WO2019242280A1 - 掩模板、曝光方法和触控面板 - Google Patents

掩模板、曝光方法和触控面板 Download PDF

Info

Publication number
WO2019242280A1
WO2019242280A1 PCT/CN2018/124326 CN2018124326W WO2019242280A1 WO 2019242280 A1 WO2019242280 A1 WO 2019242280A1 CN 2018124326 W CN2018124326 W CN 2018124326W WO 2019242280 A1 WO2019242280 A1 WO 2019242280A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
light
mask plate
substrate
width
Prior art date
Application number
PCT/CN2018/124326
Other languages
English (en)
French (fr)
Inventor
郑启涛
许邹明
张雷
田�健
张贵玉
刘纯建
吴信涛
陈彤
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/703,682 priority Critical patent/US11169438B2/en
Publication of WO2019242280A1 publication Critical patent/WO2019242280A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/42Alignment or registration features, e.g. alignment marks on the mask substrates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/22Exposing sequentially with the same light pattern different positions of the same surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70475Stitching, i.e. connecting image fields to produce a device field, the field occupied by a device such as a memory chip, processor chip, CCD, flat panel display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present disclosure relates to a mask, an exposure method using the same, and a touch panel manufactured using the exposure method.
  • an embodiment of the present disclosure provides a mask including: a plurality of light-shielding strips configured to block light, and a gap formed by the plurality of light-shielding strips allowing light to pass through,
  • the plurality of light-shielding strips are arranged in a grid shape, the plurality of light-shielding strips include a first light-shielding strip and a second light-shielding strip, and the first light-shielding strip is located at at least one side edge of the mask plate.
  • the width of the first light-shielding strip is greater than the width of the second light-shielding strip.
  • the mask is used in a stitching exposure process including at least two exposures, the first light-shielding strip has a first width, the second light-shielding strip has a second width, and the first The difference between the width and the second width is directly proportional to the position deviation of the mask between the two exposures in the stitching exposure process.
  • the first width and the second width satisfy the following relationship:
  • W m1 is the first width
  • W m2 is the second width
  • W p is a width difference and is greater than zero.
  • the width difference W p is 16 ⁇ m or more.
  • the first light-shielding strips are located at two side edges of the mask plate along the splicing direction, or the first light-shielding strips are located at four side edges of the mask plate.
  • a width of the second light-shielding strip is 6 ⁇ m or less.
  • the mask plate further includes at least one registration mark.
  • the first light-shielding strip of the mask is used to form a common pattern in a first exposure area and a second exposure area of the substrate adjacent to each other.
  • a second exposure area of the mask plate and the substrate is aligned to perform a second exposure.
  • the performing the first exposure includes:
  • the width of the first pattern is greater than the width of the second pattern.
  • the orthographic projection of the first light-shielding strip of the mask on the substrate and the orthographic projection of the first pattern on the substrate overlap, and the width of the overlapping portion is equal to the The width of the second light shielding strip is described.
  • aligning the first exposure area of the mask plate and the substrate to perform the first exposure includes:
  • aligning the second exposure area of the mask plate and the substrate to perform the second exposure includes:
  • the substrate has long sides and short sides
  • the mask has a maximum alignment distance
  • the maximum alignment distance is a position where the first alignment mark can be set on the mask.
  • the maximum distance from the side of the mask, the exposure method further includes:
  • the first alignment is performed only in the direction of the long side of the substrate And the second exposure.
  • aligning the second exposure area of the mask plate and the substrate to perform the second exposure includes:
  • a difference between a width of the first pattern and a width of the second pattern after the second exposure is smaller than a predetermined value.
  • an embodiment of the present disclosure provides a touch panel, including:
  • a touch driving electrode provided on the substrate.
  • the touch driving electrodes and / or the touch sensing electrodes have a metal grid structure, and the touch driving electrodes and / or the touch sensing electrodes are manufactured according to the above-mentioned exposure method.
  • the metal grid structure includes a plurality of metal lines arranged in a grid, and a line width of the metal lines is less than or equal to 5 ⁇ m, and a distance between every two adjacent metal lines is between In the range of 150 to 250 ⁇ m.
  • FIG. 2 is a schematic structural diagram of a touch panel according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a mask plate according to an embodiment of the present disclosure.
  • 5A-5C schematically illustrate partial enlarged views of a spliced exposure area during two exposures
  • FIG. 7 is an enlarged view schematically showing a width contrast relationship between a first light-shielding strip and a second light-shielding strip of the mask plate in FIG. 6;
  • FIG. 8 is a schematic view schematically showing a splicing exposure process performed on a substrate using the mask plate in FIG. 6; FIG.
  • 10A-10B illustrate the structures of metal grid electrodes having different line widths and pitches, respectively;
  • FIG. 11A and 11B schematically illustrate a stitching exposure process using a mark alignment method according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of a mask according to an embodiment of the present disclosure, in which a region where an alignment mark can be set is schematically shown;
  • FIG. 13 schematically illustrates a process of performing a splicing exposure process on a 65-inch substrate using the mask plate of FIG. 12;
  • FIG. 14 schematically illustrates a process of performing a splicing exposure process on a 75-inch substrate using the mask plate of FIG. 12;
  • FIG. 15A and FIG. 15B show a moire phenomenon of a touch panel produced by using a laser alignment method and a mark alignment method
  • FIG. 16 is a flowchart of a method for producing an OGS touch panel according to an embodiment of the present disclosure
  • FIG. 17 is a schematic structural diagram of a touch panel according to another embodiment of the present disclosure.
  • FIG. 18 is a flowchart of a method of manufacturing a GG touch panel according to an embodiment of the present disclosure.
  • a mask plate such as a mask plate
  • exposure machines have certain restrictions on the size of mask plates, and large-size mask plates also have the disadvantages of difficulty in manufacturing, high cost, and inconvenient daily storage and use. Therefore, when manufacturing large-size display panels or touch panels, Generally, a large-sized substrate needs to be divided into several regions, and each region is sequentially exposed using a mask to form a large-sized display panel or a touch panel. This process is called a splicing exposure process.
  • the effective exposure area of the mask is 1100mm ⁇ 752mm
  • the large-size touch panel for example, the 65-inch outline size is 1460mm ⁇ 831mm
  • the 75-inch outline size is 1687mm ⁇ 957mm
  • multiple exposures are required, that is, the above-mentioned stitching exposure process is performed to form a desired pattern.
  • FIG. 1 schematically illustrates the structure of a metal grid electrode.
  • ITO indium tin oxide
  • Metal mesh (ie, metal mesh) electrodes are an electrode structure that may replace ITO.
  • the metal grid 10 includes a plurality of metal lines 1, and the plurality of metal lines 1 are arranged in a grid shape. Each metal line having a predetermined width greater than zero W e, a predetermined gap S e 1 between each two adjacent metal lines.
  • the metal wire When the metal grid electrode is used as a touch electrode of a touch panel, the metal wire has a very low resistance, and most of the area on the metal grid (that is, the area where the gap is located) does not have any light-shielding objects, so that light Can be completely penetrated, thereby increasing light transmission.
  • the metal grid electrode can be applied to a large-sized touch panel to be used as at least one of a touch driving electrode and a touch sensing electrode.
  • the touch panel 20 may include: a substrate 21; a black matrix 22 disposed on the substrate 21; and a substrate disposed on the substrate 21 and covering the black matrix 22 A first overcoat layer (OC) 23; a touch sensing electrode 24 provided on the first cover layer 23; a second cover layer 25 provided on the touch sensing electrode 24; a second cover layer 25 And a third cover layer 27 disposed on the touch driving electrode 26.
  • At least one of the touch sensing electrodes 24 and the touch driving electrodes 26 may include a metal mesh structure shown in FIG. 1.
  • the cover layer is a layer that plays an insulating or protective role, and is generally a transparent optical material layer.
  • the patterning process may include steps such as metal plating, photoresist application, mask exposure, development, and etching.
  • the substrate 21 may be a large-sized substrate, for example, a 65-inch substrate with an external dimension of 1460mm ⁇ 831mm; and for another example, a 75-inch substrate with an external dimension of 1687mm ⁇ 957mm .
  • the above-mentioned stitching exposure process needs to be performed.
  • the stitching exposure process in the embodiments of the present disclosure is not limited to 2 exposures, and may include more exposures, such as 3 exposures, 4 exposures, 6 exposures, and the like.
  • Each two adjacent light-shielding strips 311 have a predetermined interval S m .
  • the light-shielding strip 311 may be made of an opaque material such as metal.
  • the substrate 21 is divided into two regions, as shown in FIG. 4, a first region 21A and a second region 21B.
  • the first region 21A is exposed using the mask 30.
  • the second area 21B is exposed using the mask 30.
  • a complete pattern of the touch sensing electrodes 24 or the touch driving electrodes 26 is formed on the substrate 21, thereby satisfying the needs of using a small-generation production line to produce a large-sized display panel or a touch panel.
  • the stitched exposure area 21C is schematically shown in FIG. 4.
  • Theoretically, splicing after exposure may be formed of metal mesh 10 shown in FIG. 1, metal line and each having a predetermined width W e, a predetermined gap S e 1 between each two adjacent metal lines.
  • the line width of the metal wire 1 is formed in the stitching exposure region 21C is smaller than the predetermined width W e. In this way, in the finally formed display panel or touch panel, the light transmittance of the stitched exposure area is higher than that of the normal exposure area, so that the stitched exposure area is brighter than the normal exposure area during display, that is, formed Mura phenomenon.
  • FIGS. 5A-5C schematically illustrate partial enlarged views of the spliced exposure area during two exposures.
  • 5A in the first exposure process, since the light-shielding effect of the light shielding mask 30 to 311 bar to form a first metal line 51 has a predetermined width W e of the splicing exposed areas.
  • FIG. 5B during the second exposure process, due to factors such as the positioning accuracy of the exposure machine, the light-shielding strips 311 and the first metal lines 51 of the mask 30 will not reproduce the ones shown in FIG.
  • the perfectly aligned positional relationship will generate a certain positional deviation ⁇ , so that during the second exposure process, the part of the first metal line 51 that is not blocked by the light-shielding strip 311 will be exposed.
  • the finally formed first metal line 51 is shown in FIG. 5C. Since the portion of the first metal line 51 not exposed to the light-shielding strip 311 is exposed during the second exposure process, the line width W of the first metal line 51 that is finally formed is e 'is smaller than the predetermined width W e, is proportional to a difference between the positional deviation and the double exposure process therebetween.
  • the mask plate 60 includes a light shielding portion 61 and a light transmitting portion 62, wherein the light shielding portion 61 prevents light from passing therethrough, and the light transmitting portion 62 allows light to pass therethrough.
  • the light-shielding portion 61 includes a plurality of light-shielding stripes, the plurality of light-shielding stripes are arranged in a grid shape, and a gap between the plurality of light-shielding stripes forms a light-transmitting portion 62.
  • the plurality of light shielding bars may include a first light shielding bar 611 ′ and a second light shielding bar 611.
  • the first light-shielding strip 611 ′ corresponds to the stitching exposure area and has a first predetermined width W m1 .
  • the second light-shielding bar 611 corresponds to a normal exposure area and has a second predetermined width W m2 .
  • the first light-shielding strip 611 ′ corresponding to the stitching exposure area may be a light-shielding strip located at at least one edge of the mask plate 60.
  • the first light-shielding strips 611 ′ corresponding to the stitching exposure area are light-shielding strips located on the edges of both sides of the mask plate 60 in the first direction (the left-right direction in FIG. 6).
  • the first light-shielding strips 611 ′ corresponding to the stitching exposure area may be located on both sides of the mask plate 60 in the first direction (left-right direction in FIG. 6) and in the second direction (FIG. 6 In the up and down direction).
  • the first light-shielding strip 611 ′ may be located at at least one edge of the mask plate 60. Except for the first light-shielding strip 611 ′, the other light-shielding strips are all second light-shielding strips 611, for example, the second The light shielding strip 611 may be located at a non-side edge of the mask plate 60.
  • the mask plate 60 includes four side edges. In addition to the four side edges, other positions of the mask plate 60 may be referred to as non-side edge positions of the mask plate 60.
  • the first predetermined width W m1 is larger than the second predetermined width W m2 .
  • the second predetermined width W m2 may be equal to the above-mentioned predetermined width W m
  • the first predetermined width W m1 is larger than the above-mentioned predetermined width W m .
  • FIG. 7 illustrates an enlarged view of the first light shielding bar and the second light shielding bar.
  • the second light-shielding strip 611 is unilaterally expanded by a predetermined width W p to form a first light-shielding strip 611 ′.
  • “single-sided expansion” means that the edge of one side of the second light-shielding strip expands outward in a direction away from the center line of the second light-shielding strip. The right edge of the second light-shielding strip 611 expands outward to the right.
  • there is a predetermined relationship between the first predetermined width of the second width W m1 and W m2 of the second light-shielding strip 611 of the first light-shielding strip 611 ' is:
  • W m1 W m2 + 2W p ;
  • the unilaterally expanding predetermined width W p is proportional to the position deviation between the two exposure processes.
  • the first light-shielding strip 611 'of the mask plate 60 and the first metal line 51 will have a certain positional deviation.
  • because the first light-shielding strip 611 ′ has a wider first predetermined width W m1 , the first metal line 51 has a wider predetermined width W e ′.
  • the wider first light-shielding strip 611 ′ and the wider first light-shielding strip 611 ′ may be designed.
  • the difference between the line width of the metal lines of the finally formed normally exposed area and the line width of the metal lines of the spliced exposed area is less than or equal to 0.5 ⁇ m.
  • the light transmittance of the spliced exposure area is consistent with the light transmittance substrate of the normal exposure area, so that the brightness of the spliced exposure area and the normal exposure area are substantially the same during display, that is, the brightness is substantially eliminated Pull phenomenon. That is to say, when the unilateral outward expansion predetermined width W p is 16 ⁇ m or more, the brightness of the stitching exposure area and the normal exposure area are substantially or completely the same during display, thereby eliminating the mura phenomenon.
  • the interval between every two adjacent light shielding strips 611, 611 ′ may be 100 to 300 ⁇ m, and according to the embodiment of the present disclosure, it may be 145 to 255 ⁇ m.
  • the interval between each two adjacent light-shielding strips 611 and 611 ′ is 145-255 ⁇ m
  • the spacing between each two adjacent metal lines in the formed metal grid can be in the range of 150-250 ⁇ m.
  • the first set of experimental metal grids is shown in FIG. 10A, which has a line width of 8 ⁇ m and a pitch of 420 ⁇ m.
  • the metal grid of the second set of experiments is shown in FIG. 10B, which has a line width of 5 ⁇ m and a pitch of 180 ⁇ m.
  • the results of the comparative experiments are shown in the table below.
  • FIGS. 11A and 11B still taking two exposures as an example, the stitching exposure using the mark alignment method will be described in more detail.
  • a plurality of first alignment marks 64 are provided on at least one side of the mask plate 60, and a plurality of second alignment marks 214 are provided on at least one side edge of the first region 21A of the substrate 21.
  • the substrate 21 is placed under the mask plate 60 so that the first alignment mark 64 and the corresponding second alignment mark 214 are respectively aligned to align the first exposure area of the mask plate 60 and the substrate 21, and then the first One exposure.
  • the alignment error between the mask and the substrate is within ⁇ 3 ⁇ m. Therefore, the relative of the metal grid of the touch driving electrode and the metal grid of the touch sensing electrode in the produced touch panel The position is relatively stable, which can effectively avoid moiré.
  • the area where the registration mark can be set on the mask plate in the G6 line (area 1202 indicated by the oblique line in the figure) is relatively fixed.
  • the distance L where the registration mark can be placed from the edge of the mask plate is about 858mm, as shown in Figure 12 As shown.
  • the edge of the mask is generally not exactly aligned with the edge of the substrate.
  • the short edge size of the substrate When it is less than 835mm, that is, when the difference between the distance L where the registration mark can be placed from the edge of the mask and the size of the short side of the substrate is greater than 20mm, the short side of the substrate can be placed along the long side of the mask. That is, the stitching exposure can be performed in the short-side direction.
  • the substrate has long sides and short sides
  • the mask 120 has a maximum alignment distance L.
  • the maximum alignment distance L is a distance from the position where the alignment mark 1202 on the mask 120 can be set to the side of the mask 120. For example, in FIG. 12, the distances from the four positions 1202 where the registration marks can be set to the four sides of the mask 120 are calculated, and then the maximum value is taken as the maximum registration distance L. Then, in the stitching exposure process, the short side of the substrate and the maximum alignment distance L are compared.
  • the maximum alignment distance L is greater than the length of the short side and the difference between the maximum alignment distance L and the length of the short side is greater than a predetermined threshold (for example, 20 mm)
  • a predetermined threshold for example, 20 mm
  • the stitching exposure process including multiple exposures is performed in the long-side direction.
  • the maximum alignment distance L is less than the length of the short side or the difference between the maximum alignment distance L and the length of the short side is less than a predetermined threshold (for example, 20 mm)
  • splicing needs to be performed in both the short side direction of the substrate and the long side direction of the substrate. Exposure process.
  • the external dimension of a 65-inch touch panel is 1460mm ⁇ 831mm.
  • the short side of the substrate of the 65-inch touch panel can be placed along the long side of the mask 120, and the short side direction can be exposed without stitching. Three exposures are performed in the long side direction. All three exposures can be performed by using the mark alignment method, as shown in FIG. 13, to form a desired pattern on the substrate of the 65-inch touch panel.
  • the external dimensions of a 75-inch touch panel are 1687mm ⁇ 957mm, and the short side dimension is 957mm greater than 835mm.
  • the substrate of the touch panel also needs to be spliced along the short side direction. Specifically, two exposures are required along the short side direction and three exposures are required along the long side direction, that is, a total of six exposures are required to form a desired pattern on the substrate of the 75-inch touch panel. These 6 exposures can also be used for mark alignment, as shown in Figure 14.
  • a black matrix 22 is formed on the substrate 21.
  • the pattern of the black matrix 22 may be formed using a first patterning process, which may include steps of coating, exposing, and developing.
  • a first cover layer 23 is formed on the substrate 21, and the first cover layer 23 covers the black matrix 22.
  • the pattern of the first cover layer 23 may be formed using a second patterning process, which may include steps of gumming, exposing, and developing.
  • a touch sensing electrode 24 is formed on the first cover layer 23.
  • the touch sensing electrode 24 may have a metal mesh structure.
  • the pattern of the touch sensing electrodes 24 may be formed by using a third patterning process, which may include metal plating, photoresist coating, exposure, development, and etching steps.
  • the exposure may be the above-mentioned stitching exposure.
  • a second cover layer 25 is formed on the touch sensing electrode 24.
  • a fourth patterning process may be used to form the pattern of the second cover layer 25, and the fourth patterning process may include steps of coating, exposing, and developing.
  • a touch driving electrode 26 is formed on the second cover layer 25.
  • the touch driving electrode 26 may have a metal mesh structure.
  • a fifth patterning process may be used to form the touch driving electrodes 26.
  • the fifth patterning process may be the same as the third patterning process and includes metal plating, photoresist coating, exposure, development, and etching steps.
  • the exposure may be the above-mentioned stitching exposure.
  • a third cover layer 27 is formed on the touch driving electrode 26.
  • a sixth patterning process may be used to form the pattern of the third cover layer 27, and the sixth patterning process may include steps of coating, exposing, and developing.
  • the touch panel 170 may include: a first substrate 171; a touch driving electrode 172 provided on the first substrate 171; and a touch driving A first overcoat layer (OC) 173 on the electrode 172; a touch sensing electrode 174 provided on the first cover layer 173; a second cover layer 175 provided on the touch sensing electrode 174; An adhesive material layer 176 on the two cover layers 175; and a second substrate 177 disposed on the adhesive material layer 176.
  • At least one of the touch sensing electrodes 174 and the touch driving electrodes 172 may include a metal mesh structure.
  • the first substrate 171 and the second substrate 177 may be glass substrates.
  • FIG. 18 shows a flowchart of a method of manufacturing a GG touch panel, which uses a stitching exposure process provided by an embodiment of the present disclosure.
  • a method for manufacturing a GG touch panel will be described in detail with reference to FIGS. 17 and 18.
  • a touch driving electrode 172 is formed on the first substrate 171.
  • the touch driving electrode 172 may have a metal mesh structure.
  • the pattern of the touch driving electrodes 172 may be formed using a first patterning process, which may include metal plating, photoresist coating, exposure, development, and etching steps.
  • the exposure can adopt the above-mentioned stitching exposure process.
  • a first cover layer 173 is formed on the touch driving electrode 172.
  • a second patterning process may be used to form the pattern of the first cover layer 173, and the second patterning process may include glue coating, exposure, and development steps.
  • a touch sensing electrode 174 is formed on the first cover layer 173.
  • the touch sensing electrode 174 may have a metal grid structure.
  • the third patterning process may be used to form the pattern of the touch sensing electrodes 174.
  • the third patterning process may include metal plating, photoresist coating, exposure, development, and etching steps.
  • the exposure can adopt the above-mentioned stitching exposure process.
  • a second cover layer 175 is formed on the touch sensing electrode 174.
  • a pattern of the second cover layer 175 may be formed using a fourth patterning process, which may include steps of coating, exposing, and developing.
  • step S1805 an adhesive material layer 176 is applied on the second cover layer 175.
  • step S1806 the second substrate 177 is adhered to the first substrate 171 through the adhesive material layer 176.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Input By Displaying (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

一种掩模板(60),包括:多个遮光条,多个遮光条配置为阻挡光线,多个遮光条包围形成的间隙允许光线通过,其中,多个遮光条布置成网格状,多个遮光条包括第一遮光条(611 ')和第二遮光条(611),第一遮光条(611 ')位于掩模板(60)的至少一个侧边缘处,第一遮光条(611')的宽度大于第二遮光条(611)的宽度。还提供一种使用掩模板(60)的曝光方法和使用曝光方法制造的触控面板。

Description

掩模板、曝光方法和触控面板
相关申请的交叉引用
本申请要求于2018年6月21日递交中国专利局的、申请号为201810642760.0的中国专利申请的权益,该申请的全部公开内容以引用方式并入本文。
技术领域
本公开涉及一种掩模板、使用该掩模板的曝光方法以及使用该曝光方法制造的触控面板。
背景技术
随着显示技术的不断发展,显示面板或触控面板的尺寸在不断增大。为了生产出更大尺寸的显示面板或触控面板,存在使用小世代的生产线生产大尺寸的显示面板或触控面板的需求。
发明内容
一个方面,本公开的实施例提供一种掩模板,包括:多个遮光条,所述多个遮光条配置为阻挡光线,所述多个遮光条包围形成的间隙允许光线通过,
其中,所述多个遮光条布置成网格状,所述多个遮光条包括第一遮光条和第二遮光条,所述第一遮光条位于所述掩模板的至少一个侧边缘处,所述第一遮光条的宽度大于所述第二遮光条的宽度。
根据本公开的实施例,所述掩模板用于包括至少两次曝光的拼接曝光工艺中,所述第一遮光条具有第一宽度,所述第二遮光条具有第二宽度,所述第一宽度与所述第二宽度之间的差值与拼接曝光工艺中两次曝光之间的掩模板的位置偏差成正比。
根据本公开的实施例,所述第一宽度和所述第二宽度满足如下关系式:
W m1=W m2+2W p
其中,W m1为所述第一宽度,W m2为所述第二宽度,W p为宽度差且大于零。
根据本公开的实施例,所述宽度差W p大于等于16μm。
根据本公开的实施例,所述第一遮光条位于所述掩模板的沿拼接方向的两个侧边缘处,或者,所述第一遮光条位于所述掩模板的四个侧边缘处。
根据本公开的实施例,所述第二遮光条的宽度小于等于6μm。
根据本公开的实施例,两个相邻的所述第二遮光条之间的间距在100~300μm的范围内。
根据本公开的实施例,所述掩模板还包括至少一个对位标记。
根据本公开的实施例,所述掩模板的所述第一遮光条用于形成基板的彼此相邻的第一曝光区域和第二曝光区域中的公共的图案。
另一个方面,本公开的实施例提供一种曝光方法,该曝光方法使用上述的掩模板在基板上执行拼接曝光工艺,所述基板包括第一曝光区域和第二曝光区域,该曝光方法包括如下步骤:
对准所述掩模板与所述基板的第一曝光区域,以执行第一次曝光;
使所述掩模板与所述基板相对运动;和
对准所述掩模板与所述基板的第二曝光区域,以执行第二次曝光。
根据本公开的实施例,所述执行第一次曝光包括:
利用所述掩模板的第一遮光条,在所述第一曝光区域中形成第一图案;和
利用所述掩模板的第二遮光条,在所述第一曝光区域中形成第二图案,
其中,所述第一图案的宽度大于所述第二图案的宽度。
根据本公开的实施例,在第二次曝光中,所述掩模板的第一遮光条在基板上的正投影与所述第一图案在基板上的正投影部分重叠,重叠部分的宽度等于所述第二遮光条的宽度。
根据本公开的实施例,对准所述掩模板与所述基板的第一曝光区域,以执行第一次曝光包括:
在所述掩模板上设置第一对位标记;
在所述基板上设置第二对位标记;和
对准所述第一对位标记与所述第二对位标记,以对准所述掩模板与所述基板的第一曝光区域。
根据本公开的实施例,对准所述掩模板与所述基板的第二曝光区域,以执行第二次曝光包括:
在所述基板上设置第三对位标记;和
对准所述第一对位标记与所述第三对位标记,以对准所述掩模板与所述基板的第二曝光区域。
根据本公开的实施例,所述基板具有长边和短边,所述掩模板具有最大对位距离,所述最大对位距离为所述掩模板上能够设置所述第一对位标记的位置距离所述掩模板的侧边的最大距离,所述曝光方法还包括:
比较所述基板的短边与所述最大对位距离;和
当所述最大对位距离大于所述短边的长度并且所述最大对位距离与所述短边的长度的差值大于预定阈值时,仅沿所述基板的长边方向执行所述第一次曝光和所述第二次曝光。
根据本公开的实施例,所述第一曝光区域和第二曝光区域彼此相接,并具有公共的所述第一图案。
根据本公开的实施例,对准所述掩模板与所述基板的第二曝光区域,以执行第二次曝光包括:
对准所述第一遮光条与所述第一图案。
根据本公开的实施例,在第二次曝光后所述第一图案的宽度与所述第二图案的宽度的差值小于预定值。
又一方面,本公开的实施例提供一种触控面板,包括:
基板;
设置于所述基板上的触控驱动电极;和
设置于所述基板上的触控感应电极,
其中,所述触控驱动电极和/或所述触控感应电极具有金属网格结构,并且所述触控驱动电极和/或所述触控感应电极根据上述的曝光方法制造。
根据本公开的实施例,所述金属网格结构包括呈网格布置的多条金属线,所述金属线的线宽小于等于5μm,每两个相邻的所述金属线之间的间距在150~250μm范围内。
附图说明
通过下文中参照附图对本公开所作的描述,本公开的其它目的和优点将显而易见,并可帮助对本公开有全面的理解。
图1示意性示出了金属网格电极的结构;
图2是根据本公开的一个实施例的触控面板的结构示意图;
图3是根据本公开的一个实施例的掩模板的结构示意图;
图4是根据本公开的一个实施例的触控面板的基板的俯视示意图;
图5A-5C示意性示出了拼接曝光区域在两次曝光过程中的局部放大图;
图6是根据本公开的另一个实施例的掩模板的结构示意图;
图7是示意性示出图6中的掩模板的第一遮光条与第二遮光条的宽度对比关系的放大图;
图8是示意性示出使用图6中的掩模板在基板上执行拼接曝光工艺的示意图;
图9A-9C示意性示出了图8中的拼接曝光工艺中拼接曝光区域在两次曝光过程中的局部放大图;
图10A-10B分别示出了具有不同线宽和间距的金属网格电极的结构;
图11A和图11B示意性示出了根据本公开实施例的采用标记对位的方式的拼接曝光工艺;
图12是根据本公开实施例的掩模板的结构示意图,其中示意性示出了能够设置对位标记的区域;
图13示意性示出了使用图12的掩模板在65英寸基板上执行拼接曝光工艺的过程;
图14示意性示出了使用图12的掩模板在75英寸基板上执行拼 接曝光工艺的过程;
图15A和图15B对比示出了采用激光对位方式和标记对位方式生产出的触控面板的摩尔纹现象;
图16是根据本公开实施例的生产OGS触控面板的方法流程图;
图17是根据本公开的另一个实施例的触控面板的结构示意图;和
图18是根据本公开实施例的生产GG触控面板的方法流程图。
需要说明的是,附图并不一定按比例来绘制,而是仅以不影响读者理解的示意性方式示出。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
为了生产大尺寸的显示面板或触控面板,例如掩模板的掩模板的尺寸也需要随之增大。目前,曝光机对掩模板的尺寸有一定的限制,而且大尺寸的掩模板也存在制造困难、成本高、日常存放使用不方便等缺陷,因此,在制造大尺寸的显示面板或触控面板时,一般需要将大尺寸的基板划分成若干区域,并使用掩模板依次对各个区域进行曝光,形成大尺寸的显示面板或触控面板,这一过程称为拼接曝光工艺。例如,以京东方触控面板工厂的G6代线为例,掩模板的有效曝光区域是1100mm×752mm,而大尺寸触控面板,例如65英寸的外形尺寸是1460mm×831mm,75英寸的外形尺寸是1687mm×957mm,由于外形尺寸超出掩模板的有效曝光区,因此需要进行多次曝光,即,进行上述拼接曝光工艺,才能形成期望的图案。
图1示意性示出了金属网格电极的结构。随着触控面板产业的快速发展,对于透明导体,例如铟锡氧化物(ITO)的需求也大幅增加。然而,ITO的高价格、低效能、易碎性以及低导电率等缺点,都迫使 研发人员不断地尝试寻找能够替代ITO的电极材料或电极结构。金属网格(即metal mesh)电极是一种可能替代ITO的电极结构。如图1所示,金属网格10包括多条金属线1,多条金属线1布置成网格状。每一条金属线1具有大于零的预定宽度W e,每两条相邻的金属线1之间具有预定间隙S e。当利用该金属网格电极作为触控面板的触控电极时,金属线具有非常低的电阻,而且,金属网格上的大部分区域(即间隙所在的区域)都没有任何遮光物体,使得光线可以完全穿过,从而增加透光率。
金属网格电极可以应用于大尺寸触控面板中,以用作触控驱动电极和触控感应电极中的至少一个。以OGS(One Glass Solution)触控面板为例,如图2所示,触控面板20可以包括:基板21;设置于基板21上的黑矩阵22;设置于基板21上且覆盖黑矩阵22的第一覆盖层(overcoat,简称为OC)23;设置于第一覆盖层23上的触控感应电极24;设置于触控感应电极24上的第二覆盖层25;设置于第二覆盖层25上的触控驱动电极26;和设置于触控驱动电极26上的第三覆盖层27。触控感应电极24和触控驱动电极26中的至少一个可以包括图1示出的金属网格结构。
需要说明的是,在本文中,覆盖层为起绝缘或保护作用的层,一般为透明的光学材料层。
为了在基板21上形成触控感应电极24或触控驱动电极26,可以采用构图工艺。例如,该构图工艺可以包括金属镀膜、涂覆光刻胶、采用掩模板曝光、显影和刻蚀等步骤。
在根据本公开的实施例中,基板21可以是大尺寸的基板,例如,可以为65英寸的基板,外形尺寸是1460mm×831mm;再例如,可以是75英寸的基板,外形尺寸是1687mm×957mm。为了在大尺寸的基板21上形成触控感应电极24或触控驱动电极26,在曝光步骤中,需要进行上述的拼接曝光工艺。
下面,以包括2次曝光为例,对拼接曝光工艺进行更详细的说明。本领域技术人员应理解,本公开实施例中的拼接曝光工艺不限于2次曝光,可以包括更多次曝光,例如3次曝光、4次曝光、6次曝光等。
为了在基板21上形成触控感应电极24或触控驱动电极26,而且触控感应电极24或触控驱动电极26具有图1示出的金属网格结构。在曝光步骤中,需要使用与金属网格结构对应的掩模板,图3示出了根据本公开实施例的一种掩模板。如图3所示,掩模板30包括遮光部31和透光部32。遮光部31包括多个遮光条311,多个遮光条311布置成网格状,每个遮光条311具有预定宽度W m。多个遮光条311包围而成的间隙形成透光部32。每两个相邻的遮光条311之间具有预定间距S m。在一个示例中,遮光条311可以由不透光材料(例如金属)制成。在使用掩模板30进行曝光时,光线可以穿过透光部32,但被遮光部31阻挡,从而在基板上形成与掩模板30对应的图案。
基板21被划分为两个区域,如图4所示,第一区域21A和第二区域21B。在第一次曝光过程中,使用掩模板30对第一区域21A进行曝光。在第二次曝光过程中,使用掩模板30对第二区域21B进行曝光。通过两次曝光,在基板21上形成完整的触控感应电极24或触控驱动电极26的图案,从而满足使用小世代的生产线生产大尺寸的显示面板或触控面板的需求。
发明人发现,在上述曝光过程中,第一区域21A与第二区域21B相邻的区域,会受第一次曝光和第二次曝光两次曝光过程的作用,这一区域可以称为拼接曝光区域,基板21上除拼接曝光区域之外的曝光区域可以称为正常曝光区域。为了便于理解,在图4中示意性示出拼接曝光区域21C。理论上,经过拼接曝光之后,可以形成图1所示的金属网格10,并且每一条金属线1具有预定宽度W e,每两条相邻的金属线1之间具有预定间隙S e。然而,实际上,拼接曝光区域21C中形成的金属线1的线宽小于预定宽度W e。这样,导致在最终形成的显示面板或触控面板中,拼接曝光区域的透光率比正常曝光区域的透光率高,使得在显示时拼接曝光区域比正常曝光区域更亮,即,形成了姆拉(mura)现象。
进一步分析发现,姆拉现象产生的原因是两次曝光过程之间的对位偏差。具体地,图5A-5C示意性示出了拼接曝光区域在两次曝光过程中的局部放大图。如图5A所示,在第一次曝光过程中,由于掩模 板30的遮光条311的遮光作用,在拼接曝光区域中形成具有预定宽度W e的第一金属线51。然后,如图5B所示,在第二次曝光过程中,受限于曝光机的定位精度等因素,掩模板30的遮光条311与第一金属线51不会重现图5A中示出的完全对准的位置关系,而是会产生一定的位置偏差δ,这样,在第二次曝光过程中,第一金属线51未被遮光条311遮挡的部分会被曝光。最终形成的第一金属线51如图5C所示,由于第一金属线51未被遮光条311的部分在第二次曝光过程中被曝光,导致最终形成的第一金属线51的线宽W e′小于预定宽度W e,二者之间的差值与两次曝光过程之间的位置偏差成正比。
根据本公开的一个示例性实施例,提供一种掩模板。如图6所示,掩模板60包括遮光部61和透光部62,其中,遮光部61阻止光线从其通过,透光部62允许光线从其通过。遮光部61包括多个遮光条,多个遮光条布置成网格状,多个遮光条之间的间隙形成透光部62。多个遮光条可以包括第一遮光条611′和第二遮光条611。第一遮光条611′与拼接曝光区域对应,具有第一预定宽度W m1。第二遮光条611与正常曝光区域对应,具有第二预定宽度W m2。例如,与拼接曝光区域对应的第一遮光条611′可以是位于掩模板60的至少一侧边缘处的遮光条。在图示的实施例中,与拼接曝光区域对应的第一遮光条611′是位于掩模板60的沿第一方向(图6中的左右方向)的两侧边缘中的遮光条。
根据本公开的实施例,与拼接曝光区域对应的第一遮光条611′可以是位于掩模板60的沿第一方向(图6中的左右方向)的两侧边缘和沿第二方向(图6中的上下方向)的两侧边缘中的遮光条。
在该实施例中,第一遮光条611′可以位于掩模板60的至少一侧边缘处,除第一遮光条611′之外,其它的遮光条均为第二遮光条611,例如,第二遮光条611可以位于掩模板60的非侧边缘处。结合图6,掩模板60包括4个侧边缘,除该4个侧边缘之外,掩模板60的其它位置可以称为掩模板60的非侧边缘位置。
在该实施例中,第一预定宽度W m1大于第二预定宽度W m2。例如,第二预定宽度W m2可以等于上述的预定宽度W m,而第一预定宽度W m1大 于上述的预定宽度W m
根据本公开的实施例,图7示出了第一遮光条与第二遮光条的放大图。如图7所示,第二遮光条611单边外扩预定宽度W p,形成第一遮光条611′。在本文中,“单边外扩”意指第二遮光条某一侧的边缘沿远离第二遮光条的中心线的方向外扩,例如,第二遮光条611的左边缘向左外扩或第二遮光条611的右边缘向右外扩。这样,第一遮光条611′的第一预定宽度W m1与第二遮光条611的第二预定宽度W m2之间存在如下关系:
W m1=W m2+2W p
需要指出的是,单边外扩预定宽度W p与两次曝光过程之间的位置偏差成正比。
图8为示意性示出使用掩模板60在基板21上执行拼接曝光工艺的示意图,图9A-9C示意性示出了拼接曝光区域在两次曝光过程中的局部放大图。结合图8至图9C,在第一次曝光过程中,使用掩模板60对第一区域21A进行曝光。在第二次曝光过程中,使用掩模板60对第二区域21B进行曝光。通过两次曝光,在基板21上形成完整的触控感应电极24或触控驱动电极26的图案。如图9A所示,在第一次曝光过程中,由于掩模板60的第一遮光条611′的遮光作用,在拼接曝光区域21C中形成具有预定宽度W e′的第一金属线51,由于第一遮光条611′的第一预定宽度W m1大于上述的预定宽度W m,所以形成的第一金属线51的预定宽度W e′大于预定宽度W e。然后,如图9B所示,在第二次曝光过程中,即使受限于曝光机的定位精度等因素,掩模板60的第一遮光条611′与第一金属线51会产生一定的位置偏差δ,由于第一遮光条611′具有较宽的第一预定宽度W m1,第一金属线51具有较宽的预定宽度W e′。这样,在第二次曝光过程中,虽然仍存在第一金属线51与第一遮光条611′部分重叠的情况,但是通过设计,可以使得较宽的第一遮光条611′与较宽的第一金属线51之间具有的重叠部分的宽度等于正常曝光区域中的遮光条的宽度,即等于第二遮光条611的第二预定宽度W m2。最终形成的第一金属线51如图9C所示,最终形成的第一金属线51的线宽等于预定宽度W e。因此, 通过对掩模板的部分遮光条进行加宽设计,可以补偿两次曝光之间的位置偏差,使得在最终形成的显示面板或触控面板中,拼接曝光区域的金属线的线宽等于正常曝光区域的金属线的线宽,从而减轻甚至消除姆拉(mura)现象。
以京东方触控面板厂G6代线为平台,通过改变多组单边外扩预定宽度W p,发明人进行了多组实验,如下表所示。
表1单边外扩预定宽度W p与金属线的线宽差关系表
Figure PCTCN2018124326-appb-000001
根据表1的实验数据,当单边外扩预定宽度W p为10μm时,最终形成的正常曝光区域的金属线的线宽与拼接曝光区域的金属线的线宽之间的差值小于等于1.3μm,此时,显示时的姆拉现象得到减轻。随着单边外扩预定宽度W p的逐渐增大,最终形成的正常曝光区域的金属线的线宽与拼接曝光区域的金属线的线宽之间的差值逐渐变小。当当单边外扩预定宽度W p为16μm时,最终形成的正常曝光区域的金属线的线宽与拼接曝光区域的金属线的线宽之间的差值小于等于0.5μm,此时,在最终形成的显示面板或触控面板中,拼接曝光区域的透光率与正常曝光区域的透光率基板一致,使得在显示时拼接曝光区域与正常曝光区域的亮度基本一致,即,基本消除了姆拉现象。也就是说,当单边外扩预定宽度W p为16μm以上时,在显示时拼接曝光区域与正常曝光区域的亮度基本或完全一致,从而消除了姆拉现象。
返回参照图6,掩模板60的第二遮光条611与正常曝光区域对应,具有第二预定宽度W m2。根据本公开的实施例,该第二预定宽度W m2可以为约6μm。这样,在使用掩模板60进行曝光工艺以形成具有金属网格结构的触控驱动电极或触控感应电极时,形成的金属网格的金属线的线宽可以小于等于5μm。发明人发现,通过形成这样细线宽的金属网格电极,可以提升触控面板的消影效果。
根据本公开的实施例,在掩模板60中,每两个相邻的遮光条611、611′之间的间距可以为100~300μm,根据本公开的实施例,可以为 145~255μm。当每两个相邻的遮光条611、611′之间的间距为145~255μm时,在使用掩模板60进行曝光工艺以形成具有金属网格结构的触控驱动电极或触控感应电极时,形成的金属网格中每两个相邻的金属线之间的间距可以在150~250μm范围内。通过形成细线宽且小间距的金属网格电极,可以进一步提升触控面板的消影效果。
针对线宽和间距与消影效果的关系,发明人进行了对比实验。第一组实验的金属网格如图10A所示,其具有8μm的线宽和420μm的间距。第二组实验的金属网格如图10B所示,其具有5μm的线宽和180μm的间距。对比实验的结果如下表所示。
表2线宽和间距与消影效果的关系表
线宽 间距 消影效果
8μm 420μm 基本可见
5μm 180μm 不可见
根据表2的实验数据,当金属网格具有8μm的线宽和420μm的间距时,金属网格的金属线肉眼基本可见;当金属网格具有5μm的线宽和180μm的间距时,金属网格的金属线肉眼不可见。
进一步地,在传统的采用拼接曝光形成大尺寸的触控面板的工艺中,一般采用激光对位方式来对准掩模板与基板。然而,发明人研究发现,激光对位方式存在±150μm的对位误差,会导致生产出的触控面板中触控驱动电极的金属网格与触控感应电极的金属网格的相对位置不稳定,从而产生摩尔纹。
在本公开的实施例中,在拼接曝光工艺中,采用标记(mark)对位的方式来对准掩模板与基板。返回参照图6,在掩模板60上设置有多个第一对位标记64,例如,第一对位标记64可以是对位孔。返回参照图4,在基板21上设置有多个第二对位标记214,例如,第二对位标记214可以是十字对位标记。
参照图11A和图11B,仍以2次曝光为例,对采用标记对位的方式进行拼接曝光进行更详细的说明。
在第一次曝光过程中,在掩模板60的至少一侧设置有多个第一 对位标记64,在基板21的第一区域21A的至少一侧边缘设置有多个第二对位标记214,将基板21置于掩模板60下方,使得第一对位标记64与相应的第二对位标记214分别对准,以对准掩模板60与基板21的第一曝光区域,然后,执行第一次曝光。随后,将基板21朝一预定方向(即拼接方向)移动,使得掩模板60上的多个第一对位标记64与基板21的第二区域21B的至少一侧边缘设置的多个第二对位标记214分别对准,以对准掩模板60与基板21的第二曝光区域,然后,执行第二次曝光。参见图5A、5B、5C,例如,对准掩模板60与基板21的第二曝光区域,使遮光条311或第一遮光条611′与拼接曝光区域的第一金属线51的图案对准(参见5B)。由于工艺的限制,遮光条311或第一遮光条611′与拼接曝光区域的第一金属线51的图案无法完全对准或无法精确地对准。根据本公开的实施例,掩模板60的遮光条311或第一遮光条611′用于形成基板的彼此相邻的第一曝光区域和第二曝光区域中的公共的第一金属线51的图案(在拼接曝光区域中的第一金属线51的图案)。即第一曝光区域和第二曝光区域彼此相接,并具有公共的第一金属线51的图案(在拼接曝光区域中的第一金属线51的图案)。在第二次曝光后在拼接曝光区域中的第一金属线51的图案的宽度与正常曝光区域的第一金属线51的图案的宽度的差值可以小于预定值,例如0.5μm。
通过采用标记对位方式,使得掩模板与基板之间的对位误差在±3μm,因此,生产出的触控面板中触控驱动电极的金属网格与触控感应电极的金属网格的相对位置比较稳定,可以有效避免摩尔纹。
下面,以京东方触控面板工厂G6代线为例,详细描述标记对位方式在生产大尺寸触控面板中的应用。G6代线中掩模板上可以设置对位标记的区域(图中斜线表示的区域1202)是相对固定的,可放置对位标记的区域距离掩模板边缘的距离L为约858mm,如图12所示。考虑到对位标记自身的尺寸、曝光机台上摄像头的放置等限制因素,另外,在实际加工过程中,掩模板的边缘一般不会与基板的边缘恰好对齐,所以,当基板的短边尺寸小于835mm时,即,当可放置对位标记的区域距离掩模板边缘的距离L与基板的短边尺寸之间的差 值大于20mm时,可以将基板的短边沿掩模板的长边方向放置,即,在短边方向上可以无需拼接曝光。
在该实施例中,基板具有长边和短边,掩模板120具有最大对位距离L,最大对位距离L为掩模板120上能够设置对位标记的位置1202距离掩模板120的侧边的最大距离,例如,在图12中,分别计算4个能够设置对位标记的位置1202距离掩模板120的4个侧边的距离,然后取其最大值,作为最大对位距离L。然后,在拼接曝光工艺中,比较基板的短边与最大对位距离L。当最大对位距离L大于短边的长度并且最大对位距离L与短边的长度的差值大于预定阈值(例如20mm)时,沿基板的短边方向无需执行拼接曝光工艺,仅需沿基板的长边方向执行包括多次曝光的拼接曝光工艺。当最大对位距离L小于短边的长度或者最大对位距离L与短边的长度的差值小于预定阈值(例如20mm)时,沿基板的短边方向和基板的长边方向均需要执行拼接曝光工艺。
例如,65英寸触控面板的外形尺寸是1460mm×831mm,此时,可以将65英寸的触控面板的基板的短边沿掩模板120的长边放置,在短边方向上可以无需拼接曝光,在长边方向上进行3次曝光,这3次曝光均可以采用标记对位的方式,如图13所示,以在65英寸触控面板的基板上形成需要的图案。
例如,75英寸触控面板的外形尺寸是1687mm×957mm,短边尺寸957mm大于835mm,此时,触控面板的基板沿短边方向也需要进行拼接曝光。具体地,沿短边方向需要进行2次曝光,沿长边方向需要进行3次曝光,即,一共需要进行6次曝光,以在75英寸触控面板的基板上形成需要的图案。这6次曝光也均可以采用标记对位的方式,如图14所示。
参照图15A,示出了采用激光对位方式生产出的65英寸触控面板,可以看出:在65英寸触控面板中出现了明显的摩尔纹现象。参照图15B,示出了采用标记对位方式生产出的65英寸触控面板,可以看出:在65英寸触控面板中未出现摩尔纹现象。
图16示出了生产OGS触控面板的方法流程图,该方法采用了本 公开实施例提供的拼接曝光方法。下面,结合图16和图2,详细描述生产OGS触控面板的方法。
在步骤S1601中,在基板21上形成黑矩阵22。例如,可以采用第一构图工艺形成黑矩阵22的图案,该第一构图工艺可以包括涂胶、曝光和显影步骤。
在步骤S1602中,在基板21上形成第一覆盖层23,第一覆盖层23覆盖黑矩阵22。例如,可以采用第二构图工艺形成第一覆盖层23的图案,该第二构图工艺可以包括涂胶、曝光和显影步骤。
在步骤S1603中,在第一覆盖层23上形成触控感应电极24。触控感应电极24可以具有金属网格结构。例如,可以采用第三构图工艺形成触控感应电极24的图案,该第三构图工艺可以包括金属镀膜、涂覆光刻胶、曝光、显影和刻蚀步骤。例如,其中的曝光可以采用上述的拼接曝光。
在步骤S1604中,在触控感应电极24上形成第二覆盖层25。例如,可以采用第四构图工艺形成第二覆盖层25的图案,该第四构图工艺可以包括涂胶、曝光和显影步骤。
在步骤S1605中,在第二覆盖层25上形成触控驱动电极26。触控驱动电极26可以具有金属网格结构。例如,可以采用第五构图工艺形成触控驱动电极26的图案,该第五构图工艺可以与第三构图工艺相同,包括金属镀膜、涂覆光刻胶、曝光、显影和刻蚀步骤。例如,其中的曝光可以采用上述的拼接曝光。
在步骤S1606中,在触控驱动电极26上形成第三覆盖层27。例如,可以采用第六构图工艺形成第三覆盖层27的图案,该第六构图工艺可以包括涂胶、曝光和显影步骤。
以GG(Glass-Glass)触控面板为例,如图17所示,触控面板170可以包括:第一基板171;设置于第一基板171上的触控驱动电极172;设置于触控驱动电极172上的第一覆盖层(overcoat,简称为0C)173;设置于第一覆盖层173上的触控感应电极174;设置于触控感应电极174上的第二覆盖层175;设置于第二覆盖层175上的粘合材料层176;和设置于粘合材料层176上的第二基板177。触控 感应电极174和触控驱动电极172中的至少一个可以包括金属网格结构。第一基板171和第二基板177可以为玻璃基板。
图18示出了生产GG触控面板的方法流程图,该方法采用了本公开实施例提供的拼接曝光工艺。下面,结合图17和图18,详细描述生产GG触控面板的方法。
在步骤S1801中,在第一基板171上形成触控驱动电极172。触控驱动电极172可以具有金属网格结构。例如,可以采用第一构图工艺形成触控驱动电极172的图案,该第一构图工艺可以包括金属镀膜、涂覆光刻胶、曝光、显影和刻蚀步骤。例如,其中的曝光可以采用上述的拼接曝光工艺。
在步骤S1802中,在触控驱动电极172上形成第一覆盖层173。例如,可以采用第二构图工艺形成第一覆盖层173的图案,该第二构图工艺可以包括涂胶、曝光和显影步骤。
在步骤S1803中,在第一覆盖层173上形成触控感应电极174。触控感应电极174可以具有金属网格结构。例如,可以采用第三构图工艺形成触控感应电极174的图案,该第三构图工艺可以包括金属镀膜、涂覆光刻胶、曝光、显影和刻蚀步骤。例如,其中的曝光可以采用上述的拼接曝光工艺。
在步骤S1804中,在触控感应电极174上形成第二覆盖层175。例如,可以采用第四构图工艺形成第二覆盖层175的图案,该第四构图工艺可以包括涂胶、曝光和显影步骤。
在步骤S1805中,在第二覆盖层175上涂覆粘合材料层176。
在步骤S1806中,通过粘合材料层176,将第二基板177粘合至第一基板171上。
根据本发明的实施例,通过使用包括两次曝光的拼接曝光工艺,可以满足使用小世代的生产线生产大尺寸的显示面板或触控面板的需求。对于本公开的实施例,还需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
虽然上面已经示出了本公开的一些示例性实施例,但是本领域的技术人员将理解,在不脱离本公开的原理和精神的情况下,可以对这 些示例性实施例做出改变,本公开的范围由权利要求及其等同物限定。

Claims (20)

  1. 一种掩模板,包括:
    多个遮光条,所述多个遮光条配置为阻挡光线,所述多个遮光条包围形成的间隙允许光线通过,
    其中,所述多个遮光条布置成网格状,所述多个遮光条包括第一遮光条和第二遮光条,所述第一遮光条位于所述掩模板的至少一个侧边缘处,所述第一遮光条的宽度大于所述第二遮光条的宽度。
  2. 根据权利要求1所述的掩模板,其中,
    所述掩模板用于包括至少两次曝光的拼接曝光工艺中,所述第一遮光条具有第一宽度,所述第二遮光条具有第二宽度,所述第一宽度与所述第二宽度之间的差值与拼接曝光工艺中两次曝光之间的掩模板的位置偏差成正比。
  3. 根据权利要求2所述的掩模板,其中,
    所述第一宽度和所述第二宽度满足如下关系式:
    W m1=W m2+2W p
    其中,W m1为所述第一宽度,W m2为所述第二宽度,W p为宽度差且大于零。
  4. 根据权利要求3所述的掩模板,其中,
    所述宽度差W p大于等于16μm。
  5. 根据权利要求2所述的掩模板,其中,
    所述第一遮光条位于所述掩模板的沿拼接方向的两个侧边缘处,或者,所述第一遮光条位于所述掩模板的四个侧边缘处。
  6. 根据权利要求1所述的掩模板,其中,
    所述第二遮光条的宽度小于等于6μm。
  7. 根据权利要求1所述的掩模板,其中,
    两个相邻的所述第二遮光条之间的间距在100~300μm的范围内。
  8. 根据权利要求1所述的掩模板,其中,
    所述掩模板还包括至少一个对位标记。
  9. 根据权利要求2所述的掩模板,其中,
    所述掩模板的所述第一遮光条用于形成基板的彼此相邻的第一曝光区域和第二曝光区域中的公共的图案。
  10. 一种曝光方法,其中,
    该曝光方法使用权利要求1-9中任一项所述的掩模板在基板上执行拼接曝光工艺,所述基板包括第一曝光区域和第二曝光区域,
    该曝光方法包括如下步骤:
    对准所述掩模板与所述基板的第一曝光区域,以执行第一次曝光;
    使所述掩模板与所述基板相对运动;和
    对准所述掩模板与所述基板的第二曝光区域,以执行第二次曝光。
  11. 根据权利要求10所述的曝光方法,其中,
    所述执行第一次曝光包括:
    利用所述掩模板的第一遮光条,在所述第一曝光区域中形成第一图案;和
    利用所述掩模板的第二遮光条,在所述第一曝光区域中形成第二图案,
    其中,所述第一图案的宽度大于所述第二图案的宽度。
  12. 根据权利要求11所述的曝光方法,其中,
    在第二次曝光中,所述掩模板的第一遮光条在基板上的正投影与所述第一图案在基板上的正投影部分重叠,重叠部分的宽度等于所述 第二遮光条的宽度。
  13. 根据权利要求10-12中任一项所述的曝光方法,其中,
    对准所述掩模板与所述基板的第一曝光区域,以执行第一次曝光包括:
    在所述掩模板上设置第一对位标记;
    在所述基板上设置第二对位标记;和
    对准所述第一对位标记与所述第二对位标记,以对准所述掩模板与所述基板的第一曝光区域。
  14. 根据权利要求13所述的曝光方法,其中,
    对准所述掩模板与所述基板的第二曝光区域,以执行第二次曝光包括:
    在所述基板上设置第三对位标记;和
    对准所述第一对位标记与所述第三对位标记,以对准所述掩模板与所述基板的第二曝光区域。
  15. 根据权利要求13所述的曝光方法,其中,
    所述基板具有长边和短边,所述掩模板具有最大对位距离,所述最大对位距离为所述掩模板上能够设置所述第一对位标记的位置距离所述掩模板的侧边的最大距离,
    所述曝光方法还包括:
    比较所述基板的短边与所述最大对位距离;和
    当所述最大对位距离大于所述短边的长度并且所述最大对位距离与所述短边的长度的差值大于预定阈值时,仅沿所述基板的长边方向执行所述第一次曝光和所述第二次曝光。
  16. 根据权利要求11所述的曝光方法,其中,
    所述第一曝光区域和第二曝光区域彼此相接,并具有公共的所述第一图案。
  17. 根据权利要求11所述的曝光方法,其中,
    对准所述掩模板与所述基板的第二曝光区域,以执行第二次曝光包括:
    对准所述第一遮光条与所述第一图案。
  18. 根据权利要求17所述的曝光方法,其中,
    在第二次曝光后所述第一图案的宽度与所述第二图案的宽度的差值小于预定值。
  19. 一种触控面板,包括:
    基板;
    设置于所述基板上的触控驱动电极;和
    设置于所述基板上的触控感应电极,
    其中,所述触控驱动电极和/或所述触控感应电极具有金属网格结构,并且所述触控驱动电极和/或所述触控感应电极根据权利要求10-18中任一项所述的曝光方法制造。
  20. 根据权利要求19所述的触控面板,其中,
    所述金属网格结构包括呈网格布置的多条金属线,所述金属线的线宽小于等于5μm,每两个相邻的所述金属线之间的间距在150~250μm范围内。
PCT/CN2018/124326 2018-06-21 2018-12-27 掩模板、曝光方法和触控面板 WO2019242280A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/703,682 US11169438B2 (en) 2018-06-21 2019-12-04 Mask, exposure method and touch display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810642760.0 2018-06-21
CN201810642760.0A CN108761995A (zh) 2018-06-21 2018-06-21 掩模板、曝光方法和触控面板

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/703,682 Continuation-In-Part US11169438B2 (en) 2018-06-21 2019-12-04 Mask, exposure method and touch display panel

Publications (1)

Publication Number Publication Date
WO2019242280A1 true WO2019242280A1 (zh) 2019-12-26

Family

ID=63979675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124326 WO2019242280A1 (zh) 2018-06-21 2018-12-27 掩模板、曝光方法和触控面板

Country Status (3)

Country Link
US (1) US11169438B2 (zh)
CN (1) CN108761995A (zh)
WO (1) WO2019242280A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761995A (zh) 2018-06-21 2018-11-06 京东方科技集团股份有限公司 掩模板、曝光方法和触控面板
CN110687757A (zh) * 2019-10-10 2020-01-14 深圳市华星光电技术有限公司 拼接曝光系统及采用该系统的拼接曝光方法
CN111443566B (zh) * 2020-05-08 2022-10-11 京东方科技集团股份有限公司 掩膜板
WO2021237552A1 (zh) * 2020-05-28 2021-12-02 京东方科技集团股份有限公司 掩膜板、曝光方法和触控面板
US11215923B1 (en) * 2020-08-03 2022-01-04 Young Fast Optoelectronics Co., Ltd. Method for manufacturing large-scale touch sensing pattern
JP6993479B1 (ja) 2020-08-17 2022-01-13 洋華光電股▲ふん▼有限公司 大型タッチセンシングパターンの製造方法
WO2022134020A1 (zh) * 2020-12-25 2022-06-30 京东方科技集团股份有限公司 触控基板的制造方法、触控基板、基板以及触控装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102981356A (zh) * 2012-12-14 2013-03-20 京东方科技集团股份有限公司 一种减小掩膜版拼接误差的方法
CN104570611A (zh) * 2013-10-21 2015-04-29 合肥京东方光电科技有限公司 掩模板及其改善拼接曝光姆拉现象的方法
US20160085264A1 (en) * 2014-09-19 2016-03-24 Samsung Display Co., Ltd. Method of forming patterns and methods of manufacturing display panels using methods of forming patterns
CN106200254A (zh) * 2016-07-11 2016-12-07 京东方科技集团股份有限公司 掩膜版及掩膜曝光系统、拼接曝光方法、基板
CN107219720A (zh) * 2017-05-27 2017-09-29 厦门天马微电子有限公司 一种掩膜板、曝光装置以及膜层图案化的制作方法
CN108761995A (zh) * 2018-06-21 2018-11-06 京东方科技集团股份有限公司 掩模板、曝光方法和触控面板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4342767B2 (ja) * 2002-04-23 2009-10-14 富士通マイクロエレクトロニクス株式会社 半導体装置の製造方法
JP2007193243A (ja) * 2006-01-23 2007-08-02 Sony Corp 露光用マスク、露光方法、露光用マスクの製造方法、3次元デバイスおよび3次元デバイスの製造方法
EP2330488A4 (en) * 2008-07-31 2011-11-02 Gunze Kk PLANAR ELEMENT AND TOUCH SWITCH
CN102967992B (zh) * 2012-11-15 2014-12-10 京东方科技集团股份有限公司 一种掩膜板及其制造方法、一种阵列基板的制造方法
US20170329177A1 (en) * 2014-11-28 2017-11-16 Sakai Display Products Corporation Liquid Crystal Display Panel, Liquid Crystal Display Apparatus, and Method of Manufacturing Liquid Crystal Display Panel
CN104808451B (zh) * 2015-05-15 2017-07-18 合肥京东方光电科技有限公司 一种对位曝光方法
KR101992915B1 (ko) * 2016-09-30 2019-06-25 엘지디스플레이 주식회사 터치 센서를 가지는 유기 발광 표시 장치 및 그 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102981356A (zh) * 2012-12-14 2013-03-20 京东方科技集团股份有限公司 一种减小掩膜版拼接误差的方法
CN104570611A (zh) * 2013-10-21 2015-04-29 合肥京东方光电科技有限公司 掩模板及其改善拼接曝光姆拉现象的方法
US20160085264A1 (en) * 2014-09-19 2016-03-24 Samsung Display Co., Ltd. Method of forming patterns and methods of manufacturing display panels using methods of forming patterns
CN106200254A (zh) * 2016-07-11 2016-12-07 京东方科技集团股份有限公司 掩膜版及掩膜曝光系统、拼接曝光方法、基板
CN107219720A (zh) * 2017-05-27 2017-09-29 厦门天马微电子有限公司 一种掩膜板、曝光装置以及膜层图案化的制作方法
CN108761995A (zh) * 2018-06-21 2018-11-06 京东方科技集团股份有限公司 掩模板、曝光方法和触控面板

Also Published As

Publication number Publication date
US11169438B2 (en) 2021-11-09
CN108761995A (zh) 2018-11-06
US20200103750A1 (en) 2020-04-02

Similar Documents

Publication Publication Date Title
WO2019242280A1 (zh) 掩模板、曝光方法和触控面板
US10663857B2 (en) Mask and fabrication method thereof
WO2018000949A1 (zh) 掩膜板及其制造方法
CN110727135B (zh) 一种彩膜基板、显示面板及显示装置
JP6172895B2 (ja) カラーフィルタ基板及びその製造方法
US9978595B2 (en) Photo mask and exposure system
CN104297989B (zh) 基板、掩膜板及液晶显示装置
WO2020253313A1 (zh) 显示母板、显示面板、拼接显示屏及显示母板制作方法
WO2016086648A1 (zh) 触摸屏及其制作方法及显示装置
TW201409314A (zh) 觸控感應層及其製造方法
WO2007001023A1 (ja) 基板製造方法および露光装置
CN210573180U (zh) 掩模板
US8497061B2 (en) Method for replicating production of 3D parallax barrier
KR101303644B1 (ko) 터치윈도우용 원판시트 및 그 제조방법
JP2009145681A (ja) 表示装置の製造方法
KR102289723B1 (ko) 대면적 디스플레이용 미세 금속 마스크 제작을 위한 복수의 포토 마스크 정렬장치 및 정렬방법
WO2020118834A1 (zh) 掩膜版组合和使用掩膜版组合将半导体薄膜图形化的方法
WO2021237552A1 (zh) 掩膜板、曝光方法和触控面板
KR101319634B1 (ko) 포토마스크용 기판, 포토마스크, 포토마스크의 제조 방법 및 패턴 전사 방법
KR101786109B1 (ko) 터치윈도우용 원판시트
KR101319800B1 (ko) 포토마스크용 기판, 포토마스크, 포토마스크용 기판 세트, 포토마스크 세트, 포토마스크의 제조 방법 및 패턴 전사 방법
TW201250377A (en) Photomask substrate, photomask, and pattern transfer method
KR102095374B1 (ko) 메탈메쉬 구조의 터치 패널의 제조 방법
CN118103771A (zh) 阵列基板及其制作方法、掩膜版、显示装置
JP4992343B2 (ja) カラーフィルタの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18923638

Country of ref document: EP

Kind code of ref document: A1