WO2019239939A1 - 載置台及びプラズマ処理装置 - Google Patents

載置台及びプラズマ処理装置 Download PDF

Info

Publication number
WO2019239939A1
WO2019239939A1 PCT/JP2019/021985 JP2019021985W WO2019239939A1 WO 2019239939 A1 WO2019239939 A1 WO 2019239939A1 JP 2019021985 W JP2019021985 W JP 2019021985W WO 2019239939 A1 WO2019239939 A1 WO 2019239939A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
base
focus ring
mounting table
control ring
Prior art date
Application number
PCT/JP2019/021985
Other languages
English (en)
French (fr)
Inventor
林 大輔
智之 ▲高▼橋
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN201980004528.7A priority Critical patent/CN111095501B/zh
Priority to US16/644,632 priority patent/US11380526B2/en
Priority to KR1020207006881A priority patent/KR20210020857A/ko
Publication of WO2019239939A1 publication Critical patent/WO2019239939A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/15Devices for holding work using magnetic or electric force acting directly on the work
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32642Focus rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • H05B3/143Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds applied to semiconductors, e.g. wafers heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2007Holding mechanisms

Definitions

  • the present disclosure relates to a mounting table and a plasma processing apparatus.
  • Patent Document 1 discloses a mounting table including a ceramic plate in which an electrode for an electrostatic chuck is embedded and a metal member inside a plasma processing apparatus.
  • the ceramic plate is provided by being laminated on the metal member, and the groove for forming the coolant channel is processed into at least one of the lower surface of the ceramic plate and the upper surface of the metal member.
  • the electrostatic chuck electrode is provided so that a focus ring arranged so as to surround the substrate to be processed can be electrostatically attracted, and the temperature of the focus ring is kept low.
  • the technology according to the present disclosure is a reaction byproduct (depot) to the peripheral portion of the side wall of the mounting table (including the inner periphery of the focus ring) while appropriately controlling the temperature of the focus ring. To reduce adhesion.
  • One aspect of the present disclosure is a mounting table on which a substrate is mounted, a base including an adsorption electrode therein, and a focus ring provided above the adsorption electrode and adsorbed and held on the base
  • a depot control ring provided on the base and radially inward of the focus ring, and between the focus ring and the depot control ring between the focus ring and the depot control ring.
  • a gap for separating the control ring is formed.
  • a plasma processing apparatus In a semiconductor device manufacturing process, a plasma processing apparatus generates plasma by exciting a processing gas and processes a substrate to be processed (hereinafter referred to as “substrate”) such as a semiconductor wafer by the plasma.
  • substrate a substrate to be processed
  • Such a plasma processing apparatus is provided with a mounting table having a substrate mounting surface. As described in Patent Document 1, the substrate placed on the placing table becomes high temperature by being exposed to plasma, but a predetermined process is performed via the ceramic plate by the coolant flowing through the coolant channel. The temperature is adjusted to, for example, about 30 ° C. to 50 ° C.
  • a focus ring arranged so as to surround a substrate placed on the mounting table is electrostatically attracted to the mounting table described in Patent Document 1.
  • the focus ring becomes high temperature (for example, about 300 ° C. depending on conditions) when exposed to plasma in the same manner as the substrate.
  • the focus ring is cooled and used in the same manner as the substrate in order to avoid affecting the substrate adjusted to the predetermined process temperature, such as thermal influence, for example, etchant distribution control and Si scavenge function distribution control.
  • thermal influence for example, etchant distribution control and Si scavenge function distribution control.
  • reaction by-products may adhere to the surface of the member exposed to plasma.
  • deposits adhere to the inner peripheral portion of the focus ring due to the wraparound of the plasma the deposits are likely to reattach to the substrate bevel portion or the side wall portion of the mounting table due to peeling of the deposit, which may cause particles. Therefore, in order to suppress the deposition of such deposits, it is necessary to raise the temperature of the inner periphery of the focus ring.
  • the focus ring When cooling the focus ring, it is possible to cool the vicinity of the surface of the focus ring in order to suppress a thermal influence on the substrate to be originally cooled. However, the inner periphery of the focus ring is also cooled at the same time, and deposits adhere. That is, the focus ring is configured such that the inner peripheral portion to be heated and the vicinity of the surface portion to be cooled are integrated. For this reason, it has been difficult to appropriately control the temperature of the focus ring.
  • the technology according to the present disclosure controls the temperature of the focus ring electrostatically attracted on the mounting table. Specifically, in the focus ring, a part to be cooled and a part to be heated are separated from each other. Hereinafter, this portion to be heated is referred to as a deposition control ring. Then, the focus ring and the deposition control ring are independently temperature controlled. With this configuration, a mounting table capable of appropriate temperature control can be realized.
  • FIG. 1 is a longitudinal sectional view schematically showing the outline of the configuration of the plasma processing apparatus 1 according to the present embodiment.
  • a capacitively coupled parallel plate plasma etching apparatus will be described as an example of the plasma processing apparatus 1.
  • the plasma processing apparatus 1 has a substantially cylindrical processing container 10.
  • the processing container 10 is made of, for example, aluminum, and the surface is anodized.
  • the processing container 10 defines a processing space S in which plasma is generated.
  • the mounting table 11 on which a wafer W as a substrate is mounted is accommodated.
  • the mounting table 11 includes a base 12, a focus ring 13, and a deposition control ring 14.
  • the focus ring 13 and the deposition control ring 14 are provided on the base 12.
  • the base 12 includes a base portion 12a, a wafer holding portion 12b as a substrate holding portion provided on the base portion 12a, and a ring holding portion 12c provided on the base portion 12a.
  • the base portion 12 a has a substantially disk shape and has a diameter larger than the diameter of the wafer W.
  • the diameter of the wafer W is about 300 mm.
  • the wafer holding part 12b has a substantially disc shape with a diameter smaller than the diameter of the base part 12a, and is provided coaxially with the base part 12a.
  • the ring holding part 12c has a substantially annular shape, and is provided on the outer side in the radial direction so as to surround the wafer holding part 12b in plan view.
  • the inner diameter of the ring holding part 12c is larger than the outer diameter of the wafer holding part 12b.
  • the upper surface of the wafer holding part 12b is located above the upper surface of the ring holding part 12c in a side view.
  • a coolant channel 15a is formed inside the base portion 12a.
  • Refrigerant is supplied to the refrigerant flow path 15a from a chiller unit (not shown) provided outside the processing container 10 via the refrigerant inlet pipe 15b.
  • the refrigerant supplied to the refrigerant flow path 15a returns to the chiller unit via the refrigerant outlet flow path 15c.
  • a coolant such as cooling water
  • the base portion 12a is made of a conductive metal, such as aluminum, and has a function as a lower electrode.
  • the wafer holding unit 12b is made of, for example, ceramic, and has a first adsorption electrode 15d therein.
  • a DC power supply 21 is connected to the first adsorption electrode 15d through a switch 20.
  • the wafer holding unit 12b can hold the wafer W on the mounting surface by electrostatic force generated when a DC voltage is applied from the DC power source 21 to the first suction electrode 15d. That is, the wafer holding part 12b has a function as an electrostatic chuck for the wafer W.
  • the ring holding part 12c is made of, for example, ceramic, and a second adsorption electrode 15e is provided therein.
  • a DC power source 21 is connected to the second adsorption electrode 15e via a switch 22.
  • the ring holding unit 12c sucks and holds the focus ring 13 on the holding surface by electrostatic force generated when a DC voltage is applied from the DC power source 21 to the second suction electrode 15e.
  • the ring holding part 12 c has a function as an electrostatic chuck for the focus ring 13.
  • a DC power supply that applies a DC voltage to the second adsorption electrode 15e may be provided separately from the DC power supply 21 that applies a DC voltage to the first adsorption electrode 15d.
  • the ring-shaped focus ring 13 is sucked and held by the second suction electrode 15e on the upper surface of the ring holding portion 12c.
  • the focus ring 13 surrounds the wafer W placed on the wafer holder 12b in plan view and is held coaxially with the wafer holder 12b.
  • the focus ring 13 is provided to improve the uniformity of plasma processing. For this reason, the focus ring 13 is made of the same type of material as the wafer W placed on the wafer holder 12b, for example, silicon (Si) constituting the wafer W in this embodiment.
  • the focus ring 13 is attracted and held on the upper surface of the ring holding portion 12c by electrostatic force as described above. At this time, the focus ring 13 is cooled by the refrigerant flowing through the refrigerant flow path 15a formed inside the base portion 12a via the ring holding portion 12c. Thus, the focus ring 13 is configured to be cooled by being electrostatically attracted to the ring holding portion 12c.
  • a deposition control ring 14 is provided on the inner side in the radial direction of the focus ring 13 and on the upper surface of the ring holding portion 12c.
  • the deposition control ring 14 is provided so as to be coaxial with the wafer holding portion 12b.
  • the deposition control ring 14 is located below the wafer W placed on the wafer holding unit 12b, and the deposit is attached to the inner periphery of the deposition control ring 14 and the side wall of the wafer holding unit 12b. It is comprised so that it can suppress.
  • the deposition control ring 14 is arranged so as to be separated from the focus ring 13 and configured to be able to raise the temperature independently of the focus ring 13.
  • the deposition control ring 14 is heated by being exposed to plasma.
  • the deposition control ring 14 is arranged separately from the focus ring 13, it is not affected by the thermal influence from the focus ring 13.
  • heat transfer from the ring holding portion 12c to the deposition control ring 14 is suppressed. Therefore, the deposition control ring 14 during plasma generation is maintained at a higher temperature than the inner periphery of the focus ring 13.
  • the deposition control ring 14 is made of, for example, the same kind of material as that of the focus ring 13, that is, silicon (Si).
  • a first RF power source 23a and a second RF power source 23b are connected to the base 12a of the base 12 via a first matching unit 24a and a second matching unit 24b, respectively, and are applied to the mounting table 11. It is configured to be possible.
  • the first RF power source 23a is a power source that generates high-frequency power for generating plasma.
  • the first RF power source 23a may have a frequency of 27 MHz to 100 MHz.
  • high frequency power of 40 MHz is supplied to the base portion 12a of the mounting table 11.
  • the first matching unit 24a has a circuit for matching the output impedance of the first RF power source 23a with the input impedance on the load side (base portion 12a side).
  • the second RF power source 23b generates high-frequency power (high-frequency bias power) for drawing ions into the wafer W, and supplies the high-frequency bias power to the base portion 12a.
  • the frequency of the high frequency bias power may be in the range of 400 kHz to 13.56 MHz, and in one example is 3 MHz.
  • the second matching unit 24b has a circuit for matching the output impedance of the second RF power source 23b with the input impedance on the load side (base portion 12a side).
  • the mounting table 11 configured as described above is fastened to a substantially cylindrical support member 16 provided at the bottom of the processing container 10.
  • the support member 16 is made of an insulator such as ceramic.
  • a shower head 30 is provided above the mounting table 11 so as to face the mounting table 11.
  • the shower head 30 has a function as an upper electrode, and includes an electrode plate 31 disposed facing the processing space S, and an electrode support 32 provided above the electrode plate 31.
  • the electrode plate 31 functions as a base portion 12a and a pair of electrodes (upper electrode and lower electrode). Note that the shower head 30 is supported on the upper portion of the processing container 10 via an insulating shielding member 33.
  • the electrode plate 31 is formed with a plurality of gas outlets 31a for supplying a processing gas sent from a gas diffusion chamber 32a described later to the processing space S.
  • the electrode plate 31 is made of, for example, a conductor or semiconductor having a low electrical resistivity with little generated Joule heat.
  • the electrode support 32 supports the electrode plate 31 in a detachable manner, and is made of a conductive material such as aluminum whose surface is anodized, for example.
  • a gas diffusion chamber 32 a is formed inside the electrode support 32. From the gas diffusion chamber 32a, a plurality of gas flow holes 32b communicating with the gas outlet 31a are formed. Further, a gas supply source group 40 for supplying a processing gas to the gas diffusion chamber 32a is connected to the electrode support 32 through a flow rate control device group 41, a valve group 42, a gas supply pipe 43, and a gas introduction hole 32c. ing.
  • the gas supply source group 40 has a plurality of types of gas supply sources necessary for plasma processing.
  • the processing gas from one or more gas supply sources selected from the gas supply source group 40 passes through the flow rate control device group 41, the valve group 42, the gas supply pipe 43, and the gas introduction hole 32 c. It is supplied to the gas diffusion chamber 32a. Then, the processing gas supplied to the gas diffusion chamber 32a is distributed and supplied in a shower shape into the processing space S through the gas flow holes 32b and the gas outlet 31a.
  • the plasma processing apparatus 1 is provided with a cylindrical ground conductor 10a so as to extend upward from the side wall of the processing vessel 10 above the height position of the shower head 30.
  • the cylindrical grounding conductor 10a has a top plate 10b on the top thereof.
  • the deposition shield 50 is detachably provided along the inner wall of the processing container 10 in the plasma processing apparatus 1.
  • the deposition shield 50 suppresses deposition of deposits on the inner wall of the processing container 10 and is configured by, for example, coating an aluminum material with ceramics such as Y 2 O 3 .
  • a deposition shield 51 is detachably provided on the outer surface of the support member 16 that faces the deposition shield 50.
  • An exhaust plate 52 is provided at the bottom of the processing container 10 between the inner wall of the processing container 10 and the support member 16.
  • the exhaust plate 52 is configured by, for example, coating an aluminum material with ceramics such as Y 2 O 3 .
  • the processing space S communicates with the exhaust port 53 through the exhaust plate 52.
  • An exhaust device 54 such as a vacuum pump is connected to the exhaust port 53, and the inside of the processing space S can be decompressed by the exhaust device 54.
  • a loading / unloading port 55 for the wafer W is formed on the side wall of the processing chamber 10, and the loading / unloading port 55 can be opened and closed by a gate valve 55a.
  • a control unit 100 is provided.
  • the control unit 100 is, for example, a computer and has a program storage unit (not shown).
  • the program storage unit stores a program for controlling the processing of the wafer W in the plasma processing apparatus 1.
  • the program storage unit stores a control program for controlling various processes by the processor, and a program for causing each component of the plasma processing apparatus 1 to execute processes according to the processing conditions, that is, a processing recipe. ing.
  • the program may be recorded in a computer-readable storage medium and installed in the control unit 100 from the storage medium.
  • FIG. 2 is an enlarged view of a main part showing an outline of the configuration of the mounting table 11 according to the first embodiment.
  • the mounting table 11 includes the base 12, the focus ring 13, and the deposition control ring 14.
  • the base 12 includes a wafer holding unit 12b for electrostatically attracting and mounting the wafer W, a ring holding unit 12c for holding the focus ring 13 and the deposition control ring 14, and a wafer holding unit 12b and a ring holding unit 12c. Is provided on the upper surface.
  • the base portion 12a has a substantially disc shape.
  • the wafer holding part 12b has a substantially disk shape, and is fixed above the base part 12a via, for example, an adhesive so as to be coaxial with the base part 12a.
  • the ring holding portion 12c has a substantially annular shape, and is fixed to the outer side in the radial direction through an adhesive, for example, so as to surround the base portion 12a.
  • the wafer holding unit 12b is provided such that the upper surface of the wafer holding unit 12b is higher than the upper surface of the ring holding unit 12c in a side view.
  • a coolant channel 15a is formed inside the base portion 12a and below the wafer holding portion 12b.
  • a first adsorption electrode 15d for adsorbing the wafer W is provided inside the wafer holding part 12b and above the coolant channel 15a. As described above, the wafer holding unit 12b can adsorb the wafer W to the mounting surface by the electrostatic force generated when a DC voltage is applied to the first adsorption electrode 15d.
  • a second adsorption electrode 15e for attracting the focus ring 13 is provided inside the ring holding part 12c. As described above, the ring holding portion 12c can attract the focus ring 13 by the electrostatic force generated when a DC voltage is applied to the second adsorption electrode 15e.
  • the focus ring 13 has an annular structure with a substantially rectangular cross-sectional shape, and is provided so as to surround the wafer W placed on the wafer holding portion 12b.
  • the inner diameter of the focus ring 13 is larger than the outer diameter of the wafer W, and a clearance C1 is provided.
  • the distance D1 of the clearance C1 is desirably greater than 0 mm and 1 mm or less, for example.
  • the upper surface of the focus ring 13 is configured to substantially coincide with the upper surface of the wafer W placed on the wafer holding unit 12b.
  • the inner diameter of the focus ring 13 is smaller than the inner diameter of the second adsorption electrode 15e. This is to avoid electrostatically attracting the deposition control ring 14 by the second attracting electrode 15e as will be described later.
  • the deposition control ring 14 should just be arrange
  • the difference D2 between the inner diameter of the second adsorption electrode 15e and the inner diameter of the focus ring 13 is desirably larger than 0 mm and not larger than 10 mm.
  • the second adsorption electrode 15e may be an annular electrode, or may be a bipolar electrode in which an annular shape is divided into a plurality in the circumferential direction.
  • the contact area A between the focus ring 13 and the ring holding portion 12c is preferably surface-treated so as to reduce the contact thermal resistance.
  • Specific surface treatment includes treatment such as polishing.
  • a deposition control ring 14 is provided on the upper surface of the ring holding portion 12c, on the radially inner side of the focus ring 13 and below the wafer W placed on the wafer holding portion 12b.
  • the deposition control ring 14 is fixed to the ring holding part 12c via an adhesive, for example.
  • the deposition control ring 14 has an annular structure with a substantially rectangular cross-sectional shape.
  • the deposition control ring 14 is configured to be separated from the focus ring 13. Specifically, a gap G1 is formed between the focus ring 13 and the deposition control ring 14 in the radial direction. The gap G1 extends in the vertical direction. Due to the gap G1, the focus ring 13 and the deposition control ring 14 are separated and are not in contact with each other.
  • the contact area B between the deposition control ring 14 and the ring holding portion 12c has a surface so that the contact thermal resistance is increased.
  • it has been treated.
  • the lower surface of the deposition control ring 14 and / or the upper surface of the ring holding portion 12c is subjected to surface treatment so as to increase the surface roughness.
  • the lower surface of the deposition control ring 14 and / or the upper surface of the ring holding portion 12c is roughened.
  • the contact thermal resistance in the contact area B between the deposition control ring 14 and the ring holding part 12c is relatively larger than the contact thermal resistance in the contact area A between the focus ring 13 and the ring holding part 12c. It is configured.
  • the focus ring 13 and the depot control ring 14 are configured separately.
  • the deposition control ring 14 can be kept at a higher temperature than the inner peripheral part of the focus ring 13 even in such a case.
  • the second suction electrode 15 e is formed so that its inner diameter is larger than the inner diameter of the focus ring 13. That is, since the second adsorption electrode 15e is not laid under the deposition control ring 14, the deposition control ring 14 is not electrostatically adsorbed by the second adsorption electrode 15e and is not cooled.
  • the depot control ring 14 and the wafer holding portion 12 b are deposited on the deposition control ring 14 and the wafer holding portion 12 b by the plasma that has circulated from the outer peripheral portion of the wafer W Can be prevented from adhering.
  • the distance D1 is greater than 0 mm and 1 mm or less, and the clearance C1 between the focus ring 13 and the wafer W is very small.
  • the size of the interval D1 it is possible to suppress the intrusion of plasma from the clearance C1. That is, the total amount of plasma that wraps around from the outer peripheral portion of the wafer W can be reduced, and deposition of deposits on the deposition control ring 14 and the wafer holding portion 12b can be further appropriately suppressed.
  • the thermal separation method is not limited to this as long as the temperature of the deposition control ring 14 can be kept high independently of the focus ring 13 and the ring holding portion 12c.
  • a heat resistance layer having heat insulation properties may be formed between the deposition control ring 14 and the ring holding portion 12c.
  • the heat resistance layer is not particularly limited, but a heat insulating member such as Teflon (registered trademark) is used.
  • the heat resistance layer may be formed by applying a heat insulating coating on the surface of the deposition control ring 14 and / or the ring holding portion 12c.
  • a thermal resistance layer between the deposition control ring 14 and the ring holding part 12c, heat transfer from the ring holding part 12c to the deposition control ring 14 can be prevented, and the The temperature can be kept higher than the inner peripheral portion of the focus ring 13.
  • the deposition control ring 14 is made of the same material as the focus ring 13, that is, Si.
  • the material of the deposition control ring 14 is not limited to this, and can be arbitrarily selected.
  • the material of the deposition control ring 14 may be, for example, a brittle material such as Si, SiC, SiO 2 , Si 3 N 4 , Al 2 O 3 , or AlN.
  • Si SiC, SiO 2 , and Si 3 N 4
  • Al 2 O 3 , or the like may be used when only plasma resistance is required.
  • the material of the deposition control ring 14 may be a resin material, for example, a Teflon (registered trademark) material such as PTFE, PCTFE, or PFA, or an engineering plastic material such as PEEK.
  • a material having a high thermal conductivity is preferably selected. When a material having a high thermal conductivity is used, the deposition control ring 14 can be rapidly heated by plasma.
  • the surface of the deposition control ring 14 may be subjected to a thermal spraying process, a sintering process or a coating process.
  • the thermal spraying material for example Al 2 O 3, Y 2 O 3, may be a ceramic YF like.
  • the coating method may be DLC (Diamond Like Carbon), aerosol deposition, or the like.
  • the deposition control ring 14 and the ring holding portion 12c are subjected to a surface treatment, or a heat resistance layer such as a heat insulating member or a heat insulating coating is formed to thermally separate them.
  • a surface treatment or a heat resistance layer such as a heat insulating member or a heat insulating coating is formed to thermally separate them.
  • the surface treatment and the heat resistance layer may be omitted, and the thermal conductivity may be controlled by appropriately selecting the above-described materials, and may be thermally separated.
  • the deposition control ring 14 may be extended in the vertical direction (length direction) and provided directly on the base portion 12a. As shown in FIG. 3, the ring holding part 12c may be reduced radially outward, and the deposition control ring 14 may be directly fixed to the base part 12a.
  • the deposition control ring 14 By configuring the deposition control ring 14 to extend, it is possible to extend the component life of the deposition control ring 14 and the ring holding portion 12c. Further, since the deposition control ring 14 is not directly held on the upper surface of the ring holding part 12c, it can be more reliably separated from the second adsorption electrode 15e inside the ring holding part 12c.
  • a heat insulating member (not shown) as a heat insulating layer may be provided between the deposit control ring 14 and the base portion 12a.
  • each of the wafer holding part 12b and the ring holding part 12c is made of ceramic and thus has an insulating property.
  • the wafer holding part 12b and the ring holding part 12c are not limited to a ceramic structure as long as they have insulating properties.
  • the wafer holding unit 12b and the ring holding unit 12c may be configured by applying a thermal spraying process, a sintering process, or a coating process to the surface of an aluminum material.
  • the thermal spray material may be a ceramic such as Al 2 O 3 , Y 2 O 3 , or YF.
  • the coating method may be DLC (Diamond Like Carbon), aerosol deposition, or the like.
  • the focus ring 13 and the deposition control ring 14 are separated via the gap G1.
  • the temperature control of the focus ring 13 and the deposition control ring 14 can be performed independently, and the temperature of the deposition control ring 14 can be kept higher than the inner peripheral portion of the focus ring 13.
  • an independent temperature adjusting mechanism may be used.
  • the temperature of the deposit control ring 14 it is necessary to raise the temperature of the deposit control ring 14 relative to the temperature of the focus ring 13. For this reason, if the gap G1 is provided between the focus ring 13 and the deposit control ring 14 and physically separated as in the present embodiment, adhesion of deposits can be suppressed. Therefore, the mounting table 11 of this embodiment has a simple structure and is advantageous in terms of cost.
  • the inner diameter of the focus ring 13 is smaller than the inner diameter of the second adsorption electrode 15e, and the second adsorption electrode 15e is only below the focus ring 13 and is not arranged below the deposition control ring 14. .
  • the deposition control ring 14 is not attracted to the ring holding portion 12 c, heat transfer from the ring holding portion 12 c to the deposition control ring 14 is suppressed, and the deposition control ring 14 is connected to the inner peripheral portion of the focus ring 13. High temperature.
  • the difference D2 between the inner diameter of the focus ring 13 and the inner diameter of the second suction electrode 15e is 10 mm or less, and the suction function of the focus ring 13 by the second suction electrode 15e can be secured.
  • the surface treatment is performed so that the contact thermal resistance between the deposition control ring 14 and the base 12 is larger than the contact thermal resistance between the focus ring 13 and the base 12.
  • a heat resistance layer having heat insulating properties is formed between the deposition control ring 14 and the base 12.
  • a clearance C1 is provided between the focus ring 13 and the wafer W, and the interval D1 of the clearance C1 is greater than 0 mm and 1 mm or less.
  • the clearance C1 between the inner diameter of the focus ring 13 and the wafer W is continuous with the gap G1 extending in the vertical direction.
  • the distance D1 of the clearance C1 to be 1 mm or less
  • a part of the plasma enters the gap G1 from the clearance C1.
  • the plasma reaches the ring holding part 12c through the clearance C1 and the gap G1, and as a result, the ring holding part 12c is damaged. Therefore, the present inventors have conceived that the gap G1 has a labyrinth structure as will be described in a second embodiment and a third embodiment described later.
  • FIG. 4 is an enlarged view of a main part schematically showing the outline of the configuration of the mounting table 111 according to the second embodiment.
  • the description is abbreviate
  • the focus ring 113 has a configuration in which an upper ring portion 113a and a lower ring portion 113b are integrally provided.
  • the upper ring portion 113a and the lower ring portion 113b have annular shapes with different inner diameters. Specifically, the inner diameter of the upper ring portion 113a is smaller than the inner diameter of the lower ring portion 113b, and the upper ring portion 113a protrudes radially inward at the outer peripheral portion of the focus ring 113.
  • An upper step 113c is formed by the upper ring portion 113a and the lower ring portion 113b.
  • the outer diameters of the upper ring portion 113a and the lower ring portion 113b are substantially the same.
  • the upper surface of the upper ring portion 113a is configured to substantially coincide with the upper surface of the wafer W placed on the wafer holding portion 12b.
  • the inner diameter of the upper ring portion 113a is larger than the outer diameter of the wafer W, and a clearance C3 is provided.
  • the distance D3 of the clearance C3 is desirably greater than 0 mm and 1 mm or less.
  • a deposition control ring 114 is provided on the upper surface of the ring holding portion 12c, on the radially inner side of the focus ring 113 and below the wafer W placed on the ring holding portion 12c.
  • the deposition control ring 114 is fixed to the ring holding part 12c via an adhesive, for example.
  • the deposition control ring 114 has a configuration in which an upper ring portion 114a and a lower ring portion 114b are integrally provided.
  • the upper ring portion 114a and the lower ring portion 114b have an annular shape with different inner diameters. Specifically, the outer diameter of the upper ring portion 114a is smaller than the outer diameter of the lower ring portion 114b, and the lower ring portion 114b protrudes radially outward at the outer peripheral portion of the deposition control ring 114.
  • the upper ring portion 114a and the lower ring portion 114b form a lower stepped portion 114c.
  • a gap G2 is formed between the radial direction of the focus ring 113 and the deposition control ring 114.
  • the gap G ⁇ b> 2 has a labyrinth structure due to the upper step 113 c of the focus ring 113 and the lower step 114 c of the deposition control ring 114.
  • the gap G2 can suppress the plasma from reaching the ring holding portion 12c. As a result, damage to the ring holding part 12c due to plasma can be suppressed.
  • the focus ring 113 and the deposition control ring 114 are separated. Further, since the distance D3 of the clearance C3 is 1 mm or less, it is appropriate that the deposit adheres to the deposition control ring 14 and the wafer holding part 12b by the plasma that circulates from the outer peripheral part of the wafer W, as in the first embodiment. Can be suppressed.
  • FIG. 5 is an enlarged view of an essential part schematically showing the outline of the configuration of the mounting table 211 according to the third embodiment.
  • the focus ring 213 has a configuration in which an upper ring portion 213a and a lower ring portion 213b are integrally provided as shown in FIG.
  • the upper ring portion 213a and the lower ring portion 213b have an annular shape with different inner diameters.
  • the inner diameter of the upper ring portion 213a is larger than the inner diameter of the lower ring portion 213b, and the lower ring portion 113b protrudes radially inward at the outer peripheral portion of the focus ring 213.
  • the upper ring portion 213a and the lower ring portion 213b form a lower step 213c.
  • the outer diameters of the upper ring portion 213a and the lower ring portion 213b are substantially the same.
  • the upper surface of the upper ring portion 213a is configured to substantially coincide with the upper surface of the wafer W placed on the wafer holding portion 12b.
  • a deposition control ring 214 is provided on the upper surface of the ring holding portion 12c and inside the focus ring 213 in the radial direction.
  • the deposition control ring 214 is fixed to the ring holding part 12c via an adhesive, for example.
  • the deposition control ring 214 has a configuration in which an upper ring portion 214a and a lower ring portion 214b are integrally provided.
  • the upper ring portion 214a and the lower ring portion 214b have annular shapes with different inner diameters. Specifically, the outer diameter of the upper ring portion 214a is larger than the outer diameter of the lower ring portion 214b, and the upper ring portion 214a protrudes radially outward at the outer peripheral portion of the deposition control ring 214.
  • An upper step 214c is formed by the upper ring portion 214a and the lower ring portion 214b.
  • the inner diameter of the lower ring portion 214b is smaller than the inner diameter of the upper ring portion 214a.
  • the upper surface of the upper ring portion 214a is configured to substantially coincide with the upper surface of the wafer W placed on the wafer holding portion 12b and the upper surface of the upper ring portion 213a of the focus ring 213.
  • the outer diameter of the upper ring portion 214a of the deposition control ring 214 is smaller than the inner diameter of the upper ring portion 213a of the focus ring 213.
  • a gap G3 is formed between the focus ring 213 and the deposition control ring 214 in the radial direction.
  • the gap G3 has a labyrinth structure due to the lower step 213c of the focus ring 213 and the upper step 214c of the deposition control ring 214.
  • This gap G3 can suppress the plasma from reaching the ring holding portion 12c. As a result, damage to the ring holding part 12c due to plasma can be suppressed.
  • the distance D4 between the upper surface of the upper ring portion 213a and the upper surface of the upper ring portion 214a is preferably greater than 0 mm and 1 mm or less. In such a case, it is possible to suppress the plasma from entering the gap G3.
  • the inner diameter of the upper ring portion 214a of the deposition control ring 214 is larger than the outer diameter of the wafer W, and a clearance C5 is provided.
  • the interval D5 of the clearance C5 is desirably greater than 0 mm and 1 mm or less.
  • the focus ring 213 and the deposition control ring 214 are configured separately. Further, since the distance D5 of the clearance C5 is 1 mm or less, the deposition control ring 14 and the wafer holding part 12b are caused to deposit on the deposition control ring 14 and the wafer holding part 12b by the plasma that circulates from the outer peripheral part of the wafer W, as in the first and second embodiments. Can be appropriately suppressed.
  • the upper surface of the upper ring portion 214a of the deposition control ring 214 is exposed to the processing space S, that is, exposed to plasma, so that the temperature of the deposition control ring 214 is controlled and maintained at a higher temperature. be able to. Thereby, it is possible to further suppress the plasma from flowing downward from the outer peripheral portion of the wafer W.
  • the deposition control ring 214 can be further heated.
  • the exposed area of the focus ring 213 responsible for Si scavenging function distribution control and etchant distribution control is reduced by increasing the exposed part X, the area of the exposed part X is set in consideration of these balances. There is a need to.
  • the outer diameter of the exposed portion X is 300 mm to 360 mm. A more preferable range of the outer diameter of the exposed portion X is 305 mm to 340 mm.
  • the shapes of the focus rings 13, 113, and 213 and the deposition control rings 14, 114, and 214 are appropriately modified, but in addition to these, the shape of the base 12 is changed. You may change suitably.
  • the base 12 of the first embodiment is configured by providing a wafer holding part 12b and a ring holding part 12c above the base part 12a, and providing a focus ring 13 and a deposition control ring 14 on the upper surface of the ring holding part 12c. It was.
  • the base 312 may have a base portion 12a and a holding portion 312b.
  • the holding portion 312b is provided above the base portion 12a and has a configuration in which the wafer holding portion and the ring holding portion are integrated. With this configuration, the number of parts constituting the mounting table 311 can be reduced compared to the mounting table 11, and the structure can be simplified.
  • a first heater 450a for heating the wafer W may be provided inside the wafer holder 12b below the first adsorption electrode 15d.
  • a second heater 450b for heating the focus ring 13 may be provided inside the ring holding part 12c below the second adsorption electrode 15e. Note that only one of the first heater 450a and the second heater 450b may be provided. With this configuration, the temperature adjustment of the wafer W and the focus ring 13 can be separated and precise temperature adjustment can be performed.
  • the base 512 may be divided into a central base 512a that holds the wafer holding part 12b and an outer peripheral holding part 512b that holds the ring holding part 12c.
  • the temperature can be controlled by separating the wafer holder 12b and the ring holder 12c into separate systems. That is, the temperature of the wafer W and the focus ring 13 can be adjusted more precisely by controlling the temperature of the coolant channel 15a and the coolant channel 515a by flowing a coolant having a different temperature.
  • the mounting table that electrostatically attracts the wafer and the focus ring has been described as an example.
  • the principle according to the present disclosure that is, the mounting table structure that separates the focus ring and the deposition control ring, can be applied to various existing static tables. It can be applied to electroadsorption models.
  • plasma processing apparatus 1 has been described by taking the capacitively coupled plasma processing apparatus as an example.
  • any type of plasma processing apparatus may be used.
  • the temperature control of the focus ring and the deposition control ring can be performed independently.
  • the temperature of the depot control ring can be kept higher than the inner periphery of the focus ring, so that plasma that circulates from the outer periphery of the substrate causes the inner periphery of the depot control ring and the side wall of the base. It is possible to suppress the deposition of deposits.
  • an upper step is formed by projecting the upper surface side of the focus ring radially inward
  • a lower step is formed by projecting the lower surface side of the depot control ring radially outward
  • the said clearance gap is a mounting base as described in said (1) which has a labyrinth structure by the said upper side step part and the said lower side step part.
  • the inner diameter of the upper surface of the focus ring is larger than the outer diameter of the substrate placed on the base,
  • a lower step is formed by projecting the lower surface side of the focus ring radially inward
  • an upper step is formed by projecting the upper surface side of the depot control ring radially outward
  • the said clearance gap is a mounting base as described in said (1) which has a labyrinth structure by the said lower side step part and the said upper side step part.
  • the inner diameter of the upper surface of the deposition control ring is larger than the outer diameter of the substrate placed on the base,
  • it can suppress that a plasma penetrate
  • the inner diameter of the focus ring is smaller than the inner diameter of the adsorption electrode,
  • the base is A base part; A substrate holding part provided on the base part; A ring holding part provided on the base part and radially outside the substrate holding part,
  • the mounting table according to any one of (1) to (14), wherein the focus ring and the deposition control ring are held on the ring holding portion.
  • the base further includes a substrate holding portion and a ring holding portion, and temperature control of the substrate, the focus ring, and the deposition control ring is performed independently.
  • the base is A base part; A substrate holding part provided on the base part; A ring holding part provided on the base part and radially outside the substrate holding part, The focus ring is held on the ring holder,
  • the mounting table according to any one of (1) to (14), wherein the deposition control ring is provided on the base portion and radially inside the ring holding portion.
  • maintenance part can be extended.
  • substrate holding part can be performed independently, respectively, temperature control of a mounting base can be performed more appropriately.
  • a plasma processing apparatus for performing plasma processing on a substrate, A processing vessel defining a processing space in which plasma is generated; A mounting table for mounting a substrate inside the processing container; The table above is A base with an adsorption electrode inside, A focus ring provided above the adsorption electrode and adsorbed and held on the base; A depot control ring on the base and provided on the radially inner side of the focus ring, and A plasma processing apparatus, wherein a gap separating the focus ring and the deposition control ring is formed between the focus ring and the deposition control ring in a radial direction.
  • the mounting tables (1) to (17) can be employed in any plasma processing apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

基板を載置する載置台は、吸着電極を内部に備えた基台と、前記吸着電極の上方に設けられ、前記基台上に吸着保持されるフォーカスリングと、前記基台上であって、前記フォーカスリングの径方向内側に設けられるデポコントロールリングと、を有する。前記フォーカスリングと前記デポコントロールリングとの径方向の間には、当該フォーカスリングとデポコントロールリングを分離する隙間が形成されている。

Description

載置台及びプラズマ処理装置
 本開示は、載置台及びプラズマ処理装置に関する。
 特許文献1には、プラズマ処理装置の内部において、静電チャック用の電極が埋設されたセラミックプレートと金属部材とを備えた載置台が開示されている。セラミックプレートは金属部材の上に積層されて設けられ、冷媒流路形成用の溝部がセラミックプレートの下面及び金属部材の上面のうちの少なくとも一方に加工されている。また、静電チャック用の電極は、被処理基板を取り囲むように配置されたフォーカスリングを静電吸着可能なように設けられ、当該フォーカスリングの温度を低く抑えることが行われている。
特開2007-266342号公報
 本開示にかかる技術は、基板を載置する載置台において、フォーカスリングの温度を適切に制御しつつ、載置台の側壁周辺部(フォーカスリングの内周を含む)への反応副生物(デポ)の付着を低減する。
 本開示の一態様は、基板を載置する載置台であって、吸着電極を内部に備えた基台と、前記吸着電極の上方に設けられ、前記基台上に吸着保持されるフォーカスリングと、前記基台上であって、前記フォーカスリングの径方向内側に設けられるデポコントロールリングと、を有し、前記フォーカスリングと前記デポコントロールリングとの径方向の間には、当該フォーカスリングとデポコントロールリングを分離する隙間が形成されている。
 本開示によれば、基板を載置する載置台において、フォーカスリングの温度を適切に制御しつつ、載置台の側壁周辺部へのデポの付着を低減することができる。
本実施形態にかかるプラズマ処理装置の構成の概略を模式的に示す縦断面図である。 第1の実施形態にかかる載置台の構成の概略を模式的に示す要部拡大図である。 第1の実施形態にかかる載置台の構成の概略を模式的に示す要部拡大図である。 第2の実施形態にかかる載置台の構成の概略を模式的に示す要部拡大図である。 第3の実施形態にかかる載置台の構成の概略を模式的に示す要部拡大図である。 本実施形態にかかる基台の第1の変形例を示す説明図である。 本実施形態にかかる基台の第2の変形例を示す説明図である。 本実施形態にかかる基台の第3の変形例を示す説明図である。
 先ず、従来のプラズマ処理装置及び載置台について、特許文献1に記載されている構成を基に説明する。
 半導体デバイスの製造工程においてプラズマ処理装置では、処理ガスを励起させることによりプラズマを生成し、当該プラズマによって半導体ウェハ等の被処理基板(以下、「基板」という。)を処理する。かかるプラズマ処理装置には、基板の載置面を備えた載置台が設けられている。特許文献1に記載されているように、載置台に載置された基板はプラズマに曝されることにより高温となるが、冷媒流路を通流する冷媒によって、セラミックプレートを介して所定のプロセス温度、例えば30℃~50℃程度に調節される。
 ここで、特許文献1に記載の載置台には、当該載置台上に載置された基板を取り囲むように配置されたフォーカスリングが静電吸着されている。当該フォーカスリングは、基板と同様にプラズマに曝されることにより高温(条件により例えば300℃程度)となる。一方で、所定のプロセス温度に調節された基板に対して熱的影響、例えばエッチャント分布制御やSiスカベンジ機能の分布制御に影響を与えることを避けるため、基板と同様にフォーカスリングを冷却して使用する場合がある。
 また、プラズマ処理においては、部材表面がプラズマに曝されることにより当該表面に反応副生物(デポ)が付着してしまう場合がある。プラズマの回り込みによりフォーカスリングの内周部にデポが付着した場合、当該デポの剥離によって基板ベベル部や載置台の側壁部にデポが再付着しやすくなり、パーティクルの原因となる場合がある。そこで、かかるデポの付着を抑制するためには、フォーカスリングの内周部の温度を上げる必要がある。
 フォーカスリングを冷却する場合、本来冷却すべき基板に熱的影響を与えるのを抑制するため、当該フォーカスリングの表面部近傍を冷却することができる。しかし、フォーカスリングの内周部も同時に冷却され、デポが付着してしまう。すなわち、フォーカスリングは、昇温すべき内周部と冷却すべき表面部近傍が一体となって構成されている。このため、フォーカスリングの温度制御を適切に行うことが困難であった。
 そこで、本開示にかかる技術は、載置台上に静電吸着されたフォーカスリングの温度制御を行う。具体的には、フォーカスリングにおいて、冷却すべき部分と昇温すべき部分とを分離して構成する。以下、この昇温すべき部分をデポコントロールリングという。そして、当該フォーカスリング及びデポコントロールリングをそれぞれ独立して温度制御する。かかる構成により、適切な温度制御が可能な載置台が実現できる。
 以下、本実施形態にかかる載置台、及び当該載置台を備えたプラズマ処理装置の構成について、図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。
<プラズマ処理装置>
 図1は、本実施形態にかかるプラズマ処理装置1の構成の概略を模式的に示す縦断面図である。なお、本実施形態ではプラズマ処理装置1として、容量結合型平行平板プラズマエッチング装置を例に説明する。
 図1に示すように、プラズマ処理装置1は、略円筒形状の処理容器10を有している。処理容器10は、例えばアルミニウムから構成されており、表面には陽極酸化処理が施されている。処理容器10は、プラズマが生成される処理空間Sを画成する。
 処理容器10内には、基板としてのウェハWを載置する載置台11が収容されている。載置台11は、基台12、フォーカスリング13、及びデポコントロールリング14を有している。フォーカスリング13及びデポコントロールリング14は、基台12上に設けられる。
 基台12は、基体部12aと、基体部12a上に設けられる基板保持部としてのウェハ保持部12bと、基体部12a上に設けられるリング保持部12cとを有している。基体部12aは略円板形状を有し、ウェハWの径よりも大きな径を有している。ウェハWの径は約300mmである。ウェハ保持部12bは基体部12aの径よりも小さな径の略円板形状を有し、基体部12aと同軸に設けられる。リング保持部12cは略円環形状を有し、平面視においてウェハ保持部12bを囲うように、径方向外側に設けられている。リング保持部12cの内径は、ウェハ保持部12bの外径よりも大きい。また、ウェハ保持部12bの上面は、側面視においてリング保持部12cの上面よりも上方に位置している。
 基体部12aの内部には、冷媒流路15aが形成されている。冷媒流路15aには、処理容器10の外部に設けられたチラーユニット(図示せず)から冷媒入口配管15bを介して冷媒が供給される。冷媒流路15aに供給された冷媒は、冷媒出口流路15cを介してチラーユニットに戻るようになっている。冷媒流路15aの中に冷媒、例えば冷却水等を循環させることにより、ウェハ保持部12bに載置されたウェハW、リング保持部12cに保持されたフォーカスリング13、及び載置台11自体を所定の温度、例えば30℃~50℃に冷却することができる。なお、基体部12aは導電性の金属、例えばアルミニウム等で構成されており、下部電極としての機能を有している。
 ウェハ保持部12bは、例えばセラミックにより構成され、内部に第1の吸着電極15dが設けられている。第1の吸着電極15dには、スイッチ20を介して直流電源21が接続されている。そしてウェハ保持部12bは、第1の吸着電極15dに直流電源21から直流電圧が印加されることによって発生する静電気力によって、ウェハWを載置面に吸着保持することができる。すなわち、ウェハ保持部12bはウェハW用の静電チャックとしての機能を有している。
 リング保持部12cは、例えばセラミックにより構成され、内部に第2の吸着電極15eが設けられている。第2の吸着電極15eには、スイッチ22を介して直流電源21が接続されている。そしてリング保持部12cは、第2の吸着電極15eに直流電源21から直流電圧が印加されることによって発生する静電気力によって、フォーカスリング13を保持面に吸着保持される。すなわち、リング保持部12cはフォーカスリング13用の静電チャックとしての機能を有している。
 なお、第2の吸着電極15eに直流電圧を印加する直流電源は、前記第1の吸着電極15dに直流電圧を印加する直流電源21とは別に設けてもよい。
 リング保持部12cの上面には、円環状に形成されたフォーカスリング13が第2の吸着電極15eにより吸着保持されている。フォーカスリング13は、平面視においてウェハ保持部12bに載置されたウェハWを囲み、当該ウェハ保持部12bと同軸に保持されている。フォーカスリング13は、プラズマ処理の均一性を向上させるために設けられる。このため、フォーカスリング13は、ウェハ保持部12bに載置されたウェハWと同種の素材、例えば本実施形態においてはウェハWを構成するシリコン(Si)から構成される。
 フォーカスリング13は、上述のように静電気力によりリング保持部12c上面に吸着保持される。この際、リング保持部12cを介して、基体部12aの内部に形成された冷媒流路15a中を通流する冷媒によりフォーカスリング13が冷却される。このようにフォーカスリング13は、リング保持部12cに静電吸着されることにより冷却されるように構成されている。
 フォーカスリング13の径方向内側であって、リング保持部12cの上面には、デポコントロールリング14が設けられている。デポコントロールリング14は、ウェハ保持部12bと同軸になるように設けられている。また、デポコントロールリング14は、ウェハ保持部12bに載置されたウェハWの下方であって、当該デポコントロールリング14の内周部及びウェハ保持部12bの側壁部において、デポが付着することを抑制できるように構成されている。また、デポコントロールリング14は、フォーカスリング13とは分離されるように配置され、フォーカスリング13とは独立して昇温できるように構成されている。
 具体的には、デポコントロールリング14は、プラズマに曝されることにより加熱される。しかし、デポコントロールリング14はフォーカスリング13と分離されて配置されているため、フォーカスリング13からの熱的影響を受けない。さらに、第2の吸着電極15eによって静電吸着されないため、リング保持部12cからのデポコントロールリング14への伝熱が抑制される。したがって、プラズマ生成時デポコントロールリング14は、フォーカスリング13の内周部に対して高い温度に保たれる。
 なお、本実施形態においてデポコントロールリング14は、例えばフォーカスリング13と同種の素材、すなわちシリコン(Si)から構成される。
 基台12の基体部12aには、第1のRF電源23a、第2のRF電源23bが、それぞれ第1の整合器24a、第2の整合器24bを介して接続され、載置台11に印加可能に構成されている。
 第1のRF電源23aは、プラズマ発生用の高周波電力を発生する電源である。第1のRF電源23aからは27MHz~100MHzの周波数であってよく、一例においては40MHzの高周波電力が載置台11の基体部12aに供給される。第1の整合器24aは、第1のRF電源23aの出力インピーダンスと負荷側(基体部12a側)の入力インピーダンスを整合させるための回路を有している。
 第2のRF電源23bは、ウェハWにイオンを引き込むための高周波電力(高周波バイアス電力)を発生して、当該高周波バイアス電力を基体部12aに供給する。高周波バイアス電力の周波数は、400kHz~13.56MHzの範囲内の周波数であってよく、一例においては3MHzである。第2の整合器24bは、第2のRF電源23bの出力インピーダンスと負荷側(基体部12a側)の入力インピーダンスを整合させるための回路を有している。
 以上のように構成された載置台11は、処理容器10の底部に設けられた略円筒形状の支持部材16に締結される。支持部材16は、例えばセラミック等の絶縁体により構成される。
 載置台11の上方には、載置台11と対向するように、シャワーヘッド30が設けられている。シャワーヘッド30は、上部電極としての機能を有し、処理空間Sに面して配置される電極板31、及び電極板31の上方に設けられる電極支持体32を有している。電極板31は、基体部12aと一対の電極(上部電極と下部電極)として機能する。なお、シャワーヘッド30は、絶縁性遮蔽部材33を介して、処理容器10の上部に支持されている。
 電極板31には、後述のガス拡散室32aから送られる処理ガスを処理空間Sに供給するための複数のガス噴出口31aが形成されている。電極板31は、例えば、発生するジュール熱の少ない低い電気抵抗率を有する導電体又は半導体から構成される。
 電極支持体32は、電極板31を着脱自在に支持するものであり、例えば表面が陽極酸化処理されたアルミニウム等の導電性材料から構成される。電極支持体32の内部には、ガス拡散室32aが形成されている。当該ガス拡散室32aからは、ガス噴出口31aに連通する複数のガス流通孔32bが形成されている。また、電極支持体32には、ガス拡散室32aに処理ガスを供給するガス供給源群40が、流量制御機器群41、バルブ群42、ガス供給管43、ガス導入孔32cを介して接続されている。
 ガス供給源群40は、プラズマ処理に必要な複数種のガス供給源を有している。プラズマ処理装置1においては、ガス供給源群40から選択された一以上のガス供給源からの処理ガスが、流量制御機器群41、バルブ群42、ガス供給管43、ガス導入孔32cを介してガス拡散室32aに供給される。そして、ガス拡散室32aに供給された処理ガスは、ガス流通孔32b、ガス噴出口31aを介して、処理空間S内にシャワー状に分散されて供給される。
 また、プラズマ処理装置1には、処理容器10の側壁からシャワーヘッド30の高さ位置よりも上方に延びるように円筒形状の接地導体10aが設けられている。円筒形状の接地導体10aは、その上部に天板10bを有している。
 また、プラズマ処理装置1には、処理容器10の内壁に沿ってデポシールド50が着脱自在に設けられている。デポシールド50は、処理容器10の内壁にデポが付着することを抑制するものであり、例えばアルミニウム材にY等のセラミックスを被覆することにより構成される。また同様に、デポシールド50に対向する面であって、支持部材16の外周面には、デポシールド51が、着脱自在に設けられている。
 処理容器10の底部であって、処理容器10の内壁と支持部材16との間には、排気プレート52が設けられている。排気プレート52は、例えばアルミニウム材にY等のセラミックスを被覆することにより構成される。処理空間Sは当該排気プレート52を介して排気口53に連通されている。排気口53には例えば真空ポンプ等の排気装置54が接続され、当該排気装置54により処理空間S内を減圧可能に構成されている。
 また、処理容器10の側壁にはウェハWの搬入出口55が形成され、当該搬入出口55はゲートバルブ55aにより開閉可能となっている。
 以上のプラズマ処理装置1には、制御部100が設けられている。制御部100は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、プラズマ処理装置1におけるウェハWの処理を制御するプログラムが格納されている。また、プログラム格納部には、各種処理をプロセッサにより制御するための制御プログラムや、処理条件に応じてプラズマ処理装置1の各構成部に処理を実行させるためのプログラム、即ち、処理レシピが格納されている。なお、上記プログラムは、コンピュータに読み取り可能な記憶媒体に記録されていたものであって、当該記憶媒体から制御部100にインストールされたものであってもよい。
<第1の実施形態>
 次に、図2を参照して第1の実施形態にかかる載置台11について説明する。図2は、第1の実施形態にかかる載置台11の構成の概略を示す要部拡大図である。
 上述のように載置台11は、基台12、フォーカスリング13、及びデポコントロールリング14を有している。また、基台12は、ウェハWを静電吸着して載置するウェハ保持部12bと、フォーカスリング13及びデポコントロールリング14を保持するリング保持部12cと、ウェハ保持部12b及びリング保持部12cを上面に備える基体部12aとを有している。基体部12aは、略円板形状を有している。ウェハ保持部12bは略円板形状を有し、前記基体部12aの上方に、当該基体部12aと同軸となるように例えば接着剤を介して固定されている。また、リング保持部12cは略円環形状を有し、前記基体部12aを囲むようにして、径方向外側に例えば接着剤を介して固定されている。なお、上述のように、ウェハ保持部12bは、当該ウェハ保持部12bの上面が、側面視においてリング保持部12cの上面よりも高い位置となるように設けられている。
 基体部12aの内部であって、前記ウェハ保持部12bの下方には冷媒流路15aが形成されている。
 ウェハ保持部12bの内部であって、前記冷媒流路15aの上方にはウェハWの吸着用の第1の吸着電極15dが設けられている。ウェハ保持部12bは上述のように、当該第1の吸着電極15dに直流電圧が印加されることによって発生する静電気力によって、ウェハWを載置面に吸着することができる。
 リング保持部12cの内部には、フォーカスリング13の吸着用の第2の吸着電極15eが設けられている。リング保持部12cは上述のように、当該第2の吸着電極15eに直流電圧が印加されることによって発生する静電気力によって、フォーカスリング13を吸着することができる。
 フォーカスリング13は、断面形状が略矩形の環状構造を有し、ウェハ保持部12bに載置されたウェハWを取り囲むように設けられている。具体的には、フォーカスリング13の内径がウェハWの外径と比べて大きく、クリアランスC1が設けられている。本実施形態においてクリアランスC1の間隔D1は、例えば0mmよりも大きく1mm以下であることが望ましい。また、フォーカスリング13の上面は、ウェハ保持部12b上に載置されたウェハWの上面と略一致するように構成されている。
 また、フォーカスリング13の内径は、第2の吸着電極15eの内径よりも小さい。これは、後述するようにデポコントロールリング14が第2の吸着電極15eによって静電吸着されるのを避けるためである。換言すれば、デポコントロールリング14は、平面視において第2の吸着電極15eと重ならない位置に配置されていればよい。本実施形態において、かかる第2の吸着電極15eの内径とフォーカスリング13の内径との差分D2は、0mmよりも大きく10mm以下であることが望ましい。なお、第2の吸着電極15eは環状の電極であってもよいし、あるいは円環が周方向に複数に分割された双極型の電極であってもよい。
 また更に、静電吸着によるフォーカスリング13の冷却効率を上げるため、フォーカスリング13とリング保持部12cとの接触領域Aは、接触熱抵抗が小さくなるように表面処理されていることが好ましい。具体的な表面処理としては、例えば研磨等の処理を含む。
 リング保持部12cの上面であって、フォーカスリング13の径方向内側、かつウェハ保持部12bに載置されたウェハWの下方には、デポコントロールリング14が設けられている。デポコントロールリング14は、例えば接着剤を介してリング保持部12cに固定されている。また、デポコントロールリング14は、断面形状が略矩形の環状構造を有している。
 また、上述のように、本実施形態においてデポコントロールリング14は、フォーカスリング13と分離されるように構成される。具体的には、フォーカスリング13とデポコントロールリング14の径方向の間には、隙間G1が形成されている。隙間G1は、鉛直方向に延伸している。この隙間G1により、フォーカスリング13とデポコントロールリング14は分離され、接触していない。
 また、デポコントロールリング14がリング保持部12cからの伝熱によって冷却されるのを抑制するため、デポコントロールリング14とリング保持部12cとの接触領域Bは、接触熱抵抗が大きくなるように表面処理されていることが好ましい。具体的には、デポコントロールリング14の下面及び/又はリング保持部12cの上面には、表面粗度が大きくなるように表面処理が施されている。そして、デポコントロールリング14の下面及び/又はリング保持部12cの上面を粗す。これにより、デポコントロールリング14とリング保持部12cとの接触領域Bの接触熱抵抗が、フォーカスリング13とリング保持部12cとの接触領域Aの接触熱抵抗と比べて相対的に大きくなるように構成されている。
 このように、本実施形態においてフォーカスリング13とデポコントロールリング14は分離して構成されている。フォーカスリング13はリング保持部12cに吸着されて冷却されるが、かかる場合でも、デポコントロールリング14をフォーカスリング13の内周部に対して高い温度に保つことができる。また、上述のように第2の吸着電極15eは、その内径がフォーカスリング13の内径よりも大きく形成されている。すなわち、第2の吸着電極15eはデポコントロールリング14の下方には敷設されていないため、当該第2の吸着電極15eによりデポコントロールリング14が静電吸着されず、冷却されない。このようにして、デポコントロールリング14の温度をフォーカスリング13の内周部より高い温度に保つことにより、ウェハWの外周部から回り込んだプラズマにより、デポコントロールリング14及びウェハ保持部12bにデポが付着することを抑制することができる。
 また、本実施形態において前記間隔D1は0mmよりも大きく1mm以下であり、フォーカスリング13とウェハWの間のクリアランスC1は微小となるように構成されている。間隔D1の大きさを微小に設定することにより、クリアランスC1からプラズマが侵入することを抑制することができる。すなわち、ウェハWの外周部から回り込むプラズマの総量を減らすことができ、デポコントロールリング14及びウェハ保持部12bにデポが付着することを更に適切に抑制することができる。
 なお、上記の実施形態においてはリング保持部12cとデポコントロールリング14とを熱的に分離にするため、デポコントロールリング14の下面及び/又はリング保持部12cの上面を粗し、接触熱抵抗を小さくした。しかし、デポコントロールリング14の温度をフォーカスリング13及びリング保持部12cと独立して高く保つことができれば、熱的分離の方法はこれに限られない。例えばデポコントロールリング14とリング保持部12cとの間に、断熱性を有する熱抵抗層を形成してもよい。熱抵抗層は特に限定されるものではないが、断熱部材、例えばテフロン(登録商標)が用いられる。あるいは、デポコントロールリング14及び/又はリング保持部12cの表面に、断熱性のコーティングを施して熱抵抗層を形成してもよい。このように、デポコントロールリング14とリング保持部12cとの間に熱抵抗層を形成することにより、リング保持部12cからデポコントロールリング14への伝熱を防ぐことができ、デポコントロールリング14の温度をフォーカスリング13の内周部より高い温度に保つことができる。
 また、上記実施形態においてデポコントロールリング14は、フォーカスリング13と同種の素材、すなわちSiにより形成されたが、デポコントロールリング14の素材はこれに限られるものではなく、任意に選択することができる。デポコントロールリング14の素材としては、例えば、Si、SiC、SiO、Si、Al、AlN等の脆性素材であってもよい。このうち、デポコントロールリング14にSiスカベンジ機能が求められる場合には、Si、SiC、SiO、Siから選択される。あるいは、単にプラズマ耐性のみが要求される場合には、Al、AlN等を用いてもよい。また、デポコントロールリング14の素材は樹脂素材、例えばPTFE、PCTFE、PFA等のテフロン(登録商標)素材又はPEEK等のエンプラ素材であってもよい。ただし、デポコントロールリング14の素材としては、熱伝導率が大きい素材が選定されることが好ましい。熱伝導率が大きい素材を用いると、プラズマによりデポコントロールリング14を急速に昇温することができる。
 また更に、デポコントロールリング14の表面には、溶射処理、焼結処理又はコーティング処理が施されていてもよい。溶射材としては、例えばAl、Y、YF等のセラミックであってもよい。また、コーティング方法としては、DLC(Diamond Like Carbon)やエアロゾルデポジション等であってもよい。
 なお、上記実施形態においては、デポコントロールリング14とリング保持部12cに表面処理を施したり、断熱部材や断熱コーティングなどの熱抵抗層を形成して、それぞれを熱的に分離した。しかし、かかる表面処理や熱抵抗層を省略し、上述の素材を適切に選定することにより熱伝導率を制御して、熱的に分離してもよい。
 また、上記実施形態においてデポコントロールリング14は鉛直方向(長さ方向)へ伸長させ、基体部12aに直接設けるようにしてもよい。図3に示すように、リング保持部12cを径方向外側に縮小し、デポコントロールリング14を基体部12aに直接固定するようにしてもよい。
 このように、デポコントロールリング14を伸長させて構成することにより、当該デポコントロールリング14及びリング保持部12cの部品寿命を延ばすことができる。また、デポコントロールリング14がリング保持部12cの上面に直接保持されないため、当該リング保持部12cの内部の第2の吸着電極15eとより確実に分離することができる。
 なお、図3に示すようにデポコントロールリング14を基体部12aに直接固定する場合、基体部12aの内部に形成された冷媒流路15aの内部を通流する冷媒による冷却効果をより大きく受けることになる。かかる冷却効果を抑制し、デポコントロールリング14の温度を高温に保つため、デポコントロールリング14と基体部12aの間には、断熱層としての断熱部材(図示せず)を設けてもよい。
 なお、本実施形態においてはウェハ保持部12b及びリング保持部12cはそれぞれ、セラミックにより構成されることで絶縁性を有していた。しかし、これらウェハ保持部12b及びリング保持部12cは絶縁性を有するものであればセラミックによる構成に限られるものではない。例えばウェハ保持部12b及びリング保持部12cは、アルミニウム材の表面に溶射処理、焼結処理又はコーティング処理を施したものにより構成されていてもよい。かかる場合、溶射材は、例えばAl、Y、YF等のセラミックであってもよい。また、コーティング方法としては、DLC(Diamond Like Carbon)やエアロゾルデポジション等であってもよい。
 以上、本実施形態によれば、フォーカスリング13とデポコントロールリング14は隙間G1を介して分離される。これにより、フォーカスリング13とデポコントロールリング14の温度制御をそれぞれ独立して行うことができ、デポコントロールリング14の温度をフォーカスリング13の内周部に対して高い温度に保つことができる。その結果、ウェハWの外周部から回り込むプラズマにより、デポコントロールリング14及びウェハ保持部12bにデポが付着することを抑制することができる。
 ここで、フォーカスリング13とデポコントロールリング14の温度制御を独立して行うためには、独立した温度調節機構を用いてもよい。デポの付着を抑制するためには、デポコントロールリング14の温度を、フォーカスリング13の温度よりも相対的に上げることが必要である。このため、本実施形態のようにフォーカスリング13とデポコントロールリング14の間に隙間G1を設け、物理的に分離すれば、デポの付着を抑制できる。したがって、本実施形態の載置台11は、構造が簡易で、コスト的にもメリットがある。
 また、フォーカスリング13の内径は、第2の吸着電極15eの内径よりも小さく形成され、第2の吸着電極15eはフォーカスリング13の下方のみであって、デポコントロールリング14の下方には配置されない。このため、デポコントロールリング14はリング保持部12cに吸着されず、リング保持部12cからデポコントロールリング14への伝熱が抑制され、当該デポコントロールリング14は、フォーカスリング13の内周部に対して高い温度に保つことができる。しかも、フォーカスリング13の内径と第2の吸着電極15eの内径の差分D2は10mm以下であり、第2の吸着電極15eによるフォーカスリング13の吸着機能を担保できる。
 また更に、デポコントロールリング14と基台12との間の接触熱抵抗が、フォーカスリング13と基台12との間の接触熱抵抗よりも大きくなるように表面処理されている。あるいは、デポコントロールリング14と基台12との間に、断熱性を有する熱抵抗層が形成されている。これら表面処理や熱抵抗層により、デポコントロールリング14と基台12との間の熱抵抗値を高め、デポコントロールリング14をフォーカスリング13の内周部より高い温度に保つことができる。
 また、フォーカスリング13とウェハWの間にはクリアランスC1が設けられ、クリアランスC1の間隔D1は0mmよりも大きく1mm以下である。このように、間隔D1の大きさを1mm以下とすることで、クリアランスC1からプラズマが侵入することを抑制することができる。
 上記第1の実施形態においては、フォーカスリング13の内径とウェハWとの間のクリアランスC1は、鉛直方向に延伸する隙間G1に連続する。かかる場合、クリアランスC1の間隔D1の大きさを1mm以下で形成することによりプラズマの侵入の大部分を抑制することはできるものの、一部のプラズマはクリアランスC1から隙間G1へ侵入してしまう。そうすると、プラズマがクリアランスC1と隙間G1を通じてリング保持部12cに到達し、その結果、リング保持部12cに損傷を与えてしまうことが考えられた。そこで、本開示者らは、後述する第2の実施形態および第3の実施形態で説明するように、隙間G1をラビリンス構造にすることを想到した。
<第2の実施形態>
 次に、リング保持部12cへプラズマを到達させにくくするための、第2の実施形態にかかる載置台111の構成について、図4を参照して説明する。図4は、第2の実施形態にかかる載置台111の構成の概略を模式的に示した要部拡大図である。なお、上述の第1の実施形態にかかる載置台11と実質的に同一の構成要素については、同じ番号を付することにより、又は符番を省略することによりその説明を省略する。
 本実施形態にかかるフォーカスリング113は、図4に示すように、上部リング部113aと下部リング部113bを一体に設けた構成を有している。上部リング部113aと下部リング部113bは、それぞれ内径が異なる環状形状を有している。具体的には、上部リング部113aの内径は下部リング部113bの内径より小さく、フォーカスリング113の外周部において上部リング部113aが径方向内側に突出している。そして、上部リング部113aと下部リング部113bにより、上側段部113cが形成されている。なお、上部リング部113a及び下部リング部113bの外径は略一致している。また、上部リング部113aの上面は、ウェハ保持部12b上に載置されたウェハWの上面と略一致するように構成されている。
 また、上部リング部113aの内径はウェハWの外径と比べて大きく、クリアランスC3が設けられている。本実施形態においてクリアランスC3の間隔D3は、0mmよりも大きく1mm以下であることが望ましい。
 リング保持部12cの上面であって、フォーカスリング113の径方向内側、かつリング保持部12cに載置されたウェハWの下方には、デポコントロールリング114が設けられている。デポコントロールリング114は、例えば接着剤を介してリング保持部12cに固定されている。
 デポコントロールリング114は、上部リング部114aと下部リング部114bを一体に設けた構成を有している。上部リング部114aと下部リング部114bは、それぞれ内径が異なる環状形状を有している。具体的には、上部リング部114aの外径は下部リング部114bの外径より小さく、デポコントロールリング114の外周部において下部リング部114bが径方向外側に突出している。そして、上部リング部114aと下部リング部114bにより、下側段部114cが形成されている。
 フォーカスリング113とデポコントロールリング114の径方向の間には、隙間G2が形成されている。隙間G2は、フォーカスリング113の上側段部113cとデポコントロールリング114の下側段部114cにより、ラビリンス構造を有している。この隙間G2により、リング保持部12cに対してプラズマが到達することを抑制することができる。その結果、プラズマによるリング保持部12cの損傷を抑制することができる。
 また、本実施形態においてもフォーカスリング113とデポコントロールリング114は分離されている。更に、クリアランスC3の間隔D3が1mm以下であるため、第1の実施形態と同様に、ウェハWの外周部から回り込むプラズマにより、デポコントロールリング14及びウェハ保持部12bにデポが付着することを適切に抑制することができる。
<第3の実施形態>
 続いて、第3の実施形態にかかる載置台211の構成について、図5を参照して説明する。図5は、第3の実施形態にかかる載置台211の構成の概略を模式的に示した要部拡大図である。
 本実施形態にかかるフォーカスリング213は、図5に示すように、上部リング部213aと下部リング部213bを一体に設けた構成を有している。上部リング部213aと下部リング部213bは、それぞれ内径が異なる環状形状を有している。具体的には、上部リング部213aの内径は下部リング部213bの内径より大きく、フォーカスリング213の外周部において下部リング部113bが径方向内側に突出している。そして、上部リング部213aと下部リング部213bにより、下側段部213cが形成されている。なお、上部リング部213a及び下部リング部213bの外径は略一致している。また、上部リング部213aの上面は、ウェハ保持部12b上に載置されたウェハWの上面と略一致するように構成されている。
 リング保持部12cの上面であって、フォーカスリング213の径方向内側には、デポコントロールリング214が設けられている。デポコントロールリング214は、例えば接着剤を介してリング保持部12cに固定されている。
 デポコントロールリング214は、上部リング部214aと下部リング部214bを一体に設けた構成を有している。上部リング部214aと下部リング部214bは、それぞれ内径が異なる環状形状を有している。具体的には、上部リング部214aの外径は下部リング部214bの外径より大きく、デポコントロールリング214の外周部において上部リング部214aが径方向外側に突出している。そして、上部リング部214aと下部リング部214bにより、上側段部214cが形成されている。なお、下部リング部214bの内径は上部リング部214aの内径よりも小さい。また、上部リング部214aの上面は、ウェハ保持部12b上に載置されたウェハWの上面、及びフォーカスリング213の上部リング部213aの上面と略一致するように構成されている。
 デポコントロールリング214の上部リング部214aの外径は、フォーカスリング213の上部リング部213aの内径と比べて小さい。そして、フォーカスリング213とデポコントロールリング214の径方向の間には、隙間G3が形成されている。隙間G3は、フォーカスリング213の下側段部213cとデポコントロールリング214の上側段部214cにより、ラビリンス構造を有している。この隙間G3により、リング保持部12cに対してプラズマが到達することを抑制することができる。その結果、プラズマによるリング保持部12cの損傷を抑制することができる。
 隙間G3において、上部リング部213aの上面と上部リング部214aの上面の間隔D4は、0mmよりも大きく1mm以下であることが望ましい。かかる場合、隙間G3にプラズマが侵入するのを抑制することができる。
 また、デポコントロールリング214の上部リング部214aの内径はウェハWの外径と比べて大きく、クリアランスC5が設けられている。本実施形態においてクリアランスC5の間隔D5は、0mmよりも大きく1mm以下であることが望ましい。本実施形態においてもフォーカスリング213とデポコントロールリング214は分離されて構成されている。更に、クリアランスC5の間隔D5が1mm以下であるため、第1の実施形態及び第2の実施形態と同様に、ウェハWの外周部から回り込むプラズマにより、デポコントロールリング14及びウェハ保持部12bにデポが付着することを適切に抑制することができる。
 また、本実施形態においては、デポコントロールリング214の上部リング部214aの上面を処理空間Sに露出し、すなわちプラズマに露出させることにより、当該デポコントロールリング214の温度をより高温に制御、保持することができる。これにより、ウェハWの外周部から下方へプラズマが回り込むことを更に抑制することができる。
 このように上部リング部214aのプラズマへの露出面積を大きくすることにより、すなわち、露出部Xを大きくすることによりデポコントロールリング214の更なる高温化を図ることができる。ただし、かかる露出部Xを大きくすることにより、Siスカベンジ機能の分布制御、及びエッチャント分布制御を担うフォーカスリング213の露出面積が減少するため、これらのバランスを考慮して露出部Xの面積を設定する必要がある。なお、本実施形態において露出部Xの外径は、300mm~360mmである。露出部Xの外径のより好ましい範囲は、305mm~340mmである。
<他の実施形態>
 以上、第1~第3の実施形態においては、フォーカスリング13、113、及び213及びデポコントロールリング14、114、及び214の形状をそれぞれ適宜変形したが、これらに加え、基台12の形状を適宜変更してもよい。
 例えば第1実施形態の基台12は、基体部12aの上方にウェハ保持部12b及びリング保持部12cを設け、当該リング保持部12cの上面にフォーカスリング13及びデポコントロールリング14を設けて構成していた。
 これに対して、図6に示す載置台311のように、基台312は、基体部12aと保持部312bを有していてもよい。保持部312bは、基体部12aの上方に設けられ、ウェハ保持部及びリング保持部を一体にした構成を有している。かかる構成により、載置台11と比べて載置台311を構成する部品点数を減らし、構造を簡易化することができる。
 また、図7に示すように載置台411において、ウェハ保持部12bの内部には、第1の吸着電極15dの下方に、ウェハWを加熱する第1のヒータ450aが設けられていてもよい。また、リング保持部12cの内部には、第2の吸着電極15eの下方に、フォーカスリング13を加熱する第2のヒータ450bが設けられていてもよい。なお、これら第1のヒータ450aと第2のヒータ450bは、いずれか一方のみが設けられていてもよい。かかる構成により、ウェハW及びフォーカスリング13の温度調節をそれぞれ分離して、精密な温度調節を行うことができる。
 また更に、図8に示す載置台511において、基台512を、ウェハ保持部12bを保持する中央基台512aと、リング保持部12cを保持する外周保持部512bとに分けて構成してもよい。かかる構成により、ウェハ保持部12b及びリング保持部12cを別の系統に分離して温度制御をすることができる。すなわち、冷媒流路15aと冷媒流路515aとに別の温度の冷媒を流して温度制御することができ、ウェハW及びフォーカスリング13の温度調節をさらに精密に行うことができる。
 以上の実施形態では、ウェハとフォーカスリングを静電吸着させる載置台を例に説明したが、本開示にかかる原理、すなわちフォーカスリングとデポコントロールリングを分離する載置台構造は、多様な既存の静電吸着機種に適用することができる。
 また、上述したプラズマ処理装置1は、容量結合型のプラズマ処理装置を例に説明を行ったが、例えば誘導結合型のプラズマ処理装置、マイクロ波といった表面波によってガスを励起させるプラズマ処理装置のように、任意のタイプのプラズマ処理装置であってもよい。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)基板を載置する載置台であって、
吸着電極を内部に備えた基台と、
前記吸着電極の上方に設けられ、前記基台上に吸着保持されるフォーカスリングと、
前記基台上であって、前記フォーカスリングの径方向内側に設けられるデポコントロールリングと、を有し、
前記フォーカスリングと前記デポコントロールリングとの径方向の間には、当該フォーカスリングとデポコントロールリングを分離する隙間が形成されている、載置台。
 前記(1)によれば、フォーカスリングとデポコントロールリングの温度制御をそれぞれ独立して行うことができる。その結果、デポコントロールリングの温度をフォーカスリングの内周部に対して高い温度に保つことができるため、基板の外周部から回り込むプラズマにより、デポコントロールリングの内周部及び基台の側壁部にデポが付着することを抑制することができる。
(2)前記隙間は鉛直方向に延伸する、前記(1)に記載の載置台。
 前記(2)によれば、隙間の形状が単純であるため、簡易的に載置台を製造することができる。
(3)前記フォーカスリングの外周部には、当該フォーカスリングの上面側が径方向内側に突出して上側段部が形成され、
前記デポコントロールリングの外周部には、当該デポコントロールリングの下面側が径方向外側に突出して下側段部が形成され、
前記隙間は、前記上側段部と前記下側段部によってラビリンス構造を有する、前記(1)に記載の載置台。
 前記(3)によれば、隙間がラビリンス構造を有しているので、基台にプラズマが到達するのを抑制することができ、その結果、プラズマによる基台の損傷を抑制することができる。
(4)前記フォーカスリングの上面の内径は、前記基台上に載置された基板の外径よりも大きく、
前記フォーカスリングの上面側内周面と前記基板の外周面との間隔は、0mmよりも大きく1mm以下である、前記(2)又は(3)に記載の載置台。
 前記(4)によれば、隙間の大きさを1mm以下とすることで、当該隙間からプラズマが侵入することを抑制することができる。その結果、基板下方へのプラズマの侵入量を減らすことができ、基板の外周部から回り込むプラズマにより、デポコントロールリングの内周部及び基台の側壁部にデポが付着することをより適切に抑制することができる。
(5)前記フォーカスリングの外周部には、当該フォーカスリングの下面側が径方向内側に突出して下側段部が形成され、
前記デポコントロールリングの外周部には、当該デポコントロールリングの上面側が径方向外側に突出して上側段部が形成され、
前記隙間は、前記下側段部と前記上側段部によってラビリンス構造を有する、前記(1)に記載の載置台。
 前記(5)によれば、隙間がラビリンス構造を有しているので、基台にプラズマが到達するのを抑制することができ、その結果、プラズマによる基台の損傷を抑制することができる。
(6)前記デポコントロールリングの上面の内径は、前記基台上に載置された基板の外径よりも大きく、
前記フォーカスリングの上面側内周面と前記基板の外周面との間隔は、0mmよりも大きく1mm以下である、前記(5)に記載の載置台。
 前記(6)によれば、隙間の大きさを1mm以下とすることで、当該隙間からプラズマが侵入することを抑制することができる。すなわち、基板下方へのプラズマの侵入量を減らすことができ、基板の外周部から回り込むプラズマにより、デポコントロールリングの内周部及び基台の側壁部にデポが付着することをより適切に抑制することができる。
(7)前記フォーカスリングの内径は、前記吸着電極の内径よりも小さく、
前記フォーカスリングの内径と前記吸着電極の内径の差分は、0mmよりも大きく10mm以下である、前記(1)~(6)のいずれか一つに記載の載置台。
 前記(7)によれば、吸着電極はフォーカスリングの下方のみであって、デポコントロールリングの下方には配置されないため、デポコントロールリングが冷却されず、フォーカスリングの内周部に対して高い温度に保つことができる。その結果、デポコントロールリングの内周部及び基台の側壁部にデポが付着することを好適に抑制することができる。
(8)前記デポコントロールリングの外径は、300mm~360mmである、前記(1)~(7)のいずれか一つに記載の載置台。
 前記(8)によれば、デポコントロールリングを適切に昇温させることができるため、当該デポコントロールリングの内周部及び基台の側壁部へのデポの付着を適切に抑制することができる。
(9)前記デポコントロールリングの素材は、前記フォーカスリングの素材と異なり、脆性素材又は樹脂素材から選択される、前記(1)~(8)のいずれか一つに記載の載置台。
 前記(9)によれば、デポコントロールリングの素材を処理プロセスに応じて任意に選択することができ、素材選択の自由度が高まる。
(10)前記デポコントロールリングと前記基台との間の接触熱抵抗が、前記フォーカスリングと前記基台との間の接触熱抵抗よりも大きくなるように、少なくとも前記デポコントロールリングの接触面又は前記基台の接触面が表面処理される、前記(1)~(9)のいずれか一つに記載の載置台。
 前記(10)によれば、デポコントロールリングと基台との間の熱抵抗値を高め、デポコントロールリングをフォーカスリングの内周部に対して高い温度に保つことができる。
(11)前記デポコントロールリングと前記基台との間に、断熱性を有する熱抵抗層が形成されている、前記(1)~(9)のいずれか一つに記載の載置台。
(12)前記熱抵抗層は、少なくとも前記デポコントロールリングの接触面又は前記基台の接触面に形成された断熱コーティングである、前記(11)に記載の載置台。
(13)前記熱抵抗層は、前記デポコントロールリングと前記基台との間に設けられた断熱部材である、前記(11)に記載の載置台。
 前記(11)~(13)によれば、前記(10)と同様の効果を奏することができる。
(14)少なくとも前記フォーカスリング又は前記基台上に載置された基板を加熱するヒータをさらに有する、前記(1)~(13)のいずれか一つに記載の載置台。
 前記(14)によれば、載置台の温度制御をより適切に行うことが可能になり、プラズマ処理装置におけるプラズマ処理をより適切に行うことができる。
(15)前記基台は、
基体部と、
前記基体部上に設けられる基板保持部と、
前記基体部上であって、前記基板保持部の径方向外側に設けられるリング保持部と、を有し、
前記フォーカスリング及び前記デポコントロールリングは、前記リング保持部上に保持される、前記(1)~(14)のいずれか一つに記載の載置台。
 前記(15)によれば、基台は基板保持部及びリング保持部をさらに有し、基板及びフォーカスリング、デポコントロールリングの温度制御をそれぞれ独立して行うことが示唆される。
(16)前記基板保持部及び前記リング保持部は一体に構成されている、前記(15)に記載の載置台。
 前記(16)によれば、載置台を構成する部品数量を減らすことができ、すなわち載置台の構成をより簡略化することができる。
(17)前記基台は、
基体部と、
前記基体部上に設けられる基板保持部と、
前記基体部上であって、前記基板保持部の径方向外側に設けられるリング保持部と、を有し、
前記フォーカスリングは、前記リング保持部上に保持され、
前記デポコントロールリングは、前記基体部上であって、前記リング保持部の径方向内側に設けられる、前記(1)~(14)のいずれか一つに記載の載置台。
 前記(17)によれば、デポコントロールリング及びリング保持部の部品寿命を延ばすことができる。また、リング保持部及び基板保持部の温度制御をそれぞれ独立して行うことができるため、載置台の温度制御をより適切に行うことができる。
(18)基板にプラズマ処理を行うプラズマ処理装置であって、
プラズマが生成される処理空間を画成する処理容器と、
前記処理容器の内部において基板を載置する載置台と、を有し、
前記載置台は、
吸着電極を内部に備えた基台と、
前記吸着電極の上方に設けられ、前記基台上に吸着保持されるフォーカスリングと、
前記基台上であって、前記フォーカスリングの径方向内側に設けられるデポコントロールリングと、を有し、
前記フォーカスリングと前記デポコントロールリングとの径方向の間には、当該フォーカスリングとデポコントロールリングを分離する隙間が形成されている、プラズマ処理装置。
 前記(18)によれば、前記(1)~(17)までの載置台は、任意のプラズマ処理装置に採用することができる。
  11  載置台
  12  基台
  13  フォーカスリング
  14  デポコントロールリング
  15e 第2の吸着電極
  W   ウェハ

Claims (18)

  1. 基板を載置する載置台であって、
    吸着電極を内部に備えた基台と、
    前記吸着電極の上方に設けられ、前記基台上に吸着保持されるフォーカスリングと、
    前記基台上であって、前記フォーカスリングの径方向内側に設けられるデポコントロールリングと、を有し、
    前記フォーカスリングと前記デポコントロールリングとの径方向の間には、当該フォーカスリングとデポコントロールリングを分離する隙間が形成されている、載置台。
  2. 前記隙間は鉛直方向に延伸する、請求項1に記載の載置台。
  3. 前記フォーカスリングの外周部には、当該フォーカスリングの上面側が径方向内側に突出して上側段部が形成され、
    前記デポコントロールリングの外周部には、当該デポコントロールリングの下面側が径方向外側に突出して下側段部が形成され、
    前記隙間は、前記上側段部と前記下側段部によってラビリンス構造を有する、請求項1に記載の載置台。
  4. 前記フォーカスリングの上面の内径は、前記基台上に載置された基板の外径よりも大きく、
    前記フォーカスリングの上面側内周面と前記基板の外周面との間隔は、0mmよりも大きく1mm以下である、請求項2又は3に記載の載置台。
  5. 前記フォーカスリングの外周部には、当該フォーカスリングの下面側が径方向内側に突出して下側段部が形成され、
    前記デポコントロールリングの外周部には、当該デポコントロールリングの上面側が径方向外側に突出して上側段部が形成され、
    前記隙間は、前記下側段部と前記上側段部によってラビリンス構造を有する、請求項1に記載の載置台。
  6. 前記デポコントロールリングの上面の内径は、前記基台上に載置された基板の外径よりも大きく、
    前記フォーカスリングの上面側内周面と前記基板の外周面との間隔は、0mmよりも大きく1mm以下である、請求項5に記載の載置台。
  7. 前記フォーカスリングの内径は、前記吸着電極の内径よりも小さく、
    前記フォーカスリングの内径と前記吸着電極の内径の差分は、0mmよりも大きく10mm以下である、請求項1~6のいずれか一項に記載の載置台。
  8. 前記デポコントロールリングの外径は、300mm~360mmである、請求項1~7のいずれか一項に記載の載置台。
  9. 前記デポコントロールリングの素材は、前記フォーカスリングの素材と異なり、脆性素材又は樹脂素材から選択される、請求項1~8のいずれか一項に記載の載置台。
  10. 前記デポコントロールリングと前記基台との間の接触熱抵抗が、前記フォーカスリングと前記基台との間の接触熱抵抗よりも大きくなるように、少なくとも前記デポコントロールリングの接触面又は前記基台の接触面が表面処理される、請求項1~9のいずれか一項に記載の載置台。
  11. 前記デポコントロールリングと前記基台との間に、断熱性を有する熱抵抗層が形成されている、請求項1~9のいずれか一項に記載の載置台。
  12. 前記熱抵抗層は、少なくとも前記デポコントロールリングの接触面又は前記基台の接触面に形成された断熱コーティングである、請求項11に記載の載置台。
  13. 前記熱抵抗層は、前記デポコントロールリングと前記基台との間に設けられた断熱部材である、請求項11に記載の載置台。
  14. 少なくとも前記フォーカスリング又は前記基台上に載置された基板を加熱するヒータをさらに有する、請求項1~13のいずれか一項に記載の載置台。
  15. 前記基台は、
    基体部と、
    前記基体部上に設けられる基板保持部と、
    前記基体部上であって、前記基板保持部の径方向外側に設けられるリング保持部と、を有し、
    前記フォーカスリング及び前記デポコントロールリングは、前記リング保持部上に保持される、請求項1~14のいずれか一項に記載の載置台。
  16. 前記基板保持部及び前記リング保持部は一体に構成されている、請求項15に記載の載置台。
  17. 前記基台は、
    基体部と、
    前記基体部上に設けられる基板保持部と、
    前記基体部上であって、前記基板保持部の径方向外側に設けられるリング保持部と、を有し、
    前記フォーカスリングは、前記リング保持部上に保持され、
    前記デポコントロールリングは、前記基体部上であって、前記リング保持部の径方向内側に設けられる、請求項1~14のいずれか一項に記載の載置台。
  18. 基板にプラズマ処理を行うプラズマ処理装置であって、
    プラズマが生成される処理空間を画成する処理容器と、
    前記処理容器の内部において基板を載置する載置台と、を有し、
    前記載置台は、
    吸着電極を内部に備えた基台と、
    前記吸着電極の上方に設けられ、前記基台上に吸着保持されるフォーカスリングと、
    前記基台上であって、前記フォーカスリングの径方向内側に設けられるデポコントロールリングと、を有し、
    前記フォーカスリングと前記デポコントロールリングとの径方向の間には、当該フォーカスリングとデポコントロールリングを分離する隙間が形成されている、プラズマ処理装置。
PCT/JP2019/021985 2018-06-15 2019-06-03 載置台及びプラズマ処理装置 WO2019239939A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980004528.7A CN111095501B (zh) 2018-06-15 2019-06-03 载置台和等离子体处理装置
US16/644,632 US11380526B2 (en) 2018-06-15 2019-06-03 Stage and plasma processing apparatus
KR1020207006881A KR20210020857A (ko) 2018-06-15 2019-06-03 배치대 및 플라즈마 처리 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-114194 2018-06-15
JP2018114194A JP2019220497A (ja) 2018-06-15 2018-06-15 載置台及びプラズマ処理装置

Publications (1)

Publication Number Publication Date
WO2019239939A1 true WO2019239939A1 (ja) 2019-12-19

Family

ID=68843339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021985 WO2019239939A1 (ja) 2018-06-15 2019-06-03 載置台及びプラズマ処理装置

Country Status (5)

Country Link
US (1) US11380526B2 (ja)
JP (1) JP2019220497A (ja)
KR (1) KR20210020857A (ja)
CN (1) CN111095501B (ja)
WO (1) WO2019239939A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008209A1 (ja) * 2021-07-28 2023-02-02 東京エレクトロン株式会社 基板支持器及び基板処理装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7365912B2 (ja) * 2020-01-10 2023-10-20 東京エレクトロン株式会社 エッジリング及び基板処理装置
JP7409976B2 (ja) * 2020-06-22 2024-01-09 東京エレクトロン株式会社 プラズマ処理システム、プラズマ処理装置及びエッジリングの交換方法
JP2022042379A (ja) 2020-09-02 2022-03-14 東京エレクトロン株式会社 載置台及びプラズマ処理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244274A (ja) * 2007-03-28 2008-10-09 Tokyo Electron Ltd プラズマ処理装置
JP2011192661A (ja) * 2009-03-03 2011-09-29 Tokyo Electron Ltd 載置台構造、成膜装置及び原料回収方法
JP2017002385A (ja) * 2015-06-16 2017-01-05 東京エレクトロン株式会社 成膜装置、成膜方法および基板載置台
JP2017055100A (ja) * 2015-07-13 2017-03-16 ラム リサーチ コーポレーションLam Research Corporation エッジに限局されたイオン軌道制御及びプラズマ動作を通じた、最端エッジにおけるシース及びウエハのプロフィール調整
JP2017092448A (ja) * 2015-08-18 2017-05-25 ラム リサーチ コーポレーションLam Research Corporation ウエハの極縁における特徴プロフィールの傾斜を改善するためのエッジリングアセンブリ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3909608B2 (ja) * 1994-09-30 2007-04-25 株式会社アルバック 真空処理装置
JP4547182B2 (ja) * 2003-04-24 2010-09-22 東京エレクトロン株式会社 プラズマ処理装置
JP2007250967A (ja) * 2006-03-17 2007-09-27 Tokyo Electron Ltd プラズマ処理装置および方法とフォーカスリング
JP4935143B2 (ja) 2006-03-29 2012-05-23 東京エレクトロン株式会社 載置台及び真空処理装置
JP5547366B2 (ja) * 2007-03-29 2014-07-09 東京エレクトロン株式会社 プラズマ処理装置
JP5741124B2 (ja) * 2011-03-29 2015-07-01 東京エレクトロン株式会社 プラズマ処理装置
CN102522305B (zh) * 2011-12-27 2015-01-07 中微半导体设备(上海)有限公司 等离子体处理装置及聚焦环组件
JP5886700B2 (ja) * 2012-07-09 2016-03-16 東京エレクトロン株式会社 伝熱シート貼付装置及び伝熱シート貼付方法
JP5798677B2 (ja) * 2014-10-29 2015-10-21 東京エレクトロン株式会社 基板処理装置及び基板処理方法
JP6552346B2 (ja) * 2015-09-04 2019-07-31 東京エレクトロン株式会社 基板処理装置
JP6932034B2 (ja) * 2017-07-13 2021-09-08 東京エレクトロン株式会社 伝熱シート及び基板処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244274A (ja) * 2007-03-28 2008-10-09 Tokyo Electron Ltd プラズマ処理装置
JP2011192661A (ja) * 2009-03-03 2011-09-29 Tokyo Electron Ltd 載置台構造、成膜装置及び原料回収方法
JP2017002385A (ja) * 2015-06-16 2017-01-05 東京エレクトロン株式会社 成膜装置、成膜方法および基板載置台
JP2017055100A (ja) * 2015-07-13 2017-03-16 ラム リサーチ コーポレーションLam Research Corporation エッジに限局されたイオン軌道制御及びプラズマ動作を通じた、最端エッジにおけるシース及びウエハのプロフィール調整
JP2017092448A (ja) * 2015-08-18 2017-05-25 ラム リサーチ コーポレーションLam Research Corporation ウエハの極縁における特徴プロフィールの傾斜を改善するためのエッジリングアセンブリ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008209A1 (ja) * 2021-07-28 2023-02-02 東京エレクトロン株式会社 基板支持器及び基板処理装置

Also Published As

Publication number Publication date
TW202002072A (zh) 2020-01-01
KR20210020857A (ko) 2021-02-24
CN111095501B (zh) 2024-01-26
CN111095501A (zh) 2020-05-01
US11380526B2 (en) 2022-07-05
US20210066049A1 (en) 2021-03-04
JP2019220497A (ja) 2019-12-26

Similar Documents

Publication Publication Date Title
WO2019239939A1 (ja) 載置台及びプラズマ処理装置
US11201038B2 (en) Support assembly and support assembly assembling method
KR101924488B1 (ko) 프로세스 공간이 한정된 pecvd 챔버
JP4935143B2 (ja) 載置台及び真空処理装置
JP5893516B2 (ja) 被処理体の処理装置及び被処理体の載置台
JP2016027601A (ja) 載置台及びプラズマ処理装置
KR102092623B1 (ko) 플라스마 처리 장치
US10784139B2 (en) Rotatable electrostatic chuck having backside gas supply
JP6068849B2 (ja) 上部電極、及びプラズマ処理装置
KR20170012106A (ko) 플라즈마 처리 장치
US20220181195A1 (en) Wafer holder for generating stable bias voltage and thin film deposition equipment using the same
US11721531B2 (en) Plasma processing apparatus
CN109841476B (zh) 半导体制造装置用的部件以及半导体制造装置
US11031273B2 (en) Physical vapor deposition (PVD) electrostatic chuck with improved thermal coupling for temperature sensitive processes
US9093487B2 (en) Substrate mounting table and substrate processing apparatus
TW202117913A (zh) 載置台及電漿處理裝置
TWI842713B (zh) 載置台及電漿處理裝置
US11664198B2 (en) Plasma processing apparatus
JP2022042379A (ja) 載置台及びプラズマ処理装置
WO2023058480A1 (ja) 上部電極構造及びプラズマ処理装置
TW202318924A (zh) 電漿處理裝置
JP2021197548A (ja) エッジリング及びプラズマ処理装置
JP2022150921A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19818532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19818532

Country of ref document: EP

Kind code of ref document: A1