WO2019240140A1 - 固体状トリアゾリンジオン化合物の製造方法および固体状トリアゾリンジオン化合物、ならびにトリアゾリンジオン化合物の製造方法 - Google Patents

固体状トリアゾリンジオン化合物の製造方法および固体状トリアゾリンジオン化合物、ならびにトリアゾリンジオン化合物の製造方法 Download PDF

Info

Publication number
WO2019240140A1
WO2019240140A1 PCT/JP2019/023163 JP2019023163W WO2019240140A1 WO 2019240140 A1 WO2019240140 A1 WO 2019240140A1 JP 2019023163 W JP2019023163 W JP 2019023163W WO 2019240140 A1 WO2019240140 A1 WO 2019240140A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
triazolinedione
solid
compound
solution
Prior art date
Application number
PCT/JP2019/023163
Other languages
English (en)
French (fr)
Inventor
雅彦 関
世傑 福沢
正貴 滝脇
Original Assignee
株式会社トクヤマ
日本電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ, 日本電子株式会社 filed Critical 株式会社トクヤマ
Priority to EP19819092.8A priority Critical patent/EP3712137A4/en
Priority to CN201980005866.2A priority patent/CN111406047A/zh
Priority to JP2019565042A priority patent/JP6785388B2/ja
Priority to US16/957,026 priority patent/US20200392090A1/en
Publication of WO2019240140A1 publication Critical patent/WO2019240140A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • C07D249/101,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D249/12Oxygen or sulfur atoms

Definitions

  • the present invention relates to a method for producing a solid triazolinedione compound, a solid triazolinedione compound, and a method for producing a triazolinedione compound.
  • Vitamin D has a function of promoting absorption of calcium and phosphorus in the body, a function of maintaining a calcium concentration in blood and building a strong bone.
  • vitamin D metabolites are known to be involved in the regulation of the expression of proteins involved in cell differentiation / proliferation, hormone production / secretion, immune reactions, and the like.
  • DAPTAD (4- (4′-dimethylaminophenyl) -1,2,4-triazoline-3,5-dione
  • Vitamin D derivatized with DAPTAD is about 100 times more sensitive than before derivatization, and about 10 times more sensitive than conventional PTAD. Moreover, since the derivative by DAPTAD can be quantified by distinguishing structural isomers, the selectivity can be further improved.
  • DAPTAD is obtained by oxidizing 4- (4′-dimethylaminophenyl) -1,2,4-triazolidine-3,5-dione (DMU) with iodobenzene diacetate (PIDA) in ethyl acetate.
  • DMU 4- (4′-dimethylaminophenyl) -1,2,4-triazolidine-3,5-dione
  • PIDA iodobenzene diacetate
  • acetic acid was produced as a by-product simultaneously with the production of DAPTAD in the synthesis method in which the oxidation reaction was performed using PIDA, and the acetic acid produced as a by-product could decompose DAPTAD.
  • DAPTAD is decomposed by alkali when washing with an aqueous alkali solution is performed for the purpose of removing by-product acetic acid.
  • the present invention has been made in view of the above-described background art, and an object of the present invention is to provide a method for isolating a triazolinedione compound containing DAPTAD in a solid form from a reaction solution, and an isolated solid triazoline. It is to provide a novel production method of a dione compound and a triazolinedione compound.
  • a triazolinedione compound can be isolated as a crystal by bringing a solution in which a triazolinedione compound containing DAPTAD is dissolved into contact with a specific solvent, thereby completing the present invention. It came.
  • the present inventor pays attention to the ability to suppress the decomposition of the generated triazolinedione compound by obtaining the triazolinedione compound by oxidizing the triazolinedione compound by oxidizing with an oxidizing agent that does not produce an acid. As a result, the present invention has been completed.
  • the present invention provides a triazolinedione solution in which a triazolinedione compound represented by the following formula (1) is dissolved in an aprotic good solvent and a hydrocarbon poor solvent having 5 to 15 carbon atoms in a light-shielded manner.
  • the method for producing a solid triazolinedione compound comprises a contact step of contacting at ⁇ 25 to 30 ° C. to obtain a solid triazolinedione compound.
  • R 1 is an organic group.
  • the aprotic good solvent is at least one selected from the group consisting of esters, halogen-containing hydrocarbons, aromatic hydrocarbons, ketones, amides, alkyl nitriles, dialkyl ethers, and ureas. It may be.
  • the aprotic good solvent in the triazolinedione solution is 100 to 200,000 parts by mass with respect to 100 parts by mass of the triazolinedione compound represented by the formula (1)
  • the hydrocarbon-based poor solvent is The mass ratio of the aprotic good solvent to the hydrocarbon-based poor solvent is from 1: 0.05 to 100 to 500 parts by mass with respect to 100 parts by mass of the triazolinedione compound represented by the formula (1).
  • the triazolinedione solution and the hydrocarbon-based poor solvent may be contacted as 1:10.
  • the triazolinedione solution is obtained by oxidizing a triazolidinedione compound represented by the following formula (2) using an oxidizing agent that does not by-produce an acid to obtain a triazolinedione compound represented by the above formula (1). You may obtain through an oxidation process.
  • R 1 is an organic group.
  • the oxidant may be iodosobenzene.
  • the oxidation step may be performed while removing by-product water.
  • the oxidation step may be performed under light shielding.
  • Another embodiment of the present invention is a solid triazolinedione compound represented by the following formula (1).
  • R 1 is a group selected from the group consisting of the following (a), (b), and (c).
  • a substituted phenyl group including a group, a halogen group, an alkylthio group, a sulfonyl group, a phosphate group, a carboxyl group, an ester group, a nitrile group, an amide group, a ferrocenyl group, or a quinoxalinyl group having a substituent
  • R 1 in the formula (1) may be a 4-dimethylaminophenyl group or a 4-dimethylaminomethylphenyl group.
  • Another embodiment of the present invention is a method for producing a triazolinedione compound, wherein a triazolinedione compound is obtained by oxidizing a triazolidinedione compound, wherein the triazolidinedione compound represented by the following formula (2) is converted to an acid Is a method for producing a triazolinedione compound, which includes an oxidation step in which a triazolinedione compound represented by the following formula (1) is obtained by oxidizing using an oxidizing agent that does not produce by-products.
  • R 1 is an organic group.
  • R 1 is an organic group.
  • a triazolinedione compound that could not be isolated conventionally can be isolated as a solid as a crystal.
  • the obtained solid triazolinedione compound is stable because it can be stored as a solid.
  • no solvent since no solvent is required for storage in solution, there is no danger of ignition due to exposure of the solvent, and handling becomes easier.
  • conventionally since it could not be isolated, it was affected by the components of the solvent contained in the reaction solution, so that the type of solvent to be dissolved can be freely selected. As a result, the utilization environment of the triazolinedione compound is remarkably expanded, and expansion to not only existing applications but also new applications can be expected.
  • the method for producing a solid triazolinedione compound of the present invention comprises a triazolinedione compound in which a triazolinedione compound represented by the following formula (1) is dissolved in an aprotic good solvent, and a carbon atom having 5 to 15 carbon atoms.
  • R 1 is an organic group.
  • triazolinedione compounds such as 4- (4′-dimethylaminophenyl) -1,2,4-triazoline-3,5-dione (DAPTAD), which could not be isolated conventionally, are used as crystals. It can be isolated as a solid.
  • DAPTAD 4- (4′-dimethylaminophenyl) -1,2,4-triazoline-3,5-dione
  • the solid triazolinedione compound of the present invention obtained by the production method of the present invention is a compound having a structure represented by the above formula (1).
  • R 1 in the above formula (1) is a group selected from the group consisting of the following (a), (b), and (c).
  • A a di-substituted amino group or a di-substituted aminoalkyl group substituted with an alkyl group, an aralkyl group, or an aryl group, which may contain an oxygen atom or a nitrogen atom, or the same or different, a nitro group, an azide group, an alkoxy group
  • a substituted phenyl group including a group, a halogen group, an alkylthio group, a sulfonyl group, a phosphate group, a carboxyl group, an ester group, a nitrile group, an amide group, a ferrocenyl group, or a quinoxalinyl group having a substituent.
  • a nitrogen-containing heterocyclic group which may contain a group, a sulfonyl group, a phosphate group, a carboxyl group, an ester group, a nitrile group, an amide group, a ferrocenyl group, or a quinoxalinyl group having a substituent.
  • (C) a disubstituted amino group substituted with an alkyl group, an aralkyl group, or an aryl group, which may contain an oxygen atom or a nitrogen atom, or the same or different, a nitro group, an azido group, an alkoxy group, a halogen group, an alkylthio group
  • An alkyl group which may contain a group, a sulfonyl group, a phosphate group, a carboxyl group, an ester group, a nitrile group, an amide group, a ferrocenyl group, or a quinoxalinyl group having a substituent.
  • R 1 in the above formula (1) is a group selected from the group consisting of a substituted phenyl group, a substituted or unsubstituted methyl group, and an ethyl group.
  • R 1 in the above formula (1) is a methyl group, 2- (6,7-dimethoxy-4-methyl-3-oxo-3,4-dihydroquinoxalinyl) ethyl group, 4-nitrophenyl Particularly preferred is a group selected from the group consisting of a group, a ferrocenylmethyl group, a 4-dimethylaminophenyl group, and a 4-dimethylaminomethylphenyl group.
  • the method for producing the solid triazolinedione compound of the present invention represented by the above formula (1) can be applied, and the compound that becomes the solid triazolinedione compound of the present invention includes 4-methyl-1,2, 4-triazoline-3,5-dione (MTAD), 4- [2- (6,7-dimethoxy-4-methyl-3-oxo-3,4-dihydroquinoxalinyl) ethyl] -1,2, 4-triazoline-3,5-dione (DMEQTAD), 4- (4-nitrophenyl) -1,2,4-triazoline-3,5-dione (NPTAD), 4-ferrocenylmethyl-1,2, 4-triazoline-3,5-dione (FMTAD), 4- (4′-dimethylaminophenyl) -1,2,4-triazoline-3,5-dione (DAPTAD), and 4- (4′-dimethyl) It is particularly preferred amino methyl phenyl) -1,2,4-triazoline-3,5-com
  • R 1 in the above formula (1) is most preferably a 4-dimethylaminophenyl group or a 4-dimethylaminomethylphenyl group. That is, the method for producing the solid triazolinedione compound of the present invention can be applied, and the compound that becomes the solid triazolinedione compound of the present invention is 4- (4′-dimethylaminophenyl) -1,2,4- Most preferred is triazoline-3,5-dione (DAPTAD) or 4- (4′-dimethylaminomethylphenyl) -1,2,4-triazoline-3,5-dione.
  • DAPTAD triazoline-3,5-dione
  • 4- (4′-dimethylaminomethylphenyl) -1,2,4-triazoline-3,5-dione 4-bis(4′-dimethylaminomethylphenyl) -1,2,4-triazoline-3,5-dione.
  • the crystal structure and purity of the solid triazolinedione compound of the present invention obtained by the production method of the present invention should be confirmed by infrared spectroscopy (IR), ultraviolet spectroscopy (UV), 1 H-NMR analysis, etc. Can do.
  • the storage temperature of the solid triazolinedione compound of the present invention obtained by the production method of the present invention is suitably a low temperature of ⁇ 20 ° C. or lower.
  • reaction formula A typical reaction formula of the method for producing the solid triazolinedione compound of the present invention is shown below. The following is an example of the present invention, and the present invention is not limited to the following.
  • the triazolinedione solution used in the method for producing a solid triazolinedione compound of the present invention is a solution in which a triazolinedione compound represented by the following formula (1) is dissolved in an aprotic good solvent.
  • the method for obtaining the triazolinedione solution is not particularly limited.
  • 4- (4′-dimethylaminophenyl) -1,2,4- An example is a method in which triazolidine-3,5-dione (DMU) is oxidized with iodobenzene diacetate (PIDA) in ethyl acetate (EA), and the resulting reaction solution is converted to a triazolinedione solution.
  • DMU triazolidine-3,5-dione
  • PIDA iodobenzene diacetate
  • EA ethyl acetate
  • the triazolidinedione compound used as a raw material is a compound containing a urazole group represented by the following formula (2) It is preferable that That is, a compound having a 1,2,4-triazolidine-3,5-dione group is preferable.
  • R 1 is an organic group.
  • R 1 in the formula (2) is the same group as R 1 in the formula (1).
  • aprotic good solvent examples include esters, halogen-containing hydrocarbons, aromatic hydrocarbons, ketones, amides, alkyl nitriles, dialkyl ethers, and ureas. It is preferable that it is at least one selected from more.
  • the “aprotic good solvent” in the present invention is a solvent that does not contain a hydrogen atom that is easily dissociated and easily dissolves a solid, and the solubility of the triazolinedione compound is 0.001 g / 100 mL or more. Means.
  • the solid triazolinedione compound of the present invention from the viewpoint of the stability of the triazolinedione compound to be produced, among these, methylene chloride, acetonitrile, 1,2-dimethoxyethane, chlorobenzene, toluene, and It is preferable to use at least one selected from the group consisting of ethyl acetate.
  • examples of the oxidizing agent for oxidizing the triazolidinedione compound include hypervalent iodine compounds represented by the following formula.
  • the above iodobenzene diacetate (PIDA) is an example of a hypervalent iodine compound represented by the following formula.
  • X and Y are the same or different from each other, a group selected from the group consisting of a hydroxy group, an alkoxy group, an acyloxy group, an acylamino group, a tosylamino group, a mesylamino group, a sulfonyloxy group, and a halogen group;
  • the triazolinedione solution is a reaction solution obtained by the oxidation step of the triazolidinedione compound
  • the triazolinedione compound represented by the above formula (2) is used. It is preferable to oxidize the azolidinedione compound using an oxidizing agent that does not produce an acid to produce a reaction solution that has undergone an oxidation step to obtain the triazolinedione compound represented by the above formula (1).
  • Non-Patent Documents 1 to 4 which is conventionally known as an oxidizing agent
  • acetic acid is generated as a by-product.
  • the by-produced acetic acid may decompose the generated triazolinedione compound.
  • washing with an alkaline aqueous solution is performed for the purpose of removing acetic acid produced as a by-product, the triazolinedione compound is decomposed even by alkali.
  • the triazolinedione solution in the present invention is used as a reaction solution obtained through the oxidation step of the triazolidinedione compound, it is preferable to use a solution that does not produce an acid as an oxidizing agent.
  • iodosobenzene (PIO) described in the following reaction formula is preferably used.
  • the amount of the oxidizing agent to be used is preferably 1.0 to 5.0 molar equivalents, more preferably 1.0 to 2.0 molar equivalents relative to the triazolidinedione compound as a raw material. .
  • a range of 1.0 to 5.0 molar equivalents is preferable because it is easy to remove the oxidant and decomposition products present after the reaction.
  • the oxidation temperature is preferably in the range of ⁇ 10 to 50 ° C., more preferably 0 to 30 ° C. It is a range.
  • the reaction time for oxidation is preferably 1 minute to 48 hours, more preferably 10 minutes to 17 hours. It is a range of time.
  • the oxidation step is preferably performed under light shielding.
  • generated triazoline dione compound can be suppressed.
  • water may be produced as a by-product.
  • PIO iodosobenzene
  • water is by-produced. If water is present in the reaction system, the generated triazolidinedione compound may be hydrolyzed or cause a side reaction. For this reason, it is preferable to implement an oxidation process, removing the water byproduced.
  • the method for removing water is not particularly limited, but for example, a method for removing water while dry distillation using a solvent azeotropic with water, while a dehydrating agent such as molecular sieve or magnesium sulfate coexists.
  • the method of performing reaction etc. are mentioned.
  • a method in which the reaction is carried out in the presence of a dehydrating agent is preferable because the reaction temperature can be relatively low.
  • the amount of the dehydrating agent to be coexisted may be appropriately determined in consideration of the dehydrating efficiency of the dehydrating agent and the amount of water produced by the reaction.
  • the triazolinedione solution may be concentrated prior to contacting the triazolinedione solution with a hydrocarbon-based poor solvent having 5 to 15 carbon atoms.
  • Triazolidinedione compounds often have low solubility in organic solvents, and there is a tendency that a large amount of organic solvent is used to advance the oxidation step quickly.
  • the degree of concentration is not particularly limited, but it is preferable that the triazolinedione compound starts to precipitate.
  • the concentration of the triazolinedione compound is preferably concentrated to 100 to 50,000 parts by volume with respect to 100 parts by mass of the theoretical amount of triazolinedione compound produced by the reaction.
  • the method for concentrating the triazolinedione solution is not particularly limited, and examples thereof include a method such as concentration under reduced pressure.
  • the hydrocarbon-based poor solvent used in the contacting step is a hydrocarbon-based poor solvent having 5 to 15 carbon atoms.
  • the “hydrocarbon poor solvent” is a compound having a hydrocarbon skeleton, which means a solvent that hardly dissolves a solid and has a triazolinedione compound solubility of 0.0005 g / 100 mL or less.
  • hydrocarbon-based poor solvents examples include hexane, heptane, pentane, cyclopentane, cyclohexane, isohexane, isooctane, decane, and the like.
  • the ability to crystallize a triazolinedione compound is included. From the viewpoint of being high and being stable with respect to the triazolinedione compound, it is preferable to use hexane or heptane.
  • the aprotic good solvent contained in the triazolinedione solution and the hydrocarbon-based poor solvent to be brought into contact with the triazolinedione solution are brought into contact with the triazolinedione solution and the hydrocarbon-based poor solvent.
  • the mass is set to a specific range with respect to the triazolinedione compound represented by the above formula (1), and the mass ratio of the aprotic good solvent to the hydrocarbon poor solvent is set to a specific range. preferable.
  • the triazolinedione solution is prepared such that the aprotic good solvent is 100 to 200,000 parts by mass with respect to 100 parts by mass of the triazolinedione compound represented by the above formula (1).
  • the hydrocarbon-based poor solvent to be contacted is 2500 to 500,000 parts by mass with respect to 100 parts by mass of the triazolinedione compound contained in the triazolinedione solution.
  • a triazolinedione solution in which the aprotic good solvent is 500 to 200,000 parts by mass with respect to 100 parts by mass of the triazolinedione compound represented by the above formula (1) is used.
  • the above-mentioned hydrocarbon poor solvent having 5 to 15 carbon atoms is 10000 to 100,000 parts by mass with respect to 100 parts by mass of the triazolinedione compound represented by the above formula (1).
  • the mass ratio of the aprotic good solvent and the hydrocarbon poor solvent is more preferably 1: 0.5 to 1:10.
  • the temperature at which the triazolinedione solution is brought into contact with the hydrocarbon poor solvent having 5 to 15 carbon atoms needs to be in the range of ⁇ 25 to 30 ° C., and is in the range of ⁇ 10 to 25 ° C. It is preferable.
  • the temperature is in the range of ⁇ 25 to 30 ° C., decomposition of the triazolinedione compound can be suppressed and solidification can be achieved.
  • the time for contacting the triazolinedione solution and the hydrocarbon poor solvent having 5 to 15 carbon atoms in the contacting step is preferably 30 minutes to 24 hours, more preferably 30 minutes to 17 hours. It is.
  • the contact step the contact between the triazolinedione solution and the hydrocarbon poor solvent having 5 to 15 carbon atoms needs to be performed under light shielding.
  • disassembly of a triazoline dione compound can be suppressed.
  • a novel method for producing a triazolinedione compound according to the present invention is a method for producing a triazolinedione compound in which a triazolinedione compound is obtained by oxidizing a triazolidinedione compound, which is represented by the following formula (2). It includes an oxidation step of oxidizing the azolidinedione compound using an oxidizing agent that does not produce an acid to obtain a triazolinedione compound represented by the following formula (1).
  • R 1 is an organic group.
  • R 1 is an organic group.
  • reaction solution obtained in the oxidation step in the novel method for producing a triazolinedione compound of the present invention can be used as a triazolinedione solution in the above-described method for producing a solid triazolinedione compound of the present invention.
  • reaction formula A typical reaction formula for the oxidation step in the novel method for producing a triazolinedione compound of the present invention is shown below. The following is an example of the present invention, and the present invention is not limited to the following.
  • the triazolidinedione compound of the above formula (2) used as the starting material is the above-described production method of the solid triazolinedione compound of the present invention.
  • the triazolinedione solution is used as a reaction solution obtained by the oxidation step of the triazolidinedione compound, it is the same as the triazolidinedione compound as a preferred raw material.
  • the compound of the above formula (2) that is a starting material in the oxidation step is a triazolidinedione compound containing a urazole group, that is, a 1,2,4-triazolidine-3,5-dione group. It has a triazolidinedione compound.
  • R 1 in the above formula (2) may contain an oxygen atom or a nitrogen atom, and may be the same or different, a disubstituted amino group substituted with an alkyl group, an aralkyl group, or an aryl group, a nitro group, an azide group, Alkoxy group, halogen group, alkylthio group, sulfonyl group, phosphoric acid group, carboxyl group, ester group, nitrile group, amide group, ferrocenyl group, or optionally substituted quinoxalinyl group, phenyl group, nitrogen-containing Those selected from the group consisting of a heterocyclic group and an alkyl group are preferred.
  • R 1 in the above formula (2) is a substituted or unsubstituted group selected from the group consisting of a phenyl group, a methyl group, and an ethyl group.
  • R 1 in the above formula (2) is a phenyl group, a methyl group, a 2- (6,7-dimethoxy-4-methyl-3-oxo-3,4-dihydroquinoxalinyl) ethyl group, 4 Particularly preferred is a group selected from the group consisting of -nitrophenyl group, ferrocenylmethyl group, 4-dimethylaminophenyl group, and 4-dimethylaminomethylphenyl group.
  • the triazolinedione compound represented by the above formula (1) obtained by oxidizing the triazolidinedione compound represented by the above formula (2) by the novel method for producing a triazolinedione compound of the present invention 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD), 4-methyl-1,2,4-triazoline-3,5-dione (MTAD), 4- [2- (6 , 7-dimethoxy-4-methyl-3-oxo-3,4-dihydroquinoxalinyl) ethyl] -1,2,4-triazoline-3,5-dione (DMEQTAD), 4- (4-nitrophenyl) ) -1,2,4-triazoline-3,5-dione (NPTAD), 4-ferrocenylmethyl-1,2,4-triazoline-3,5-dione (FMTAD), 4- (6-quino) ) -1,2,4-triazoline-3,5-dione (QTAD), 4- (4′-die
  • R 1 in the above formula (2) is most preferably a 4-dimethylaminophenyl group or a 4-dimethylaminomethylphenyl group. That is, the triazolidinedione compound represented by the above formula (2) is most preferably 4- (4′-dimethylaminophenyl) -1,2,4-triazolidine-3,5-dione (DMU).
  • the triazolinedione compound obtained by the novel method for producing a triazolinedione compound of the present invention is 4- (4′-dimethylaminophenyl) -1,2,4-triazoline-3,5-dione (DAPTAD). Or 4- (4′-dimethylaminomethylphenyl) -1,2,4-triazoline-3,5-dione.
  • the oxidizing agent used is an oxidizing agent that does not produce an acid.
  • a triazolinedione compound is obtained by oxidizing a triazolidinedione compound using iodobenzene diacetate (PIDA) described in Non-Patent Documents 1 to 4, which is conventionally known as an oxidizing agent.
  • PIDA iodobenzene diacetate
  • acetic acid is generated as a by-product.
  • the washing with an alkaline aqueous solution is performed to remove acetic acid produced as a byproduct, the obtained triazolinedione compound is decomposed.
  • an oxidizing agent that does not produce an acid as a by-product is used.
  • the oxidizing agent that does not produce an acid include a hypervalent iodine compound represented by the following formula.
  • X and Y are one oxygen atom or a group selected from the group consisting of a hydroxy group, an alkoxy group, an acylamino group, a tosylamino group, and a halogen group, which are the same or different from each other, and Ar is (A group selected from the group consisting of a phenyl group, a heterocyclic group, and a phenyl group substituted with an alkyl group, an alkoxy group, a halogen group, etc.)
  • iodosobenzene PIO which is a compound described in the above reaction formula.
  • the amount of the oxidizing agent to be used is preferably 1.0 to 5.0 molar equivalents, more preferably 1.0 to 2.0 molar equivalents relative to the triazolidinedione compound as a raw material. .
  • a range of 1.0 to 5.0 molar equivalents is preferable because it is easy to remove the oxidant and decomposition products present after the reaction.
  • water may be produced as a by-product.
  • PIO iodosobenzene
  • water is by-produced. If water is present in the reaction system, the generated triazolidinedione compound may be hydrolyzed or cause a side reaction. For this reason, it is preferable to implement an oxidation process, removing the water byproduced.
  • the method for removing water is not particularly limited, but for example, a method for removing water while dry distillation using a solvent azeotropic with water, while a dehydrating agent such as molecular sieve or magnesium sulfate coexists.
  • the method of performing reaction etc. are mentioned.
  • a method in which the reaction is carried out in the presence of a dehydrating agent is preferable because the reaction temperature can be relatively low.
  • the amount of the dehydrating agent to be coexisted may be appropriately determined in consideration of the dehydrating efficiency of the dehydrating agent and the amount of water produced by the reaction.
  • the triazolinedione compound is obtained by oxidizing the triazolidinedione compound in an aprotic good solvent.
  • the same solvent as that used for the triazolinedione solution in the above-described method for producing a solid triazolinedione compound can be used. Specifically, it is at least one selected from the group consisting of esters, halogen-containing hydrocarbons, aromatic hydrocarbons, ketones, amides, alkyl nitriles, dialkyl ethers, and ureas. Is preferred.
  • NMP N-methylpyrrolidone
  • DMI 1,3-dimethyl-2-imidazolidinone
  • methylene chloride is selected from the viewpoints of promotion of oxidation reaction, stability to oxidation reaction, and stability of the generated triazolinedione compound. It is preferable to use at least one selected from the group consisting of acetonitrile, 1,2-dimethoxyethane, toluene, and ethyl acetate.
  • the above-mentioned aprotic good solvent is 100 to 200,000 parts by mass with respect to 100 parts by mass of the triazolidinedione compound represented by the above formula (2). It mixes so that it may become a part. More preferably, the aprotic good solvent is blended in an amount of 100 to 100,000 parts by mass per 100 parts by mass of the triazolidinedione compound. A solvent amount in this range is preferable because triazolinedione can be dissolved without heating.
  • the temperature in the oxidation step is preferably in the range of ⁇ 10 to 50 ° C., more preferably in the range of 0 to 30 ° C.
  • the reaction time in the oxidation step is preferably 1 minute to 48 hours, more preferably 10 minutes to 17 hours.
  • the oxidation step is preferably performed under light shielding.
  • generated triazoline dione compound can be suppressed.
  • the method for producing a solid triazolinedione compound of the present invention can be applied, or the solid triazolinedione compound of the present invention, or obtained by the novel method for producing the triazolinedione compound of the present invention (wherein The triazolinedione compound represented by 1) is reacted with the diene compound represented by the following formula (3) to obtain the ene compound represented by the following formula (4), and then analyzed for the amount of the ene compound. Can be analyzed.
  • the analysis method is not particularly limited, and examples thereof include high performance liquid chromatography (HPLC) analysis.
  • HPLC high performance liquid chromatography
  • R 2 , R 3 , R 4 , R 5 , R 6 , R 7 are the same as or different from each other and may contain an oxygen atom, a nitrogen atom, a sulfur atom, or a phosphorus atom, having 1 to 100 alkyl groups, aralkyl groups, phenyl groups, or heterocyclic groups.
  • R 1 is the same as in the above formula (1), and R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 are the same as in the above formula (3). )
  • the diene compound represented by the above formula (3) is not particularly limited.
  • TTB trans, trans-diphenylbutadiene
  • HPLC high performance liquid chromatography
  • the triazolinedione compound represented by the above formula (1) is 4- (4′-dimethylaminophenyl) -1,2,4-triazoline-3,5-dione (DAPTAD), which is represented by the above formula (3).
  • DAPTAD 4- (4′-dimethylaminophenyl) -1,2,4-triazoline-3,5-dione
  • TTB trans, trans-diphenylbutadiene
  • the ene compound obtained by the reaction is cis-2- (4-dimethylaminophenyl) -5, represented by the following formula (5): 8-Diphenyl-1H- [1,2,4] triazolo [1,2-a] pyridazine-1,3 (2H) -dione (DAPTAC).
  • TTB trans, trans-diphenylbutadiene
  • DAPTAC 8-Diphenyl-1H- [1,2,4] triazolo [1,2-a] pyridazine-1,3
  • DAPTAC as a raw material for DAPTAC can be quantified.
  • HPLC high performance liquid chromatography
  • the DAPTAC in the solution was subjected to high performance liquid chromatography (HPLC) analysis under the following conditions to quantify DAPTAD as a raw material for DAPTAC, and finally calculate the assay yield of DAPTAD.
  • HPLC high performance liquid chromatography
  • ⁇ Reference Example 5> Method using dimethyl sulfoxide (DMSO) as the solvent Except for using dimethyl sulfoxide (DMSO) as the solvent, DAPTAC was synthesized by the same method as in Reference Example 1, and assay yield was calculated by high performance liquid chromatography (HPLC) analysis. did. The assay yield was 11.7%.
  • DMSO dimethyl sulfoxide
  • the 1,2-dimethoxyethane-hexane mixed solution in which 4- (4′-dimethylaminophenyl) -1,2,4-triazoline-3,5-dione (DAPTAD) was crystallized was filtered, and the resulting solid was filtered. After washing with hexane, solid DAPTAD was obtained by drying under reduced pressure at room temperature. The obtained solid DAPTAD was purple crystals, 0.24 g, and a yield of 82%.
  • the DAPTAC in the solution was subjected to high performance liquid chromatography (HPLC) analysis under the following conditions to quantify DAPTAD as a raw material for DAPTAC, and finally calculate the assay yield of DAPTAD.
  • HPLC high performance liquid chromatography
  • Example 3 Example of performing oxidation step at 50 ° C. [Preparation of triazolinedione solution (oxidation of triazolidinedione compound)] Except that the DMU oxidation reaction was carried out by stirring at a temperature of 50 ° C. for 2 hours, the DMU oxidation reaction was carried out in the same manner as in Example 2, and 4- (4′-dimethylaminophenyl) -1,2,4 A 1,2-dimethoxyethane solution in which triazoline-3,5-dione (DAPTAD) was dissolved was obtained.
  • DAPTAD triazoline-3,5-dione
  • DAPTAC Assay yield
  • DAPTAC was synthesized by dissolving 0.099 g of the obtained solid DAPTAD in 300 mL of 1,2-dimethoxyethane, adding 276 mg (1.34 mmol) of TTB, and stirring at 20 ° C. for 30 minutes.
  • Example 2 The assay yield of DAPTAD was calculated by carrying out high performance liquid chromatography (HPLC) analysis in the same manner as described above. The assay yield was 33.1%.
  • ⁇ Comparative Example 2 Example of setting the crystallization temperature (contact temperature) in the contacting step to 50 ° C. [Preparation of triazolinedione solution (oxidation of triazolidinedione compound)] DMU oxidation reaction was carried out in the same manner as in Example 2, and 1,2-dimethoxyethane in which 4- (4′-dimethylaminophenyl) -1,2,4-triazoline-3,5-dione (DAPTAD) was dissolved A solution was obtained.
  • DAPTAD 4- (4′-dimethylaminophenyl) -1,2,4-triazoline-3,5-dione
  • the assay yield of DAPTAD was calculated by performing high performance liquid chromatography (HPLC) analysis on the TTB adduct in the solution in the same manner as in Example 2.
  • the assay yield of DAPTAD was 0%.
  • the assay yield of DAPTAD was calculated by performing high performance liquid chromatography (HPLC) analysis on the TTB adduct in the solution in the same manner as in Example 2.
  • the assay yield of DAPTAD was 0%.
  • the ethyl acetate-hexane mixed solution in which the solid crystallized was filtered, and the obtained solid was washed with hexane and then dried under reduced pressure at room temperature for 1 hour to obtain 0.23 g of a solid.
  • the obtained solid was analyzed by 1 H-NMR and found not to be the target product (DAPTAD).
  • Example using calcium hypochlorite as oxidant [Preparation of triazolinedione solution (oxidation of triazolidinedione compound)] A suspension of 0.50 g (2.23 mmol) of DMU in ethyl acetate (500 mL) was obtained. To the obtained suspension, 0.65 g (4.55 mmol) of calcium hypochlorite was added under shading, and the mixture was stirred at 20 ° C. for 3 hours to attempt an oxidation reaction of DMU. The resulting ethyl acetate solution turned yellow.
  • the ethyl acetate-hexane mixed solution in which the solid crystallized was filtered, and the obtained solid was washed with hexane and then dried under reduced pressure at room temperature to obtain 0.42 g of a solid.
  • the obtained solid was analyzed by 1 H-NMR and found not to be the target product (DAPTAD).
  • Example 7 [Preparation of triazolinedione solution (oxidation of triazolidinedione compound)] 4- (4′-dimethylaminophenyl) -1,2,4-triazolidine-3,5-dione (DMU) 0.50 g (2.27 mmol) was dissolved in ethyl acetate (500 mL) from which dissolved oxygen was removed by nitrogen bubbling. A suspension was obtained. To the obtained suspension, 0.50 g (2.27 mmol) of iodosobenzene (PIO) and 2.0 g of magnesium sulfate (anhydrous) as a dehydrating agent were added in a light-shielded, nitrogen stream, and 2 at 20 ° C.
  • PIO iodosobenzene
  • magnesium sulfate anhydrous
  • the DMU oxidation reaction was carried out by stirring for a period of time to obtain an ethyl acetate solution in which 4- (4′-dimethylaminophenyl) -1,2,4-triazoline-3,5-dione (DAPTAD) was dissolved.
  • DAPTAD 4- (4′-dimethylaminophenyl) -1,2,4-triazoline-3,5-dione
  • DAPTAD 4- (4′-dimethylaminophenyl) -1,2,4-triazoline-3,5-dione
  • Example 8 [Preparation of triazolinedione solution (oxidation of triazolidinedione compound)] Ethyl acetate (2000 mL) obtained by removing 2.00 g (9.08 mmol) of 4- (4′-dimethylaminophenyl) -1,2,4-triazolidine-3,5-dione (DMU) by nitrogen bubbling to remove dissolved oxygen A suspension was obtained. To the obtained suspension, 2.00 g (9.08 mmol) of iodosobenzene (PIO) and 8.0 g of magnesium sulfate (anhydrous) as a dehydrating agent were added in the dark and under a nitrogen stream.
  • PIO iodosobenzene
  • magnesium sulfate anhydrous
  • the DMU oxidation reaction was carried out by stirring for a period of time to obtain an ethyl acetate solution in which 4- (4′-dimethylaminophenyl) -1,2,4-triazoline-3,5-dione (DAPTAD) was dissolved.
  • DAPTAD 4- (4′-dimethylaminophenyl) -1,2,4-triazoline-3,5-dione
  • DAPTAD 4- (4′-dimethylaminophenyl) -1,2,4-triazoline-3,5-dione

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

DAPTADを含むトリアゾリンジオン化合物を、反応液から固体状で単離する方法、および単離された固体状のトリアゾリンジオン化合物、ならびにトリアゾリンジオン化合物の新規な製造方法を提供する。 DAPTADを含むトリアゾリンジオン化合物が溶解しているトリアゾリンジオン溶液と、炭素数5~15の炭化水素系貧溶媒とを接触させて、固体状のトリアゾリンジオン化合物を得る。また、トリアゾリジンジオン化合物を、酸を副生しない酸化剤を用いて酸化して、トリアゾリンジオン化合物を得る。

Description

固体状トリアゾリンジオン化合物の製造方法および固体状トリアゾリンジオン化合物、ならびにトリアゾリンジオン化合物の製造方法
 本発明は、固体状トリアゾリンジオン化合物の製造方法および固体状トリアゾリンジオン化合物、ならびにトリアゾリンジオン化合物の製造方法に関する。
 近年、血中のビタミンDやビタミンD代謝物の分析が必要とされている。ビタミンDには、体内において、カルシウムとリンの吸収を促進する働きや、血液中のカルシウム濃度を保ち丈夫な骨をつくる働き等がある。また、ビタミンD代謝物は、細胞の分化・増殖、ホルモンの産生・分泌、免疫反応等に関与するタンパク質の発現制御に関与することが知られている。
 しかしながら、血中のビタミンD代謝物は微量成分であるため、測定感度が不足する問題があった。そこで、クックソン(Cookson)型誘導体化試薬であるPTAD(4-フェニル-1,2,4-トリアゾリン-3,5-ジオン)等を用いて誘導体化し、その後に当該誘導体を分析する方法が提案されている(特許文献1参照)。
 また、さらなる感度向上を可能とする新規なクックソン型誘導体化試薬として、DAPTAD(4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン)が提案されている(非特許文献1~4参照)。
 DAPTADにより誘導体化されたビタミンDは、誘導体化前と比較して約100倍の感度となり、また、従来のPTADと比較しても約10倍の感度となる。また、DAPTADによる誘導体は、構造異性体を区別して定量可能となるため、選択性をさらに向上することができる。
特開2015-166740号公報
S.Ogawa,et al., Rapid Commun.Mass Spectrom, 27(2013) 2453-2460 S.Ogawa,et al., Biomed.Chromatgr., 30(2016) 938-945 S.Ogawa,et al., J.Pharm.Biomed.Anal., 136(2017) 126-133 K.D.Bruycker,et al., Chem.Rev., 116(2016) 3919-3974
 DAPTADは、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリジン-3,5-ジオン(DMU)を、酢酸エチル中にて、ヨードベンゼンジアセタート(PIDA)と酸化反応させて得られることが知られている(非特許文献1~4参照)。
 しかしながら、得られた反応液からDAPTADを単離することは困難であり(例えば、非特許文献1の第2456頁、右欄第2~4行参照)、DAPTADは反応液に溶解したままで、次反応に用いられていた。したがって、結晶としてDAPTADを単離する方法、および単離されたDAPTADそのものは、未だ知られていなかった。
 また、本発明者が試行錯誤したところ、PIDAを用いて酸化反応させる合成法では、DAPTADの生成と同時に酢酸が副生し、副生した酢酸は、DAPTADを分解する恐れがあった。一方で、副生した酢酸を除去する目的で、アルカリ水溶液による洗浄を実施すると、アルカリによってもDAPTADは分解してしまうことが判った。
 本発明は上記の背景技術に鑑みてなされたものであり、その目的は、DAPTADを含むトリアゾリンジオン化合物を、反応液から固体状で単離する方法、および単離された固体状のトリアゾリンジオン化合物、ならびにトリアゾリンジオン化合物の新規な製造方法を提供することにある。
 本発明者らは、DAPTADを含むトリアゾリンジオン化合物が溶解している溶液と、特定の溶媒とを接触させれば、トリアゾリンジオン化合物が結晶として単離できることを見出し、本発明を完成させるに至った。
 また、本発明者は、トリアゾリジンジオン化合物の酸化によりトリアゾリンジオン化合物を得るにあたり、酸を副生しない酸化剤を用いて酸化すれば、生成したトリアゾリンジオン化合物の分解を抑制できることに着目し、本発明を完成させるに至った。
 すなわち本発明は、下記式(1)で示されるトリアゾリンジオン化合物が非プロトン性良溶媒に溶解しているトリアゾリンジオン溶液と、炭素数5~15の炭化水素系貧溶媒とを、遮光下で、-25~30℃で接触させて、固体状のトリアゾリンジオン化合物を得る接触工程を含む、固体状トリアゾリンジオン化合物の製造方法である。
Figure JPOXMLDOC01-appb-C000006
 (式中、Rは有機基である。)
 前記非プロトン性良溶媒は、エステル類、ハロゲン含有炭化水素類、芳香族炭化水素類、ケトン類、アミド類、アルキルニトリル類、ジアルキルエーテル類、および尿素類からなる群より選択される少なくとも1種であってもよい。
 前記接触工程では、前記トリアゾリンジオン溶液における非プロトン性良溶媒を、前記式(1)で示されるトリアゾリンジオン化合物100質量部に対して100~200000質量部とし、前記炭化水素系貧溶媒を、前記式(1)で示されるトリアゾリンジオン化合物100質量部に対して2500~500000質量部とし、前記非プロトン性良溶媒と前記炭化水素系貧溶媒との質量比を1:0.05~1:10として、前記トリアゾリンジオン溶液と前記炭化水素系貧溶媒とを接触させてもよい。
 前記トリアゾリンジオン溶液は、下記式(2)で示されるトリアゾリジンジオン化合物を、酸を副生しない酸化剤を用いて酸化して、前記式(1)で示されるトリアゾリンジオン化合物を得る酸化工程を経て得てもよい。
Figure JPOXMLDOC01-appb-C000007
 (式中、Rは有機基である。)
 前記酸化剤は、ヨードソベンゼンであってもよい。
 前記酸化工程は、副生する水を除去しながら行ってもよい。
 前記酸化工程は、遮光下で行ってもよい。
 また別の本発明は、下記式(1)で示される固体状トリアゾリンジオン化合物である。
Figure JPOXMLDOC01-appb-C000008
(式中、Rは、以下の(a)、(b)、および(c)からなる群より選ばれる基である。
(a)酸素原子または窒素原子を含んでいてもよい、同一または異なる、アルキル基、アラルキル基、もしくはアリール基で置換されたジ置換アミノ基もしくはジ置換アミノアルキル基、ニトロ基、アジド基、アルコキシ基、ハロゲン基、アルキルチオ基、スルホニル基、リン酸基、カルボキシル基、エステル基、ニトリル基、アミド基、フェロセニル基、または置換基を有するキノキサリニル基を含む置換フェニル基
(b)酸素原子または窒素原子を含んでいてもよい、同一または異なる、アルキル基、アラルキル基、またはアリール基で置換されたジ置換アミノ基、ニトロ基、アジド基、アルコキシ基、ハロゲン基、アルキルチオ基、スルホニル基、リン酸基、カルボキシル基、エステル基、ニトリル基、アミド基、フェロセニル基、または置換基を有するキノキサリニル基を含んでいてもよい含窒素複素環基
(c)酸素原子または窒素原子を含んでいてもよい、同一または異なる、アルキル基、アラルキル基、またはアリール基で置換されたジ置換アミノ基、ニトロ基、アジド基、アルコキシ基、ハロゲン基、アルキルチオ基、スルホニル基、リン酸基、カルボキシル基、エステル基、ニトリル基、アミド基、フェロセニル基、または置換基を有するキノキサリニル基を含んでいてもよいアルキル基)
 前記式(1)におけるRは、4-ジメチルアミノフェニル基、または4-ジメチルアミノメチルフェニル基であってもよい。
 また別の本発明は、トリアゾリジンジオン化合物を酸化してトリアゾリンジオン化合物を得る、トリアゾリンジオン化合物の製造方法であって、下記式(2)で示されるトリアゾリジンジオン化合物を、酸を副生しない酸化剤を用いて酸化し、下記式(1)で示されるトリアゾリンジオン化合物を得る酸化工程を含む、トリアゾリンジオン化合物の製造方法である。
Figure JPOXMLDOC01-appb-C000009
 (式中、Rは有機基である。)
Figure JPOXMLDOC01-appb-C000010
(式中、Rは有機基である。)
 本発明によれば、従来単離ができなかったトリアゾリンジオン化合物を、結晶として固体で単離することができる。得られた固体状のトリアゾリンジオン化合物は、固体で保管できるため安定となる。また、溶液で保管する際の溶剤が不要となるため、溶剤の露出による発火等の危険性がなくなり、ハンドリングがより容易となる。さらに、従来、単離できなかったために反応液に含まれる溶媒の成分に影響を受けていたところ、溶解させる溶媒等の種類を自由に選択できるようになる。その結果、トリアゾリンジオン化合物の活用環境が格段に広がり、既存の用途のみならず、新規な用途への展開が期待できる。
 以下、本発明の実施形態について説明する。なお、以下に説明する実施形態は、本発明を限定するものではない。
 <固体状トリアゾリンジオン化合物の製造方法>
 本発明の固体状トリアゾリンジオン化合物の製造方法は、下記式(1)で示されるトリアゾリンジオン化合物が非プロトン性良溶媒に溶解しているトリアゾリンジオン溶液と、炭素数5~15の炭化水素系貧溶媒とを、遮光下で、-25~30℃で接触させて、固体状のトリアゾリンジオン化合物を得る接触工程を含む。
Figure JPOXMLDOC01-appb-C000011
 (式中、Rは有機基である。)
 本発明によれば、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)等、従来単離ができなかったトリアゾリンジオン化合物を、結晶として固体で単離することができる。
 [トリアゾリンジオン化合物]
 本発明の製造方法によって得られる、本発明の固体状トリアゾリンジオン化合物は、上記の式(1)で示される構造を有する化合物である。ここで、上記式(1)におけるRは、以下の(a)、(b)、および(c)からなる群より選ばれる基である。
 (a)酸素原子または窒素原子を含んでいてもよい、同一または異なる、アルキル基、アラルキル基、もしくはアリール基で置換されたジ置換アミノ基もしくはジ置換アミノアルキル基、ニトロ基、アジド基、アルコキシ基、ハロゲン基、アルキルチオ基、スルホニル基、リン酸基、カルボキシル基、エステル基、ニトリル基、アミド基、フェロセニル基、または置換基を有するキノキサリニル基を含む置換フェニル基。
 (b)酸素原子または窒素原子を含んでいてもよい、同一または異なる、アルキル基、アラルキル基、またはアリール基で置換されたジ置換アミノ基、ニトロ基、アジド基、アルコキシ基、ハロゲン基、アルキルチオ基、スルホニル基、リン酸基、カルボキシル基、エステル基、ニトリル基、アミド基、フェロセニル基、または置換基を有するキノキサリニル基を含んでいてもよい含窒素複素環基。
 (c)酸素原子または窒素原子を含んでいてもよい、同一または異なる、アルキル基、アラルキル基、またはアリール基で置換されたジ置換アミノ基、ニトロ基、アジド基、アルコキシ基、ハロゲン基、アルキルチオ基、スルホニル基、リン酸基、カルボキシル基、エステル基、ニトリル基、アミド基、フェロセニル基、または置換基を有するキノキサリニル基を含んでいてもよいアルキル基。
 さらに好ましくは、上記式(1)におけるRは、置換フェニル基、置換または非置換の、メチル基、およびエチル基からなる群より選ばれる基である。
 さらには、上記式(1)におけるRは、メチル基、2-(6,7-ジメトキシ-4-メチル-3-オキソ-3,4-ジヒドロキノキサリニル)エチル基、4-ニトロフェニル基、フェロセニルメチル基、4-ジメチルアミノフェニル基、および4-ジメチルアミノメチルフェニル基からなる群より選ばれる基であることが特に好ましい。
 すなわち、上記式(1)で示される、本発明の固体状トリアゾリンジオン化合物の製造方法が適用でき、本発明の固体状トリアゾリンジオン化合物となる化合物としては、4-メチル-1,2,4-トリアゾリン-3,5-ジオン(MTAD)、4-[2-(6,7-ジメトキシ-4-メチル-3-オキソ-3,4-ジヒドロキノキサリニル)エチル]-1,2,4-トリアゾリン-3,5-ジオン(DMEQTAD)、4-(4-ニトロフェニル)-1,2,4-トリアゾリン-3,5-ジオン(NPTAD)、4-フェロセニルメチル-1,2,4-トリアゾリン-3,5-ジオン(FMTAD)、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)、および4-(4’-ジメチルアミノメチルフェニル)-1,2,4-トリアゾリン-3,5-ジオンからなる群より選ばれる化合物であることが、特に好ましい。これらの化合物は、クックソン型誘導体化剤となりうる。
 さらに、上記式(1)におけるRは、4-ジメチルアミノフェニル基、または4-ジメチルアミノメチルフェニル基であることが最も好ましい。すなわち、本発明の固体状トリアゾリンジオン化合物の製造方法が適用でき、本発明の固体状トリアゾリンジオン化合物となる化合物としては、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)、または4-(4’-ジメチルアミノメチルフェニル)-1,2,4-トリアゾリン-3,5-ジオンであることが、最も好ましい。
 本発明の製造方法によって得られる、本発明の固体状トリアゾリンジオン化合物の結晶構造および純度は、赤外分光法(IR)、紫外分光法(UV)、H-NMR分析等によって確認することができる。なお、本発明の製造方法によって得られる、本発明の固体状トリアゾリンジオン化合物の保管温度は、-20℃以下の低温が適当である。
 [反応式]
 本発明の固体状トリアゾリンジオン化合物の製造方法の代表的な反応式を、以下に示す。なお、以下は本発明の一例であって、本発明は以下に限定されるものではない。
Figure JPOXMLDOC01-appb-C000012
 [トリアゾリンジオン溶液]
 本発明の固体状トリアゾリンジオン化合物の製造方法に用いるトリアゾリンジオン溶液は、下記式(1)で示されるトリアゾリンジオン化合物が、非プロトン性良溶媒に溶解している溶液である。
 トリアゾリンジオン溶液を得る方法としては、特に限定されるものではないが、例えば上記の反応式におけるi)に示されるように、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリジン-3,5-ジオン(DMU)を、酢酸エチル(EA)中にて、ヨードベンゼンジアセタート(PIDA)により酸化し、得られる反応液をトリアゾリンジオン溶液とする方法が挙げられる。
 すなわち本発明においては、トリアゾリジンジオン化合物を酸化剤により酸化してトリアゾリンジオン化合物を得る酸化工程を実施し、得られる反応液をそのまま、トリアゾリンジオン溶液として用いることも可能である。
 トリアゾリンジオン溶液を、トリアゾリジンジオン化合物の酸化工程により得られる反応液とする場合には、原料となるトリアゾリジンジオン化合物としては、下記式(2)で示される、ウラゾール基を含む化合物であることが好ましい。すなわち、1,2,4-トリアゾリジン-3,5-ジオン基を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
 (式中、Rは有機基である。)
 なお、上記式(2)におけるRは、上記式(1)におけるRと同様の基である。
 (非プロトン性良溶媒)
 トリアゾリンジオン化合物を溶解する非プロトン性良溶媒としては、エステル類、ハロゲン含有炭化水素類、芳香族炭化水素類、ケトン類、アミド類、アルキルニトリル類、ジアルキルエーテル類、および尿素類からなる群より選択される少なくとも1種であることが好ましい。
 ここで、本発明における「非プロトン性良溶媒」とは、解離し易い水素原子を含まず、固体を溶解し易い溶媒であり、トリアゾリンジオン化合物の溶解度が0.001g/100mL以上である溶媒を意味する。
 例えば、酢酸エチル、酢酸メチル、酢酸ブチル、酢酸イソプロピル、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2-メチルTHF)、1,4-ジオキサン、t-ブチルメチルエーテル、1,2-ジメトキシエタン、ジグライム、アセトン、ジエチルケトン、メチルエチルケトン、塩化メチレン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、クロロベンゼン、トルエン、キシレン、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMA)、ジメチルスルホキシド(DMSO)、N-メチルピロリドン(NMP)、1,3-ジメチル-2-イミダゾリジノン(DMI)等を挙げることができ、これらの非プロトン性良溶媒は、単独または混合溶媒として用いることができる。また、窒素バブリングを実施して、溶存酸素の除去を行ってもよい。
 本発明の固体状トリアゾリンジオン化合物の製造方法においては、生成するトリアゾリンジオン化合物の安定性の観点から、これらのなかでも、塩化メチレン、アセトニトリル、1,2-ジメトキシエタン、クロロベンゼン、トルエン、および酢酸エチルからなる群より選ばれる少なくとも1種を用いることが好ましい。
 (酸化剤)
 トリアゾリンジオン溶液を、トリアゾリジンジオン化合物の酸化工程により得られる反応液とする場合には、酸化剤としては、例えば、上記した反応式におけるi)に示される、ヨードベンゼンジアセタート(PIDA)が知られている(非特許文献1~4参照)。
 ここで、トリアゾリジンジオン化合物を酸化するための酸化剤としては、例えば、下記式で示される超原子価ヨウ素化合物を挙げることができる。上記したヨードベンゼンジアセタート(PIDA)は、下記式で示される超原子価ヨウ素化合物の一例となる。
Figure JPOXMLDOC01-appb-C000014
(式中、X,Yは、互いに同一または異なる、ヒドロキシ基、アルコキシ基、アシルオキシ基、アシルアミノ基、トシルアミノ基、メシルアミノ基、スルホニルオキシ基、およびハロゲン基からなる群より選ばれる基であり、Arは、フェニル基、複素環基、およびアルキル基、アルコキシ基、ハロゲン基等で置換されたフェニル基からなる群より選ばれる基を示す。)
 さらに、本発明の固体状トリアゾリンジオン化合物の製造方法において、トリアゾリンジオン溶液を、トリアゾリジンジオン化合物の酸化工程により得られる反応液とする場合には、上記式(2)で示されるトリアゾリジンジオン化合物を、酸を副生しない酸化剤を用いて酸化し、上記式(1)で示されるトリアゾリンジオン化合物を得る酸化工程を経た反応液とすることが好ましい。
 例えば、酸化剤として従来知られている、非特許文献1~4に記載されているヨードベンゼンジアセタート(PIDA)によって、トリアゾリジンジオン化合物を酸化する場合には、副生物として酢酸が発生する。そして、この副生した酢酸は、生成したトリアゾリンジオン化合物を分解する恐れがある。一方で、副生した酢酸を除去する目的で、アルカリ水溶液による洗浄を実施すると、アルカリによってもトリアゾリンジオン化合物は分解してしまう。
 そこで、本発明におけるトリアゾリンジオン溶液を、トリアゾリジンジオン化合物の酸化工程を経て得られる反応液とする場合には、酸化剤として酸を副生しないものを用いることが好ましい。
 酸を副生しない酸化剤としては、例えば、上記の超原子価ヨウ素化合物において、XおよびYが、併せて1つの酸素原子、または互いに同一もしくは異なる、ヒドロキシ基、アルコキシ基、アシルアミノ基、およびトシルアミノ基からなる群より選ばれる基である化合物が挙げられる。
 なお、本発明においては、例えば、下記の反応式に記載するヨードソベンゼン(PIO)を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000015
 用いる酸化剤の使用量は、原料となるトリアゾリジンジオン化合物に対して、1.0~5.0モル当量とすることが好ましく、1.0~2.0モル当量とすることがさらに好ましい。1.0~5.0モル当量の範囲であれば、反応後に存在している酸化剤およびその分解物の除去が容易となるため好ましい。
 (酸化条件)
 トリアゾリンジオン溶液をトリアゾリジンジオン化合物の酸化工程により得られる反応液とする場合には、酸化する温度は、-10~50℃の範囲とすることが好ましく、さらに好ましくは0~30℃の範囲である。
 トリアゾリンジオン溶液をトリアゾリジンジオン化合物の酸化工程により得られる反応液とする場合には、酸化するための反応時間は、1分~48時間とすることが好ましく、さらに好ましくは10分~17時間の範囲である。
 また、トリアゾリンジオン溶液をトリアゾリジンジオン化合物の酸化工程により得られる反応液とする場合には、酸化工程は、遮光下で行うことが好ましい。遮光下で実施することにより、生成したトリアゾリンジオン化合物の分解を抑制することができる。
 なお、酸化工程において、酸を副生しない酸化剤を用いる場合には、水を副生する場合がある。例えば、酸化剤として、上記のヨードソベンゼン(PIO)を用いる場合には、水が副生する。そして、反応系中に水が存在すると、生成したトリアゾリジンジオン化合物が加水分解したり、副反応の要因となる場合がある。このため、酸化工程は、副生する水を除去しながら実施することが好ましい。
 水を除去する方法としては、特に限定されるものではないが、例えば、水と共沸する溶媒を用いて乾留しながら水を除去する方法、モレキュラーシーブや硫酸マグネシウム等の脱水剤を共存させながら反応を行う方法等が挙げられる。これらの方法のなかでも反応温度を比較的低温とすることが可能である点から、脱水剤を共存させながら反応を行う方法が好ましい。共存させる脱水剤の使用量は、脱水剤の脱水効率及び反応によって生成する水の量を勘案し、適宜決定すればよい。
 (トリアゾリンジオン溶液の濃縮)
 本発明の固体状トリアゾリンジオン化合物の製造方法における接触工程においては、トリアゾリンジオン溶液と炭素数5~15の炭化水素系貧溶媒との接触に先立ち、トリアゾリンジオン溶液を濃縮してもよい。トリアゾリジンジオン化合物は有機溶媒に対する溶解度が低い場合が多く、酸化工程を速やかに進行させるために使用される有機溶媒が多量となる傾向がある。したがって、固体状トリアゾリンジオン化合物を高収率で得られる観点から、トリアゾリンジオン溶液と炭素数5~15の炭化水素系貧溶媒との接触に先立ち、トリアゾリンジオン溶液を濃縮することが好ましい。
 濃縮の度合いは、特に限定されるものではないが、トリアゾリンジオン化合物が析出を始める程度とすることが好ましい。例えば、トリアゾリンジオン化合物の濃度として、反応で生成するトリアゾリンジオン化合物の理論量100質量部に対して、100~50000容量部となるまで濃縮することが好ましい。
 トリアゾリンジオン溶液を濃縮する方法としては、特に限定されるものではないが、例えば、減圧濃縮等の方法が挙げられる。
 (炭化水素系貧溶媒)
 接触工程において用いられる炭化水素系貧溶媒は、炭素数5~15の炭化水素系貧溶媒である。ここで、「炭化水素系貧溶媒」とは、炭化水素骨格を有する化合物であり、固体を溶かし難く、トリアゾリンジオン化合物の溶解度が0.0005g/100mL以下である溶媒を意味する。
 このような炭化水素系貧溶媒としては、例えば、ヘキサン、ヘプタン、ペンタン、シクロペンタン、シクロヘキサン、イソヘキサン、イソオクタン、デカン等を挙げることができ、こらのなかでは、トリアゾリンジオン化合物の結晶化能が高いとともに、トリアゾリンジオン化合物に対して安定である観点から、ヘキサンまたはヘプタンを用いることが好ましい。
 (接触条件)
 本発明の接触工程では、トリアゾリンジオン溶液と炭化水素系貧溶媒とを接触させるにあたり、トリアゾリンジオン溶液に含まれる非プロトン性良溶媒と、トリアゾリンジオン溶液と接触させる炭化水素系貧溶媒の質量を、それぞれ、上記式(1)で示されるトリアゾリンジオン化合物に対して特定の範囲とするとともに、非プロトン性良溶媒と炭化水素系貧溶媒との質量比を特定の範囲とすることが好ましい。
 具体的には、トリアゾリンジオン溶液を、上記式(1)で示されるトリアゾリンジオン化合物100質量部に対して、上記の非プロトン性良溶媒が100~200000質量部となるものとし、これに接触させる上記の炭化水素系貧溶媒を、トリアゾリンジオン溶液に含まれるトリアゾリンジオン化合物100質量部に対して2500~500000質量部とする。かつ、非プロトン性良溶媒と炭化水素系貧溶媒との質量比を1:0.05~1:10として、トリアゾリンジオン溶液と炭化水素系貧溶媒とを接触させることが望ましい。これによって、トリアゾリンジオン化合物の結晶化を促進するとともに、母液へのロスを最小限とすることができる。
 さらに好ましくは、上記式(1)で示されるトリアゾリンジオン化合物100質量部に対して、上記した非プロトン性良溶媒が500~200000質量部となるトリアゾリンジオン溶液とする。また、上記した炭素数5~15の炭化水素系貧溶媒は、上記式(1)で示されるトリアゾリンジオン化合物100質量部に対して10000~100000質量部となるようにすることが、さらに好ましい。また、非プロトン性良溶媒と炭化水素系貧溶媒との質量比は、1:0.5~1:10とすることが、さらに好ましい。
 接触工程において、トリアゾリンジオン溶液と、炭素数5~15の炭化水素系貧溶媒とを接触させる温度は、-25~30℃の範囲とする必要があり、-10~25℃の範囲とすることが好ましい。-25~30℃の範囲とすれば、トリアゾリンジオン化合物の分解を抑制して、固体化することができる。
 また、接触工程においてトリアゾリンジオン溶液と、炭素数5~15の炭化水素系貧溶媒とを接触させる時間は、30分~24時間とすることが好ましく、さらに好ましくは30分~17時間の範囲である。
 また、接触工程においてトリアゾリンジオン溶液と、炭素数5~15の炭化水素系貧溶媒との接触は、遮光下で行うことが必要である。遮光下で実施することにより、トリアゾリンジオン化合物の分解を抑制することができる。
 <トリアゾリンジオン化合物の製造方法>
 本発明のトリアゾリンジオン化合物の新規な製造方法は、トリアゾリジンジオン化合物を酸化してトリアゾリンジオン化合物を得る、トリアゾリンジオン化合物の製造方法であって、下記式(2)で示されるトリアゾリジンジオン化合物を、酸を副生しない酸化剤を用いて酸化し、下記式(1)で示されるトリアゾリンジオン化合物を得る酸化工程を含む。
Figure JPOXMLDOC01-appb-C000016
 (式中、Rは有機基である。)
Figure JPOXMLDOC01-appb-C000017
 (式中、Rは有機基である。)
 [酸化工程]
 本発明のトリアゾリンジオン化合物の新規な製造方法における酸化工程で得られる反応液は、上記した本発明の固体状トリアゾリンジオン化合物の製造方法において、トリアゾリンジオン溶液として用いることが可能である。
 (反応式)
 本発明のトリアゾリンジオン化合物の新規な製造方法における酸化工程について、代表的な反応式を、以下に示す。なお、以下は本発明の一例であって、本発明は以下に限定されるものではない。
Figure JPOXMLDOC01-appb-C000018
 (トリアゾリジンジオン化合物)
 本発明のトリアゾリンジオン化合物の新規な製造方法における酸化工程において、出発物質となる上記式(2)のトリアゾリジンジオン化合物は、上記した本発明の固体状トリアゾリンジオン化合物の製造方法において、トリアゾリンジオン溶液を、トリアゾリジンジオン化合物の酸化工程により得られる反応液とする場合に、好ましい原料となるトリアゾリジンジオン化合物と同一である。
 具体的には、酸化工程において出発物質となる上記式(2)の化合物は、ウラゾール基を含むトリアゾリジンジオン化合物であり、すなわち、1,2,4-トリアゾリジン-3,5-ジオン基を有するトリアゾリジンジオン化合物である。
 上記式(2)におけるRは、酸素原子または窒素原子を含んでいてもよい、同一または異なる、アルキル基、アラルキル基、またはアリール基で置換されたジ置換アミノ基、ニトロ基、アジド基、アルコキシ基、ハロゲン基、アルキルチオ基、スルホニル基、リン酸基、カルボキシル基、エステル基、ニトリル基、アミド基、フェロセニル基、または置換基を有するキノキサリニル基を含んでいてもよい、フェニル基、含窒素複素環基、およびアルキル基からなる群より選ばれるものが好ましい。
 さらに好ましくは、上記式(2)におけるRは、置換または非置換の、フェニル基、メチル基、およびエチル基からなる群より選ばれる基である。
 さらには、上記式(2)におけるRは、フェニル基、メチル基、2-(6,7-ジメトキシ-4-メチル-3-オキソ-3,4-ジヒドロキノキサリニル)エチル基、4-ニトロフェニル基、フェロセニルメチル基、4-ジメチルアミノフェニル基、および4-ジメチルアミノメチルフェニル基からなる群より選ばれる基であることが特に好ましい。
 したがって、本発明のトリアゾリンジオン化合物の新規な製造方法によって、上記式(2)で示されるトリアゾリジンジオン化合物を酸化して得られる、上記式(1)で示されるトリアゾリンジオン化合物としては、4-フェニル-1,2,4-トリアゾリン-3,5-ジオン(PTAD)、4-メチル-1,2,4-トリアゾリン-3,5-ジオン(MTAD)、4-[2-(6,7-ジメトキシ-4-メチル-3-オキソ-3,4-ジヒドロキノキサリニル)エチル]-1,2,4-トリアゾリン-3,5-ジオン(DMEQTAD)、4-(4-ニトロフェニル)-1,2,4-トリアゾリン-3,5-ジオン(NPTAD)、4-フェロセニルメチル-1,2,4-トリアゾリン-3,5-ジオン(FMTAD)、4-(6-キノリル)-1,2,4-トリアゾリン-3,5-ジオン(QTAD),4-(4’-ジエチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DEAPTAD)、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)、および4-(4’-ジメチルアミノメチルフェニル)-1,2,4-トリアゾリン-3,5-ジオンからなる群より選ばれる化合物であることが、特に好ましい。これらの化合物は、クックソン型誘導体化剤となりうる。
 さらに、上記式(2)におけるRは、4-ジメチルアミノフェニル基、または4-ジメチルアミノメチルフェニル基であることが最も好ましい。すなわち、上記式(2)で示されるトリアゾリジンジオン化合物としては、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリジン-3,5-ジオン(DMU)であることが最も好ましく、本発明のトリアゾリンジオン化合物の新規な製造方法によって得られるトリアゾリンジオン化合物としては、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)、または4-(4’-ジメチルアミノメチルフェニル)-1,2,4-トリアゾリン-3,5-ジオンであることが、最も好ましい。
 (酸化剤)
 本発明のトリアゾリンジオン化合物の新規な製造方法における酸化工程において、用いる酸化剤は、酸を副生しない酸化剤である。
 例えば、酸化剤として従来知られている、非特許文献1~4に記載されているヨードベンゼンジアセタート(PIDA)を使用して、トリアゾリジンジオン化合物を酸化してトリアゾリンジオン化合物を得る場合には、副生物として酢酸が発生する。そして、副生した酢酸を除去するために、アルカリ水溶液にて洗浄を実施すると、得られたトリアゾリンジオン化合物が分解してしまう。
 そこで、本発明のトリアゾリンジオン化合物の新規な製造方法における酸化工程においては、酸化剤として酸を副生しないものを用いる。酸を副生しない酸化剤としては、例えば、下記式で示される超原子価ヨウ素化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000019
(式中、X,Yは、併せて1つの酸素原子、または互いに同一もしくは異なる、ヒドロキシ基、アルコキシ基、アシルアミノ基、トシルアミノ基、およびハロゲン基からなる群より選ばれる基であり、Arは、フェニル基、複素環基、およびアルキル基、アルコキシ基、ハロゲン基等で置換されたフェニル基からなる群より選ばれる基を示す。)
 本発明のトリアゾリンジオン化合物の新規な製造方法における酸化工程においては、例えば、上記した反応式に記載された化合物であるヨードソベンゼン(PIO)を用いることが好ましい。
 用いる酸化剤の使用量は、原料となるトリアゾリジンジオン化合物に対して、1.0~5.0モル当量とすることが好ましく、1.0~2.0モル当量とすることがさらに好ましい。1.0~5.0モル当量の範囲であれば、反応後に存在している酸化剤およびその分解物の除去が容易となるため好ましい。
 なお、酸化工程において、酸を副生しない酸化剤を用いると、水を副生する場合がある。例えば、酸化剤として、上記のヨードソベンゼン(PIO)を用いる場合には、水が副生する。そして、反応系中に水が存在すると、生成したトリアゾリジンジオン化合物が加水分解したり、副反応の要因となる場合がある。このため、酸化工程は、副生する水を除去しながら実施することが好ましい。
 水を除去する方法としては、特に限定されるものではないが、例えば、水と共沸する溶媒を用いて乾留しながら水を除去する方法、モレキュラーシーブや硫酸マグネシウム等の脱水剤を共存させながら反応を行う方法等が挙げられる。これらの方法のなかでも反応温度を比較的低温とすることが可能である点から、脱水剤を共存させながら反応を行う方法が好ましい。共存させる脱水剤の使用量は、脱水剤の脱水効率及び反応によって生成する水の量を勘案し、適宜決定すればよい。
 (非プロトン性良溶媒)
 本発明のトリアゾリンジオン化合物の新規な製造方法における酸化工程においては、非プロトン性良溶媒中にて、トリアゾリジンジオン化合物を酸化してトリアゾリンジオン化合物を得る。
 非プロトン性良溶媒としては、上記した固体状トリアゾリンジオン化合物の製造方法においてトリアゾリンジオン溶液に用いられる溶媒と、同様のものを用いることができる。具体的には、エステル類、ハロゲン含有炭化水素類、芳香族炭化水素類、ケトン類、アミド類、アルキルニトリル類、ジアルキルエーテル類、および尿素類からなる群より選択される少なくとも1種であることが好ましい。
 さらには、例えば、酢酸エチル、酢酸メチル、酢酸ブチル、酢酸イソプロピル、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2-メチルTHF)、1,4-ジオキサン、t-ブチルメチルエーテル、1,2-ジメトキシエタン、ジグライム、アセトン、ジエチルケトン、メチルエチルケトン、塩化メチレン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、クロロベンゼン、トルエン、キシレン、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMA)、ジメチルスルホキシド(DMSO)、N-メチルピロリドン(NMP)、1,3-ジメチル-2-イミダゾリジノン(DMI)等を挙げることができ、これらの非プロトン性良溶媒は、単独または混合溶媒として用いることができる。
 本発明のトリアゾリンジオン化合物の新規な製造方法における酸化工程においては、酸化反応の促進、酸化反応に対する安定性、および生成するトリアゾリンジオン化合物の安定性の観点から、これらのなかでも、塩化メチレン、アセトニトリル、1,2-ジメトキシエタン、トルエン、および酢酸エチルからなる群より選ばれる少なくとも1種を用いることが好ましい。
 (酸化条件)
 本発明のトリアゾリンジオン化合物の新規な製造方法における酸化工程においては、上記式(2)で示されるトリアゾリジンジオン化合物100質量部に対して、上記した非プロトン性良溶媒が100~200000質量部となるように配合する。さらに好ましくは、トリアゾリジンジオン化合物100質量部に対して、上記非プロトン性良溶媒が100~100000質量部となるように配合する。この範囲の溶媒量であれば、トリアゾリンジオンを加熱することなく溶解できるため好ましい。
 酸化工程における温度は、-10~50℃の範囲とすることが好ましく、さらに好ましくは0~30℃の範囲である。
 また、酸化工程における反応時間は、1分~48時間とすることが好ましく、さらに好ましくは10分~17時間の範囲である。
 また、酸化工程は、遮光下で行うことが好ましい。遮光下で実施することにより、生成したトリアゾリンジオン化合物の分解を抑制することができる。
 <トリアゾリンジオン化合物の定量化方法>
 本発明の固体状トリアゾリンジオン化合物の製造方法が適用でき、または本発明の固体状トリアゾリンジオン化合物であり、あるいは、本発明のトリアゾリンジオン化合物の新規な製造方法によって得られる、上記式(1)で示されるトリアゾリンジオン化合物は、下記式(3)のジエン化合物と反応させて、下記式(4)で示されるエン化合物を得た後、当該エン化合物を分析することで、その量を分析することができる。
 分析の方法としては、特に限定されるものではないが、例えば、高速液体クロマトグラフィー(HPLC)分析を挙げることができる。
Figure JPOXMLDOC01-appb-C000020
(式中、R、R、R、R、R、Rは、互いに同一または異なる、酸素原子、窒素原子、硫黄原子、またはリン原子を含んでいてよい、炭素数1~100のアルキル基、アラルキル基、フェニル基、または複素環基である。)
Figure JPOXMLDOC01-appb-C000021
(式中、Rは、上記式(1)と同様であり、R、R、R、R、R、R、Rは、上記式(3)と同様である。)
 上記式(3)で示されるジエン化合物は、特に限定されるものではないが、例えば、trans,trans-ジフェニルブタジエン(TTB)であれば、高純度なジエン化合物として工業的に入手が容易であり、また、トリアゾリジンジオンと反応して得られるエン化合物の安定性が高く、さらに、当該エン化合物の高速液体クロマトグラフィー(HPLC)分析における感度が良好となるため好ましい。
 上記式(1)で示されるトリアゾリンジオン化合物が4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)であり、上記式(3)で示されるジエン化合物がtrans,trans-ジフェニルブタジエン(TTB)である場合には、反応して得られるエン化合物は、下記式(5)で示されるcis-2-(4-ジメチルアミノフェニル)-5,8-ジフェニル-1H-[1,2,4]トリアゾロ[1,2-a]ピリダジン-1,3(2H)-ジオン(DAPTAC)となる。反応式を、併せて以下に示す。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 例えば、溶液中のDAPTACについて、高速液体クロマトグラフィー(HPLC)分析を実施することにより、DAPTACの原料となるDAPTADを定量化することができる。
 次に、本発明の実施例について説明するが、本発明はこれら実施例に限定されるものではない。
 <参考例1>
 溶媒として酢酸エチルを用いる方法
 4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリジン-3,5-ジオン(DMU)0.030g(0.136mmol)を、酢酸エチル(30mL)に懸濁した懸濁液を得た。得られた懸濁液に、ヨードベンゼンジアセタート(PIDA)0.044g(0.137mmol)を遮光、窒素気流下で添加し、室温で2時間攪拌することによりDMUの酸化反応を実施し、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)が溶解した酢酸エチル溶液を得た。
 [アッセイ収率]
 得られた反応溶液に、trans,trans-ジフェニルブタジエン(TTB)0.028g(0.136mmol)を加えて、20℃で1時間攪拌することにより、cis-2-(4-ジメチルアミノフェニル)-5,8-ジフェニル-1H-[1,2,4]トリアゾロ[1,2-a]ピリダジン-1,3(2H)-ジオン(DAPTAC)を合成した。
 溶液中のDAPTACについて、以下の条件で高速液体クロマトグラフィー(HPLC)分析を実施することにより、DAPTACの原料となるDAPTADを定量化し、最終的にDAPTADのアッセイ収率を算出した。DAPTADのアッセイ収率は、58%であった。
 (分析条件)
   サンプル濃度: 50%(反応液を同重量のTHFに希釈し測定を行った)
   注入量: 1.0μL
   波長: 254nm
   流速: 1.0mL/min
   移動相: 0~15min(CHCN:水=50:50~CHCN:水=100:0)
        15~20min(CHCN:水=100:0)
   カラム温度:30℃
   充填剤:X Bridge C18 5μm(4.6×150)
   保持時間: DMU:2.1min
         DAPTAC:7.2min
         TTB:11.4min
 [反応式]
 参考例1で実施した反応式を、以下に示す。
Figure JPOXMLDOC01-appb-C000024
 [DAPTACの単離]
 合成されたDAPTACを含む反応液を、5%重曹水、および水にて洗浄後、減圧濃縮を行い、濃縮残渣をシリカゲルカラムで精製した(溶出溶媒:酢酸エチル)。生成物を含むフラクションを減圧濃縮後、濃縮残渣を酢酸エチル(10mL)にて加熱分散し、室温冷却することによりDAPTACの結晶を析出させた。析出した結晶を濾過し、ヘキサン洗浄、および減圧乾燥することにより、固体状のDAPTACを得た。得られた固体状のDAPTACは0.55g、収率58%であった。
 [物性評価]
 得られた固体状のcis-2-(4-ジメチルアミノフェニル)-5,8-ジフェニル-1H-[1,2,4]トリアゾロ[1,2-a]ピリダジン-1,3(2H)-ジオン(DAPTAC)につき、各種分析結果を以下に示す。
  Mp: 174~177℃
  IR(KBr): 1772、1700cm-1
  H-NMR(CDCl): δ 7.10-7.75(m,12H)
                  6.50-6.85(m,2H)
                  6.00(s,2H)
                  5.51(s,2H)
                  2.90(s,6H)
 <参考例2>
 溶媒として塩化メチレンを用いる方法
 溶媒として塩化メチレンを用いた以外は、参考例1と同様の方法によりDAPTACを合成し、高速液体クロマトグラフィー(HPLC)分析によりアッセイ収率を算出した。アッセイ収率は、71.7%であった。
 <参考例3>
 溶媒としてクロロホルム(安定剤:アミレン)を用いる方法
 溶媒としてクロロホルム(安定剤:アミレン)を用いた以外は、参考例1と同様の方法によりDAPTACを合成し、高速液体クロマトグラフィー(HPLC)分析によりアッセイ収率を算出した。アッセイ収率は、23.7%であった。
 <参考例4>
 溶媒としてアセトニトリルを用いる方法
 溶媒としてアセトニトリルを用いた以外は、参考例1と同様の方法によりDAPTACを合成し、高速液体クロマトグラフィー(HPLC)分析によりアッセイ収率を算出した。アッセイ収率は、75.8%であった。
 <参考例5>
 溶媒としてジメチルスルホキシド(DMSO)を用いる方法
 溶媒としてジメチルスルホキシド(DMSO)を用いた以外は、参考例1と同様の方法によりDAPTACを合成し、高速液体クロマトグラフィー(HPLC)分析によりアッセイ収率を算出した。アッセイ収率は、11.7%であった。
 <参考例6>
 溶媒としてジメチルホルムアミド(DMF)を用いる方法
 溶媒としてジメチルホルムアミド(DMF)を用いた以外は、参考例1と同様の方法によりDAPTACを合成し、高速液体クロマトグラフィー(HPLC)分析によりアッセイ収率を算出した。アッセイ収率は、53.4%であった。
 <参考例7>
 溶媒としてテトラヒドロフラン(THF)を用いる方法
 溶媒としてテトラヒドロフラン(THF)を用いた以外は、参考例1と同様の方法によりDAPTACを合成し、高速液体クロマトグラフィー(HPLC)分析によりアッセイ収率を算出した。アッセイ収率は、58.6%であった。
 <参考例8>
 溶媒として1,2-ジメトキシエタンを用いる方法
 溶媒として1,2-ジメトキシエタンを用いた以外は、参考例1と同様の方法によりDAPTACを合成し、高速液体クロマトグラフィー(HPLC)分析によりアッセイ収率を算出した。アッセイ収率は、76.9%であった。
 <参考例9>
 溶媒としてトルエンを用いる方法
 溶媒としてトルエンを用いた以外は、参考例1と同様の方法によりDAPTACを合成し、高速液体クロマトグラフィー(HPLC)分析によりアッセイ収率を算出した。アッセイ収率は、63.1%であった。
 <参考例10>
 溶媒として酢酸エチルを用いる方法
 溶媒として酢酸エチルを用いた以外は、参考例1と同様の方法によりDAPTACを合成し、高速液体クロマトグラフィー(HPLC)分析によりアッセイ収率を算出した。アッセイ収率は、52.1%であった。
 <実施例1>
 [トリアゾリンジオン溶液の調製(トリアゾリジンジオン化合物の酸化)]
 4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリジン-3,5-ジオン(DMU)0.50g(2.23mmol)を、酢酸エチル(500mL)に懸濁した懸濁液を得た。得られた懸濁液に、ヨードベンゼンジアセタート(PIDA)0.73g(2.26mmol)を遮光、窒素気流下で添加し、20℃で2時間攪拌することによりDMUの酸化反応を実施し、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)が溶解した酢酸エチル溶液を得た。得られた酢酸エチル溶液は、赤色となった。
 [接触工程]
 得られた酢酸エチル溶液を濾過した後、母液を、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)の結晶が析出する40mL程度まで、減圧濃縮した。遮光下で、減圧濃縮した酢酸エチル溶液にヘキサン200mLを加えて、室温(約20℃)で2時間攪拌することにより、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)を晶析させた。
 4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)が晶析した酢酸エチル-ヘキサン混合液を濾過し、得られた固体をヘキサンで洗浄した後、室温で減圧乾燥を行うことにより、固体状のDAPTADを得た。得られた固体状のDAPTADは、紫色結晶であり、0.35g、収率70%であった。
 [物性評価]
 得られた固体状の4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)につき、各種分析結果を以下に示す。
  Mp: 187~200℃(dec)
  UV: λmax 540nm
  IR(KBr): 1764,1749cm-1
  H-NMR(CDCl): δ 7.00-7.50(m,2H)
                  6.50-7.00(m,2H)
                  3.00(s,6H)
 <実施例2>
 [トリアゾリンジオン溶液の調製(トリアゾリジンジオン化合物の酸化)]
 4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリジン-3,5-ジオン(DMU)0.30g(1.34mmol)を、1,2-ジメトキシエタン(DME)300mLに懸濁した懸濁液を得た。得られた懸濁液に、ヨードベンゼンジアセタート(PIDA)0.44g(1.34mmol)を、遮光、窒素気流下で添加し、20℃で2時間攪拌することによりDMUの酸化反応を実施し、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)が溶解した1,2-ジメトキシエタン溶液を得た。反応液は赤色となった。
 [接触工程]
 得られた1,2-ジメトキシエタン溶液を濾過した後、母液を、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)の結晶が析出する24mL程度まで減圧濃縮した。遮光下で、減圧濃縮した1,2-ジメトキシエタン溶液にヘキサン120mLを加えて、室温(約20℃)で2時間攪拌することにより、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)を晶析させた。
 4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)が晶析した1,2-ジメトキシエタン-ヘキサン混合液を濾過し、得られた固体をヘキサンで洗浄した後、室温で減圧乾燥を行うことにより、固体状のDAPTADを得た。得られた固体状のDAPTADは、紫色結晶であり、0.24g、収率82%であった。
 [アッセイ収率]
 得られた固体状のDAPTAD0.03gを、1,2-ジメトキシエタン30mLに溶解し、これにtrans,trans-ジフェニルブタジエン(TTB)28mg(0.14mmol)を加えて、20℃で1時間攪拌することにより、cis-2-(4-ジメチルアミノフェニル)-5,8-ジフェニル-1H-[1,2,4]トリアゾロ[1,2-a]ピリダジン-1,3(2H)-ジオン(DAPTAC)を合成した。
 溶液中のDAPTACについて、以下の条件で高速液体クロマトグラフィー(HPLC)分析を実施することにより、DAPTACの原料となるDAPTADを定量化し、最終的にDAPTADのアッセイ収率を算出した。DAPTADのアッセイ収率は、48%であった。
 (分析条件)
   サンプル濃度: 0.05%
   注入量: 1.0μL
   波長: 254nm
   流速: 1.0mL/min
   移動相: 0~15min(CHCN:水=50:50~CHCN:水=100:0)
        15~20min(CHCN:水=100:0)
   カラム温度: 30℃
   充填剤: X Bridge C18 5μm(4.6×150)
   保持時間: DMU:2.1min
         DAPTAC:7.2min;
         TTB:11.4min
 <実施例3>
 酸化工程を50℃で行う例
 [トリアゾリンジオン溶液の調製(トリアゾリジンジオン化合物の酸化)]
 温度50℃で2時間攪拌することによりDMUの酸化反応を実施した以外は、実施例2と同様にDMUの酸化反応を実施し、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)が溶解した1,2-ジメトキシエタン溶液を得た。
 [接触工程]
 実施例2の接触工程と同様にして、固体状のDAPTADを得た。得られた固体状のDAPTADは、紫色結晶であり、0.099g、収率33%であった。
 [アッセイ収率]
 得られた固体状のDAPTAD0.099gを、1,2-ジメトキシエタン300mLに溶解し、TTB276mg(1.34mmol)を加えて、20℃で30分攪拌することにより、DAPTACを合成し、実施例2の方法と同様にして高速液体クロマトグラフィー(HPLC)分析を実施することにより、DAPTADのアッセイ収率を算出した。アッセイ収率は、33.1%であった。
 <比較例1>
 反応液を濃縮乾固して固体を得る例
 [トリアゾリンジオン溶液の調製(トリアゾリジンジオン化合物の酸化)]
 実施例2と同様にDMUの酸化反応を実施し、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)が溶解した1,2-ジメトキシエタン溶液を得た。
 [反応液の濃縮乾固]
 得られた1,2-ジメトキシエタン溶液について、30℃で溶媒を完全に減圧濃縮し、濃縮残渣に対してヘキサン10倍体積量を添加して、20℃で1終夜攪拌することにより結晶を析出させ、結晶を濾過することで固体物を得た。
 [アッセイ収率]
 得られた固体を、ジメチルスルホキシド(DMSO)3mLに溶解し、TTB276mg(1.34mmol)を加えて、20℃で30分攪拌した後、実施例2の方法と同様にしてHPLC分析を実施した。DAPTADのアッセイ収率は、17.2%であった。
 <比較例2>
 接触工程における晶析温度(接触温度)を50℃とする例
 [トリアゾリンジオン溶液の調製(トリアゾリジンジオン化合物の酸化)]
 実施例2と同様にDMUの酸化反応を実施し、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)が溶解した1,2-ジメトキシエタン溶液を得た。
 [接触工程]
 攪拌温度を50℃とした以外は、実施例2の接触工程と同様にして、固体状物を得た。得られた固体は、暗赤色結晶であった。
 [アッセイ収率]
 得られた固体状物を、1,2-ジメトキシエタン300mLに溶解し、これにtrans,trans-ジフェニルブタジエン(TTB)276mg(1.34mmol)を加えて、20℃で30分攪拌することにより、TTB付加体を得た。
 溶液中のTTB付加体について、実施例2の方法と同様にして高速液体クロマトグラフィー(HPLC)分析を実施することにより、DAPTADのアッセイ収率を算出した。DAPTADのアッセイ収率は、0%であった。
 <比較例3>
 酸化工程および接触工程を遮光せずに実施する例
 [トリアゾリンジオン溶液の調製(トリアゾリジンジオン化合物の酸化)]
 遮光下で実施しない以外は、実施例2と同様にDMUの酸化反応を実施し、1,2-ジメトキシエタン溶液を得た。
 [接触工程]
 遮光下で実施しない以外は、実施例2の接触工程と同様にして固体状物を得た。得られた固体は、暗赤色結晶であった。
 [アッセイ収率]
 得られた固体状物を、1,2-ジメトキシエタン300mLに溶解し、これにtrans,trans-ジフェニルブタジエン(TTB)276mg(1.34mmol)を加えて、20℃で30分攪拌することにより、TTB付加体を得た。
 溶液中のTTB付加体について、実施例2の方法と同様にして高速液体クロマトグラフィー(HPLC)分析を実施することにより、DAPTADのアッセイ収率を算出した。DAPTADのアッセイ収率は、0%であった。
 <比較例4>
 酸化剤としてビス(トリフルオロアセトキシ)ヨードベンゼンを用いた例
 [トリアゾリンジオン溶液の調製(トリアゾリジンジオン化合物の酸化)]
 DMU0.30g(1.34mmol)を、酢酸エチル(300mL)に懸濁した懸濁液を得た。得られた懸濁液に、ビス(トリフルオロアセトキシ)ヨードベンゼン0.59g(1.37mmol)を遮光下で添加し、20℃で3時間攪拌することにより、DMUの酸化反応を試みた。得られた酢酸エチル溶液は、赤色となった。
 [接触工程]
 得られた酢酸エチル溶液を濾過した後、母液を溶液量20gまで減圧濃縮した。遮光下で、減圧濃縮した酢酸エチル溶液にヘキサン50mLを加えて、室温(約20℃)で1時間攪拌することにより、固体を晶析させた。
 固体が晶析した酢酸エチル-ヘキサン混合液を濾過し、得られた固体をヘキサンで洗浄した後、室温で1時間、減圧乾燥を行うことにより、固体0.23gを得た。得られた固体について、H-NMR分析したところ、目的物(DAPTAD)ではなかった。
 <比較例5>
 酸化剤として次亜塩素酸カルシウムを用いた例
 [トリアゾリンジオン溶液の調製(トリアゾリジンジオン化合物の酸化)]
 DMU0.50g(2.23mmol)を、酢酸エチル(500mL)に懸濁した懸濁液を得た。得られた懸濁液に、次亜塩素酸カルシウム0.65g(4.55mmol)を遮光下で添加し、20℃で3時間攪拌することにより、DMUの酸化反応を試みた。得られた酢酸エチル溶液は、黄色となった。
 [接触工程]
 得られた酢酸エチル溶液を濾過した後、母液を溶液量20mLまで減圧濃縮した。遮光下で、減圧濃縮した酢酸エチル溶液にヘキサン50mLを加えて、室温(約20℃)で10分攪拌することにより、固体を晶析させた。
 固体が晶析した酢酸エチル-ヘキサン混合液を濾過し、得られた固体をヘキサンで洗浄した後、室温で減圧乾燥を行うことにより、固体0.42gを得た。得られた固体について、H-NMR分析したところ、目的物(DAPTAD)ではなかった。
 <実施例4>
 [トリアゾリンジオン溶液の調製(トリアゾリジンジオン化合物の酸化)]
 4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリジン-3,5-ジオン(DMU)0.30g(1.34mmol)を、酢酸エチル(300mL)に懸濁した懸濁液を得た。得られた懸濁液に、ヨードソベンゼン(PIO)0.30g(1.36mmol)を遮光、窒素気流下で添加するとともに、25℃で4時間攪拌することによりDMUの酸化反応を実施し、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)が溶解した酢酸エチル溶液を得た。反応液は赤色となった。
 [接触工程]
 得られた酢酸エチル溶液を濾過した後、母液を25℃で15mL程度まで減圧濃縮した。遮光下で、減圧濃縮した酢酸エチル溶液にヘキサン50mLを加えて、室温(約20℃)で10時間攪拌することにより、固体を晶析させた。
 デカンテーションで上澄み液を除去した後に、ヘキサン不溶部分を減圧濃縮することにより、固体状のDAPTADを得た。得られた固体状のDAPTADは、0.22g、収率74%であった。
 [物性評価]
 得られた固体状の4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)につき、各種分析結果を以下に示す。
  UV: λmax 540nm
  IR(KBr): 1764,1749cm-1
  H-NMR(CDCl): δ 7.00-7.50(m,2H)
                  6.50-7.00(m,2H)
                  3.00(s,6H)
 <実施例5>
 [トリアゾリンジオン溶液の調製(トリアゾリジンジオン化合物の酸化)]
 4-フェニル-1,2,4-トリアゾリジン-3,5-ジオン0.30g(1.69mmol)を、酢酸エチル(30mL)に懸濁した懸濁液を得た。得られた懸濁液に、ヨードソベンゼン(PIO)0.37g(1.68mmol)を、遮光、窒素気流下で添加するとともに、25℃で4時間攪拌することにより酸化反応を実施し、4-フェニル-1,2,4-トリアゾリン-3,5-ジオンが溶解した酢酸エチル溶液を得た。反応式を、以下に示す。
Figure JPOXMLDOC01-appb-C000025
 [接触工程]
 得られた酢酸エチル溶液を濾過した後、遮光下で、濾過液にヘキサン100mLを加え、室温(約20℃)で1時間攪拌することにより、4-フェニル-1,2,4-トリアゾリン-3,5-ジオンを晶析させた。
 4-フェニル-1,2,4-トリアゾリン-3,5-ジオンが晶析した酢酸エチル-ヘキサン混合液を濾過し、得られた固体をヘキサンで洗浄した後、室温で減圧乾燥を行うことにより、固体状の4-フェニル-1,2,4-トリアゾリン-3,5-ジオンを得た。得られた固体は、192mgであり、収率65%であった。
 [物性評価]
 得られた固体状の4-フェニル-1,2,4-トリアゾリン-3,5-ジオンにつき、各種分析結果を以下に示す。
  Mp: 165~175℃(dec)
  IR(KBr): 1745cm-1
  H-NMR(CDCl):δ 6.70-8.00(m,5H)
 <実施例6>
 [トリアゾリンジオン溶液の調製(トリアゾリジンジオン化合物の酸化)]
 4-メチル-1,2,4-トリアゾリジン-3,5-ジオン0.195g(1.69mmol)を、酢酸エチル(30mL)に懸濁した懸濁液を得た。得られた懸濁液に、ヨードソベンゼン(PIO)0.37g(1.68mmol)を、遮光、窒素気流下で添加するとともに、25℃で4時間攪拌することにより酸化反応を実施し、4-メチル-1,2,4-トリアゾリン-3,5-ジオンが溶解した酢酸エチル溶液を得た。反応式を、以下に示す。
Figure JPOXMLDOC01-appb-C000026
 [接触工程]
 得られた酢酸エチル溶液を濾過した後、遮光下で、濾過液にヘキサン100mLを加え、室温(約20℃)で1時間の攪拌することにより、4-メチル-1,2,4-トリアゾリン-3,5-ジオンを晶析させた。
 4-メチル-1,2,4-トリアゾリン-3,5-ジオンが晶析した酢酸エチル-ヘキサン混合液を濾過し、得られた固体をヘキサンで洗浄した後、室温で減圧乾燥を行うことにより、固体状の4-メチル-1,2,4-トリアゾリン-3,5-ジオンを得た。得られた固体は、134mgであり、収率70%であった。
 [物性評価]
 得られた固体状の4-メチル-1,2,4-トリアゾリン-3,5-ジオンにつき、各種分析結果を以下に示す。
  Mp: 97~99℃(dec)
  IR(KBr): 1760cm-1
  H-NMR(CDCl): δ 3.10(s,3H)
 <実施例7>
 [トリアゾリンジオン溶液の調製(トリアゾリジンジオン化合物の酸化)]
 4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリジン-3,5-ジオン(DMU)0.50g(2.27mmol)を、窒素バブリングにより溶存酸素を除いた酢酸エチル(500mL)に懸濁した懸濁液を得た。得られた懸濁液に、ヨードソベンゼン(PIO)0.50g(2.27mmol)、および脱水剤として硫酸マグネシウム(無水)2.0gを、遮光、窒素気流下で添加し、20℃で2時間撹拌することによりDMUの酸化反応を実施し、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)が溶解した酢酸エチル溶液を得た。得られた酢酸エチル溶液は、赤色となった。
 [接触工程]
 得られた酢酸エチル溶液をろ過し、窒素バブリングにより溶存酸素を除いたヘプタン250mL中に注いだ。母液を、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)の結晶が析出する30mL程度まで、減圧濃縮することで、酢酸エチルからヘプタンに溶媒置換した。遮光下で、濃縮したヘプタン溶液にさらにヘプタン(窒素バブリングにより溶存酸素を除いたもの)250mLを加えて、室温(約20℃)で2時間撹拌することにより、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)を晶析させた。
 4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)が晶析したヘプタン溶液をろ過し、得られた固体をヘプタンで洗浄した後、室温で減圧乾燥を行うことにより、固体状のDAPTADを得た。得られた固体状のDAPTADは、紫色結晶であり、0.39g、収率78%であった。
 [アッセイ収率]
 得られた固体状のDAPTAD0.0209g(0.096mmol)を、アセトニトリル10gに溶解し、これにtrans,trans-1,4-ジフェニル-1,3-ブタジエン0.0487g(0.24mmol)を加えて、20℃で1時間撹拌することにより、cis-2-(4-ジメチルアミノフェニル)-5,8-ジフェニル-1H-[1,2,4]トリアゾロ[1,2-a]ピリダジン-1,3(2H)-ジオンを合成し、実施例2の方法と同様にして高速液体クロマトグラフィー(HPLC)分析を実施することにより、DAPTADのアッセイ収率を算出した。DAPTADのアッセイ収率は、56%であった。
 <実施例8>
 [トリアゾリンジオン溶液の調製(トリアゾリジンジオン化合物の酸化)]
 4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリジン-3,5-ジオン(DMU)2.00g(9.08mmol)を、窒素バブリングにより溶存酸素を除いた酢酸エチル(2000mL)に懸濁した懸濁液を得た。得られた懸濁液に、ヨードソベンゼン(PIO)2.00g(9.08mmol)、および脱水剤として硫酸マグネシウム(無水)8.0gを、遮光、窒素気流下で添加し、20℃で2時間撹拌することによりDMUの酸化反応を実施し、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)が溶解した酢酸エチル溶液を得た。得られた酢酸エチル溶液は、赤色となった。
 [接触工程]
 得られた酢酸エチル溶液をろ過し、窒素バブリングにより溶存酸素を除いたヘプタン1000mL中に注いだ。母液を、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)の結晶が析出する120mL程度まで、減圧濃縮することで、酢酸エチルからヘプタンに溶媒置換した。遮光下で、濃縮したヘプタン溶液にさらにヘプタン(窒素バブリングにより溶存酸素を除いたもの)1000mLを加えて、室温(約20℃)で2時間撹拌することにより、4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)を晶析させた。
 4-(4’-ジメチルアミノフェニル)-1,2,4-トリアゾリン-3,5-ジオン(DAPTAD)が晶析したヘプタン溶液をろ過し、得られた固体をヘプタンで洗浄した後、室温で減圧乾燥を行うことにより、固体状のDAPTADを得た。得られた固体状のDAPTADは、紫色結晶であり、1.63g、収率82%であった。
 [アッセイ収率]
 得られた固体状のDAPTAD0.0214g(0.098mmol)を、アセトニトリル10gに溶解し、これにtrans,trans-1,4-ジフェニル-1,3-ブタジエン0.0423g(0.21mmol)を加えて、20℃で1時間撹拌することにより、cis-2-(4-ジメチルアミノフェニル)-5,8-ジフェニル-1H-[1,2,4]トリアゾロ[1,2-a]ピリダジン-1,3(2H)-ジオンを合成し、実施例2の方法と同様にして高速液体クロマトグラフィー(HPLC)分析を実施することにより、DAPTADのアッセイ収率を算出した。DAPTADのアッセイ収率は、61%であった。

Claims (10)

  1.  下記式(1)で示されるトリアゾリンジオン化合物が非プロトン性良溶媒に溶解しているトリアゾリンジオン溶液と、炭素数5~15の炭化水素系貧溶媒とを、遮光下で、-25~30℃で接触させて、固体状のトリアゾリンジオン化合物を得る接触工程を含む、固体状トリアゾリンジオン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     (式中、Rは有機基である。)
  2.  前記非プロトン性良溶媒は、エステル類、ハロゲン含有炭化水素類、芳香族炭化水素類、ケトン類、アミド類、アルキルニトリル類、ジアルキルエーテル類、および尿素類からなる群より選択される少なくとも1種である、請求項1に記載の固体状トリアゾリンジオン化合物の製造方法。
  3.  前記接触工程では、前記トリアゾリンジオン溶液における非プロトン性良溶媒を、前記式(1)で示されるトリアゾリンジオン化合物100質量部に対して100~200000質量部とし、
     前記炭化水素系貧溶媒を、前記式(1)で示されるトリアゾリンジオン化合物100質量部に対して2500~500000質量部とし、
     前記非プロトン性良溶媒と前記炭化水素系貧溶媒との質量比を1:0.05~1:10として、前記トリアゾリンジオン溶液と前記炭化水素系貧溶媒とを接触させる、請求項1または2に記載の固体状トリアゾリンジオン化合物の製造方法。
  4.  前記トリアゾリンジオン溶液は、下記式(2)で示されるトリアゾリジンジオン化合物を、酸を副生しない酸化剤を用いて酸化して、前記式(1)で示されるトリアゾリンジオン化合物を得る酸化工程を経て得られる、請求項1~3のいずれか1項に記載の固体状トリアゾリンジオン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000002
     (式中、Rは有機基である。)
  5.  前記酸化剤は、ヨードソベンゼンである、請求項4に記載の固体状トリアゾリンジオン化合物の製造方法。
  6.  前記酸化工程は、副生する水を除去しながら行う、請求項4または5に記載の固体状トリアゾリンジオン化合物の製造方法。
  7.  前記酸化工程は、遮光下で行う、請求項4~6のいずれか1項に記載の固体状トリアゾリンジオン化合物の製造方法。
  8.  下記式(1)で示される固体状トリアゾリンジオン化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは、以下の(a)、(b)、および(c)からなる群より選ばれる基である。
    (a)酸素原子または窒素原子を含んでいてもよい、同一または異なる、アルキル基、アラルキル基、もしくはアリール基で置換されたジ置換アミノ基もしくはジ置換アミノアルキル基、ニトロ基、アジド基、アルコキシ基、ハロゲン基、アルキルチオ基、スルホニル基、リン酸基、カルボキシル基、エステル基、ニトリル基、アミド基、フェロセニル基、または置換基を有するキノキサリニル基を含む置換フェニル基
    (b)酸素原子または窒素原子を含んでいてもよい、同一または異なる、アルキル基、アラルキル基、またはアリール基で置換されたジ置換アミノ基、ニトロ基、アジド基、アルコキシ基、ハロゲン基、アルキルチオ基、スルホニル基、リン酸基、カルボキシル基、エステル基、ニトリル基、アミド基、フェロセニル基、または置換基を有するキノキサリニル基を含んでいてもよい含窒素複素環基
    (c)酸素原子または窒素原子を含んでいてもよい、同一または異なる、アルキル基、アラルキル基、またはアリール基で置換されたジ置換アミノ基、ニトロ基、アジド基、アルコキシ基、ハロゲン基、アルキルチオ基、スルホニル基、リン酸基、カルボキシル基、エステル基、ニトリル基、アミド基、フェロセニル基、または置換基を有するキノキサリニル基を含んでいてもよいアルキル基)
  9.  前記式(1)におけるRは、4-ジメチルアミノフェニル基、または4-ジメチルアミノメチルフェニル基である、請求項8に記載の固体状トリアゾリンジオン化合物。
  10.  トリアゾリジンジオン化合物を酸化してトリアゾリンジオン化合物を得る、トリアゾリンジオン化合物の製造方法であって、
     下記式(2)で示されるトリアゾリジンジオン化合物を、酸を副生しない酸化剤を用いて酸化し、下記式(1)で示されるトリアゾリンジオン化合物を得る酸化工程を含む、トリアゾリンジオン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000004
     (式中、Rは有機基である。)
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rは有機基である。)
PCT/JP2019/023163 2018-06-12 2019-06-11 固体状トリアゾリンジオン化合物の製造方法および固体状トリアゾリンジオン化合物、ならびにトリアゾリンジオン化合物の製造方法 WO2019240140A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19819092.8A EP3712137A4 (en) 2018-06-12 2019-06-11 METHOD FOR MAKING A SOLID TRIAZOLININDIONE COMPOUND, SOLID TRIAZOLINONE COMPOUND AND METHOD FOR MAKING A TRIAZOLININDIONE COMPOUND
CN201980005866.2A CN111406047A (zh) 2018-06-12 2019-06-11 固体状三唑啉二酮化合物的制造方法及固体状三唑啉二酮化合物、和三唑啉二酮化合物的制造方法
JP2019565042A JP6785388B2 (ja) 2018-06-12 2019-06-11 トリアゾリンジオン化合物の結晶体の製造方法
US16/957,026 US20200392090A1 (en) 2018-06-12 2019-06-11 Method for producing solid triazolinedione compound, solid triazolinedione compound, and method for producing triazolinedione compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-112192 2018-06-12
JP2018112192 2018-06-12

Publications (1)

Publication Number Publication Date
WO2019240140A1 true WO2019240140A1 (ja) 2019-12-19

Family

ID=68842046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023163 WO2019240140A1 (ja) 2018-06-12 2019-06-11 固体状トリアゾリンジオン化合物の製造方法および固体状トリアゾリンジオン化合物、ならびにトリアゾリンジオン化合物の製造方法

Country Status (5)

Country Link
US (1) US20200392090A1 (ja)
EP (1) EP3712137A4 (ja)
JP (1) JP6785388B2 (ja)
CN (1) CN111406047A (ja)
WO (1) WO2019240140A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124134A (ja) * 1985-11-25 1987-06-05 Bridgestone Corp 低発熱性ゴム組成物
JP2015166740A (ja) 2009-12-11 2015-09-24 クエスト ダイアグノスティックス インヴェストメンツ インコーポレイテッド 複合試料中のステロイド化合物の質量分析

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105439969B (zh) * 2015-11-25 2018-03-06 南阳师范学院 一种制备3,5‑二氧代‑1,2,4‑三氮唑的方法
CN108219033B (zh) * 2018-01-12 2021-02-26 华东师范大学 一种改性杜仲胶及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124134A (ja) * 1985-11-25 1987-06-05 Bridgestone Corp 低発熱性ゴム組成物
JP2015166740A (ja) 2009-12-11 2015-09-24 クエスト ダイアグノスティックス インヴェストメンツ インコーポレイテッド 複合試料中のステロイド化合物の質量分析

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
BURRAGE MARTIN E. ET AL.: "Substituent and solvent effects on the Diels-Alder reactions of triazolinediones", JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 2, vol. 12, 1 January 1975 (1975-01-01), pages 1325 - 1334, XP055663220, DOI: 10.1039/P29750001325 *
K.D. BRUYCKER ET AL., CHEM. REV., vol. 116, 2016, pages 3919 - 3974
OGAWA SHOUJIRO ET AL.: "A novel Cookson-type reagent for enhancing sensitivity and specificity in assessment of infant vitamin D status using liquid chromatography/tandem mass spectrometry", RAPID COMMUN. MASS SPECTROM., vol. 27, no. 21, 15 November 2013 (2013-11-15), pages 2453 - 2460, XP055664200, ISSN: 0951-4198, DOI: 10.1002/rcm.6708 *
OGAWA SHOUJIRO ET AL.: "Comparative evaluation of new Cookson-type reagents for LC/ESI-MS/MS assay of 25-hydroxyvitamin D3 in neonatal blood samples", BIOMEDICAL CHROMATOGRAPHY, vol. 30, no. 6, 1 June 2016 (2016-06-01), pages 938 - 945, XP055434371, ISSN: 0269-3879, DOI: 10.1002/bmc.3633 *
ROY NABARUN ET AL.: "Dynamic Covalent Chemistry: A Facile Room-Temperature, Reversible, Diels-Alder Reaction between Anthracene Derivatives and N-Phenyltriazolinedione", CHEMISTRY - AN ASIAN JOURNAL, vol. 6, no. 9, 5 September 2011 (2011-09-05), pages 2419 - 2425, XP055663155, ISSN: 1861-4728, DOI: 10.1002/asia.201100244 *
S. OGAWA ET AL., BIOMED. CHROMATGR., vol. 30, 2016, pages 938 - 945
S. OGAWA ET AL., J. PHARM. BIOMED. ANAL., vol. 136, 2017, pages 126 - 133
S. OGAWA ET AL., RAPID COMMUN. MASS SPECTROM, vol. 27, 2013, pages 2453 - 2460
See also references of EP3712137A4
WERNER STEFAN ET AL.: "Fluorous Dienophiles Are Powerful Diene Scavengers in Diels-Alder Reactions", ORGANIC LETTERS, vol. 5, no. 18, 2003, pages 3293 - 3296, XP055663163, ISSN: 1523-7060, DOI: 10.1021/ol035214a *

Also Published As

Publication number Publication date
EP3712137A1 (en) 2020-09-23
CN111406047A (zh) 2020-07-10
US20200392090A1 (en) 2020-12-17
JP6785388B2 (ja) 2020-11-18
EP3712137A4 (en) 2021-08-18
JPWO2019240140A1 (ja) 2020-06-25

Similar Documents

Publication Publication Date Title
EP3882236B1 (en) Production method for 2,5-dicyano-3,6-dihalogenopyrazine
JP7387599B2 (ja) クックソン型誘導体化試薬、クックソン型誘導体化試薬の製造方法、エン化合物の製造方法、およびエン化合物の分析方法
JP2008511684A (ja) アナストロゾール中間体についての精製方法
JP2005526049A (ja) ベンゾイソキサゾールメタンスルホニルクロリドの調製及びゾニスアミドを形成するためのそのアミド化の方法
JP6785388B2 (ja) トリアゾリンジオン化合物の結晶体の製造方法
CN102459163B (zh) 羟吲哚类和邻位取代的苯胺的制备方法及其作为合成中间产物的用途
WO2017013865A1 (ja) 2-アセチル-4H,9H-ナフト[2,3-b]フラン-4,9-ジオンの製造方法
JP4738345B2 (ja) 2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニルの製造方法
KR102221534B1 (ko) 치환된 감마 락탐의 합성을 위한 공정
JP4021663B2 (ja) トリフェニレン化合物の製造方法
EP1807401A1 (en) Process for the preparation of phenyl 2-pyrimidinyl ketones and their novel intermediates
JP2018158950A (ja) 2−クロロアセト酢酸アミドの製造方法
Setyowati et al. Chemical transformation of pyrazine derivatives
CN110437112B (zh) 一种甲酰氨基嘧磺隆或其衍生物中间体的制备方法
JP6742544B2 (ja) セミカルバジド化合物の製造方法
JP5279449B2 (ja) 5−{4−[2−(5−エチル−2−ピリジル)エトキシ]ベンジル}−2,4−チアゾリジンジオン塩酸塩の製造方法
JPH04230693A (ja) (シアノフルオルメチル)ホスホン酸のエステルの製造方法
US7176321B2 (en) Method for producing 3-amino-4-substituted-5-pyrazolones
WO2020004043A1 (ja) α-アジドアニリン誘導体又はα,α'-ジアジド誘導体の製造方法
CN111574448A (zh) 一种苯基四氢异喹啉的制备方法
JPS6140669B2 (ja)
JPH0987288A (ja) 1,3−ビス(3−アミノプロピル)−1,1,3,3−テトラオルガノジシロキサンの精製方法
JP4075342B2 (ja) 4,5−ジ置換−1,2,3−トリアゾールの製造方法
JPH05339244A (ja) 5−フェニルヒダントインの製造法
JPH05140121A (ja) 1,2,3−トリアゾールの製法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019565042

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019819092

Country of ref document: EP

Effective date: 20200609

NENP Non-entry into the national phase

Ref country code: DE