals transmitted in S110 is received via the in-vehicle RF antenna 195. If a negative determination is made in S120, the in-vehicle device-side processing this time is ended. If a positive determination is made in S120, the process proceeds to S130.
  • S130 is a process executed by the RSSI acquisition unit 121, and acquires the front RSSI, the right RSSI, the rear RSSI, and the left RSSI from the RSSI information included in the key signal received in S120.
  • Step S140 is processing executed by the sensitivity error determination unit 122 to determine whether the reception sensitivity error has been determined. This determination is made based on whether or not the reception sensitivity error is stored in the storage unit 130. If the determination in S140 is negative, the process proceeds to S150, and if the determination in S140 is affirmative, the process proceeds to S160.
  • S150 a sensitivity error determination process is performed.
  • S150 is a process executed by the sensitivity error determination unit 122. The processing of S150 is shown in detail in FIG.
  • the reception sensitivity error is set as an initial value. If the allowable range of the reception sensitivity error is ⁇ 2.4 dB, the initial value is, for example, ⁇ 2.4 dB.
  • a corrected RSSI is calculated by adding the current reception sensitivity error to the RSSI acquired in S130.
  • the distance is calculated by applying the corrected RSSI calculated in S152 to the RSSI distance relationship 135 illustrated in FIG.
  • the key detection area 302 is determined for each LF antenna 181 based on the distance.
  • S154 it is determined whether or not the key detection area 302 is optimal so far. In other words, it is determined whether or not the key detection area 302 is optimal up to S154. Specifically, it is determined whether or not the relative relationships of all the key detection areas 302 are closest to the state where they intersect at one point so far. If the determination in S154 is YES, the process proceeds to S155. The process also proceeds to S155 at the time of the first determination in S154.
  • the receiving sensitivity error stored in the storage unit 130 is updated to the value used this time. If the reception sensitivity error has not yet been stored in the storage unit 130, the reception sensitivity error used this time is stored in the storage unit 130.
  • S155 After executing S155, the process proceeds to S156. Also, if S154 is a negative determination, the process proceeds to S156. In S156, it is determined whether or not the reception sensitivity error has been changed in the entire allowable variation range. If the determination result is negative, the process proceeds to S157.
  • the receiving sensitivity error is changed by a predetermined value.
  • the predetermined value is a value that can divide the allowable fluctuation range into a plurality, and can be set arbitrarily.
  • Steps S160 to S190 are performed by the annular area determination unit 123.
  • the reception sensitivity error is obtained from the storage unit 130.
  • a corrected RSSI corresponding to each RSSI acquired in S130 is calculated by adding the reception sensitivity error acquired in S160 to each RSSI acquired in S130.
  • the minimum RSSI and the maximum RSSI are calculated for each corrected RSSI by adding the minimum value and the maximum value of an error range caused by an error factor excluding the reception sensitivity error to each corrected RSSI calculated in S170. .
  • a ring area 310 is created for each LF antenna 181 based on the minimum RSSI and the maximum RSSI calculated in S180.
  • $ S200 is a process executed by the key area estimation unit 124.
  • the overlapping area 320 where all the annular areas 310 created in S190 overlap is determined, and the overlapping area 320 is set as the electronic key existence area.
  • the reception sensitivity error when the RSSI includes the same reception sensitivity error, and when all the key detection areas 302 are closest to the state where they intersect at one point, the reception sensitivity error can be corrected best. Utilizing that, the reception sensitivity error is determined.
  • the key detection area 302 is created for each LF antenna 181 by the correction RSSI obtained by adding the reception sensitivity error to the detected RSSI while sequentially changing the reception sensitivity error.
  • the correction RSSI used when estimating the position of the electronic key 200 is determined by using the value of the reception sensitivity error when the key detection area 302 for each LF antenna 181 is closest to the state where it intersects at one point as the correct reception sensitivity error. .
  • the reception sensitivity error By determining the reception sensitivity error to be one value, it is not necessary to consider the reception sensitivity error in the error range when creating the annular area 310. Therefore, the annular area 310 can be formed into a thin annular shape. As a result, the overlap area 320, that is, the key existence area can be reduced.
  • the determined reception sensitivity error is stored in the storage unit 130. Then, when the reception sensitivity error is stored in the storage unit 130, the correction RSSI is calculated using the reception sensitivity error stored in the storage unit 130. This eliminates the need to execute the sensitivity error determination process shown in S150 each time the area where the electronic key 200 is present is estimated.
  • the vehicle-mounted device 100 includes an inside area determination antenna 401 shown in FIG. 12 in addition to the configuration shown in FIG.
  • the inner area determination antenna 401 can receive a key signal similarly to the in-vehicle RF antenna 195.
  • the key signal detection area 402 is adjusted so as to be inside the vehicle 5 as shown in FIG. More specifically, the detection area 402 is an area surrounded by four LF antennas 181 (hereinafter, an inner area).
  • the reception sensitivity error is determined on the condition that the inner area determination antenna 401 has received the key signal, that is, the in-vehicle apparatus 100 and the electronic key 200 can communicate with each other. .
  • the reception sensitivity error is determined when the electronic key 200 is close to all the LF antennas 181, the reception sensitivity error can be determined more accurately.
  • the reception sensitivity error is determined on the condition that the inner area determination antenna 401 receives the key signal. This is because when the inside area determination antenna 401 receives the key signal, the electronic key 200 is in the inside area, and if the electronic key 200 is in the inside area, the electronic key 200 is located close to all the LF antennas 181.
  • the position of the LF antenna 181 is not limited to the above example.
  • the LF antenna 181 may be provided at any position as long as it is provided separately from the vehicle 5. However, it is preferable that the distance between the plurality of LF antennas 181 is greater. Further, the number of LF antennas 181 is not limited to four, and may be three or more.
  • the electronic key 200 is disclosed as a portable device. However, a portable device having no key function may be employed.
  • the in-vehicle device 100 includes the LF antenna 181 that transmits an LF wave as an antenna that transmits a radio wave.
  • the transmitted radio wave may be in a frequency band other than the LF wave.
  • an antenna for transmitting an RF wave may be provided instead of the LF antenna 181.
  • RF waves are sometimes called UHF waves.
  • Specific frequencies of the RF wave include, for example, 315 Hz, 920 MHz, and 2.4 GHz.
  • As a communication method using these frequencies there is a communication method for executing pairing for authenticating each other in advance. For example, in Bluetooth (registered trademark), pairing is performed. Pairing may be performed between the on-vehicle device 100 and the electronic key 200.
  • Pairing itself can be performed as long as the devices that communicate with each other are within the communicable range, but the user should give a pairing start instruction when the devices that communicate with each other are nearby. That is, it can be estimated that the electronic key 200 is near the vehicle-mounted device 100 when the pairing is being executed or for a certain period thereafter.
  • the sensitivity error determination process may be performed during pairing or within a certain period after pairing. Even when the sensitivity error determination processing is performed in this manner, the reception sensitivity error can be accurately determined.
  • the certain period is set appropriately, such as about ten seconds.
  • the reception sensitivity error is not updated.
  • the reception sensitivity error may be sequentially updated, and the reception sensitivity error stored in the storage unit 130 may be used as the latest reception sensitivity error.
  • the reception sensitivity error may be updated on the condition that the time elapsed since the determination of the reception sensitivity error is equal to or longer than a predetermined time.
  • the reception sensitivity error may be updated on the condition that the elapsed time from the last time is determined is equal to or longer than a certain time. This takes into account that the reception sensitivity error may change due to battery consumption of the electronic key 200 or the like after a certain period of time has elapsed.
  • the reception sensitivity error is updated on condition that the electronic key 200 is closer to the center of gravity of all the LF antennas 181 than the position of the electronic key 200 when the reception sensitivity error stored in the storage unit 130 is determined. Is also good. This is because the more the electronic key 200 is closer to the position of the center of gravity of all the LF antennas 181, the more the reception sensitivity error is determined.
  • the in-vehicle device 100 determines the reception sensitivity error. However, if the key-side control unit 230 includes the configuration of the vehicle-side control unit 120 and the vehicle-mounted device 100 notifies the electronic key 200 of the position of the LF antenna 181, the electronic key 200 performs the processing from S130 onward in FIG. Can also be performed. The position of the LF antenna 181 is indicated by latitude and longitude. When the electronic key 200 determines the electronic key presence area, the electronic key 200 may notify the vehicle-mounted device 100 of the electronic key presence area.
  • the electronic key 200 can also execute only a part of the processing executed by the in-vehicle device 100.
  • the electronic key 200 may execute a part of the operation of the vehicle-mounted control unit 120.
  • the electronic key 200 may include the input unit 140.
  • the embodiment, the configuration, and the aspect of the portable device position estimation system according to an aspect of the present disclosure have been exemplified.
  • the embodiment, the configuration, and the aspect according to the present disclosure are the same as the above-described embodiments, the configurations, and the aspects. It is not limited.
  • embodiments, configurations, and aspects obtained by appropriately combining technical parts disclosed in different embodiments, configurations, and aspects are also included in the scope of the embodiments, configurations, and aspects according to the present disclosure.
  • control and the technique described in the present disclosure may be realized by a special-purpose computer constituting a processor programmed to execute one or a plurality of functions embodied by a computer program.
  • control and the method described in the present disclosure may be realized by a special-purpose computer that configures a processor with a special-purpose hardware logic circuit.
  • control and the technique described in the present disclosure may be implemented by one or more dedicated computers configured by a combination of a processor that executes a computer program and one or more hardware logic circuits.
  • the computer program may be stored in a computer-readable non-transitional tangible recording medium as instructions to be executed by a computer.
  • each step is expressed as, for example, S10. Further, each step can be divided into a plurality of sub-steps, while a plurality of steps can be combined into one step.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Lock And Its Accessories (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

携帯機位置推定システムは、3つ以上の車載アンテナ(181)を備えた車載機(100)と、ユーザに携帯される携帯機(200)とを備え、携帯機が存在する位置を推定する。携帯機は、電波の受信信号強度を検出する受信強度検出部(211)を備える。車載機および携帯機の一方は、受信信号強度を補正した補正受信信号強度に基づいて、携帯機検知エリア(302)を決定しつつ、車載アンテナ別に決定された携帯機検知エリアが1点で交わる状態に最も近くなるように受信感度誤差を決定する感度誤差決定部(122)と、受信信号強度の誤差範囲を受信感度誤差が補正された場合の誤差範囲とし、携帯機が存在する環状エリア(310)を車載アンテナ別に決定する環状エリア決定部(123)と、複数の環状エリアが重複する重複エリア(320)を、携帯機存在エリアであると推定する携帯機エリア推定部(124)とを備える。

Description

携帯機位置推定システム 関連出願の相互参照
 本出願は、2018年6月21日に出願された日本国特許出願2018-118148号に基づくものであり、ここにその記載内容を参照により援用する。
 携帯機位置推定システムに関し、特に、携帯機の位置推定精度の向上に関する。
 携帯機の位置を推定する技術が知られている。特許文献1では、携帯機が3つ以上の車載機から受信する電波の受信信号強度から、それぞれ車載機と携帯機との間の距離を推定する。この3つ以上の距離から携帯機の位置を推定する。
JP 2017-44563 A
 受信信号強度に基づいて携帯機の位置を推定する場合、受信信号強度から得られる距離を半径とし、信号発信源を中心とする円上に携帯機が存在すると推定する。この円が3つあると、理想的には、3つの円は1点で交わるので、その点を携帯機の位置と推定する。
 しかし、受信信号強度には誤差がある。したがって、受信信号強度に基づいて携帯機の位置を推定する場合、受信信号強度から得られる距離を半径とする円ではなく、受信信号強度の誤差範囲を考慮して定まる円環領域内に携帯機が存在すると推定することになる。
 3つの円環領域が得られたとしても、3つの円環領域の重なりは1点ではなくエリアになる。携帯機の位置推定精度を高くするためには、携帯機が存在すると推定するエリアを狭くする必要がある。
 本開示は、携帯機が存在すると推定するエリアを狭くすることができる携帯機位置推定システムを提供することを目的とする。
 本開示の一態様によれば、携帯機位置推定システムは、電波を送信する3つ以上の車載アンテナを備えた車載機と、車両を使用するユーザに携帯される携帯機とを備え、携帯機が存在する位置を推定する。携帯機は、車載アンテナが送信した電波を受信した場合に、電波の受信信号強度を検出する受信強度検出部を備え、車載機および携帯機の一方は、受信強度検出部が検出した受信信号強度を携帯機の受信感度誤差で補正した補正受信信号強度に基づいて、車載アンテナ別に携帯機の存在を検知したエリアである携帯機検知エリアを決定しつつ、車載アンテナ別に決定された携帯機検知エリアが1点で交わる状態に最も近くなるように受信感度誤差を決定する感度誤差決定部と、受信信号強度の誤差範囲を受信感度誤差が補正された場合の誤差範囲とし、補正受信信号強度と、受信信号強度の誤差範囲と、車載アンテナの位置とに基づいて、携帯機が存在する環状エリアを車載アンテナ別に決定する環状エリア決定部と、環状エリア決定部が車載アンテナ別に決定した複数の環状エリアが重複する重複エリアを、携帯機が存在する携帯機存在エリアであると推定する携帯機エリア推定部とを備える。
 感度誤差決定部は、受信強度検出部が検出した受信信号強度を携帯機の受信感度誤差で補正した補正受信信号強度に基づいて、車載アンテナ別に携帯機の存在を検知したエリアである携帯機検知エリアを決定する。車載アンテナ別に決定された携帯機検知エリアは、受信感度誤差を最もよく補正できている場合に、1点で交わる状態に最も近くなる。そこで、車載アンテナ別に決定された携帯機検知エリアが1点で交わる状態に最も近くなるように、受信感度誤差を決定する。
 この受信感度誤差により受信信号強度を補正した補正受信信号強度を用いて、車載アンテナ別に携帯機が存在する環状エリアを決定する。補正受信信号強度に受信感度誤差が反映されていることから、受信信号強度の誤差範囲は、受信感度誤差が補正された場合の誤差範囲とすることができる。この誤差範囲は、受信感度誤差を考慮しない分、受信感度誤差が補正されていない場合の誤差範囲よりも狭くなる。したがって、環状エリアは、受信感度誤差が補正されていない場合の誤差範囲を適用する場合に比較して細い環状になる。
 環状エリアが細い環状になることから、環状エリアが重複するエリアである重複エリアは小さくなる。この重複エリアを携帯機が存在する携帯機存在エリアとして推定することから、携帯機存在エリアを狭くすることができる。
 本開示についての上記および他の目的、特徴や利点は、添付図面を参照した下記詳細な説明から、より明確になる。添付図面において、
図1は、第1実施形態の電子キー位置推定システムの概略構成を示す図であり、 図2は、車両におけるLFアンテナの位置を示す図であり、 図3は、各LFアンテナに対応するキー検知エリアを示す図であり 図4は、RSSI距離関係を概念的に示す図であり、 図5は、RSSIの誤差要因を説明する図であり、 図6は、電子キーが存在する距離範囲である環状エリアを示す図であり、 図7は、重複エリアを示す図であり、 図8は、補正RSSIを用いて作成した環状エリアおよび重複エリアを示す図であり、 図9は、電子キーのキー側制御部が実行する処理を説明するフローチャートであり、 図10は、車載機の車側制御部が実行する車載機側処理を説明するフローチャートであり、 図11は、図10のS150の詳細処理を示すフローチャートであり、 図12は、内側領域判定アンテナの位置を示す図である。
 以下、図面を参照しながら、携帯機位置推定システムの複数の実施形態を説明する。以下に示す実施形態は、携帯機が電子キーである。すなわち、以下に示す実施形態は、電子キー位置推定システムである。
 (第1実施形態)
 図1に、第1実施形態の電子キー位置推定システム1の概略構成を示す。電子キー位置推定システム1は、車載機100と電子キー200との間の無線通信に基づいて、電子キー200の照合を照合ECU110により実行し、照合が成立した場合、所定処理を実行あるいは許可する機能を有する。ECUは、電子制御装置(electronic control unit)の略称である。
 電子キー200の照合とは、電子キー200が車載機100に予め対応づけられている正規の電子キー200であるか否かを確認することであり、たとえば次のように実行される。車載機100の照合ECU110は、前側LFアンテナ181F、右側LFアンテナ181R、左側LFアンテナ181L、後側LFアンテナ181Bからリクエスト信号を送信させる。以下、前側LFアンテナ181F、右側LFアンテナ181R、左側LFアンテナ181L、後側LFアンテナ181Bを区別しないときはLFアンテナ181と記載する。LFアンテナ181は車載アンテナである。
 電子キー200は、リクエスト信号を受信すると、自身に固有のIDを含むレスポンス信号を送信する。車載機100は、リクエスト信号の応答としてのレスポンス信号を車載RFアンテナ195で受信すると、照合ECU110がレスポンス信号に含まれるIDを照合することにより、電子キー200を照合する。
 照合成立の場合に許可あるいは実行される所定処理としては、たとえば次のものが挙げられる。正規の電子キー200が車両5(図2参照)の車室内に位置する場合に車両エンジンの始動を許可する。その他にも、正規の電子キー200が車外の所定領域内に位置する場合に車両ドアの開錠を許可する。また、正規の電子キー200が車両5に所定距離近づいた場合に車両5のハザードランプを点灯等させるウェルカム処理を実行する。電子キー位置推定システム1は、車両5に対する電子キー200の位置に応じて異なる処理を許可あるいは実行する。
 電子キー位置推定システム1は、照合による所定処理を実行あるいは許可するにあたり、車両5に対する電子キー200の位置を推定する。以下、車両5に対する電子キー200の位置を推定するための電子キー位置推定システム1の構成を説明する。
 (電子キー位置推定システムの構成)
 図1に示すように電子キー位置推定システム1は、車載機100と電子キー200とを備える。車載機100は車両5に設けられ、電子キー200はユーザにより携帯される。
 車載機100は、照合ECU110と、入力部140と、車側送信部180と、前側LFアンテナ181F、右側LFアンテナ181R、左側LFアンテナ181L、後側LFアンテナ181Bと、車側受信部190と、車載RFアンテナ195とを備える。
 照合ECU110は、マイクロコンピュータを主体として構成される。照合ECU110は、たとえばROM等の記憶装置に記憶されたプログラムをCPU等のプロセッサが実行することにより、電子キー200の照合および電子キー200の位置推定を含む各種処理を電子キー200と協働して実行する。なお、照合ECU110の機能の少なくとも一部は、専用のIC等によって提供されてもよい。
 入力部140は、ユーザが誤差推定開始操作を行う際に操作する。入力部140は、たとえば、車両5の車室内に備えられるスイッチである。
 車側送信部180は、照合ECU110の制御の下で、LF波あるいはVLF波で車両信号を、変調および増幅してLFアンテナ181から電波として送信させる。LFアンテナ181から送信される電波が車載アンテナ電波である。LFは、Low Frequencyの略称であり、VLFは、Very Low Frequencyの略称である。本明細書ではVLFを含めてLFという用語を用いる。車両信号としてリクエスト信号が送信される場合、固有IDを含むレスポンス信号の返信を電子キー200に要求する情報が含まれる。各車両信号には、送信元が、どのLFアンテナ181であるかを識別可能とする識別情報が含まれる。
 図2にLFアンテナ181の位置を示している。前側LFアンテナ181Fは、車室前端において車幅方向中央付近に設けられる。右側LFアンテナ181Rは車両右側ドアの車内側ドアノブに設けられる。後側LFアンテナ181Bは、車室後端において車幅方向中央付近に設けられる。左側LFアンテナ181Lは左側ドアの車外側ドアノブに設けられる。LFアンテナ181の位置は種々変更が可能であり、また、LFアンテナ181の数も種々の変更が可能である。
 これらのLFアンテナ181の周囲には、それぞれ検知可能エリア300が形成される。具体的には、前側LFアンテナ181Fの周囲には前側検知可能エリア300Fが形成される。右側LFアンテナ181Rの周囲には右側検知可能エリア300Rが形成される。後側LFアンテナ181Bの周囲には後側検知可能エリア300Bが形成され、左側LFアンテナ181Lの周囲には左側検知可能エリア300Lが形成される。これら、前側検知可能エリア300F、右側検知可能エリア300R、後側検知可能エリア300B、左側検知可能エリア300Lを区別しない場合に検知可能エリア300と記載する。
 検知可能エリア300は、LFアンテナ181から送信された車両信号を電子キー200が所定閾値以上の受信信号強度(以下、RSSI)で受信可能なエリアである。図2では、検知可能エリア300の形状は、いずれも円形かつ相互に同じ大きさに単純化して示している。ただし、検知可能エリア300の大きさは、LFアンテナ181の送信出力、電子キー200の受信感度等を設定する等により、ある程度の調整が可能である。また、アンテナ形状の変更等により検知可能エリア300の形状も調整可能である。
 図2に示すように、検知可能エリア300は、いずれも車内外に亘って形成される。車内外に亘って形成される検知可能エリア300は、たとえば車両ボディを樹脂で形成する等により車両ボディの電磁シールド機能を制限することで実現される。4つの検知可能エリア300がいずれも車内外に亘って形成されることで、4つの検知可能エリア300の重なりは、車内だけでなく、車両5の外側において車両5の周囲360度に亘り生じている。
 図1に示すように、車側受信部190は、電子キー200からRF(Radio Frequency)波で送信されるキー信号を、車載RFアンテナ195を介して受信する。車側受信部190は、車載RFアンテナ195から取得した電気信号を増幅し、かつ、その電気信号からキー信号を復調し、キー信号を照合ECU110に出力する。車載RFアンテナ195は、車両5において適宜設定される位置に設けられる。たとえば、車載RFアンテナ195は、車室内において車両5の中央付近となる位置に設けられる。
 リクエスト信号の返信として電子キー200から送信される固有IDを含むキー信号はレスポンス信号である。キー信号にはさらに車両信号を電子キー200が受信した際のRSSIを示すRSSI情報が含まれ得る。RSSI情報には、RSSIおよび車両信号の送信元がどのLFアンテナ181であるかを識別可能とする識別情報が含まれる。
 電子キー200の構成を説明する。電子キー200は、キー側受信部210と、キー側LFアンテナ215と、キー側送信部220と、キー側RFアンテナ221と、キー側制御部230とを備える。
 キー側受信部210は、LFアンテナ181から送信された車載アンテナ電波を示す電気信号をキー側LFアンテナ215を介して取得する。キー側受信部210は、その電気信号を復調および増幅して車両信号を取り出し、キー側制御部230に出力する。
 RSSI検出回路211は、キー側受信部210に設けられる。RSSI検出回路211は、キー側LFアンテナ215で受信した車載アンテナ電波すなわち車両信号のRSSIを検出する回路である。RSSI検出回路211は、検出したRSSIをキー側制御部230に出力する。RSSI検出回路211は受信強度検出部に相当する。
 キー側送信部220は、キー側制御部230の制御の下で、RF波でキー信号を変調および増幅してキー側RFアンテナ221から送信させる。キー信号はキー側制御部230が生成する。キー信号には、車両信号のRSSIを示すRSSI情報や電子キー200の固有IDが含まれる。レスポンス信号もキー信号であるので、レスポンス信号にも固有IDが含まれる。
 キー側制御部230は、マイクロコンピュータを主体として構成される。キー側制御部230は、たとえばROM等の記憶装置に記憶されたプログラムをCPU等のプロセッサが実行することにより、電子キー200の照合および後述する電子キー200の位置定を含む各種処理を車載機100と協働して実行する機能を有する。キー側制御部230の機能の少なくとも一部は、専用のIC等によって提供されてもよい。
 (照合ECUの機能)
 車両5に対する電子キー200の位置推定を行うための照合ECU110の機能を説明する。図1に示すように、照合ECU110は、車側制御部120と記憶部130とを備える。
 車側制御部120は、機能ブロックとして、RSSI取得部121と、感度誤差決定部122と、環状エリア決定部123と、キーエリア推定部124とを備える。
 RSSI取得部121は、車側受信部190で受信したキー信号にRSSI情報が含まれている場合、そのRSSI情報から、車両信号を電子キー200が受信した際のRSSIを取得する。以下では、前側LFアンテナ181Fから送信された車両信号を電子キー200が受信した際のRSSIを前側RSSIとし、右側LFアンテナ181Rから送信された車両信号を電子キー200が受信した際のRSSIを右側RSSIとする。また、後側LFアンテナ181Bから送信された車両信号を電子キー200が受信した際のRSSIを後側RSSIとし、左側LFアンテナ181Lから送信された車両信号を電子キー200が受信した際のRSSIを左側RSSIとする。
 感度誤差決定部122は、電子キー200の受信感度誤差を決定する。そのために、RSSI取得部121が取得したRSSIに電子キー200の受信感度誤差を加えた補正RSSI(すなわち補正受信信号強度)に基づいて、LFアンテナ181別に電子キー200の存在を検知したエリアを決定する。このエリアを、以下、キー検知エリア302とする。キー検知エリア302は携帯機検知エリアに相当する。
 図3には、各LFアンテナ181に対応するキー検知エリア302を示している。キー検知エリア302FはLFアンテナ181Fに対応し、キー検知エリア302RはLFアンテナ181Rに対応し、キー検知エリア302BはLFアンテナ181Bに対応し、キー検知エリア302LはLFアンテナ181Lに対応する。
 各キー検知エリア302は、各LFアンテナ181から送信された車両信号を電子キー200が受信したときのRSSIと、図4に示すRSSI距離関係135から決定する。図4は、RSSI距離関係135を概念的に示す図である。図4に示すようにRSSI距離関係135における横軸は距離である。この距離は、LFアンテナ181から電子キー200までの距離である。縦軸は、LFアンテナ181から送信された車両信号を電子キー200が受信した際に検出されるRSSIである。
 RSSIは通信距離が長くなるのに応じて低下することが知られている。RSSI距離関係135は、RSSIと通信距離との関係である。RSSI距離関係135は実験に基づいて決定された関係であり、記憶部130などに記憶されている。
 図3では、各キー検知エリア302は円形である。キー検知エリア302は、この円の円周上に電子キー200が存在することを意味する。キー検知エリア302は、必ずしも円形である必要はなく、楕円など、円以外の形状でもよい。キー検知エリア302を円以外の形状にする場合には、たとえば、検出したRSSIにRSSI距離関係135を適用して得た距離に、LFアンテナ181の指向性に基づいて定まる方位別の係数を乗じてキー検知エリア302を作成すればよい。
 図3に示した各キー検知エリア302は、理想的な状態を示しており、電子キー200が存在する位置で、全部のキー検知エリア302が交わっている。図3に示すように、理想的な状態になるには、RSSI検出回路211が検出したRSSIが真値である必要がある。しかしながら、RSSIは、LFアンテナ181と電子キー200との距離が同じであっても種々の誤差により変動する。
 図5に示すように、RSSIの誤差要因には、大きく分けて、送信誤差と受信誤差とがある。送信誤差は送信出力の変動範囲を意味し、受信誤差は、受信感度の変動範囲を意味する。
 送信誤差は、送信個体誤差と送信繰り返し誤差に分けられる。送信個体誤差は、車側送信部180の個体差に起因する変動範囲である。送信繰り返し誤差は、同じ車側送信部180が繰り返し同じ信号を送信したときの変動範囲である。受信誤差は、受信感度誤差とキー繰り返し誤差に分けられる。受信感度誤差は、キー側受信部210の個体差に起因する変動範囲である。キー繰り返し誤差は、同じキー側受信部210が繰り返し同じ電力の電波を受信したときの変動範囲である。
 これらの誤差を考慮すると、RSSI検出回路211が検出したRSSIは真値からずれている可能性がある。真値は送信側および受信側ともに誤差がない場合の値を意味する。
 ただしRSSIの誤差は、設計仕様により上限が決まっている。図5に示す各数値は、その上限の一例を示している。図5の例では、受信感度誤差は±2.4dB以内であり、キー繰り返し誤差は±0.4dB以内である。その結果、受信誤差は±2.8dB以内である。また、送信誤差は±0.8dB以内である。そして、送信誤差と受信誤差を含むRSSIの誤差範囲は±3.6dB以内である。図5の例では、RSSIの誤差は3.6dBが許容誤差範囲である。RSSI検出回路211が検出したRSSIは、この許容誤差範囲内で真値からずれている可能性がある。
 図5に示すように、RSSIの誤差範囲が±3.6dBであれば、RSSIの真値は、RSSIの検出値±3.6dBの範囲にある。このとき、RSSIの真値は、RSSIの検出値-3.6dBからRSSIの検出値+3.6dBの範囲内にある。以下、この範囲の最小値を最小RSSIとし、この範囲の最大値を最大RSSIとする。
 これら最小RSSIと最大RSSIをRSSI距離関係135に適用すると、最小距離Dminと最大距離Dmaxが得られる。RSSIの誤差範囲を考慮すると、各LFアンテナ181から電子キー200までの距離は、最小距離Dminと最大距離Dmaxとの間である。
 図6には、LFアンテナ181を中心とし最大距離Dmaxを半径とする円と、LFアンテナ181を中心とし最小距離Dminを半径とする円を示している。電子キー200は、これら2つの円により定まる環状エリア310に存在することになる。
 複数のLFアンテナ181をそれぞれ中心とする複数の環状エリア310が得られる場合、全部の環状エリア310が互いに重なる重複エリア320に電子キー200が存在していると推定できる。
 図7に重複エリア320を示している。図7において、キー検知エリア302Fを示す円を2つ示している。これら2つのキー検知エリア302Fにより定まる範囲が、前側LFアンテナ181Fに対応する環状エリア310Fである。同様に、2つのキー検知エリア302Rにより定まる範囲が、右側LFアンテナ181Rに対応する環状エリア310Rである。また、2つのキー検知エリア302Bにより定まる範囲が、後側LFアンテナ181Bに対応する環状エリア310Bである。また、2つのキー検知エリア302Lにより定まる範囲が、左側LFアンテナ181Lに対応する環状エリア310Lである。そして、これら4つの環状エリア310F、310R、310B、310Lが重なる範囲が重複エリア320である。
 電子キー200の位置推定精度を高くするためには、各環状エリア310を定める最大距離Dmaxと最小距離Dminとの差を小さくする必要がある。図7に示す各環状エリア310は、RSSIの誤差範囲を最大の許容誤差範囲、すなわち図5の例では±3.6dBとした場合の環状エリア310である。
 RSSIの誤差範囲を許容誤差範囲よりも狭い誤差範囲にできれば、各環状エリア310を定める最大距離Dmaxと最小距離Dminとの差を小さくできる。ここで、キー側受信部210は1つであり、かつ、個体毎に定まる固定値である。したがって、図5に示す種々の誤差のうち、受信感度誤差は、どのLFアンテナ181が送信した車両信号をキー側受信部210が検出した場合にも同じ値である。
 以上を基に、感度誤差決定部122では、受信感度誤差を決定する。具体的には、受信感度誤差の変動範囲である±2.4dBの範囲で変化させ、その受信感度誤差を検出したRSSIに加えた値を、補正RSSI(すなわち補正受信信号強度)とする。検出した全部のRSSIに対して同じ受信感度誤差を加えて補正RSSIを算出する。そして、補正RSSIを図4に適用して距離を算出する。この距離を半径として、各キー検知エリア302を作成する。
 検出したRSSIに誤差が含まれていると、複数のキー検知エリア302は1点では交わらない。誤差の影響により実際よりも距離が大きくなれば、全部のキー検知エリア302が互いに重なるエリアが生じる。一方、誤差の影響により実際よりも距離が短くなれば、全部のキー検知エリア302が重なるエリアは生じない。よって、検出したRSSIに加える受信感度誤差の値が、本当の受信感度誤差に最も近い値であるとき、全部のキー検知エリア302は1点で交わる状態に最も近くなる。
 受信感度誤差の値を受信感度誤差の変動範囲で変化させつつ、各LFアンテナ181から受信した車両信号のRSSIに同じ受信感度誤差の値を加えた補正RSSIにてそれぞれキー検知エリア302を作成する。全部のキー検知エリア302が1点で交わる状態に最も近くなったときの受信感度誤差の値を、RSSIを検出した電子キー200の受信感度誤差に決定する。そして、決定した受信感度誤差を記憶部130に記憶する。
 環状エリア決定部123は、環状エリア310を、LFアンテナ181別に決定する。そのために、RSSI取得部121が取得したRSSIに、記憶部130に記憶されている受信感度誤差を加えて補正RSSIとする。
 その補正RSSIにRSSIの誤差範囲の最小値および最大値を加えることで、最小RSSIと最大RSSIとを算出する。ただし、ここでのRSSIの誤差範囲は、図5に示す各誤差要因のうち、受信感度誤差を除いた誤差要因によって生じる誤差範囲である。受信感度誤差は決定して補正RSSIに反映させているからである。図5の例では、ここでの誤差範囲は±1.2dBである。
 図8には、決定した各環状エリア310を示している。図7に示す各環状エリア310と比較して、図8に示す各環状エリア310は環が細くなっている。
 キーエリア推定部124は、環状エリア決定部123が決定した全部の環状エリア310が重なる重複エリア320を電子キー200が存在するエリアすなわち携帯機存在エリアとする。キーエリア推定部124は携帯機エリア推定部である。
 (キー側制御部の機能)
 車両5に対する電子キー200の位置推定を照合ECU110と協働して行うための電子キー200のキー側制御部230の機能を説明する。
 キー側制御部230は、車両信号をキー側受信部210を介して取得すると、車両信号を送信したLFアンテナ181がどれであるかを、車両信号に含まれる識別情報に基づいて特定する機能を有する。
 キー側制御部230は、所定時間以内に、車両信号を3つ以上のLFアンテナ181からキー側受信部210が受信したか否かを判定する機能を有する。所定時間は、全部のLFアンテナ181が順次車両信号を送信する際に要する送信時間から予め定めることができる。
 キー側制御部230は、各LFアンテナ181から送信されてキー側受信部210で受信した車両信号のRSSIを取得する機能を有する。また、キー側制御部230は、車両信号のRSSIと、その車両信号を送信したLFアンテナ181とを示すRSSI情報を含むキー信号をキー側RFアンテナ221から送信させる機能を有する。
 (キー側処理)
 車両5に対する電子キー200の位置推定を照合ECU110と協働して行うために電子キー200のキー側制御部230が実行するキー側処理を、図9を参照して説明する。キー側処理は、所定周期で周期的に実行される。
 S10では、各LFアンテナ181から所定時間間隔で順次送信された車両信号を、キー側受信部210で受信した否かを判定する。S10で肯定判断がなされるとS20に進む。一方、S10で否定判断がなされると、今回のキー側処理を終了する。
 S20では、各LFアンテナ181からの車両信号を受信した際にRSSI検出回路211で検出されたRSSIを取得する。
 S30では、キー側送信部220を制御して、前側RSSI、右側RSSI、後側RSSIおよび左側RSSIを示すRSSI情報を含むキー信号をキー側RFアンテナ221から送信してキー側処理を終了する。
 (車載機側処理)
 車両5に対する電子キー200の位置推定を電子キー200と協働して行うために照合ECU110の車側制御部120が実行する車載機側処理を、図10を参照して説明する。車載機側処理は、所定周期で周期的に実行される。あるいは、車室内に設けられた車両エンジン始動用プッシュスイッチが押下された場合、入力部140に対して誤差推定開始操作が行われた場合など、随時開始条件が成立した場合に開始されてもよい。車両エンジン始動用プッシュスイッチを押下する操作を誤差推定開始操作とすることもできる。
 S110では、全部のLFアンテナ181から、所定の時間間隔で順次、車両信号を送信させる。各車両信号あるいは何れかの車両信号には、電子キー200に対してRSSI情報を含むキー信号の返信を要求する情報が含まれる。
 S120では、S110で送信した車両信号の各々を電子キー200が受信した際のRSSIを示すRRSI情報を含むキー信号を、車載RFアンテナ195を介して受信した否かを判断する。S120で否定判断がなされた場合、今回の車載機側処理を終了する。S120で肯定判断がなされた場合はS130に進む。
 S130は、RSSI取得部121が実行する処理であり、S120で受信したキー信号に含まれるRSSI情報から、前側RSSI、右側RSSI、後側RSSIおよび左側RSSIを取得する。
 S140は感度誤差決定部122が実行する処理であり、受信感度誤差が決定済みであるか否かを判断する。この判断は、記憶部130に受信感度誤差が記憶されているか否かにより判断する。S140の判断が否定判断であればS150に進み、S140の判断が肯定判断であればS160に進む。
 S150では感度誤差決定処理を行う。S150は感度誤差決定部122が実行する処理である。S150の処理は、図11に詳細を示している。
 S151では、受信感度誤差を初期値とする。受信感度誤差の許容範囲が±2.4dBであれば、初期値はたとえば-2.4dBである。S152では、S130で取得したRSSIに、現在の受信感度誤差を加えることで補正RSSIを算出する。
 S153では、S152で算出した補正RSSIを図4に例示したRSSI距離関係135に適用して距離を算出する。その距離をもとに、LFアンテナ181別にキー検知エリア302を決定する。
 S154では、キー検知エリア302は、これまでで最適か否かを判断する。換言すると、キー検知エリア302は、S154までにおいて、最適か否かを判断する。具体的には、全部のキー検知エリア302の相対関係が、これまでで、1点で交わる状態に最も近いか否かを判断する。S154の判断がYESであればS155に進む。また、初回のS154の判断時もS155に進む。
 S155では、記憶部130に記憶されている受信感度誤差を今回用いた値に更新する。記憶部130にまだ受信感度誤差が記憶されていない場合には、今回用いた受信感度誤差を記憶部130に記憶する。
 S155を実行後はS156に進む。また、S154が否定判断である場合もS156に進む。S156では、受信感度誤差を、許容変動範囲の全範囲で変化させたか否かを判断する。判断結果が否定判断であればS157に進む。
 S157では、受信感度誤差を所定値だけ変化させる。所定値は許容変動範囲を複数に分割できる値であり、任意に設定可能である。S157を実行後はS152に戻る。S152からS157を繰り返すうちに、S156が肯定判断になれば、図11に示す処理は終了する。
 図10に示すように、S150を実行した場合、あるいは、S140が否定判断である場合にはS160へ進む。S160~S190は環状エリア決定部123が実行する。S160では受信感度誤差を記憶部130から取得する。
 S170では、S130で取得した各RSSIにS160で取得した受信感度誤差を加えることで、S130で取得した各RSSIに対応する補正RSSIを算出する。S180では、S170で算出した各補正RSSIに、受信感度誤差を除いた誤差要因によって生じる誤差範囲の最小値および最大値を加えることで、最小RSSIと最大RSSIを、各補正RSSIに対して算出する。
 S190では、S180で算出した最小RSSIと最大RSSIを元にして、LFアンテナ181別に環状エリア310を作成する。
 S200はキーエリア推定部124が実行する処理である。S200では、S190で作成した全部の環状エリア310が重なる重複エリア320を決定し、その重複エリア320を電子キー存在エリアとする。
 本実施形態では、各RSSIには同じ受信感度誤差が含まれていること、および、全部のキー検知エリア302が1点で交わる状態に最も近くなるときが、受信感度誤差が最もよく補正できていることを利用して、受信感度誤差を決定する。
 すなわち、本実施形態では、受信感度誤差を順次変化させつつ、検出したRSSIに受信感度誤差を加えた補正RSSIにより、LFアンテナ181別にキー検知エリア302を作成する。LFアンテナ181別のキー検知エリア302が1点で交わる状態に最も近くなったときの受信感度誤差の値を正しい受信感度誤差として、電子キー200の位置を推定する際に使う補正RSSIを決定する。受信感度誤差を1つの値に決定することで、環状エリア310を作成する際の誤差範囲には受信感度誤差を考慮する必要がなくなる。そのため、環状エリア310を細い環状にすることができる。その結果、重複エリア320すなわちキー存在エリアも狭くすることができる。
 本実施形態では、決定した受信感度誤差を記憶部130に記憶する。そして、記憶部130に受信感度誤差が記憶されている場合には、記憶部130に記憶されている受信感度誤差を用いて補正RSSIを算出する。これにより、電子キー200が存在するエリアを推定する都度、S150に示す感度誤差決定処理を実行する必要がなくなる。
 (第2実施形態)
 第2実施形態を説明する。この第2実施形態以下の説明において、それまでに使用した符号と同一番号の符号を有する要素は、特に言及する場合を除き、それ以前の実施形態における同一符号の要素と同一である。また、構成の一部のみを説明している場合、構成の他の部分については先に説明した実施形態を適用できる。
 第2実施形態では、車載機100は、図1に示した構成に加えて、図12に示す内側領域判定アンテナ401を備える。内側領域判定アンテナ401は車載RFアンテナ195と同様、キー信号を受信することができる。ただし、キー信号の検知領域402が図12に示すように、車両5の内部になるように調整されている。検知領域402は、より詳しくは、4つのLFアンテナ181により囲まれる領域(以下、内側領域)である。
 第2実施形態では、内側領域判定アンテナ401がキー信号を受信したこと、すなわち、内側領域判定アンテナ401により車載機100と電子キー200とが通信可能であることを条件に受信感度誤差を決定する。
 図4に示すRSSI距離関係135から分かるように、LFアンテナ181からの距離が遠いと、RSSIの少しの違いにより距離が大きく変化する。よって、電子キー200がLFアンテナ181から遠い状態では、受信感度誤差を少し変化させただけで、キー検知エリア302が大きく変化することになる。したがって、電子キー200がLFアンテナ181から遠い状態では、受信感度誤差を精度よく決定することが困難となる恐れがある。
 換言すれば、電子キー200が全部のLFアンテナ181に対して近い位置にあるときに受信感度誤差を決定したほうが、受信感度誤差を精度よく決定することができる。第2実施形態では、内側領域判定アンテナ401がキー信号を受信したことを条件に受信感度誤差を決定する。内側領域判定アンテナ401がキー信号を受信した場合、電子キー200は内側領域にあり、電子キー200が内側領域にあれば、電子キー200は全部のLFアンテナ181から近い位置にあるからである。
 以上、実施形態を説明したが、開示した技術は上述の実施形態に限定されるものではなく、次の変形例も開示した範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施できる。
 (変形例1)
 LFアンテナ181の位置は、上記例に限定されない。LFアンテナ181は、車両5に離間して設けられていれば、いかなる位置に設けられてもよい。ただし、複数のLFアンテナ181の間が離れているほど好ましい。また、LFアンテナ181の数は4つに限られず、3つ以上であればよい。
 (変形例2)
 実施形態では、携帯機として電子キー200を開示したが、キー機能を持たない携帯機を採用することもできる。
 (変形例3)
 実施形態では、車載機100は、電波を送信するアンテナとしてLF波を送信するLFアンテナ181を備えていたが、送信する電波はLF波以外の周波数帯でもよい。たとえば、LFアンテナ181に代えてRF波を送信するアンテナを備えていてもよい。
 RF波はUHF波と呼ばれることもある。RF波の具体的な周波数は、たとえば、315Hz、920MHz、2.4GHzなどがある。これらの周波数を用いる通信方式には、互いを予め認証するペアリングを実行する通信方式がある。たとえば、ブルートゥース(登録商標)ではペアリングを実行する。車載機100と電子キー200との間もペアリングを実行可能となっていてもよい。
 ペアリング開始を指示する操作はユーザが行う。ペアリング自体は、相互に通信する機器が通信可能な範囲にあれば実行可能であるが、ユーザは、相互に通信する機器が近くにあるときにペアリング開始指示をするはずである。つまり、ペアリングを実行中である場合、または、その後一定期間は、電子キー200は車載機100の近くにあると推定できる。
 ペアリングを実行中またはペアリング後の一定期間内に感度誤差決定処理を行うようにしてもよい。このように感度誤差決定処理を行う場合においても、受信感度誤差を精度よく決定できる。一定期間は十秒程度など、適宜設定する。
 (変形例4)
 実施形態では、感度誤差決定処理を実行して受信感度誤差を決定した後は、受信感度誤差を更新しない。しかし、受信感度誤差を逐次更新し、記憶部130に記憶されている受信感度誤差を最新の受信感度誤差とするようにしてもよい。たとえば、受信感度誤差を決定してからの経過時間が一定時間以上であることを条件に、受信感度誤差を更新するようにしてもよい。換言すると、前回決定した時からの経過時間が一定時間以上であることを条件に、受信感度誤差を更新するようにしてもよい。一定時間以上経過すると、電子キー200の電池消耗等に受信感度誤差が変化する可能性があることを考慮したものである。
 (変形例5)
 記憶部130に記憶されている受信感度誤差を決定したときの電子キー200の位置よりも、電子キー200が全部のLFアンテナ181の重心位置に近いことを条件に、受信感度誤差を更新してもよい。電子キー200が全部のLFアンテナ181の重心位置により近いときに受信感度誤差を決定するほど、受信感度誤差を精度よく決定できる可能性があるからである。
 (変形例6)
 実施形態では、車載機100が受信感度誤差を決定していた。しかし、車側制御部120の構成をキー側制御部230が備え、かつ、LFアンテナ181の位置を車載機100が電子キー200に通知すれば、電子キー200において、図10のS130以下の処理を実行することもできる。LFアンテナ181の位置は、緯度および経度で示す。電子キー200が電子キー存在エリアを決定した場合、電子キー200は車載機100に電子キー存在エリアを通知するようにしてもよい。
 車載機100と電子キー200は通信可能であることから、車載機100が実行する処理の一部のみを、電子キー200が実行することもできる。例えば、電子キー200が車載制御部120の動作の一部を実行してもよい。
 (変形例7)
 入力部140を電子キー200が備えていてもよい。
 以上、本開示の一態様に係る携帯機位置推定システムの実施形態、構成、態様を例示したが、本開示に係る実施形態、構成、態様は、上述した各実施形態、各構成、各態様に限定されるものではない。例えば、異なる実施形態、構成、態様にそれぞれ開示された技術的部を適宜組み合わせて得られる実施形態、構成、態様についても本開示に係る実施形態、構成、態様の範囲に含まれる。
 本開示に記載の制御及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサを構成する専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御及びその手法は、専用ハードウエア論理回路によってプロセッサを構成する専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御及びその手法は、コンピュータプログラムを実行するプロセッサと一つ以上のハードウエア論理回路との組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
 ここで、本開示に記載されるフローチャート、あるいは、フローチャートの処理は、複数のステップ(あるいはセクションと言及される)から構成され、各ステップは、たとえば、S10と表現される。さらに、各ステップは、複数のサブステップに分割されることができる、一方、複数のステップが合わさって一つのステップにすることも可能である。

 

Claims (8)

  1.  電波を送信する3つ以上の車載アンテナ(181)を備えた車載機(100)と、車両を使用するユーザに携帯される携帯機(200)とを備え、前記携帯機が存在する位置を推定する携帯機位置推定システムであって、
     前記携帯機は、前記車載アンテナが送信した電波を受信した場合に、前記電波の受信信号強度を検出する受信強度検出部(211)を備え、
     前記車載機および前記携帯機の一方は、
     前記受信強度検出部が検出した前記受信信号強度を前記携帯機の受信感度誤差で補正した補正受信信号強度に基づいて、前記車載アンテナ別に前記携帯機の存在を検知したエリアである携帯機検知エリア(302)を決定しつつ、前記車載アンテナ別に決定された前記携帯機検知エリアが1点で交わる状態に最も近くなるように前記受信感度誤差を決定する感度誤差決定部(122)と、
     前記受信信号強度の誤差範囲を前記受信感度誤差が補正された場合の誤差範囲とし、前記補正受信信号強度と、前記受信信号強度の誤差範囲と、前記車載アンテナの位置とに基づいて、前記携帯機が存在する環状エリア(310)を前記車載アンテナ別に決定する環状エリア決定部(123)と、
     前記環状エリア決定部が前記車載アンテナ別に決定した複数の前記環状エリアが重複する重複エリア(320)を、前記携帯機が存在する携帯機存在エリアであると推定する携帯機エリア推定部(124)とを備える携帯機位置推定システム。
  2.  前記感度誤差決定部が決定した前記受信感度誤差を記憶する記憶部(130)を更に備え、
     前記環状エリア決定部は、前記記憶部から前記受信感度誤差を取得して、その受信感度誤差に基づいて前記受信強度検出部が検出した前記受信信号強度を補正して、前記補正受信信号強度を算出する、請求項1に記載の携帯機位置推定システム。
  3.  前記携帯機と前記車載機とは、互いを予め認証するペアリングを実行可能であり、
     前記感度誤差決定部は、前記ペアリングを実行中またはペアリング後の一定期間内に前記受信感度誤差を決定する請求項1または2に記載の携帯機位置推定システム。
  4.  前記車載機は、複数の前記車載アンテナとは別に、前記携帯機が複数の前記車載アンテナの内側領域にあるときに前記携帯機と通信可能な内側領域判定アンテナ(401)を備え、
     前記感度誤差決定部は、前記内側領域判定アンテナと前記携帯機とが通信可能である状態で前記受信感度誤差を決定する請求項1または2に記載の携帯機位置推定システム。
  5.  前記感度誤差決定部は、前記受信感度誤差を逐次決定し、前記記憶部に記憶されている前記受信感度誤差を最新の前記受信感度誤差に更新する請求項2に記載の携帯機位置推定システム。
  6.  前記感度誤差決定部は、前記携帯機存在エリアが、これまでに前記受信感度誤差を決定したときの前記携帯機存在エリアよりも、複数の前記車載アンテナの重心に近い場合に前記受信感度誤差を更新する請求項5に記載の携帯機位置推定システム。
  7.  前記感度誤差決定部は、前回、前記受信感度誤差を決定してからの経過時間が一定時間以上であることを条件に、前記受信感度誤差を更新する請求項5に記載の携帯機位置推定システム。
  8.  前記車載機および前記携帯機のいずれか一方は、ユーザが誤差推定開始操作を行う入力部(140)を備え、
     前記感度誤差決定部は、前記入力部に対して前記誤差推定開始操作がされたことに基づいて、前記受信感度誤差を決定する請求項2に記載の携帯機位置推定システム。
PCT/JP2019/018473 2018-06-21 2019-05-09 携帯機位置推定システム WO2019244495A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/123,669 US11202165B2 (en) 2018-06-21 2020-12-16 Mobile device position estimation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-118148 2018-06-21
JP2018118148A JP7063141B2 (ja) 2018-06-21 2018-06-21 携帯機位置推定システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/123,669 Continuation US11202165B2 (en) 2018-06-21 2020-12-16 Mobile device position estimation system

Publications (1)

Publication Number Publication Date
WO2019244495A1 true WO2019244495A1 (ja) 2019-12-26

Family

ID=68983174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018473 WO2019244495A1 (ja) 2018-06-21 2019-05-09 携帯機位置推定システム

Country Status (3)

Country Link
US (1) US11202165B2 (ja)
JP (1) JP7063141B2 (ja)
WO (1) WO2019244495A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021138028A1 (en) 2019-12-30 2021-07-08 Texas Instruments Incorporated Relay station attack prevention
CN114217269A (zh) * 2021-12-07 2022-03-22 星觅(上海)科技有限公司 一种车辆定位方法、装置、设备、系统及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220088017A (ko) * 2020-12-18 2022-06-27 주식회사 모카시스템 Rssi 기반 출입 관리 방법
JP7192005B2 (ja) * 2021-03-08 2022-12-19 本田技研工業株式会社 車両制御装置、及び車両制御方法
JP7330224B2 (ja) * 2021-04-14 2023-08-21 株式会社東海理化電機製作所 制御装置、システム、およびプログラム
CN115830748B (zh) * 2022-11-24 2023-11-24 远峰科技股份有限公司 智能座舱数字钥匙定位校准方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255673A (ja) * 2011-06-08 2012-12-27 Fujitsu Ltd 測位方法、測位システム及びプログラム
US20140243011A1 (en) * 2012-10-12 2014-08-28 Xiaoyong Pan Location estimation based on adjusted distance values for a wireless device
WO2017104373A1 (ja) * 2015-12-15 2017-06-22 株式会社デンソー 車両用制御システム

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107443A (ja) 2000-09-29 2002-04-10 Ntt Docomo Inc 移動機の位置推定方法及び装置
JP5437959B2 (ja) 2009-12-18 2014-03-12 株式会社東海理化電機製作所 通信端末位置判定装置
US20160070527A1 (en) * 2012-03-14 2016-03-10 Autoconnect Holdings Llc Network connected vehicle and associated controls
KR101374589B1 (ko) 2012-10-25 2014-03-17 광주과학기술원 위치 추적 방법 및 이를 실행하는 장치
US9179331B2 (en) * 2012-10-31 2015-11-03 Soongsil University Research Consortium Techno-Park Wireless localization method and wireless localization apparatus using fingerprinting technique
JP6155678B2 (ja) * 2013-02-12 2017-07-05 株式会社デンソー 車両システム、車両側ユニット、及び携帯機
US20150004917A1 (en) * 2013-07-01 2015-01-01 Trw Automotive U.S. Llc Low level, low frequency signal measurement
JP6409288B2 (ja) 2014-03-03 2018-10-24 住友電気工業株式会社 光トランシーバ
JP6414682B2 (ja) * 2014-12-08 2018-10-31 株式会社デンソー 通信システム
JP6471645B2 (ja) 2015-08-19 2019-02-20 株式会社Soken 位置推定装置
JP2017044563A (ja) 2015-08-26 2017-03-02 パイオニア株式会社 端末装置、自己位置測定方法、プログラム及び記憶媒体
JP6241895B2 (ja) 2015-10-28 2017-12-06 公立大学法人岩手県立大学 位置推定システム、位置推定方法、プログラム
JP2017135603A (ja) 2016-01-28 2017-08-03 株式会社Soken 歩行者位置検出システム、車載注意喚起装置、携帯情報端末、および歩行者位置検出方法
KR20180028803A (ko) * 2016-09-09 2018-03-19 현대자동차주식회사 스마트키 검색 장치 및 방법
JP6447610B2 (ja) * 2016-10-28 2019-01-09 トヨタ自動車株式会社 車両制御システム、車両制御装置
JP6702845B2 (ja) * 2016-10-28 2020-06-03 株式会社東海理化電機製作所 電子キーシステム
GB2561583A (en) * 2017-04-19 2018-10-24 Jaguar Land Rover Ltd Vehicle access system
JP7017062B2 (ja) 2017-11-02 2022-02-08 株式会社Soken 車両用電子キーシステム
US10580236B2 (en) * 2018-02-18 2020-03-03 Ulysse McConnell Key fob
US20210204136A1 (en) * 2019-12-30 2021-07-01 Texas Instruments Incorporated Relay station attack prevention

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255673A (ja) * 2011-06-08 2012-12-27 Fujitsu Ltd 測位方法、測位システム及びプログラム
US20140243011A1 (en) * 2012-10-12 2014-08-28 Xiaoyong Pan Location estimation based on adjusted distance values for a wireless device
WO2017104373A1 (ja) * 2015-12-15 2017-06-22 株式会社デンソー 車両用制御システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021138028A1 (en) 2019-12-30 2021-07-08 Texas Instruments Incorporated Relay station attack prevention
CN114793458A (zh) * 2019-12-30 2022-07-26 德州仪器公司 中继站攻击预防
EP4085441A4 (en) * 2019-12-30 2023-06-28 Texas Instruments Incorporated Relay station attack prevention
CN114217269A (zh) * 2021-12-07 2022-03-22 星觅(上海)科技有限公司 一种车辆定位方法、装置、设备、系统及存储介质

Also Published As

Publication number Publication date
US11202165B2 (en) 2021-12-14
JP2019219325A (ja) 2019-12-26
US20210105573A1 (en) 2021-04-08
JP7063141B2 (ja) 2022-05-09

Similar Documents

Publication Publication Date Title
WO2019244495A1 (ja) 携帯機位置推定システム
WO2018105225A1 (ja) 携帯機位置推定システム
US20210011143A1 (en) Distance measurement system
US10425176B2 (en) Vehicle communication system and vehicle-mounted device
JP5685073B2 (ja) 電子キーシステム
JP7139791B2 (ja) 携帯機位置推定システム
WO2015107609A1 (ja) 制御システム
US10442398B2 (en) Vehicle control system
JP2011147104A (ja) 通信端末位置判定装置
JP7110168B2 (ja) 車両制御装置、車両制御方法、制御用プログラム、及び車両制御システム
WO2014171081A1 (ja) 携帯端末の位置検出装置
US20230117249A1 (en) Distance estimation device and distance estimation system
JP7151466B2 (ja) 測距装置
US20200309941A1 (en) Distance-measuring system, distance-measuring device and distance-measuring method
JP7017062B2 (ja) 車両用電子キーシステム
JP5437940B2 (ja) 電子キーの通信対象特定システム
US12055619B2 (en) Distance measurement system, and distance measurement method
US20220279335A1 (en) Vehicle system, in-vehicle device, and terminal locating method
US20210354662A1 (en) Remote communication system
WO2019225320A1 (ja) 車両用認証装置
JP2016017279A (ja) 電子キーシステム
JP7192506B2 (ja) 携帯機位置推定システムおよび車載機
JP2020169899A (ja) 位置判定システム及び位置判定方法
JP2021131264A (ja) 携帯機位置推定システム
JP6724944B2 (ja) 車両制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19823630

Country of ref document: EP

Kind code of ref document: A1