WO2019239735A1 - 生型造型センサー、及び、生型造型性の評価方法 - Google Patents

生型造型センサー、及び、生型造型性の評価方法 Download PDF

Info

Publication number
WO2019239735A1
WO2019239735A1 PCT/JP2019/017600 JP2019017600W WO2019239735A1 WO 2019239735 A1 WO2019239735 A1 WO 2019239735A1 JP 2019017600 W JP2019017600 W JP 2019017600W WO 2019239735 A1 WO2019239735 A1 WO 2019239735A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
green
molding
squeeze
pressure
Prior art date
Application number
PCT/JP2019/017600
Other languages
English (en)
French (fr)
Inventor
誉人 石井
原田 久
康明 朝岡
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to JP2020525323A priority Critical patent/JP7200992B2/ja
Priority to DE112019003033.7T priority patent/DE112019003033T5/de
Priority to US17/042,231 priority patent/US20210031259A1/en
Priority to CN201980038726.5A priority patent/CN112292220A/zh
Publication of WO2019239735A1 publication Critical patent/WO2019239735A1/ja
Priority to US17/518,114 priority patent/US20220055098A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C15/00Moulding machines characterised by the compacting mechanism; Accessories therefor
    • B22C15/02Compacting by pressing devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C19/00Components or accessories for moulding machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C19/00Components or accessories for moulding machines
    • B22C19/04Controlling devices specially designed for moulding machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C21/00Flasks; Accessories therefor
    • B22C21/12Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C23/00Tools; Devices not mentioned before for moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/04Pattern plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes

Definitions

  • the present invention relates to a mold molding sensor for evaluating moldability of a mold molded by a mold molding machine.
  • ⁇ Mold strength is one of the indicators for evaluating the quality required for a mold (mold) molded by a mold making apparatus. Usually, in order to determine whether the molded mold has sufficient mold strength, work is done to measure the molded molds one by one with a mold strength meter. However, there is a demand for a method for confirming whether the formed mold has sufficient mold strength. Furthermore, there is a need for a method for managing the mold quality for each molded mold without stopping the process.
  • Patent Literature 1 discloses a method for detecting abnormalities in casting sand blowing and filling in a blow mold molding machine that measures internal pressure using a pressure sensor in order to detect abnormalities in blowing and filling molding sand. .
  • Patent Document 2 discloses a molding apparatus monitor that detects a defective mold by monitoring the height of a parting surface of a mold by using a position sensor that measures the positions of a frame setting cylinder, a filling frame cylinder, and a leveling frame. A system is disclosed.
  • This invention is made in view of the above, Comprising: In order to judge the quality of the shape
  • the mold molding sensor in the present invention is a mold molding sensor provided with a pressure sensor for evaluating mold molding property molded by a mold molding machine.
  • the pressure sensor is embedded in a squeeze board or a squeeze foot that compresses green sand.
  • the squeeze board or squeeze foot is a member constituting a part of a boundary of a molding space defined by a metal frame at the time of raw molding in the mold molding machine. It is characterized by.
  • the pressure receiving surface of the pressure sensor and the surface of the squeeze board or squeeze foot are in a flush state.
  • the squeeze board or squeeze foot As a member constituting a part of a boundary of a molding space defined by a metal frame at the time of green molding in the mold molding machine, the squeeze board or squeeze foot, and this A plate to which a model arranged opposite to the squeeze board or the squeeze foot is provided, and the pressure sensor is embedded at a position corresponding to between the metal frame and the model in the squeeze board or the squeeze foot. It is characterized by that.
  • the squeeze board is rectangular, a plurality of pressure sensors are provided, and the pressure sensors are embedded in four corners of the squeeze board.
  • the squeeze foot is arranged in a rectangular shape, a plurality of the pressure sensors are provided, and the pressure sensors are embedded in any squeeze foot including four corners.
  • the pressure sensor is fixed to the squeeze board or the squeeze foot by screwing means.
  • the pressure sensor is a fluid sensor.
  • the pressure receiving surface of the pressure sensor has a diameter of 5 to 30 mm.
  • a mold mold is molded by a mold molding machine using a mold molding sensor having a pressure sensor embedded in a squeeze board or a squeeze foot for compressing the mold sand. It is characterized by evaluating moldability.
  • the present invention it is possible to measure the pressure applied to the pressing surface of the squeeze board or the squeeze foot that compresses the green sand in order to judge the quality of the molded green mold.
  • FIG. 1 is a diagram showing an outline of the structure of a mold making apparatus using the green mold forming sensor according to the first embodiment
  • FIG. 2 shows a part of the mold making apparatus for evaluating the mold quality. It is a figure showing a structure.
  • the mold making apparatus according to the present embodiment is a frame molding machine in which a cast frame (metal frame) is transferred to the next process while the green mold (mold) is built even after molding.
  • the mold making apparatus 1 includes a plate 2 with a model 3 attached on the upper surface, a carrier 4, a metal frame 5, a fill frame 6, a squeeze head 7, a squeeze board 8, a table 9, and green mold making sensors 10A, 10B, 10C, and 10D. , Wiring 11 and mold quality evaluation device 12 are provided. 2 shows a state in which the green molding sensors 10A, 10B, 10C, and 10D of the squeeze board 8 are viewed from the line AA in FIG. (AA line view of FIG. 1)
  • the plate 2 is obtained by attaching an upper mold (or lower mold) model 3 on the upper surface of the plate for forming a cast shape on the green mold.
  • the plate 2 is made of, for example, aluminum.
  • the carrier 4 has a frame shape, and the plate 2 is placed inside the frame.
  • the mold molding space surrounded by the plate 2, the metal frame 5, the fill frame 6, and the squeeze board 8 is filled with green sand for molding the green mold.
  • the squeeze board 8 has a rectangular shape, and is a member that constitutes a part of the boundary of the molding space defined by the metal frame 5 when the mold is formed by the mold making apparatus 1.
  • the filling of green sand by the mold making apparatus 1 uses a gravity dropping method using the weight of the green sand or a blowing method using an air flow.
  • the gravity dropping method is a method in which green sand stored in a louver hopper (not shown) arranged at the top of the mold making apparatus 1 is dropped by gravity to fill the mold making space with the green sand.
  • the blowing method is a method of filling green sand by blowing green sand in a sand tank (not shown) into a mold making space.
  • the procedure for putting green sand into the mold making space and compressing it will be briefly described.
  • the metal frame 5 is placed on the carrier 4, and then the filling frame 6 is overlaid on the metal frame 5 to define a mold making space.
  • green sand is put into the mold making space, and the squeeze board 8 compresses (squeezes) the green sand.
  • the green sand in the mold making space is solidified to form the green mold.
  • the green molding sensors 10A, 10B, 10C, and 10D measure the pressure value (peak pressure) applied to the pressing surface between the green sand and the squeeze board 8 in the mold molding space during the molding of the green mold.
  • the green molding sensors 10A, 10B, 10C, and 10D are pressure sensors.
  • the green molding sensors 10A, 10B, 10C, and 10D are embedded in the four corners of the squeeze board 8.
  • the reason why the green molding sensors 10 ⁇ / b> A, 10 ⁇ / b> B, 10 ⁇ / b> C, and 10 ⁇ / b> D are embedded in this way is a result of considering variation in pressure applied to the pressing surface of the squeeze board 8.
  • the pressure receiving surface for measuring pressure is exposed on the pressing surface of the squeeze board 8, and the pressure value (peak) applied to the pressing surface of the squeeze board 8 with the green mold Pressure). At this time, it is desirable that the pressure receiving surfaces of the green molding sensors 10A, 10B, 10C, and 10D and the pressing surface of the squeeze board 8 have no step and are flush with each other. Thereby, an accurate pressure can be measured.
  • the green molding sensors 10A, 10B, 10C, and 10D are fluid pressure sensors. Earth pressure type sensors can also be used as the green molding sensors 10A, 10B, 10C, and 10D.
  • the green molding sensors 10A, 10B, 10C, and 10D measure the size of the squeeze board 8 to be embedded, the shape of the model 3, and the green molding sensors 10A, 10B, 10C, and 10D as described later.
  • the mold strength of the green mold formed at the position of the plate 2 opposite to the position of the squeeze board 8 is measured with a mold strength meter, and the relationship between the pressure value (peak pressure) and the mold strength is used.
  • the pressure receiving surface is smaller, the green mold strength measurement position facing the position where the pressure is measured is more likely to match.
  • the size of the pressure receiving surface is preferably about 5 to 30 mm in diameter.
  • FIG. 3 and 4 are side sectional views showing details of a portion of the squeeze board 8 in which the green molding sensors 10A, 10B, 10C, and 10D are embedded.
  • FIG. 3 shows a case where the green molding sensors 10A, 10B, 10C, and 10D are screwed.
  • a male screw is formed at a of the green molding sensors 10A, 10B, 10C, and 10D
  • a female screw is formed at b of the squeeze board 8
  • the green molding sensors 10A, 10B, 10C, and 10D are squeezed. Screwed to the board 8.
  • FIG. 4 shows a case where the green mold molding sensors 10A, 10B, 10C, and 10D are disk-shaped.
  • the green molding sensors 10A, 10B, 10C, and 10D are placed in the holes of the squeeze board 8, and the ring-shaped liner 13 surrounds the outer edges of the green molding sensors 10A, 10B, 10C, and 10D. Yes.
  • the bolt 14 fixes the liner 13 and holds the green molding sensors 10A, 10B, 10C, and 10D.
  • the green molding sensors 10A, 10B, 10C, and 10D can be any of screw-type or disk-shaped specifications. What is necessary is just to consider the embedding space and mounting property.
  • the wiring 11 connects the green molding sensors 10A, 10B, 10C, and 10D to the mold quality evaluation apparatus 12.
  • the green molding sensors 10A, 10B, 10C, and 10D and the mold quality evaluation apparatus 12 are connected by wire (wired communication) through the wiring 11, but may be connected wirelessly (wireless communication). good.
  • the pressure values (pressure value data) detected by the green molding sensors 10A, 10B, 10C, and 10D are amplified by, for example, an amplifier, and the mold is transmitted from the transmitter using wireless communication such as wireless LAN or Bluetooth (registered trademark). It can be transmitted to the quality evaluation device 12.
  • the mold quality evaluation apparatus 12 evaluates the quality of the mold molded by the mold molding apparatus 1 from the pressure values (pressure value data) measured by the mold molding sensors 10A, 10B, 10C, and 10D.
  • FIG. 5 is a block diagram showing a functional configuration of the mold quality evaluation apparatus 12 for wired communication data.
  • the mold quality evaluation apparatus 12 includes a reception unit 15, an amplification unit 16, an input unit 17, a mold strength calculation unit 18, a mold quality determination unit 19, a display unit 20, a transmission unit 21, and a recording unit 22.
  • the receiving unit 15 receives the pressure values (pressure value data) measured by the green molding sensors 10A, 10B, 10C, and 10D. In this example, wired data from the wiring 11 is received.
  • the amplifying unit 16 amplifies the signal amount of the received pressure value (pressure value data).
  • the amplifying unit 16 is, for example, an amplifier.
  • the input is performed by the operator.
  • the input unit 17 is, for example, a keyboard or a touch panel.
  • “y” is the mold strength
  • x is the pressure value measured by the green molding sensors 10A, 10B, 10C, and 10D
  • the input slope “a” and intercept “b” It is a relational expression for obtaining the mold strength “y” from the measured value “x”.
  • the mold strength calculation unit 18 calculates the measured value from the inclination “a” and the intercept “b” input to the input unit 17 and the pressure values (peak pressures) measured by the green molding sensors 10A, 10B, 10C, and 10D.
  • the mold strength is calculated for each pressure value (peak pressure) measured by the green molding sensors 10A, 10B, 10C, and 10D using the relational expression between the mold strength and the mold strength. The method for calculating the mold strength will be described in detail later.
  • the mold strength calculation unit 18 is, for example, a computer or a PLC.
  • the mold quality determination unit 19 determines the quality of the mold formed from the threshold value of the mold strength input to the input unit 17 and the calculated mold strength. The mold quality determination method will be described in detail later.
  • the mold quality determination unit 19 is, for example, a computer or a PLC.
  • the display unit 20 is a relational expression y between the pressure value (peak pressure) measured by the green molding sensors 10A, 10B, 10C, and 10D and the mold strength and the pressure value (peak pressure) input by the operator at the input unit 17.
  • y Ax + b slope “a” and intercept “b” values, a mold strength threshold value of a mold to be molded, a mold strength calculation result, a mold quality determination result, and the like input by an operator are displayed.
  • the display unit 20 is a display such as a liquid crystal, for example.
  • the transmission unit 21 transmits NG determination data to the Patrite (registered trademark) 23 or the like. Transmission may be either wired data or wireless data. Then, by confirming the blinking patrol light 23 or the like, an operator who recognizes the occurrence of a defective mold is marked with a cross mark so that it can be seen as a defective product at a glance. . The green mold recognized as defective is not subjected to the subsequent process (pouring), and is finally released through these processes.
  • the recording unit 22 records pressure value data, mold strength data associated with the pressure value, mold strength calculation results, mold quality determination results, and the like. Further, these data are recorded for each model attached to the plate 2.
  • the recording unit 22 is a recording medium such as a semiconductor memory or a magnetic disk. The data recorded by the recording unit 22 can be taken out using a USB memory, an SD card, or the like.
  • FIG. 6 is a block diagram showing a functional configuration when pressure values (pressure value data) measured by the green molding sensors 10A, 10B, 10C, and 10D are connected to the mold quality evaluation apparatus 12 wirelessly (wireless communication). It is.
  • the pressure values (pressure value data) measured by the green molding sensors 10A, 10B, 10C, and 10D are amplified by the amplification unit 16 ′ in the vicinity of the green molding sensor, and are sent from the pressure value transmission unit 24 to the mold quality evaluation apparatus 12. It is wirelessly transmitted to the receiving unit 15 ′.
  • the mold quality evaluation apparatus 12 for wireless data shown in FIG. 6 includes a receiving unit 15 ′, an input unit 17, a mold strength calculating unit 18, a mold quality determining unit 19, a display unit 20, a transmitting unit 21, and a recording unit 22. ing.
  • the reception unit 15 ′ receives the wireless data transmitted from the pressure value transmission unit 24 after the pressure values (pressure value data) measured by the green molding sensors 10A, 10B, 10C, and 10D are amplified by the amplification unit 16 ′. Receive.
  • the functions of the input unit 17, the mold strength calculation unit 18, the mold quality determination unit 19, the display unit 20, the transmission unit 21, and the recording unit 22 are the same as the functions of the mold quality evaluation apparatus 12 for the wired data described above. is there.
  • FIG. 7A and 7B are schematic views showing the configuration of the experiment conducted this time, where FIG. 7A is a cross-sectional view and FIG. 7B is a plan view of a squeeze board.
  • FIG. 7A is a cross-sectional view
  • FIG. 7B is a plan view of a squeeze board.
  • the model 3 is arranged in the cross-sectional view shown in FIG. 7A, the experiment was performed with and without the model 3 attached.
  • FIG 7B shows the positional relationship between the squeeze board and the sensor and the amplifier integrated recorder 25 for amplifying and recording the signal from the pressure sensor, and the amplifier integrated recorder 25.
  • a personal computer 26 that is connected to perform analysis such as graphing of sensor measurement values is also shown. The experiment was performed as follows.
  • a green molding sensor was installed (embedded) on the squeeze board. As shown in FIG. 7, the places to be installed were a total of three places: a center portion (S3) of the squeeze board and two corners (S1, S2) sandwiching the center portion. Moreover, this experiment was performed about the case where a model is attached and the case where it is not attached.
  • the mold was molded by a molding machine in which a mold molding sensor was installed on the squeeze board. And the pressure added to the pressing surface of a squeeze board at the time of a squeeze process was measured with the three green molding sensors. The pressure value was measured and recorded over time. The squeeze was gradually applied to the set pressure, and the pressure was released when the set pressure was reached.
  • the mold strength of the mold on the parting surface facing the position where the mold molding sensor measured the pressure was measured with a mold strength meter, and the relationship between the pressure value and the mold strength was examined.
  • the mold strength of the parting surface facing the position where the green molding sensor in the center (S3) measures the pressure is that of the model upper surface.
  • the strength meter that measures the mold strength is a penetrating mold strength that measures the mold strength by allowing a needle with a tip diameter of about 3 mm, which is widely used for evaluation of moldability at a casting factory, to enter the mold about 10 mm. A total was used. And said 2 and 3 were performed with respect to several raw molds, and data were collected.
  • FIG. 8 is a graph showing an example of the change over time of the pressure of the green molding sensor in the squeeze process.
  • this figure represents the case where a squeeze pressure is set to 0.6 MPa when there is no model, and is measured by three sensors.
  • the peak pressure was reached about 3 seconds after the start of squeeze.
  • the pressure at the center (S3) of the squeeze board is low, and the pressure is high around the squeeze board (S1, S2). This is because the squeeze board has a metal frame wall in the vicinity, so that the green sand is solidified by the frictional resistance between the green sand and the metal frame, whereas the central part (S3) is separated from the metal frame wall. Since there was no tamping due to the influence of the frame, it was confirmed that the pressure was low relative to the surroundings.
  • the peak pressure of the molding sensor when the model is present is higher in the center (S3) because the degree of compaction of the green sand on the model is larger than the corner, and the squeeze force is consumed in this part, It was found that the surroundings (S1, S2) are low because the surrounding squeeze force is reduced.
  • FIG. 9 is a graph summarizing the relationship between the mold squeeze pressure, the peak pressure of the mold molding sensor that changes depending on the green sand filling condition, and the mold strength.
  • Each of (S1, S2) is a plot of the peak pressure of the pressing surface of the squeeze board and the measured value of the green mold strength of the parting surface facing the position where the pressure was measured.
  • the points corresponding to the surroundings (S1, S2) are The effect of presence or absence is extremely small, and a high correlation is observed.
  • the point corresponding to the central portion (S3) has a different relationship depending on the presence or absence of the model, and when the model is present, the tendency of higher mold strength with respect to the peak pressure was exhibited compared to the case without the model.
  • the pressure reaching the pressing surface of the squeeze board varies depending on the surroundings, the position of the center, and the presence or absence of the model.
  • the mold strength at the position facing the squeeze board has a positive correlation with the pressure that reaches the pressing surface of the squeeze board, but the relationship at the center differs depending on the presence or absence of the model, but the surroundings are not affected by the presence or absence of the model Became clear.
  • the higher the packing density the higher the mold strength.
  • the packing density and mold strength have a strong positive correlation with the tamping force. Since the peak pressure measured by the molding sensor is synonymous with the tamping force, the higher the peak pressure, the higher the packing density can be obtained. If the density of the molded green mold is low, that is, the mold strength is low, there is a risk of defects such as molten metal insertion, sand dropping, sand biting, and hot water leakage. In addition, when the density of the molded green mold is too high, the sliding resistance between the model and the mold is increased, and there is a risk of a defective mold. Therefore, if the peak pressure of the detected green molding sensor is properly maintained, defects are reduced.
  • the green sand filling by the mold making apparatus 1 uses a gravity dropping method or a blowing method using an air flow.
  • the bias when green sand is thrown into the louver hopper may be biased when thrown into the mold making space.
  • the blowing method there may be a deviation at the time of charging into the mold making space depending on the distance from the sand blowing nozzle, the clogging of the nozzle mouth, and the like.
  • These biases appear as a bias of the tamping pressure by the squeeze board 8 to the green sand in the subsequent compaction of the green sand. In consideration of the occurrence of such a bias in the initial filling amount, it is necessary to arrange a green molding sensor.
  • the initial filling bias is large, improving the state of green sand injection into the louver hopper, or sand blowing. It is possible to take measures such as adjusting the injection air pressure, the injection time, and improving the condition (clogging, wear, etc.) of the injection nozzle. In addition, the flowability of green sand is affected when green sand is thrown into the louver hopper, when it is thrown into the mold making space from the louver hopper, or when blown by blowing.
  • the fluidity of the green sand changes depending on the sand properties such as moisture of the green sand, it is possible to adjust the sand processing apparatus such as a kneader for kneading the green sand supplied to the mold making apparatus 1.
  • the green sand when the green sand is tamped, the green sand is compressed by the tamping force, and the pressure is detected by the green molding sensor embedded in the squeeze board.
  • the pressure detected by the green molding sensor embedded in the squeeze board and the strength of the mold at the position facing the squeeze board have different relationships depending on the presence or absence of the model as shown in the previous experimental results. On the other hand, it was confirmed that the surroundings were not affected by the presence or absence of the model.
  • the mold strength based on the squeezing force of the squeeze board
  • the green molding sensors 10A, 10B, 10C, and 10D are embedded in the four corners of the squeeze board 8 in consideration of the green sand filling process and the green sand tamping process.
  • the mold strength calculation unit 18 calculates the mold strength from the mold strength input to the input unit 17 and the pressure values (peak pressures) measured by the green molding sensors 10A, 10B, 10C, and 10D. To do.
  • the green molding sensors 10A, 10B, 10C, and 10D are embedded in the four corners of the squeeze board 8.
  • a small number of green molding sensors can be used to determine the mold quality in consideration of variations in pressure on the pressing surface of the squeeze board. A determination can be made.
  • the relationship between the pressure applied to a wider range of pressing surfaces and the mold strength can be obtained by changing the squeeze pressure.
  • FIG. 10 is a diagram for displaying an example of the screen displayed on the display unit 20.
  • a predetermined green mold is first formed, and at that time, seven pressure values (peak pressures) measured by the green mold forming sensors 10A and 10B are displayed on the screen.
  • the operator inputs the mold strength of the parting surface facing the position where the green molding sensors 10A, 10B, 10C, and 10D of the respective green molds are arranged as an input value.
  • peak pressure A and template strength A in the table of the figure are the peak pressure value of the green molding sensor 10A and the mold strength at the position of the green molding sensor 10A.
  • Peak pressure B and “mold strength B” in the table are the peak pressure value of the green molding sensor 10B and the mold strength at the position of the green molding sensor 10B, and are displayed on the switched screen.
  • Peak pressure C and “mold strength C” are the peak pressure value of the green molding sensor 10C and the mold strength at the position of the green molding sensor 10C, and are displayed on the switched screen.
  • Peak pressure D and “template strength D” are the peak pressure value of the green molding sensor 10D and the mold strength at the position of the green molding sensor 10D.
  • the green mold whose mold strength has been measured by the operator can be used for production by performing the subsequent steps (core setting step, pouring step, etc.) as it is, if there is no problem with the mold strength.
  • the operator inputs the slope “a” and the intercept “b” of the formula.
  • the slope may be obtained by linear regression using a computer or PLC using the least square method or the like.
  • the mold strength is measured with a mold strength meter, and the number of peak pressures and mold strengths displayed on the screen is 7 for each of A and B. It can be appropriately changed depending on the specifications such as shape and size, or the specifications of green sand.
  • the mold quality determination unit 19 determines the quality of the mold from the mold strength threshold input to the input unit 17 and the mold strength calculated by the mold strength calculation unit 18.
  • the mold quality determination by the mold quality determination unit 19 includes two steps. -Step 1 First, the threshold value of the mold strength of the green mold that the operator molds is input.
  • FIG. 11 is a diagram for displaying an example of a screen displayed on the display unit 20. In this example, a specific threshold value input by the operator is displayed.
  • the “sensor A intensity normal range” in the table of the figure is the lower limit value and the upper limit value of the mold intensity at the position of the green molding sensor 10A
  • the “sensor B intensity normal range” in the table of the figure is The lower limit value and upper limit value of the mold strength at the position of the green mold molding sensor 10B
  • the “sensor C strength normal range” in the table of the figure is the lower limit value and upper limit value of the mold strength at the position of the green mold molding sensor 10C.
  • the “sensor D intensity normal range” in the table of the figure is the lower limit value and the upper limit value of the mold intensity at the position of the green molding sensor 10D.
  • the “mold strength difference (Max. ⁇ Min.) Abnormal value” in the table of the figure is the difference between the maximum and minimum mold strength values determined from the pressure values of the green molding sensors 10A, 10B, 10C, and 10D.
  • This is a threshold value to be an abnormal value.
  • the lower limit value of the mold strength at the positions of the green molding sensors 10A, 10B, 10C, and 10D is 10.0 (N / cm 2 )
  • the upper limit value is 20.0 (N / cm 2 )
  • the threshold value for the abnormal value of the difference between the maximum value and the minimum value of the mold strength at the positions of the molding sensors 10A, 10B, 10C, and 10D is set to 5.0 (N / cm 2 ).
  • the molding of the green mold is started.
  • the mold strength at the positions of the green molding sensors 10A, 10B, 10C, and 10D is automatically calculated from the pressure values (peak pressure) measured by the green molding sensors 10A, 10B, 10C, and 10D.
  • the quality of the green mold is determined from the input mold strength threshold value and the calculated mold strength.
  • the determination of the quality of the green mold is performed as follows.
  • the threshold values of the mold strength A, the mold strength B, the mold strength C, and the mold strength D are 10.0 (N / cm 2 ) or more and 20.0 (N / cm 2 ) or less, respectively.
  • the abnormal threshold value of the difference between the maximum value and the minimum value of the mold strength at the positions of the molding sensors 10A, 10B, 10C, and 10D is set to 5.0 (N / cm 2 ) or more.
  • the mold strength at the position of the green mold molding sensor 10A is 13.0 (N / cm 2 )
  • the mold strength at the position of the green mold molding sensor 10B is 12.0 (N / cm 2 )
  • the mold molding sensor 10C When the mold strength at the position is 16.0 (N / cm 2 ) and the mold strength at the position of the green molding sensor 10D is 14.0 (N / cm 2 ), the mold strength A, the mold strength B, the mold strength C, The mold strength D is all within the threshold value, and the maximum values of the mold strengths A, B, C, and D are 16.0 (N / cm 2 ) and the minimum value is 12.0 (N / cm). 2 ) Since the maximum and minimum difference is within the range of 4.0 (N / cm 2 ), the mold quality determination unit 19 determines that the mold quality is OK.
  • the mold strength at the position of the green mold molding sensor 10A is 11.0 (N / cm 2 )
  • the mold strength at the position of the green mold molding sensor 10B is 17.0 (N / cm 2 )
  • the green mold molding is performed.
  • the mold strength at the position of the sensor 10C is 12.0 (N / cm 2 )
  • the mold strength at the position of the green molding sensor 10D is 16.0 (N / cm 2 )
  • the mold strength A, the mold strength B, the mold The strength C and the mold strength D are all within the threshold, but the maximum values of the mold strengths A, B, C, and D are 17.0 (N / cm 2 ) and the minimum value is 11.0 (N / Cm 2 ) and the maximum / minimum difference is 6.0 (N / cm 2 ), which is not within the range
  • the mold quality determination unit 19 determines that the mold quality is NG.
  • FIG. 12 is a diagram for displaying an example of the screen displayed on the display unit 20.
  • “Peak pressure A”, “Peak pressure B”, “Peak pressure C”, and “Peak pressure D” in the table of the figure are the peak pressure value of the green molding sensor 10A, and the green molding sensor 10B.
  • “Mold strength A”, “Mold strength B”, “Mold strength C”, and “Mold strength D” are the mold strength and mold strength at the position of the mold molding sensor 10A calculated by the mold strength calculation unit 18, respectively.
  • the mold strength at the position of the mold molding sensor 10B calculated by the calculation section 18, the mold strength at the position of the mold molding sensor 10C calculated by the mold strength calculation section 18, and the mold molding sensor calculated by the mold strength calculation section 18 The mold strength at the 10D position.
  • the “mold strength difference (maximum-minimum)” in the table of the figure is the difference between the maximum value and the minimum value of the mold strengths A, B, C, D, and “determination” in the table of the figure is the mold It is a determination result of the mold quality by the quality determination unit 19.
  • the mold strength A, the mold strength B, the mold strength C, and the threshold value of the mold strength D to be set, and the difference between the maximum value and the minimum value are the specifications of the mold making apparatus 1, the shape and size of the mold to be molded. It is determined appropriately depending on the specifications such as the size, the part of the mold, or the specifications of green sand. These values are associated with the model number of the model.
  • the mold strength calculating unit 18 calculates the mold strength each time, even if the specifications such as the shape and size of the green mold to be molded change, the mold quality determining unit 19 It is possible to determine the quality of the molded mold from the calculated mold strength.
  • the calculated mold strength value is used for the determination of OK (normal) and NG (bad), etc., but the present invention is not limited to this. Since a positive correlation is confirmed between the mold strengths, the mold strength calculation is not performed from the pressure value of the green mold molding sensor, and the pressure value of the green mold molding sensor may be directly used as a standard for determining the mold quality.
  • each of the values in the threshold value table of FIG. 11 serving as a determination standard for the mold quality is a pressure value of the green molding sensor as a predetermined threshold value, and the measured pressure value of the green molding sensor is compared with this table, OK (normal) and NG (bad) may be determined.
  • FIG. 13 is a diagram showing the steps of a mold quality evaluation method (green mold making method) using the mold making apparatus 1 according to the first embodiment.
  • a louver hopper 27 is connected to the squeeze head 7 of the mold making apparatus 1 shown in FIG.
  • the louver hopper 27 has a structure in which a predetermined amount of green sand is input from a green sand transport device (not shown) and once stored, the louver 28 below the louver hopper 27 is opened and green sand is input into the mold making space. It has become.
  • the green mold making by the mold making apparatus 1 proceeds in the following procedure. 1.
  • a predetermined amount of green sand is put into the louver hopper 27 from a green sand conveying device (not shown).
  • the louver 28 below the louver hopper 27 is opened, and the mold molding space in which the green sand in the louver hopper 27 is defined by the plate 2, the metal frame 5 and the fill frame 6. Green sand is thrown into.
  • FIG. 13C the connected squeeze head 7 and louver hopper 27 are moved so that the squeeze board 8 is disposed immediately above the mold making space.
  • the green molding sensors 10A, 10B, 10C, and 10D measure the pressure value (peak pressure) of the pressing surface of the squeeze board.
  • a mold is formed.
  • the green molding sensors 10A, 10B, 10C, and 10D are located between the wall of the metal frame 5 of the squeeze board 8 and the model 3. 4).
  • the pressure value (peak pressure) of the pressing surface of the squeeze board is transmitted to the mold quality evaluation device 12 to evaluate the quality of the green mold just formed.
  • the quality of the molded mold can be determined as “good” or “bad” for each frame, it is possible to guarantee the mold quality for each frame. Moreover, since a defect can be judged at the time of a green mold making, the defect of the casting to manufacture can be reduced. Furthermore, since unnecessary work can be omitted, the manufacturing cost can be reduced.
  • the filling frame 6 is separated from the upper surface of the metal frame 5, and further when the table is lowered, the metal frame 5 containing the green mold is set to a core set, pouring hot water, etc. Is placed on a roller conveyor connected to the subsequent steps, the model 3 is extracted from the green mold, and the lowering of the table 9 is stopped. Next, the metal frame 5 containing the green mold is conveyed on the roller conveyor to the subsequent processes, and the metal frame 5 is carried into the mold making apparatus 1 for the next molding.
  • a predetermined amount of green sand is supplied to the louver hopper 27 with the louver 28 closed. 6).
  • the connected squeeze head 7 and the louver hopper 27 move so that the louver hopper 27 is directly above the mold molding space.
  • the table 9 ascends in the arranged state, and the next green molding is started.
  • the pressure value data, the mold strength data associated with the pressure value, the mold strength calculation result, the mold quality determination result, and the like generated during the molding process are all recorded in the recording unit 22 of the mold quality evaluation apparatus 12. Therefore, the operating state of the mold making apparatus 1 can be monitored using these numerical values, and can be used for quality control, maintenance, and troubleshooting of the mold making apparatus 1. Furthermore, these numerical values can be used for early detection of causes of defects such as sand spills, seizure of castings, mold dropping, mold tension due to molten metal pressure after casting, etc., caused by poor filling. .
  • the data recorded in the recording unit 22 is recorded for each model attached to the plate 2, it becomes possible to compare the state of the defective mold and the pressure value data with a more accurate threshold value. Setting is possible.
  • the operator clarifies that the corresponding mold is defective, but the determination result is a subsequent process (such as pouring of molten metal). It is also possible to configure so that it is automatically transmitted to the casting equipment. In that case, in the subsequent processes, the casting equipment automatically recognizes that the corresponding mold is defective, skips the process (through), and finally the corresponding mold is separated.
  • the green molding sensors 10A, 10B, 10C, and 10D are embedded in the four corners of the squeeze board 8. However, even if the number of the green molding sensors embedded in the squeeze board 8 is small. It is possible to calculate the relationship between the mold strength and the peak value of the pressure of the green molding sensor. In this case, the accuracy is somewhat lowered as compared with the case where the green molding sensor is embedded in four places, but the cost can be reduced.
  • the green mold molding sensor can be embedded at two positions 10A, 10B or 10C, 10D on the diagonal line shown in FIG. 14 and 15 are diagrams showing another example of the squeeze board 8 in which the green molding sensors 10A and 10B are embedded.
  • 3a indicated by a two-dot chain line indicates a corresponding position of the model 3 on the plate 2 to which the model is attached in the mold making space.
  • two green molding sensors 10A and 10B are embedded on the long side of the squeeze board 8 and in the vicinity of the center thereof.
  • the two green molding sensors 10A and 10B are squeezed. It is embedded on the short side of the board 8 and in the vicinity of the center thereof.
  • the position where the green molding sensor is embedded corresponds to a position between the metal frame 5 and the model 3 in the mold molding space, that is, the model 3 and the gold on the plate 2 to which the model 3 is attached. It is a squeeze board or squeeze foot side between the frame 5 and facing a portion on the plate 2 where there is no model.
  • the green mold molding sensor in order to determine the quality of the molded mold, the green sand in the mold molding space and the squeeze board are used during the molding of the green mold.
  • the pressure value (peak pressure) applied to the pressing surface 8 can be measured.
  • FIG. 16 is a diagram showing an outline of the structure of the mold making apparatus using the green mold forming sensor according to the second embodiment
  • FIG. 17 shows the part of the mold making apparatus for evaluating the mold quality. It is a figure showing a structure.
  • the mold making apparatus according to the present embodiment is a frame making machine that removes a green mold from a casting frame after molding the green mold.
  • the mold making apparatus 29 includes a plate 2 with a model 3 attached to the upper and lower surfaces, a shuttle carriage 30, an upper frame (metal frame) 31, a lower frame (metal frame) 32, an upper squeeze board 33, a lower squeeze board 34, and an upper squeeze. Mold molding sensors 10A, 10B, 10C and 10D embedded in the pressing surface of the board 33, molding molding sensors 10E, 10F, 10G and 10H embedded in the pressing surface of the lower squeeze board 34, the wiring 11, and the mold A quality evaluation device 12 is provided.
  • FIG. 17 shows a state of the green molding sensors 10A, 10B, 10C and 10D embedded in the upper squeeze board 33 as seen from the line BB in FIG.
  • the green molding sensors 10E, 10F, 10G, and 10H are embedded in the lower squeeze board 34 and are shown at the same positions as in FIG. (The sensor code when the lower squeeze board is viewed along line CC in FIG. 16 is shown in parentheses.)
  • the plate 2 is a model in which a model 3 for forming a cast shape on a green mold is attached to the upper and lower sides of the plate.
  • a plate 2 is placed on the shuttle carriage 30 and reciprocates between and outside the mold making apparatus 29 according to the process. Since the upper frame 31 forms the upper mold of the green mold, it is filled with green sand. That is, green sand is filled in the mold making space surrounded by the upper frame 31, the upper squeeze board 33, and the plate 2. Since the lower frame 32 forms a lower mold of the green mold, it is filled with green sand. That is, green sand is filled in the mold making space surrounded by the lower frame 32, the lower squeeze board 34, and the plate 2.
  • the upper squeeze board 33 and the lower squeeze board 34 have a rectangular shape, and are members constituting part of the boundary of the molding space defined by the upper frame 31 and the lower frame 32 at the time of raw molding in the mold molding device 29, respectively. It is.
  • the filling of green sand by the mold making apparatus 29 is performed by a blowing method using an air flow.
  • the blowing method is a method of filling green sand by blowing green sand from the green sand blowing ports 35 and 35 of the upper and lower frames 31 and 32 into the upper and lower surfaces of the plate 2.
  • the upper squeeze board 33 and the lower squeeze board 34 are operated by a cylinder (not shown), and squeeze and compress the green sand filled in the upper frame 31 and the green sand filled in the lower frame 32, thereby compressing the upper and lower green molds. Mold at the same time.
  • the green molding sensors 10A, 10B, 10C, and 10D measure the pressure value (peak pressure) applied to the green sand filled in the upper frame 31 and the pressing surface of the upper squeeze board 33 during the molding of the green mold.
  • the green molding sensors 10E, 10F, 10G, and 10H measure the pressure value (peak pressure) applied to the green sand filled in the lower frame 32 and the pressing surface of the lower squeeze board 34 during the molding of the green mold.
  • the green molding sensors 10A, 10B, 10C, 10D, and 10E, 10F, 10G, and 10H are pressure sensors.
  • the green molding sensors 10A, 10B, 10C, and 10D are embedded in the four corners of the pressing surface of the upper squeeze board 33.
  • the green molding sensors 10E, 10F, 10G, and 10H are embedded in the four corners of the pressing surface of the lower squeeze board 34.
  • the reason why the green molding sensors 10A, 10B, 10C, 10D, and 10E, 10F, 10G, and 10H are embedded in this way is the same as the reason described in the first embodiment.
  • the green molding sensors 10A, 10B, 10C, 10D, and 10E, 10F, 10G, and 10H have pressure receiving surfaces for measuring pressure exposed on the pressing surfaces of the squeeze board 33 and the squeeze board 34.
  • a pressure value (peak pressure) applied to the pressing surfaces of the board 33 and the lower squeeze board 34 is measured.
  • the pressure-receiving surfaces of the green molding sensors 10A, 10B, 10C, 10D, and 10E, 10F, 10G, and 10H and the pressing surfaces of the upper squeeze board 33 and the lower squeeze board 34 are flush with each other. It is desirable. Thereby, an accurate pressure can be measured.
  • the wiring 11 connects the mold molding sensors 10A, 10B, 10C, 10D, and 10E, 10F, 10G, and 10H to the mold quality evaluation apparatus 12.
  • the mold molding sensors 10A, 10B, 10C, 10D, 10E, 10F, 10G, and 10H and the mold quality evaluation apparatus 12 are connected by wire through the wiring 11, but are connected wirelessly. May be.
  • pressure values (pressure value data) detected by the green molding sensors 10A, 10B, 10C, 10D, and 10E, 10F, 10G, and 10H are used to evaluate mold quality using wireless communication such as wireless LAN or Bluetooth. It can be transmitted to the device 12.
  • the mold quality evaluation apparatus 12 is a mold mold molded by the mold molding apparatus 29 from pressure values (pressure value data) measured by the mold molding sensors 10A, 10B, 10C, 10D, and 10E, 10F, 10G, and 10H. Evaluate quality.
  • the mold quality evaluation apparatus 12 includes a reception unit 15, an amplification unit 16, an input unit 17, a mold strength calculation unit 18, a mold quality determination unit 19, a display unit 20, a transmission unit 21, and a recording unit 22.
  • the receiving unit 15 receives the pressure values (pressure value data) measured by the green molding sensors 10A, 10B, 10C, 10D, and 10E, 10F, 10G, 10H.
  • the amplifying unit 16 amplifies the signal amount of the received pressure value (pressure value data).
  • the mold strength calculation unit 18 calculates the mold strength input from the input unit 17 and the pressure values (peak pressures) measured by the green molding sensors 10A, 10B, 10C, 10D, and 10E, 10F, 10G, and 10H.
  • the mold strength is calculated for each pressure value (peak pressure) measured by the green molding sensors 10A, 10B, 10C, 10D, and 10E, 10F, 10G, and 10H based on the relational expression between the measured value and the mold strength.
  • the mold quality determination unit 19 determines the quality of the mold formed from the threshold value of the mold strength input to the input unit 17 and the calculated mold strength.
  • the display unit 20 is a pressure value (peak pressure) measured by the green molding sensors 10A, 10B, 10C, 10D, and 10E, 10F, 10G, and 10H, and a mold strength and pressure that are input by the operator through the input unit 17.
  • Value (peak pressure) relational expression y ax + b slope “a”, intercept “b” value, threshold value of mold strength of mold to be molded input by operator, mold strength calculation result, and The mold quality judgment result etc. are displayed on the screen.
  • the transmission unit 21 transmits NG determination data to the patrol light 23 or the like.
  • the recording unit 22 records pressure value data, mold strength data associated with the pressure value, a mold strength calculation result, a mold quality determination result, and the like.
  • FIG. 18 is a diagram showing the steps of a mold quality evaluation method (green mold making method) using the mold making apparatus 29 according to the second embodiment.
  • a sand tank 36 is adjacent to the mold making apparatus 29 shown in FIG.
  • the sand tank 36 is filled with a predetermined amount of green sand from a green sand conveying device (not shown), and once stored, the charging hole is closed, and when compressed air is supplied into the sand tank 36, the upper and lower casting frames 31.
  • the green sand is blown and filled into the upper and lower mold making spaces through the green sand blowing ports 35, 35.
  • the green mold making by the mold making apparatus 29 proceeds in the following procedure. 1.
  • the shuttle carriage 30 on which the plate 2 to which the models 3 and 3 are attached is moved between the upper frame 31 and the lower frame 32 from the state of FIG. 2.
  • the lower squeeze board 34 and the lower frame 32 embedded with the green molding sensors 10E, 10F, 10G, and 10H are lifted, the plate 2 is lifted from the shuttle carriage 30 and set in the state of FIG. Compressed air is supplied to the sand tank 36, and green sand is blown and filled into the upper and lower mold making spaces via the green sand blowing ports 35 and 35 of the upper and lower casting frames 31 and 32. 3.
  • the upper and lower squeeze boards 33 and 34 in which the green molding sensors 10A, 10B, 10C, 10D, 10E, 10F, 10G, and 10H are embedded are moved to the green sand in the upper and lower casting frames 31 and 32 by the operation of a cylinder (not shown). It is squeezed (compressed) and the state shown in FIG. At this time, the green molding sensors 10A, 10B, 10C, 10D, and 10E, 10F, 10G, 10H measure the pressure value (peak pressure) of the pressing surfaces of the upper and lower squeeze boards 33, 34. In this step, a green mold is formed.
  • the green molding sensors 10A, 10B, 10C, 10D, and 10E, 10F, 10G, and 10H are the models of the upper and lower squeeze boards 33 and 34, respectively. It is between three.
  • the measured pressure value peak pressure
  • the mold quality evaluation device 12 to evaluate the quality of the green mold just formed.
  • the pressure value data, the mold strength data associated with the pressure value, the mold strength calculation result, the mold quality determination result, and the like generated during the molding process are all recorded in the recording unit 22 of the mold quality evaluation apparatus 12. Therefore, it is possible to monitor the operating state of the mold making apparatus 29 using these numerical values, and it can be used for quality control, maintenance, and troubleshooting of the mold making apparatus 29. Furthermore, these numerical values can be used for early detection of causes of defects such as sand spills, seizure of castings, mold dropping, mold tension due to molten metal pressure after casting, and the like caused by defective filling.
  • the green molding sensors 10A, 10B, 10C, 10D, and 10E, 10F, 10G, and 10H are located near the upper frame 31 and the lower frame 32 of the pressing surfaces of the upper and lower squeeze boards 33 and 34, respectively.
  • the accuracy is somewhat lowered as compared with the case where the green molding sensor is embedded in four places, but the cost can be reduced.
  • FIG. 19 and 20 are diagrams showing another example in which the green molding sensors 10A and 10B are embedded in the pressing surface of the upper squeeze board 33.
  • 3a indicated by a two-dot chain line indicates a corresponding position of the model 3 on the plate 2 to which the model is attached in the mold making space.
  • two green molding sensors 10A and 10B are embedded on the long side of the squeeze board 33 and near the center thereof.
  • the two green molding sensors 10A and 10B are squeezed. It is embedded on the short side of the board 33 and in the vicinity of the center thereof. Even on the pressing surface of the lower squeeze board 34, the molding sensors 10E and 10F can be arranged in the same state. By arranging these molding sensors, it is possible to grasp the deviation of the filling amount between the vicinity and the distance of the green sand blowing ports 35, 35, or the right and left of the green sand blowing ports 35, 35.
  • the green sand filled in the upper frame 31 is determined when molding the green mold. It is possible to measure the pressure value (peak pressure) applied to the pressing surface of the upper squeeze board 33 and the pressure value (peak pressure) applied to the pressing surface of the lower squeeze board 34 with the green sand filled in the lower frame 32. It becomes.
  • the mold quality evaluation apparatus 12 measures the measured mold strength and the green mold molding sensors 10A, 10B, 10C, 10D (and 10E, 10F, 10G, 10H). After obtaining the relationship between the mold strength and the pressure value (peak pressure) from the pressure value (peak pressure), the green molding sensors 10A, 10B, 10C, 10D (and 10E, 10F, 10G, 10H) are separately measured. The mold strength is calculated from the measured pressure value (peak pressure). Then, the quality of the mold formed from the preset mold strength threshold value and the calculated mold strength is determined.
  • the mold quality evaluation apparatus 12 determines that the reason is that sand is not uniformly filled in the casting frame, and that the cause is that the CB value of green sand is high, and the amount of water to be injected By instructing the kneader to reduce the number of green sand filling defects can be eliminated.
  • the results of determination by the mold quality evaluation device 12 and the raw sand automatic measurement system or the like by feeding back the result of measuring and evaluating the compressive strength of the green sand to the kneader, the additive to be introduced into the kneader, It is also possible to control the amount of moisture and the like.
  • the green sand compressive strength, air permeability, compactor bilty value, moisture value and other properties of the green sand measured by the green sand automatic measurement system and the green molding sensors 10A, 10B, 10C, 10D, (and 10E, 10F, 10G, 10H) can be evaluated from the pressure value (peak pressure) and distribution thereof, and the flowability of green sand can be evaluated. By changing it, it is possible to eliminate mold defects.
  • the mold quality evaluation apparatus 12 includes the measured mold strength and the green molding sensors 10A, 10B, 10C, 10D (and 10E, 10F, 10G, 10H).
  • the measured pressure value (peak pressure) is converted into mold strength, and the quality of the molded mold is determined based on the mold strength, but there is a correlation between the pressure value (peak pressure) and the mold strength. Since it has been found, it is also possible to determine the quality of the green mold directly from the pressure value (peak pressure) without converting into the mold strength.
  • FIG. 21A is a longitudinal sectional view of a mold making apparatus using a green mold making sensor according to the third embodiment of the present invention.
  • FIG. 21B shows the squeeze foot as viewed in the DD line.
  • a squeeze foot is used instead of a squeeze board.
  • reference numeral 300 denotes a squeeze foot.
  • the squeeze foot 300 is a member that is arranged in a rectangular shape and constitutes a part of the boundary of the molding space defined by the metal frame 5 when the mold molding apparatus 1 forms the mold.
  • the green molding sensors 10I, 10J, 10K, and 10L are embedded in individual squeeze feet as shown in FIG.
  • the embodiment shown in this figure is different from the first embodiment in that a squeeze foot 300 is used as an element for performing a squeeze operation.
  • the squeeze foot 300 adjusts the height of the green sand to be filled by moving the squeeze foot 300 facing the model 3 up and down according to the height of the model 3 and moving it during the squeeze operation.
  • the pressure is controlled to be the same for all squeeze feet.
  • the squeeze feet 300b and 300d facing the high part of the model 3 protrude toward the model 3 more than the squeeze feet 300a, 300c and 300e facing the low part of the model 3.
  • the amount of sand immediately below the squeeze feet 300b and 300d is The amount of sand can be reduced as compared with the amount of sand immediately below the squeeze feet 300a, 300c, and 300e.
  • the squeeze feet 300a to 300e are finally moved to a position where all the surfaces facing the model 3 are aligned to complete the squeeze process. (Not shown)
  • the compression rate of the green sand can be made uniform regardless of the partial height difference of the model 3.
  • the vertical position of the squeeze foot 300 may be adjusted according to the non-uniform filling of the green sand.
  • the (peak) pressure value measured by the green molding sensor embedded in the squeeze foot 300 becomes the same pressure value for all sensors. . Therefore, when the pressure value measured at the time of molding becomes larger than the variation of the value observed at the normal time, it is considered that an abnormality has occurred for some reason. As the cause of this, it is conceivable that the unevenness of the sandbox is extreme, or the cylinder that moves the squeeze foot is broken. When the variation in the pressure value becomes large, it is determined that the unique variation has occurred, and the mold quality evaluation apparatus determines that the mold is NG and performs processing.
  • the standard deviation of the pressure value measured by a plurality of mold molding sensors embedded in the squeeze foot is calculated.
  • the standard deviation may be larger than a predetermined reference value.
  • the reference value may be set arbitrarily. For example, a value that is considered appropriate in terms of mold quality may be set first.
  • the ratio of how much larger than the average value, which is the target of the average value calculation, and the number of previously formed mold frames and the criterion for determining the specific variation can be selected as appropriate.
  • mold making is performed by the same operation as in the first embodiment, and the same operations and effects as in the first embodiment can be obtained.
  • the first, second, and third embodiments described above are examples in which two or more pressure sensors are provided on the squeeze board or squeeze foot.
  • one pressure sensor is provided on the squeeze board or squeeze foot. It is good also as a structure.
  • the position where the pressure sensor is attached is preferably in the vicinity of the plate model.
  • the output of one pressure sensor also shows a value related to the mold strength at a specific position of the mold, so the accuracy is reduced, but this value is used to obtain the mold. You may evaluate quality.
  • Mold making equipment (mold making with frame) 2 plate 2a central plate 2b outer peripheral plate 3 model 4 carrier 5 metal frame 6 fill frame 7 squeeze head 8 squeeze board 9 table 10A to 10L mold molding sensor 11 wiring 12 mold quality evaluation device 13 liner 14 bolts 15, 15 ' Receiving section 16, 16 'Amplifying section 17 Input section 18 Mold strength calculating section 19 Mold quality determining section 20 Display section 21 Transmitting section 22 Recording section 23 Patrite 24 Pressure value transmitting section 25 Amplifier-integrated recorder 26 Personal computer 27 Louver hopper 28 Louver 29 Mold making machine (frame making machine) 30 Shuttle truck 31 Upper frame 32 Lower frame 33 Upper squeeze board 34 Lower squeeze board 35 Green sand injection port 36 Sand tank 300, 300a to 300e Squeeze foot

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Devices For Molds (AREA)

Abstract

【課題】造型された生型の品質を判断するために、生型砂を圧縮するスクイズボード又はスクイズフットの押圧面に加わる圧力を測定することのできる生型造型センサーを提供すること。 【解決手段】鋳型造型機で造型される生型の造型性を評価する圧力センサーを備えた生型造型センサーであって、生型砂を圧縮するスクイズボード又はスクイズフットに前記圧力センサーが埋め込まれたこと、を特徴とする。

Description

生型造型センサー、及び、生型造型性の評価方法
 本発明は、鋳型造型機で造型される生型の造型性を評価する生型造型センサーに関する。
 鋳型造型装置により造型される生型(鋳型)に求められる品質を評価する指標の1つに、鋳型強度がある。通常、造型された生型が十分な鋳型強度を有しているか判断するために、造型された生型を一個ずつ鋳型強度計で測定する作業が行われており、このような作業をしなくても、造型された生型が十分な鋳型強度を有しているか確認する方法が要望されている。さらに、工程を止めることなく、造型された生型毎に鋳型品質を管理する方法が要望されている。
 例えば、特許文献1には、鋳物砂の吹込み充填の異常を検知するために、圧力センサーにより内部圧力を測定する吹込み式鋳型造型機における鋳物砂吹込み充填異常検知方法が開示されている。
 また、特許文献2には、枠セットシリンダ、盛枠シリンダ及びレベリングフレームの位置を測定する位置センサーを用いて、鋳型の見切り面の高さを監視することにより、不良鋳型を発見する造型装置モニタシステムが開示されている。
特許第3415497号公報 特許第3729197号公報
 しかしながら、特許文献1の鋳物砂吹込み充填異常検知方法では、砂充填不良のみ検知することが可能であり、正確な鋳型強度を確認することは難しい。また、特許文献2の造型装置モニタシステムで、鋳型の見切り面の高さを監視しても、見切り面の高さから正確な鋳型強度を確認することは難しい。
 本発明は、上記に鑑みてなされたものであって、造型された生型の品質を判断するために、生型砂を圧縮するスクイズボード又はスクイズフットの押圧面に加わる圧力を測定することのできる生型造型センサーを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明における生型造型センサーは、鋳型造型機で造型される生型の造型性を評価する圧力センサーを備えた生型造型センサーであって、生型砂を圧縮するスクイズボード又はスクイズフットに前記圧力センサーが埋め込まれたこと、を特徴とする。
 また、本発明の一実施態様では、前記スクイズボード又はスクイズフットは、前記鋳型造型機での生型造型時に金枠とによって画成される造型空間の境界の一部を構成する部材であること、を特徴とする。
 また、本発明の一実施態様では、前記圧力センサーの受圧面と前記スクイズボード又はスクイズフットの表面は、面一状態にあること、を特徴とする。
 また、本発明の一実施態様では、前記鋳型造型機での生型造型時に金枠とによって画成される造型空間の境界の一部を構成する部材として、前記スクイズボード又はスクイズフットと、このスクイズボード又はスクイズフットに対向して配置される模型が取り付けられたプレートが設けられ、前記圧力センサーは、前記スクイズボード又はスクイズフットにおける前記金枠と前記模型との間に対応する位置に埋め込まれていること、を特徴とする。
 また、本発明の一実施態様では、前記スクイズボードは矩形状とされ、前記圧力センサーは複数設けられ、これら圧力センサーは前記スクイズボードの4隅に埋め込まれていること、を特徴とする。
 また、本発明の一実施態様では、前記スクイズフットの配列は矩形状とされ、前記圧力センサーは複数設けられ、これら圧力センサーは4隅を含む任意の前記スクイズフットに埋め込まれていること、を特徴とする。
 また、本発明の一実施態様では、前記圧力センサーが螺着手段により前記スクイズボード又はスクイズフットに固定されていること、を特徴とする。
 また、本発明の一実施態様では、前記圧力センサーが流体センサーであること、を特徴とする。
 また、本発明の一実施態様では、前記圧力センサーの受圧面の大きさは、直径5~30mmであること、を特徴とする。
 また、本発明における型造型性の評価方法は、生型砂を圧縮するスクイズボード又はスクイズフットに埋め込まれた圧力センサーを備えた生型造型センサーを用いて、鋳型造型機で造型される生型の造型性を評価すること、を特徴とする。
 本発明によれば、造型された生型の品質を判断するために生型砂を圧縮するスクイズボード又はスクイズフットの押圧面に加わる圧力を測定することのできるという効果を奏する。
第1の実施の形態に係る生型造型センサーを用いた鋳型造型装置の構造の概略を表す図である。 鋳型造型装置の中で、鋳型品質を評価する部分の構成を表す図である。 生型造型センサーが埋め込まれているスクイズボードの部分の詳細を表す断面図である。 生型造型センサーが埋め込まれているスクイズボードの部分の詳細を表す断面図である。 鋳型品質評価装置の機能構成の一例を表すブロック図である。 鋳型品質評価装置の機能構成の他の例を表すブロック図である。 今回実施した実験の構成を表す概略図で、(a)が断面図、(b)がスクイズボードの平面図ある。 スクイズ工程における生型造型センサーの圧力の経時変化を増幅器一体型記録計に記録し、パソコンで解析した結果の一例を表すグラフである。 生型造型センサーのピーク圧力と鋳型強度の関係をまとめたグラフである。 表示部に表示された画面の一例を表示する図である。 表示部に表示された画面の一例を表示する図である。 表示部に表示された画面の一例を表示する図である。 第1の実施の形態に係る鋳型造型装置を用いた鋳型品質の評価方法(生型の造型方法)の工程を示す図である。 生型造型センサーが埋め込まれているスクイズボードの他の例を示す図である。 生型造型センサーが埋め込まれているスクイズボードの他の例を示す図である。 第2の実施の形態に係る生型造型センサーを用いた鋳型造型装置の構造の概略を表す図である。 鋳型造型装置の中で、鋳型品質を評価する部分の構成を表す図である。 第2の実施の形態に係る鋳型造型装置を用いた鋳型品質の評価方法(生型の造型方法)の工程を示す図である。 生型造型センサーが埋め込まれているスクイズボードの他の例を示す図である。 生型造型センサーが埋め込まれているスクイズボードの他の例を示す図である。 第3の実施の形態に係る鋳型造型装置の構造の概略を表す図である。
 以下、添付図を参照して、本発明による生型造型センサー、及び、生型造型性の評価方法を実施するための形態について、説明する。
(第1の実施の形態)
 第1の実施の形態について、添付図を参照して説明する。図1は、第1の実施の形態に係る生型造型センサーを用いた鋳型造型装置の構造の概略を表す図であり、図2は、鋳型造型装置の中で、鋳型品質を評価する部分の構成を表す図である。本実施の形態に係る鋳型造型装置は、生型(鋳型)を造型後も鋳枠(金枠)が生型を内蔵したまま次工程へ移送する枠付造型機である。
 鋳型造型装置1は、模型3が上面に取り付けられたプレート2、キャリア4、金枠5、盛枠6、スクイズヘッド7、スクイズボード8、テーブル9、生型造型センサー10A、10B、10C、10D、配線11、及び、鋳型品質評価装置12を備えている。なお、図2は、スクイズボード8の生型造型センサー10A、10B、10C、10Dを、図1のA-A線から見た様子を表している。(図1のA-A線視図)
 プレート2は、生型に鋳物の形状を造型するための上型(又は下型)模型3を板の上面に取り付けたものである。プレート2は、例えば、アルミで形成されている。キャリア4は、枠形状をしており、プレート2をその枠の内側に載置している。そして、プレート2、金枠5、盛枠6、及び、スクイズボード8で囲まれた鋳型造型空間に、生型を造型するための生型砂が充填される。スクイズボード8は、矩形状であり、鋳型造型装置1での生型造型時に金枠5とによって画成される造型空間の境界の一部を構成する部材である。
 鋳型造型装置1による生型砂の充填は、生型砂の重量を用いた重力落下方式、又は、空気流を用いたブローイング方式が用いられる。重力落下方式は、鋳型造型装置1の上部に配置されたルーバーホッパ(図示せず)に溜めておいた生型砂を、重力により落下させることにより、鋳型造型空間に生型砂を充填する方式である。また、ブローイング方式は、サンドタンク内(図示せず)の生型砂を鋳型造型空間に吹き込むことにより、生型砂を充填する方式である。
 ここで、鋳型造型空間に生型砂を投入し、圧縮する手順について簡単に説明する。まず、キャリア4上に金枠5を載置し、続いて、金枠5上に盛枠6を重ね合わせて鋳型造型空間を画成する。次に、鋳型造型空間に生型砂を投入し、スクイズボード8が生型砂を圧縮(スクイズ)する。これにより、鋳型造型空間の生型砂は突き固められて生型が造型される。
(生型造型センサー)
 生型造型センサー10A、10B、10C、10Dは、生型の造型時に、鋳型造型空間内の生型砂とスクイズボード8との押圧面に加わる圧力値(ピーク圧力)を測定する。生型造型センサー10A、10B、10C、10Dは、圧力センサーである。本実施の形態では、生型造型センサー10A、10B、10C、10Dは、スクイズボード8の4隅に埋め込まれている。後述するが、生型造型センサー10A、10B、10C、10Dがこのように埋め込まれている理由は、スクイズボード8の押圧面に加わる圧力のばらつきを考慮した結果である。生型造型センサー10A、10B、10C、10Dをスクイズボード8の4隅に埋め込むことにより、鋳型全体の強度分布を見ることができる。
 そして、生型造型センサー10A、10B、10C、10Dは、圧力を測定する受圧面がスクイズボード8の押圧面に露出しており、生型とのスクイズボード8の押圧面に加わる圧力値(ピーク圧力)を測定する。この時、生型造型センサー10A、10B、10C、10Dの受圧面とスクイズボード8の押圧面は、段差がなく面一状態にあることが望ましい。これにより、正確な圧力を測定することができる。一例では、生型造型センサー10A、10B、10C、10Dは、流体圧式センサーである。生型造型センサー10A、10B、10C、10Dとして、土圧式センサーを用いることもできる。
 また、生型造型センサー10A、10B、10C、10Dは、埋め込むスクイズボード8の大きさや模型3の形状、さらには、後述するように、生型造型センサー10A、10B、10C、10Dが圧力を測定したスクイズボード8の位置に対向するプレート2の位置で成形される生型の鋳型強度を鋳型強度計で測定し、圧力値(ピーク圧力)と鋳型強度との関係を利用することを考慮した場合、受圧面の大きさは小さい方が圧力を測定した位置に対向する生型の鋳型強度測定位置が合致しやすい。その一方で、測定精度も要求されるため、受圧面の大きさは直径5~30mm程度が望ましい。
 図3及び図4は、生型造型センサー10A、10B、10C、10Dが埋め込まれているスクイズボード8の部分の詳細を表す側断面図である。図3は、生型造型センサー10A、10B、10C、10Dがねじ込み式である場合を表す。図3に示すように、生型造型センサー10A、10B、10C、10Dのaに雄ねじが形成され、スクイズボード8のbに雌ねじが形成され、生型造型センサー10A、10B、10C、10Dがスクイズボード8に螺着されている。
 一方、図4は、生型造型センサー10A、10B、10C、10Dが円板状である場合を表す。図4に示すように、スクイズボード8の穴に生型造型センサー10A、10B、10C、10Dが置かれ、リング状のライナー13が生型造型センサー10A、10B、10C、10Dの外縁を囲んでいる。そして、ボルト14がライナー13を固定し、生型造型センサー10A、10B、10C、10Dを保持している。
 このように、生型造型センサー10A、10B、10C、10Dには、ねじ込み式、又は、円板状のいずれの仕様の物も用いることが可能であるが、その選択に際しては、生型造型センサーの埋め込みスペース、取り付け性を考慮して行えばよい。
 配線11は、生型造型センサー10A、10B、10C、10Dと鋳型品質評価装置12を接続する。本実施の形態では、生型造型センサー10A、10B、10C、10Dと鋳型品質評価装置12は、配線11を通じて有線(有線通信)で接続されているが、無線(無線通信)で接続されても良い。例えば、生型造型センサー10A、10B、10C、10Dが検出した圧力値(圧力値データ)を、例えばアンプで増幅し発信器から無線LANやBluetooth(登録商標)等の無線通信を使用して鋳型品質評価装置12に送信することが可能である。
(鋳型品質評価装置)
 鋳型品質評価装置12は、生型造型センサー10A、10B、10C、10Dが測定した圧力値(圧力値データ)から鋳型造型装置1により造型された生型の品質を評価する。図5は、有線通信データに対する鋳型品質評価装置12の機能構成を表すブロック図である。鋳型品質評価装置12は、受信部15、増幅部16、入力部17、鋳型強度算出部18、鋳型品質判定部19、表示部20、送信部21、及び、記録部22を備えている。
 受信部15は、生型造型センサー10A、10B、10C、10Dが測定した圧力値(圧力値データ)を受信する。本例では、配線11からの有線データを受信する。
 増幅部16は、受信した圧力値(圧力値データ)の信号量を増幅する。増幅部16は、例えば、アンプである。
 入力部17は、造型した生型に対して鋳型強度計で測定した鋳型強度、後述する式y=ax+bの傾き「a」、及び、切片「b」の値、及び、造型する生型の鋳型強度の閾値等を入力する。なお、入力は、作業者が行う。入力部17は、例えば、キーボードやタッチパネルである。なお、式y=ax+bの「y」は鋳型強度、「x」は生型造型センサー10A、10B、10C、10Dが測定した圧力値であり、入力された傾き「a」、切片「b」と測定値「x」から鋳型強度「y」を求める関係式である。
 鋳型強度算出部18は、入力部17に入力された傾き「a」、切片「b」と、生型造型センサー10A、10B、10C、10Dが測定した圧力値(ピーク圧力)から、前記測定値と鋳型強度の関係式により生型造型センサー10A、10B、10C、10Dが測定した圧力値(ピーク圧力)毎に鋳型強度を算出する。なお、鋳型強度の算出方法については、後ほど詳細に説明する。鋳型強度算出部18は、例えば、コンピューター、又は、PLCである。
 鋳型品質判定部19は、入力部17に入力された鋳型強度の閾値と、算出された鋳型強度から造型された生型の品質を判定する。なお、鋳型品質の判定方法については、後ほど詳細に説明する。鋳型品質判定部19は、例えば、コンピューター、又は、PLCである。
 表示部20は、生型造型センサー10A、10B、10C、10Dが測定した圧力値(ピーク圧力)、入力部17で作業者により入力された鋳型強度と圧力値(ピーク圧力)との関係式y=ax+bの傾き「a」、及び、切片「b」の値、作業者により入力された造型する生型の鋳型強度の閾値、鋳型強度算出結果、及び、鋳型品質判定結果等を表示する。表示部20は、例えば、液晶等のディスプレイである。
 送信部21は、パトライト(登録商標)23等へNG判定データを送信する。送信は、有線データ、又は、無線データのいずれでも良い。そして、点滅するパトライト23を確認する等して、生型の不良発生を認識した作業者は、該当する生型に×印を付ける等して、一見して不良品であるとわかるようにする。不良品と認識された生型は、以後の工程(注湯)を行わず、これらの工程をスルーして最終的に型ばらしされる。
 記録部22は、圧力値データ、圧力値と関連付けられた鋳型強度データ、鋳型強度算出結果、及び、鋳型品質判定結果等を記録する。さらに、これらのデータはプレート2に取り付けられた模型毎に記録される。記録部22は、例えば、半導体メモリや磁気ディスク等の記録媒体である。そして、記録部22により記録されたデータは、USBメモリやSDカード等を用いて取り出し可能である。
 前述した様に、生型造型センサー10A、10B、10C、10Dと鋳型品質評価装置12は、無線(無線通信)で接続されても良い。図6は、生型造型センサー10A、10B、10C、10Dで測定した圧力値(圧力値データ)が無線(無線通信)で鋳型品質評価装置12に接続されている場合の機能構成を表すブロック図である。生型造型センサー10A、10B、10C、10Dで測定された圧力値(圧力値データ)は、生型造型センサー近傍の増幅部16’で増幅され、圧力値送信部24から鋳型品質評価装置12の受信部15’に無線送信される。図6に示す無線データに対する鋳型品質評価装置12は、受信部15’、入力部17、鋳型強度算出部18、鋳型品質判定部19、表示部20、送信部21、及び、記録部22を備えている。
 受信部15’は、生型造型センサー10A、10B、10C、10Dで測定した圧力値(圧力値データ)が増幅部16’で増幅された後、圧力値送信部24から送信された無線データを受信する。なお、入力部17、鋳型強度算出部18、鋳型品質判定部19、表示部20、送信部21、及び、記録部22の機能は、前述した有線データに対する鋳型品質評価装置12の機能と同じである。
(生型造型センサーが測定した圧力と、造型された生型の鋳型強度との関係)
 次に、生型造型センサーが測定したスクイズボードの押圧面に加わる圧力値(ピーク圧力)と、造型された生型の鋳型強度との関係について説明する。これらの関係を調べるため、造型機を用いて実験を行った。図7は、今回実施した実験の構成を表す概略図で、(a)が断面図、(b)がスクイズボードの平面図を示す。図7(a)に示す断面図には、模型3が配置されているが、実験は模型3を取り付けた場合と、取り付けない場合について行った。また、図7(b)のスクイズボード8の平面図には、スクイズボードとセンサーの位置関係と、圧力センサーからの信号を増幅し記録する増幅器一体型記録計25、増幅器一体型記録計25に接続してセンサー測定値のグラフ化などの解析を行うパソコン26も併せて表す。実験は次のように行った。
 1.スクイズボードに、生型造型センサーを設置した(埋め込んだ)。設置する箇所は、図7に示すように、スクイズボードの中心部(S3)、及び、中心部を挟む隅2箇所(S1、S2)の計3箇所とした。また、本実験は、模型を取り付けた場合と、取り付けない場合について行った。
 2.スクイズボードに生型造型センサーが設置された造型機により、生型を造型した。そして、スクイズ工程時に、スクイズボードの押圧面に加わる圧力を3箇所の生型造型センサーで測定した。圧力値はその経時変化を測定し記録した。なお、スクイズは設定圧力まで徐々に加え、設定圧力になった時点で圧力を解放した。
 3.生型造型センサーが圧力を測定した位置に対向する見切り面の生型の鋳型強度を、鋳型強度計で測定し、圧力値と鋳型強度の関係を調べた。なお、模型を取り付けた場合の中心部(S3)の生型造型センサーが圧力を測定した位置に対向する見切り面の鋳型強度は、模型上面のものとなる。また、鋳型強度を測定した強度計は、広く鋳造工場で生型の造型性の評価に使用されている先端直径3mmほどの針を10mmほど鋳型に侵入させて鋳型強度を測定する侵入型鋳型強度計を用いた。
 そして、複数の生型に対して、上記2及び3を行い、データを収集した。
(実験結果)
 図8は、スクイズ工程における生型造型センサーの圧力の経時変化を示す一例を表すグラフである。なお、本図は、模型が無い場合の、スクイズ圧力を0.6MPaに設定した場合を表し、3箇所のセンサーで測定されたものである。図8に示すように、今回の造型機では、スクイズ工程において、スクイズを開始してから約3秒後にピーク圧力に達した。
 また、造型センサーの位置とピーク圧力の関係を確認すると、スクイズボードの中心部(S3)の圧力が低く、スクイズボード周囲(S1、S2)では、圧力が高くなっている。これは、スクイズボード周囲は金枠壁が近傍にあるため生型砂と金枠との摩擦抵抗により生砂が突き固められるのに対し、中心部(S3)は、金枠壁から離れており金枠の影響による突き固めが無いため周囲に対し圧力が低くなることが確認できた。なお、模型が有る場合の造型センサーのピーク圧は、模型上の生型砂の突き固め度合いが、隅に比べて大きいため中心部(S3)が高くなり、この部分でスクイズ力が消費されて、周囲のスクイズ力が減少するため、周囲(S1、S2)は低いものとなることが分かった。
 図9は、上記実験を繰り返し、設定スクイズ圧力、生型砂の充填状態で変化する生型造型センサーのピーク圧力と鋳型強度の関係をまとめたグラフで、模型の有無と中心部(S3)、周囲(S1,S2)について、それぞれ、スクイズボードの押圧面のピーク圧と、その圧力を測定した位置に対向する見切り面の生型の鋳型強度の測定値をプロットしたものである。図9に表された生型造型センサーのピーク圧力と、圧力を測定した位置に対向する見切り面の生型の鋳型強度の関係をみると、周囲(S1,S2)に対応する点は、模型有無の影響は極めて小さく高い相関が認められる。一方、中心部(S3)に対応する点は、模型の有無によって関係が異なり、模型が有る場合は、無い場合に比べてピーク圧に対して高い鋳型強度の傾向を示した。
 以上の結果をまとめると、スクイズボードの押圧面に達する圧力は、周囲、中心部の位置と、模型の有無によって変化する。スクイズボードに対向する位置の鋳型強度は、スクイズボードの押圧面に達する圧力と正の相関があるが、中心部は模型の有無によって関係が異なるのに対し、周囲は模型の有無に影響されないことが明らかになった。
 生型砂の充填密度と鋳型強度の関係は、充填密度が高いと鋳型強度が高くなる。充填密度、鋳型強度は突き固め力と強い正の相関関係がある。造型センサーで測定しているピーク圧力は、突き固め力と同義であるから、ピーク圧が高ければ高い充填密度が得られることになる。造型された生型の充填密度が低い、すなわち鋳型強度が低い場合には、溶湯の差し込み、砂落ち・砂噛み、湯漏れ等の欠陥の恐れがある。また、造型された生型の充填密度が高すぎる場合には、模型と鋳型間の摺動抵抗が増し抜型不良の恐れがある。よって、検出される生型造型センサーのピーク圧力を適正に保てば、不良の低減に繋がる。
(生型造型センサーの配置位置)
 スクイズボードに埋め込まれた生型造型センサーに伝わる圧力は、前述の要因により変化するため、生型造型センサーの埋め込み位置は、これらの状況が把握できる場所でなければならない。従って、多数の生型造型センサーを設置すれば、より多くの状態の不具合を検出できるが、スペースの制約と経済面から実際的ではなく、より少ない個数での圧力検出と評価ができることが望ましい。
 前述した様に、鋳型造型装置1による生型砂の充填は、重力落下方式、又は、空気流を用いたブローイング方式が用いられている。前述のルーバーホッパ等を用いた重力落下方式では、生型砂をルーバーホッパ内に投入した際の偏りが、鋳型造型空間への投入時の偏りとなることがある。また、ブローイング方式にあっては、砂吹込みノズルからの距離、ノズル口の砂詰まりなどの状況などによって鋳型造型空間への投入時の偏りを生じることがある。これらの偏りは、その後の生型砂の突き固めで生型砂へのスクイズボード8による突き固め圧力の偏りとして現れる。このような初期充填量の偏りが生じることを考慮して、生型造型センサーを配置する必要がある。
 そして、配置された生型造型センサーの計測値の差が、所定の閾値範囲以外の場合は初期充填の偏りが大きいと判断でき、ルーバーホッパ内への生型砂投入状態の改善、あるいは、砂吹込み空気圧、吹込み時間の調整、吹込みノズルの状態(詰まり、摩耗等)改善等の処置をとることができる。また、生型砂のルーバーホッパへの投入、ルーバーホッパから鋳型造型空間への投入、あるいは、ブローイングによる吹込み時等では生型砂の流動性が影響を及ぼす。この生型砂の流動性は生型砂の水分などの砂性状によって変化するので、鋳型造型装置1に供給される生型砂を混練する混練機など砂処理装置の調整を行うことができる。
 また、生型砂の突き固め時は、突き固め力により生型砂が圧縮され、スクイズボードに埋め込まれた生型造型センサーで圧力が検出される。スクイズボードに埋め込まれた生型造型センサーで検出される圧力と、スクイズボードに対向する位置の鋳型強度は、前述の実験結果に示したように、中心部は模型の有無によって関係が異なるのに対し、周囲は模型の有無に影響されないことが確認された。
 よって、スクイズボードの突き固め力の大小により、鋳型強度を評価するためには、生型造型センサーを模型の有無による影響を受けない鋳枠側面近傍、特にコーナー部に設けるのが好ましい。この位置に設けた生型造型センサーの計測値が所定の下限閾値に達していなければ、十分な鋳型強度に達していないと判断でき、突き固め力の増加の処置をとることができ、上限閾値より高ければ、十分以上の鋳型強度になっていると判断でき、突き固め力の減少の処置をとることができる。
 本実施の形態では、これら、生型砂の充填工程と生型砂の突き固め工程とを考慮して、生型造型センサー10A、10B、10C、10Dをスクイズボード8の4隅に埋め込んでいる。
 なお、生型造型センサーの圧力のピーク値と鋳型強度の関係は、他の種類の枠付造型機や、抜枠造型機を使用した場合でも同じである。よって、これらの関係は、後ほど説明する第2の実施の形態に係る鋳型造型装置にも適用可能である。
(鋳型強度の算出方法)
 次に、鋳型強度算出部18による鋳型強度の算出方法を説明する。上述したように、鋳型強度と生型造型センサーの圧力のピーク値との間に相関関係があることが判明している。鋳型強度算出部18は、この関係を利用して、入力部17に入力された鋳型強度と、生型造型センサー10A、10B、10C、10Dが測定した圧力値(ピーク圧力)から鋳型強度を算出する。
 具体的には、鋳型強度算出部18による鋳型強度の算出は、2つのステップからなる。
-ステップ1
 予め、所定の数の生型を造型し、スクイズ時に生型造型センサー10A、10B、10C、10Dで圧力値(ピーク圧力)を測定する。さらに、造型された各生型において生型造型センサー10A、10B、10C、10Dが圧力を測定した位置に対向する見切り面の鋳型強度を作業者が測定し、入力部17に入力する。そして、鋳型強度と圧力値(ピーク圧力)の関係から作業者が式y=ax+bを決定する。
 なお、本実施の形態では、上述した実験結果に基づいて、生型造型センサー10A、10B、10C、10Dを、スクイズボード8の4隅に埋め込んでいる。この4箇所のスクイズボードの押圧面に加わる圧力を測定し、鋳型強度との関係を求めることにより、少ない数の生型造型センサーで、スクイズボードの押圧面の圧力のばらつきを考慮した鋳型品質の判定を行うことが可能となる。また、所定数の造型に際しては、スクイズ圧を変化させることにより、より広範囲の押圧面に加わる圧力と鋳型強度との関係を求めることができる。
 図10は、表示部20に表示された画面の一例を表示する図である。本例では、最初に所定の生型を造型し、その際に、生型造型センサー10A、10Bが測定した圧力値(ピーク圧力)が7個画面に表示されている。なお、生型造型センサー10C、10Dが測定した圧力値(ピーク圧力)が7個表示されている画面に切り替えることもでき、さらに、一つの画面に、生型造型センサー10A、10B、10C、10Dが測定した圧力値(ピーク圧力)が7個画面に表示されるようにしても良い。
 そして、造型された各生型の生型造型センサー10A、10B、10C、10Dが配置されていた位置に対向する見切り面の鋳型強度を作業者が入力値として入力するようになっている。ここで、図の表中の「ピーク圧力A」、及び、「鋳型強度A」は、生型造型センサー10Aのピーク圧力値、及び、生型造型センサー10Aの位置における鋳型強度であり、図の表中の「ピーク圧力B」、及び、「鋳型強度B」は、生型造型センサー10Bのピーク圧力値、及び、生型造型センサー10Bの位置における鋳型強度であり、切り替えられた画面に表示される「ピーク圧力C」、及び、「鋳型強度C」は、生型造型センサー10Cのピーク圧力値、及び、生型造型センサー10Cの位置における鋳型強度であり、切り替えられた画面に表示される「ピーク圧力D」、及び、「鋳型強度D」は、生型造型センサー10Dのピーク圧力値、及び、生型造型センサー10Dの位置における鋳型強度である。
 鋳型強度算出部18は、鋳型強度と生型造型センサーの圧力のピーク値(本例では、7×4=28箇所)をグラフにプロットする。そして、作業者が、式の傾き「a」、及び、切片「b」に所定の値を入力すると、y=ax+bの直線が表示される。作業者は、プロットを確認しながら、傾き「a」、及び、切片「b」の数値を適宜変更し、プロットと直線に相関があると判断すると、最終的な式y=ax+bを決定する。なお、作業者が鋳型強度を測定した生型は、鋳型強度に問題なければ、そのまま、以後の工程(中子セット工程、注湯工程等)を行い生産に供することもできる。なお、上記では、式の傾き「a」、及び、切片「b」を作業者が入力したが、コンピューター、又は、PLCを用いて最小二乗法等で直線回帰して求めてもよい。
-ステップ2
 式y=ax+bの決定後、生型の造型を開始する。開始後は、生型造型センサー10A、10B、10C、10Dが測定した圧力値(ピーク圧力)から、生型造型センサー10A、10B、10C、10Dの位置における鋳型強度を式y=ax+bを用いて自動的に算出する。そのため、別途、鋳型強度を作業者が測定する必要はない。
 なお、本例では鋳型強度計で鋳型強度を測定し、画面に表示されたピーク圧力と鋳型強度の数はA、Bそれぞれ7個であるが、鋳型造型装置1の仕様、造型する生型の形状や大きさ等の仕様、又は、生型砂の仕様により、適宜変更することができる。
(鋳型品質の判定方法)
 次に、鋳型品質判定部19による鋳型品質の判定方法を説明する。鋳型品質判定部19は、入力部17に入力された鋳型強度の閾値と、鋳型強度算出部18が算出した鋳型強度から生型の品質を判定する。
 具体的には、鋳型品質判定部19による鋳型品質の判定には、2つのステップからなる。
-ステップ1
 初めに、作業者が造型する生型の鋳型強度の閾値を入力する。図11は、表示部20に表示された画面の一例を表示する図である。本例では、作業者が入力した具体的な閾値が表示されている。ここで、図の表中の「センサーA強度正常範囲」は、生型造型センサー10Aの位置における鋳型強度の下限値と上限値であり、図の表中の「センサーB強度正常範囲」は、生型造型センサー10Bの位置における鋳型強度の下限値と上限値であり、図の表中の「センサーC強度正常範囲」は、生型造型センサー10Cの位置における鋳型強度の下限値と上限値であり、図の表中の「センサーD強度正常範囲」は、生型造型センサー10Dの位置における鋳型強度の下限値と上限値である。また、図の表中の「鋳型強度差(Max.-Min.)異常値」は、生型造型センサー10A、10B、10C、10Dの圧力値から求めた鋳型強度の最大、最小値の差の異常値とする閾値である。本例では、生型造型センサー10A、10B、10C、10Dの位置における鋳型強度の下限値は、10.0(N/cm)、上限値は、20.0(N/cm)、生型造型センサー10A、10B、10C、10Dの位置における鋳型強度の最大値と最小値の差の異常値とする閾値は、5.0(N/cm)に設定されている。
-ステップ2
 鋳型強度算出部18により式y=ax+bが決定され、鋳型強度の閾値が入力された後、生型の造型を開始する。開始後は、生型造型センサー10A、10B、10C、10Dが測定した圧力値(ピーク圧力)から、生型造型センサー10A、10B、10C、10Dの位置における鋳型強度が自動的に算出される。そして、入力された鋳型強度の閾値と算出された鋳型強度から生型の品質を判定する。ここで、生型の品質の判定は、次のように行われる。
 本例では、鋳型強度A、鋳型強度B、鋳型強度C、及び、鋳型強度Dの閾値を、それぞれ10.0(N/cm)以上、20.0(N/cm)以下、生型造型センサー10A、10B、10C、10Dの位置における鋳型強度の最大値と最小値の差の異常閾値を、5.0(N/cm)以上に設定している。従って、生型造型センサー10Aの位置における鋳型強度が13.0(N/cm)、生型造型センサー10Bの位置における鋳型強度が12.0(N/cm)、生型造型センサー10Cの位置における鋳型強度が16.0(N/cm)、生型造型センサー10Dの位置における鋳型強度が14.0(N/cm)の場合、鋳型強度A、鋳型強度B、鋳型強度C、及び、鋳型強度Dは、全て閾値に入っており、さらに、鋳型強度A、B、C、Dの最大値は、16.0(N/cm)、最小値は12.0(N/cm)、最大最小の差は4.0(N/cm)と範囲内に入っているため、鋳型品質判定部19は鋳型品質をOKと判定する。
 これに対して、生型造型センサー10Aの位置における鋳型強度が11.0(N/cm)、生型造型センサー10Bの位置における鋳型強度が17.0(N/cm)、生型造型センサー10Cの位置における鋳型強度が12.0(N/cm)、生型造型センサー10Dの位置における鋳型強度が16.0(N/cm)の場合、鋳型強度A、鋳型強度B、鋳型強度C、及び、鋳型強度Dは、全て閾値に入っているが、鋳型強度A、B、C、Dの最大値は、17.0(N/cm)、最小値は11.0(N/cm)、最大最小の差は6.0(N/cm)と範囲内に入っていないため、鋳型品質判定部19は鋳型品質をNGと判定する。
 図12は、表示部20に表示された画面の一例を表示する図である。ここで、図の表中の「ピーク圧力A」、「ピーク圧力B」、「ピーク圧力C」、及び、「ピーク圧力D」は、生型造型センサー10Aのピーク圧力値、生型造型センサー10Bのピーク圧力値、生型造型センサー10Cのピーク圧力値、及び、生型造型センサー10Dのピーク圧力値である。また、「鋳型強度A」、「鋳型強度B」、「鋳型強度C」、及び、「鋳型強度D」は、鋳型強度算出部18が算出した生型造型センサー10Aの位置における鋳型強度、鋳型強度算出部18が算出した生型造型センサー10Bの位置における鋳型強度、鋳型強度算出部18が算出した生型造型センサー10Cの位置における鋳型強度、及び、鋳型強度算出部18が算出した生型造型センサー10Dの位置における鋳型強度である。
 さらに、図の表中の「鋳型強度差(最大-最小)」は、鋳型強度A、B、C、Dの最大値と最小値の差であり、図の表中の「判定」は、鋳型品質判定部19による鋳型品質の判定結果である。
 なお、図12の表示部20の画面において、数値が不良の場合は枠内部が網掛けあるいは着色されて表示され、OK(正常)とNG(不良)が一目でわかるようになっている。
 なお、設定する鋳型強度A、鋳型強度B、鋳型強度C、及び、鋳型強度Dの閾値、及び、最大値と最小値の差は、鋳型造型装置1の仕様、造型する生型の形状や大きさ等の仕様、鋳型の部位、又は、生型砂の仕様等により、適宜決定される。そして、これらの値は、模型の型番と関連付けられている。
 本実施の形態に係る鋳型造型装置1では、造型する生型の形状や大きさ等の仕様が変わっても、その都度、鋳型強度算出部18が鋳型強度を算出し、鋳型品質判定部19が算出された鋳型強度から造型された生型の品質を判定することが可能である。
 またこの実施の形態においては、OK(正常)とNG(不良)の判定等には計算された鋳型強度の値を使用しているが、これに限定されず、生型造型センサーの圧力値と鋳型強度の間には、正の相関関係が確認されているので、生型造型センサーの圧力値から鋳型強度計算をおこなわず、生型造型センサーの圧力値を直接鋳型品質判定の基準としてよい。例えば、鋳型品質の判定基準となる図11の閾値表の値は、それぞれ、生型造型センサーの圧力値を所定の閾値とし、測定された生型造型センサーの圧力値をこの表に照らして、OK(正常)とNG(不良)を判定してよい。
(鋳型造型装置を用いた鋳型品質の評価方法)
 次に、鋳型造型装置1を用いた鋳型品質の評価方法(生型の造型方法)について説明する。図13は、第1の実施の形態に係る鋳型造型装置1を用いた鋳型品質の評価方法(生型の造型方法)の工程を示す図である。なお、図13では、図1に示す鋳型造型装置1のスクイズヘッド7にルーバーホッパ27が連結されている。ルーバーホッパ27は、図示しない生型砂搬送装置から所定量の生砂が投入され、一旦貯留された後、ルーバーホッパ27の下部のルーバー28が開いて鋳型造型空間に生型砂が投入される構造となっている。
 鋳型造型装置1による生型の造型は、次の手順で進む。
 1.造型を開始すると、テーブル9の上昇により、図13(a)の状態になる。この時ルーバーホッパ27内には、図示しない生型砂搬送装置から所定量の生砂が投入されている。
 2.続いて、図13(b)に示すように、ルーバーホッパ27下部のルーバー28が開いて、ルーバーホッパ27内の生型砂がプレート2、金枠5および盛枠6により画成された鋳型造型空間に生型砂が投入される。
 3.続いて、図13(C)に示すように、連結されたスクイズヘッド7とルーバーホッパ27が移動して、スクイズボード8が鋳型造型空間の直上に配置され、次いで、テーブル9の上昇により、鋳型造型空間内の生型砂をスクイズ(圧縮)する。この時、スクイズボードの押圧面の圧力値(ピーク圧力)を生型造型センサー10A、10B、10C、10Dが測定する。なお、本工程で鋳型が造型される。この時、生型造型センサー10A、10B、10C、10Dは、スクイズボード8の金枠5の壁と模型3との間にある。
 4.スクイズボードの押圧面の圧力値(ピーク圧力)が鋳型品質評価装置12に送信され、造型されたばかりの生型の品質を評価する。
 鋳型品質評価装置12による品質評価は、あらかじめ鋳型強度と生型造型センサーの圧力のピーク値の関係を表す式y=ax+bが決定された後に行われる。そして、鋳型品質評価装置12がOKと判定した生型は、そのまま、ラインを流れ、以後の工程(注湯等)を行う。一方、鋳型品質評価装置12がNGと判定した鋳型は、そのまま、ラインを流れていくが、以後の工程(注湯等)を行わず、これらの工程をスルーし、捨て鋳型として鋳型品質評価がOKと判断された生型と同様に型ばらしされる。このように、造型された鋳型品質の「良い」、「悪い」の判定を1枠ごとにできるので、1枠毎の鋳型品質保証に繋げることができる。また、生型の造型時点で不良を判断できるので、製造する鋳物の不良を削減することができる。さらに、不要な作業を省くことができるので、製造コストを削減することができる。
 5.続いて、鋳型造型装置1は、テーブル9が下降し、盛枠6が金枠5上面から分離し、さらにテーブルが下降すると、生型を内蔵した金枠5が、中子セット、注湯等の以降の工程と連結されたローラコンベア上に載置され、生型から模型3が抜き出されテーブル9の下降が停止する。次いで、生型を内蔵した金枠5がローラコンベア上を以降の工程に搬送されるとともに次の造型に向けて金枠5が鋳型造型装置1内に搬入される。なお、テーブル9の下降が開始されるとルーバーホッパ27には、ルーバー28が閉じられた状態で所定量の生型砂が供給される。
 6.次の造型に向けて金枠5が搬入され、ルーバーホッパ27への生型砂供給が完了すると、連結されたスクイズヘッド7とルーバーホッパ27が移動して、ルーバーホッパ27が鋳型造型空間の直上に配置された状態でテーブル9が上昇して次の生型の造型が開始される。
 そして、造型工程中に発生した、圧力値データ、圧力値と関連付けられた鋳型強度データ、鋳型強度算出結果、及び、鋳型品質判定結果等は、鋳型品質評価装置12の記録部22に全て記録されるので、これらの数値を利用して鋳型造型装置1の稼働状態を監視することができ、鋳型造型装置1の品質管理、メンテナンス、トラブルシューティングに役立てることができる。さらには、これらの数値を利用して、充填不良によって発生する、砂こぼれ、鋳物の焼き付き、型落ち、鋳込み後の溶湯圧力による生型の張り、等の不良原因の早期発見につなげることができる。
 さらに、記録部22に記録されたデータはプレート2に取り付けられた模型毎に記録されるので、生型の不良などの状態と圧力値データとの比較検討が可能になり、閾値のより正確な設定が可能となる。
 また、本実施の形態では、作業者が、グラフにプロットされた鋳型強度と生型造型センサーの圧力のピーク値から、式の傾き「a」、及び、切片「b」を考えて、式y=ax+bを決定しているが、鋳型強度算出部18が、鋳型強度と生型造型センサーの圧力のピーク値の関係から、コンピューター、又は、PLCを用いて最小二乗法等で直線回帰して自動的に式y=ax+bを算出するように構成することも可能である。
 また、本実施の形態では、造型された生型が不良と判定された場合、作業者が該当する生型が不良である旨を明確にしているが、判定結果が以後の工程(注湯等)の鋳造設備に自動的に伝わるように構成することも可能である。その場合、以後の工程では、該当する生型が不良であると鋳造設備が自動的に認識し工程を省略(スルー)し、最終的に該当する生型は型ばらしされる。
 また、本実施の形態では、生型造型センサー10A、10B、10C、10Dは、スクイズボード8の4隅に埋め込まれているが、スクイズボード8に埋め込まれる生型造型センサーの数が少なくても、鋳型強度と生型造型センサーの圧力のピーク値との関係を算出することが可能である。この場合、生型造型センサーを4箇所に埋め込む場合と比べて精度は多少落ちるが、コストを抑えることができる。
 この場合、生型造型センサーを、図2に示す対角線上の2箇所10A、10B、又は、10C、10Dの位置に埋め込むこともできる。図14及び15は、生型造型センサー10A、10Bが埋め込まれているスクイズボード8の他の例を示す図である。これらの図において2点鎖線で示されている3aは、鋳型造型空間において、模型が取り付けられたプレート2上の模型3の対応する位置を示している。図14では、2つの生型造型センサー10A、10Bがスクイズボード8の長辺側で、かつ、その中心部付近に埋め込まれており、図15では、2つの生型造型センサー10A、10Bがスクイズボード8の短辺側で、かつ、その中心部付近に埋め込まれている。
 生型造型センサーの埋め込まれる位置は、いずれの場合も、鋳型造型空間において、金枠5と模型3との間に対応する位置、すなわち、模型3の取り付けられたプレート2上の模型3と金枠5との間であって、かつ、プレート2上の模型がない部分に対向するスクイズボード又はスクイズフット側である。
 このように、第1の実施の形態に係る生型造型センサーによれば、造型された生型の品質を判断するために、生型の造型時に、鋳型造型空間内の生型砂と、スクイズボード8の押圧面に加わる圧力値(ピーク圧力)を測定することが可能となる。
(第2の実施の形態)
 次に、本発明に係る生型造型センサー、及び、生型造型性の評価方法の第2の実施の形態について説明する。なお、以下に説明する第2の実施の形態においては、第1の実施の形態と共通する構成については図中に同符号を付してその説明を省略する。第2の実施の形態では、枠付造型機ではなく抜枠造型機を使用している。
 第2の実施の形態について、添付図面を参照して説明する。図16は、第2の実施の形態に係る生型造型センサーを用いた鋳型造型装置の構造の概略を表す図であり、図17は、鋳型造型装置の中で、鋳型品質を評価する部分の構成を表す図である。本実施の形態に係る鋳型造型装置は、生型を造型後に生型を鋳枠から抜き取る抜枠造型機である。
 鋳型造型装置29は、上下面に模型3が取り付けられたプレート2、シャトル台車30、上枠(金枠)31、下枠(金枠)32、上スクイズボード33、下スクイズボード34、上スクイズボード33の押圧面に埋め込まれた生型造型センサー10A、10B、10C、10D、下スクイズボード34の押圧面に埋め込まれた生型造型センサー10E、10F、10G、10H、配線11、及び、鋳型品質評価装置12を備えている。なお、図17は、上スクイズボード33に埋め込まれた生型造型センサー10A、10B、10C、10Dの、図16のB-B線から見た様子を表している。なお、生型造型センサー10E、10F、10G、10Hは、下スクイズボード34に埋め込まれており、図17と同様の位置に示される。(下スクイズボードを図16のC-C線視した場合のセンサー符号を括弧で示す。)
 プレート2は、生型に鋳物の形状を造型するための模型3を板の上下両側に取り付けたものである。シャトル台車30には、プレート2が載置され、工程に応じて鋳型造型装置29の中と外を往復する。上枠31は、生型の上型を造型するため、その中に生型砂が充填される。すなわち、上枠31、上スクイズボード33、及び、プレート2で囲まれた鋳型造型空間に生型砂が充填される。下枠32は、生型の下型を造型するため、その中に生型砂が充填される。すなわち、下枠32、下スクイズボード34、及び、プレート2で囲まれた鋳型造型空間に生型砂が充填される。上スクイズボード33と下スクイズボード34は矩形状であり、鋳型造型装置29での生型造型時にそれぞれ上枠31と下枠32とによって画成される造型空間の境界の一部を構成する部材である。
 鋳型造型装置29による生型砂の充填は、空気流を用いたブローイング方式が用いられる。ブローイング方式は、上下枠31、32の生型砂吹込み口35、35からプレート2の上下面に対し、生型砂を吹き込むことにより、生型砂を充填する方式である。
 上スクイズボード33と下スクイズボード34は、図示しないシリンダで動作し、上枠31に充填された生型砂と下枠32に充填された生型砂を突き固めて圧縮することにより、上下生型を同時に造型する。
(生型造型センサー)
 生型造型センサー10A、10B、10C、10Dは、生型の造型時に、上枠31内に充填された生型砂と、上スクイズボード33の押圧面に加わる圧力値(ピーク圧力)を測定する。生型造型センサー10E、10F、10G、10Hは、生型の造型時に、下枠32内に充填された生型砂と、下スクイズボード34の押圧面に加わる圧力値(ピーク圧力)を測定する。生型造型センサー10A、10B、10C、10D、及び、10E、10F、10G、10Hは、圧力センサーである。本実施の形態では、生型造型センサー10A、10B、10C、10Dは、上スクイズボード33の押圧面の4隅に埋め込まれている。生型造型センサー10E、10F、10G、10Hは、下スクイズボード34の押圧面の4隅に埋め込まれている。生型造型センサー10A、10B、10C、10D、及び、10E、10F、10G、10Hがこのように埋め込まれている理由は、第1の実施の形態で説明した理由と同じである。
 そして、生型造型センサー10A、10B、10C、10D、及び、10E、10F、10G、10Hは、圧力を測定する受圧面がスクイズボード33とスクイズボード34の押圧面に露出しており、上スクイズボード33と下スクイズボード34の押圧面に加わる圧力値(ピーク圧力)を測定する。この時、生型造型センサー10A、10B、10C、10D、及び、10E、10F、10G、10Hの受圧面と上スクイズボード33と下スクイズボード34の押圧面は、段差がなく面一状態にあることが望ましい。これにより、正確な圧力を測定することができる。
 配線11は、生型造型センサー10A、10B、10C、10D、及び、10E、10F、10G、10Hと鋳型品質評価装置12を接続する。本実施の形態では、生型造型センサー10A、10B、10C、10D、及び、10E、10F、10G、10Hと鋳型品質評価装置12は、配線11を通じて有線で接続されているが、無線で接続されても良い。例えば、生型造型センサー10A、10B、10C、10D、及び、10E、10F、10G、10Hが検出した圧力値(圧力値データ)を、無線LANやBluetooth等の無線通信を使用して鋳型品質評価装置12に送信することが可能である。
 鋳型品質評価装置12は、生型造型センサー10A、10B、10C、10D、及び、10E、10F、10G、10Hが測定した圧力値(圧力値データ)から鋳型造型装置29により造型された生型の品質を評価する。鋳型品質評価装置12は、受信部15、増幅部16、入力部17、鋳型強度算出部18、鋳型品質判定部19、表示部20、送信部21、及び、記録部22を備えている。
 受信部15は、生型造型センサー10A、10B、10C、10D、及び、10E、10F、10G、10Hが測定した圧力値(圧力値データ)を受信する。増幅部16は、受信した圧力値(圧力値データ)の信号量を増幅する。入力部17は、造型した生型に対して鋳型強度計で測定した鋳型強度、式y=ax+bの傾き「a」、及び、切片「b」の値、及び、造型する生型の鋳型強度の閾値等を入力する。
 鋳型強度算出部18は、入力部17に入力された鋳型強度と、生型造型センサー10A、10B、10C、10D、及び、10E、10F、10G、10Hが測定した圧力値(ピーク圧力)から前記測定値と鋳型強度の関係式により生型造型センサー10A、10B、10C、10D、及び、10E、10F、10G、10Hが測定した圧力値(ピーク圧力)毎に鋳型強度を算出する。
 鋳型品質判定部19は、入力部17に入力された鋳型強度の閾値と、算出された鋳型強度から造型された生型の品質を判定する。表示部20は、生型造型センサー10A、10B、10C、10D、及び、10E、10F、10G、10Hが測定した圧力値(ピーク圧力)、入力部17で作業者により入力された鋳型強度と圧力値(ピーク圧力)との関係式y=ax+bの傾き「a」、及び、切片「b」の値、作業者により入力された造型する生型の鋳型強度の閾値、鋳型強度算出結果、及び、鋳型品質判定結果等を画面に表示する。
 送信部21は、パトライト23等へNG判定データを送信する。記録部22は、圧力値データ、圧力値と関連付けられた鋳型強度データ、鋳型強度算出結果、及び、鋳型品質判定結果等を記録する。
(鋳型造型装置を用いた鋳型品質の評価方法)
 次に、鋳型造型装置29を用いた鋳型品質の評価方法(生型の造型方法)について説明する。図18は、第2の実施の形態に係る鋳型造型装置29を用いた鋳型品質の評価方法(生型の造型方法)の工程を示す図である。なお、図18は、図16に示す鋳型造型装置29にサンドタンク36が隣接している。サンドタンク36は、図示しない生型砂搬送装置から所定量の生型砂が投入され、一旦貯留された後、投入孔が閉じられ、サンドタンク36内に圧縮空気が供給されると、上下鋳枠31、32の生型砂吹込み口35、35を介して上下鋳型造型空間に生型砂が吹き込まれて充填されるものとなっている。
 鋳型造型装置29による生型の造型は、次の手順で進む。
 1.造型を開始すると、図18(a)の状態から、模型3、3が取り付けられたプレート2を載置したシャトル台車30が上枠31と下枠32の間に移動する。
 2.次いで、生型造型センサー10E、10F、10G、10Hが埋め込まれた下スクイズボード34と下枠32が上昇し、シャトル台車30からプレート2を持ち上げ、図18(b)の状態にセットされると、サンドタンク36に圧縮空気が供給され、上下鋳枠31、32の生型砂吹込み口35、35を介して上下鋳型造型空間に生型砂が吹き込まれて充填される。
 3.次いで、生型造型センサー10A、10B、10C、10D及び10E、10F、10G、10Hが埋め込まれた上下スクイズボード33、34が図示しないシリンダの動作により、上下鋳枠31、32内の生型砂をスクイズ(圧縮)して、図18(c)の状態となる。この時、上下スクイズボード33、34の押圧面の圧力値(ピーク圧力)を生型造型センサー10A、10B、10C、10D、及び、10E、10F、10G、10Hが測定する。なお、本工程で生型が造型される。この時、生型造型センサー10A、10B、10C、10D、及び、10E、10F、10G、10Hは、上スクイズボード33と下スクイズボード34のそれぞれ上鋳枠31、下鋳枠32の壁と模型3との間にある。この時、測定された圧力値(ピーク圧力)は、鋳型品質評価装置12に送信され造型されたばかりの生型の品質を評価する。
 鋳型品質評価装置12による品質評価は、あらかじめ鋳型強度と生型造型センサーの圧力のピーク値の関係を表す式y=ax+bが決定された後に行われる。そして、鋳型品質評価装置12がOKと判定した生型は、そのまま、ラインを流れ、以後の工程(注湯等)を行う。一方、鋳型品質評価装置12がNGと判定した生型は、そのまま、ラインを流れていくが、以後の工程(注湯等)を行わず、これらの工程をスルーし、捨て鋳型として鋳型品質評価がOKと判断された生型と同様に型ばらしされる。
 4.次いで、下スクイズボード34と下枠32が下降し、シャトル台車30上にプレート2が載置されると、上下生型から模型3、3が抜型された状態となる。続いて、シャトル台車30が図18(a)の位置まで移動し、再度下スクイズボード34と下枠32が上昇すると、上枠31と下枠32が合わせられて上下生型の型合わせが行われる。この時、上下生型は、上スクイズボード33と下スクイズボード34に挟まれた状態となっている。この状態から、上スクイズボード33と下スクイズボード34を下降すると、型合わせされた上下生型が、上枠31及び下枠32から抜き下げられ、図18(d)の状態になる。
 5.型合わせされた上下生型は、鋳型造型装置29から次工程のラインに搬送される。
 そして、造型工程中に発生した、圧力値データ、圧力値と関連付けられた鋳型強度データ、鋳型強度算出結果、及び、鋳型品質判定結果等は、鋳型品質評価装置12の記録部22に全て記録されるので、これらの数値を利用して鋳型造型装置29の稼働状態を監視することができ、鋳型造型装置29の品質管理、メンテナンス、トラブルシューティングに役立てることができる。さらには、これらの数値を利用して、充填不良によって発生する、砂こぼれ、鋳物の焼き付き、型落ち、鋳込み後の溶湯圧力による生型の張り等の不良原因の早期発見につなげることができる。
 また、本実施の形態では、生型造型センサー10A、10B、10C、10D、及び、10E、10F、10G、10Hは、上下スクイズボード33、34の押圧面の上枠31及び下枠32近傍の4隅に埋め込まれているが、上下スクイズボード33、34に埋め込まれる生型造型センサーの数が少なくても、鋳型強度と生型造型センサーの圧力のピーク値との関係を算出することが可能である。この場合、生型造型センサーを4箇所に埋め込む場合と比べて精度は多少落ちるが、コストを抑えることができる。
 この場合、図17に示す上スクイズボード33の押圧面の対角線上の2箇所10A、10Bあるいは10C、10D、又は、下スクイズボード34の押圧面の対角線上の2箇所10E、10Fあるいは10G、10Hとすることもできる。図19及び20は、上スクイズボード33の押圧面に生型造型センサー10A、10Bが埋め込まれている他の例を示す図である。これらの図において2点鎖線で示されている3aは、鋳型造型空間において、模型が取り付けられたプレート2上の模型3の対応する位置を示している。図19では、2つの生型造型センサー10A、10Bがスクイズボード33の長辺側で、かつ、その中心部付近に埋め込まれており、図20では、2つの生型造型センサー10A、10Bがスクイズボード33の短辺側で、かつ、その中心部付近に埋め込まれている。下スクイズボード34の押圧面にあっても造型センサー10E、10Fを同様の状態に配置することができる。これらの造型センサーの配置によって、生型砂吹込み口35、35の近傍と遠方、あるいは、生型砂吹込み口35、35の左右による充填量の偏り等を把握することができる。
 このように、第2の実施の形態に係る生型造型センサーによれば、造型された鋳物の品質を判断するために、生型の造型時に、上枠31内に充填された生型砂との上スクイズボード33の押圧面に加わる圧力値(ピーク圧力)と、下枠32内に充填された生型砂との下スクイズボード34の押圧面に加わる圧力値(ピーク圧力)を測定することが可能となる。
(変形例)
 第1及び第2の実施の形態では、鋳型品質評価装置12は、測定した鋳型強度と、生型造型センサー10A、10B、10C、10D、(及び、10E、10F、10G、10H)が測定した圧力値(ピーク圧力)から鋳型強度と圧力値(ピーク圧力)の関係を求めた後、別途、生型造型センサー10A、10B、10C、10D、(及び、10E、10F、10G、10H)が測定した圧力値(ピーク圧力)から鋳型強度を算出している。そして、あらかじめ設定した鋳型強度の閾値と、算出された鋳型強度から造型された生型の品質を判定している。
 これに加えて、鋳型品質評価装置12が判定した結果を混練機にフィードバックすることにより、混練機内に注入する水の量を正確にコントロールすることも可能である。例えば、生型造型センサー10A、10B、10C、10D、(及び、10E、10F、10G、10H)が測定した圧力値(ピーク圧力)が極端に低く、結果として、鋳型強度が極端に低い場合、鋳型品質評価装置12は、その理由は鋳枠内に砂が万遍なく充填されなかったためであり、その原因は、生型砂のCB値が高いためであると判断し、注入する水の量の減らすように混練機に指示をすることにより、生型砂の充填不良を解消させることができる。
 さらに、鋳型品質評価装置12が判定した結果と、生型砂自動計測システム等が、生型砂の圧縮強度を測定して評価した結果を混練機にフィードバックすることにより、混練機内に投入する添加材、水分等の量、をコントロールすることも可能である。例えば、生型砂自動計測システムが測定した、生型砂の圧縮強度、通気度、コンパクタビルティ値、水分値等の生型砂の性状と、生型造型センサー10A、10B、10C、10D、(及び、10E、10F、10G、10H)が測定した圧力値(ピーク圧力)とその分布と、から、生型砂の流動性などの評価を行うことができ、混練時に投入する添加材、水分等の量を変化させることにより、鋳型不良を解消させることができる。
 さらに、第1及び第2の実施の形態では、鋳型品質評価装置12は、測定した鋳型強度と、生型造型センサー10A、10B、10C、10D、(及び、10E、10F、10G、10H)が測定した圧力値(ピーク圧力)を鋳型強度に換算し、その鋳型強度により造型された生型の品質を判定しているが、圧力値(ピーク圧力)と鋳型強度のとの間に相関関係があることが判明しているので、鋳型強度への換算を行わずに、圧力値(ピーク圧力)から直接生型の品質を判定することも可能である。
(第3の実施の形態)
 図21(a)は、本発明の第3の実施形態である生型造型センサーを用いた鋳型造型装置の縦断面図である。図21(b)は、D-D線視したときのスクイズフットを示している。なお、以下に説明する第3の実施の形態においては、第1の実施の形態と共通する構成については図中に同符号を付してその説明を省略する。第3の実施の形態では、スクイズボードではなくスクイズフットを使用している。図において、符号300はスクイズフットである。スクイズフット300は、矩形状に配列しており、鋳型造型装置1での生型造型時に金枠5とによって画成される造型空間の境界の一部を構成する部材である。生型造型センサー10I、10J、10K、10Lは、図21(b)に示すように個々のスクイズフットに埋め込まれている。
 この図に示す実施形態が、上記の第1の実施形態と異なる点は、スクイズ動作をおこなう要素として、スクイズフット300を用いた点である。このスクイズフット300は、模型3の高さに応じてそれに対向するスクイズフット300を上下に位置させ、スクイズ動作中移動させることによって、充填する生型砂の高さを調整しスクイズ完了時の付き固め圧力を全てのスクイズフットで同じになるように制御するものである。
 例えば図21(a)に示すように、模型3の高い部分に対向するスクイズフット300b、300dは、模型3の低い部分に対向するスクイズフット300a、300c、300eよりも模型3に向けて突出して位置させる。そののち鋳型造型空間を画成し、(図示せず)このスクイズフット300a~300eの位置を保ったまま生型砂を充填すると、(図示せず)スクイズフット300b、300d直下の砂の量は、スクイズフット300a、300c、300e直下の砂の量に比べて少なくすることができる。この状態からスクイズヘッド7を下降させつつ、スクイズフット300a~300eを最終的にはその模型3に向かう面がすべてそろう位置まで移動させてスクイズ工程を終える。(図示せず)このようにスクイズフットを制御することによって、模型3の部分的な高低差に関係なく生型砂の圧縮率を均一にすることができる。
 また模型の高さだけではなく、予め生型砂の充填状態の傾向を観測しておき、生型砂の充填の不均一さに合わせてスクイズフット300の上下位置を調整してもよい。このようにスクイズフットを制御することにより、模型があっても、スクイズ前の砂充填が不均一な傾向にあっても、生型砂充填時、および、スクイズ時に、スクイズフットを、上下動させるシリンダによって動かし、どのスクイズフットも同等の力で突き固めを行えるようにすることができる。すなわち、スクイズボードによる欠点であった模型による「砂入れの不均一」(突き固め前の生型砂の充填の密度分布、突き固め前の生型砂の充填高さの偏り)を緩和できる。
 上記動作によって、鋳型が正常に管理されて造型された際には、スクイズフット300に埋め込まれた生型造型センサーによって計測される(ピーク)圧力値は、すべてのセンサーで同等の圧力値となる。したがって、造型時に計測された圧力値が正常時に観測される値のばらつきよりも大きくなる場合は、なんらかの原因により異常が発生していると考えられる。これらの原因としては、砂入れの不均一が極端であったり、スクイズフットを動かすシリンダが故障してしまっていたりということが考えられる。
 この圧力値のバラツキが大きくなった場合を、特異なバラツキが生じたとして、鋳型品質評価装置において、その鋳型をNGと判断し、処理をする。
 ここにおいて特異なバラツキを判断する方法としては、例えば、ある一つの鋳型を造型した際に、スクイズフットに埋め込まれた複数の生型造型センサーで計測された圧力値の標準偏差を計算し、その標準偏差が予め定められた基準値より大きかった場合としてよい。この基準値の設定は、任意に行われてよく、例えば、鋳型の品質上適切と思われる値が最初に設定されてよい。
 また、それより以前に造型された10枠の鋳型で計測された圧力値の標準偏差の平均値より20%以上大きい場合に特異なバラツキとしてもよい。ここにおいて、平均値計算の対象となる、以前に造型された鋳型の枠数や、特異なバラツキの判断基準である、平均値よりどれだけ大きいかという比率は、適宜に選択できる。
 この実施の形態において、上記で説明された点以外は第1の実施形態と同様の動作によって鋳型造型が行われ、上記第1の実施形態と同様の作用、効果が得られる。
 上記の第1、第2、第3の実施の形態は、スクイズボードまたはスクイズフットに圧力センサーを2以上設けた例であるが、この発明ではスクイズボードまたはスクイズフットに圧力センサーを1個設けた構成としてもよい。この場合、圧力センサーを取り付ける位置は、プレートの模型の近傍であることが望ましい。また、このように圧力センサーが1個である場合は、1個の圧力センサーの出力も鋳型の特定の位置の鋳型強度に関わる値を示すので、精度は低下するが、この値を持って鋳型品質の評価を行ってもよい。
 以上、本発明の様々な実施形態を説明したが、上記の説明は本発明を限定するものではなく、本発明の技術的範囲において、構成要素の削除、追加、置換を含む様々な変形例が考えられる。
1 鋳型造型装置(枠付鋳型造型)
2 プレート
2a 中央部プレート
2b 外周部プレート
3 模型
4 キャリア
5 金枠
6 盛枠
7 スクイズヘッド
8 スクイズボード
9 テーブル
10A~10L 生型造型センサー
11 配線
12 鋳型品質評価装置
13 ライナー
14 ボルト
15、15’ 受信部
16、16’ 増幅部
17 入力部
18 鋳型強度算出部
19 鋳型品質判定部
20 表示部
21 送信部
22 記録部
23 パトライト
24 圧力値送信部
25 増幅器一体型記録計
26 パソコン
27 ルーバーホッパ
28 ルーバー
29 鋳型造型機(抜枠造型機)
30 シャトル台車
31 上枠
32 下枠
33 上スクイズボード
34 下スクイズボード
35 生型砂吹込み口
36 サンドタンク
300、300a~300e スクイズフット
 

Claims (10)

  1.  鋳型造型機で造型される生型の造型性を評価する圧力センサーを備えた生型造型センサーであって、
     生型砂を圧縮するスクイズボード又はスクイズフットに前記圧力センサーが埋め込まれたこと、を特徴とする生型造型センサー。
  2.  前記スクイズボード又はスクイズフットは、前記鋳型造型機での生型造型時に金枠とによって画成される造型空間の境界の一部を構成する部材であること、を特徴とする請求項1に記載の生型造型センサー。
  3.  前記圧力センサーの受圧面と前記スクイズボード又はスクイズフットの表面は、面一状態にあること、を特徴とする請求項1または2に記載の生型造型センサー。
  4.  前記鋳型造型機での生型造型時に金枠とによって画成される造型空間の境界の一部を構成する部材として、前記スクイズボード又はスクイズフットと、このスクイズボード又はスクイズフットに対向して配置される模型が取り付けられたプレートが設けられ、前記圧力センサーは、前記スクイズボード又はスクイズフットにおける前記金枠と前記模型との間に対応する位置に埋め込まれていること、を特徴とする請求項1から3のいずれか一項に記載の生型造型センサー。
  5.  前記スクイズボードは矩形状とされ、前記圧力センサーは複数設けられ、これら圧力センサーは前記スクイズボードの4隅に埋め込まれていること、を特徴とする請求項1から4のいずれか一項に記載の生型造型センサー。
  6.  前記スクイズフットの配列は矩形状とされ、前記圧力センサーは複数設けられ、これら圧力センサーは4隅を含む任意の前記スクイズフットに埋め込まれていること、を特徴とする請求項1から4のいずれか一項に記載の生型造型センサー。
  7.  前記圧力センサーが螺着手段により前記スクイズボード又はスクイズフットに固定されていること、を特徴とする請求項1から6のいずれか一項に記載の生型造型センサー。
  8.  前記圧力センサーが流体センサーであること、を特徴とする請求項1から7のいずれか一項に記載の生型造型センサー。
  9.  前記圧力センサーの受圧面の大きさは、直径5~30mmであること、を特徴とする請求項1から8のいずれか一項に記載の生型造型センサー。
  10.  生型砂を圧縮するスクイズボード又はスクイズフットに埋め込まれた圧力センサーを備えた生型造型センサーを用いて、鋳型造型機で造型される生型の造型性を評価すること、を特徴とする生型造型性の評価方法。
PCT/JP2019/017600 2018-06-15 2019-04-25 生型造型センサー、及び、生型造型性の評価方法 WO2019239735A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020525323A JP7200992B2 (ja) 2018-06-15 2019-04-25 生型造型センサー、及び、生型造型性の評価方法
DE112019003033.7T DE112019003033T5 (de) 2018-06-15 2019-04-25 Grünsandform-Formsensor und Verfahren zum Bewerten der Formbarkeit einer Grünsandform
US17/042,231 US20210031259A1 (en) 2018-06-15 2019-04-25 Green sand mold molding sensor and green sand mold moldability evaluation method
CN201980038726.5A CN112292220A (zh) 2018-06-15 2019-04-25 湿砂模造型传感器及湿砂模造型性的评价方法
US17/518,114 US20220055098A1 (en) 2018-06-15 2021-11-03 Green sand mold molding sensor and green sand mold moldability evaluation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018114249 2018-06-15
JP2018-114249 2018-06-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/042,231 A-371-Of-International US20210031259A1 (en) 2018-06-15 2019-04-25 Green sand mold molding sensor and green sand mold moldability evaluation method
US17/518,114 Division US20220055098A1 (en) 2018-06-15 2021-11-03 Green sand mold molding sensor and green sand mold moldability evaluation method

Publications (1)

Publication Number Publication Date
WO2019239735A1 true WO2019239735A1 (ja) 2019-12-19

Family

ID=68842179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017600 WO2019239735A1 (ja) 2018-06-15 2019-04-25 生型造型センサー、及び、生型造型性の評価方法

Country Status (6)

Country Link
US (2) US20210031259A1 (ja)
JP (1) JP7200992B2 (ja)
CN (1) CN112292220A (ja)
DE (1) DE112019003033T5 (ja)
TW (1) TW202000336A (ja)
WO (1) WO2019239735A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937888B1 (ja) * 1970-12-02 1974-10-14
JPS6192439U (ja) * 1984-11-16 1986-06-14
JP2000117394A (ja) * 1998-10-08 2000-04-25 Tokyu Kk 無枠式鋳型造型機とそれを用いた無枠式鋳型造型方法
JP2001198651A (ja) * 2000-01-14 2001-07-24 Sintokogio Ltd 枠付造型装置の造型方法及び造型システム
WO2016103992A1 (ja) * 2014-12-26 2016-06-30 メタルエンジニアリング株式会社 鋳型造型方法およびその装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174247U (ja) * 1986-04-25 1987-11-05
JP3415495B2 (ja) * 1999-07-05 2003-06-09 新東工業株式会社 上下鋳枠同時吹込み式鋳型造型機における鋳物砂吹込み方法
JP3407879B2 (ja) * 2000-04-13 2003-05-19 新東工業株式会社 鋳物砂の充填圧縮方法およびその装置
ATE350183T1 (de) * 2001-03-16 2007-01-15 Sintokogio Ltd Verfahren und vorrichtung zum verdichten von formsand
EP1707289B1 (en) * 2004-01-20 2011-07-06 Sintokogio, Ltd. Frame for molding machine and method of molding using the frame
JP4711183B2 (ja) * 2005-12-13 2011-06-29 新東工業株式会社 鋳型造型装置の油圧ユニット
CN102083568B (zh) * 2009-12-08 2014-01-29 新东工业株式会社 铸型的造型装置及方法
KR101133904B1 (ko) * 2010-01-15 2012-04-09 신토고교 가부시키가이샤 무틀식 주형 조형기
JP5626639B2 (ja) * 2010-08-09 2014-11-19 新東工業株式会社 鋳型造型方法
DE102015109805A1 (de) * 2015-06-17 2016-12-22 Künkel Wagner Germany Gmbh Herstellen von qualitativ harten Formstoffformen für den Metallguss (Verfahren und Vorrichtung)
JP6396876B2 (ja) * 2015-11-06 2018-09-26 トヨタ自動車株式会社 混練砂の充填方法及び充填装置
CN206194914U (zh) * 2016-10-28 2017-05-24 合肥国轩高科动力能源有限公司 一种用于电池的安全测试装置
CN107297470A (zh) * 2017-08-22 2017-10-27 湖州市下昂多联铸造有限公司 一种型砂压实设备用的压紧机构
WO2019239733A1 (ja) * 2018-06-15 2019-12-19 新東工業株式会社 鋳型造型装置及び鋳型造型装置の制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937888B1 (ja) * 1970-12-02 1974-10-14
JPS6192439U (ja) * 1984-11-16 1986-06-14
JP2000117394A (ja) * 1998-10-08 2000-04-25 Tokyu Kk 無枠式鋳型造型機とそれを用いた無枠式鋳型造型方法
JP2001198651A (ja) * 2000-01-14 2001-07-24 Sintokogio Ltd 枠付造型装置の造型方法及び造型システム
WO2016103992A1 (ja) * 2014-12-26 2016-06-30 メタルエンジニアリング株式会社 鋳型造型方法およびその装置

Also Published As

Publication number Publication date
JPWO2019239735A1 (ja) 2021-07-08
US20220055098A1 (en) 2022-02-24
DE112019003033T5 (de) 2021-03-18
CN112292220A (zh) 2021-01-29
TW202000336A (zh) 2020-01-01
JP7200992B2 (ja) 2023-01-10
US20210031259A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
JP3729197B2 (ja) 鋳型造型機をモニタする方法及びシステム
CN201527387U (zh) 型砂在线检测仪
US10307820B2 (en) Suction pressure casting method
WO2019239735A1 (ja) 生型造型センサー、及び、生型造型性の評価方法
WO2019239734A1 (ja) 鋳型造型装置、鋳型品質評価装置、及び、鋳型品質評価方法
JP7196912B2 (ja) 鋳型造型装置、鋳型品質評価装置、及び、鋳型品質評価方法
JP7196911B2 (ja) 生型造型センサー、及び、生型造型性の評価方法
KR101919242B1 (ko) 사출금형의 진단시스템
JP2003145262A (ja) ダイカスト鋳造システムおよびダイカスト製品品質管理方法
US11660664B2 (en) Mold molding apparatus and method for controlling mold molding apparatus
JP6863449B2 (ja) 鋳造設備の作動方法及び作動装置
CN208091484U (zh) 一种型砂在线监测控制装置
CN207048340U (zh) 一种可以计量孔道内浆体重量的装置
KR20230155950A (ko) 무선 통신을 이용한 금형의 사출 조건 제어 시스템
KR101584148B1 (ko) 반도체 소자용 로터리식 수지 태블릿 성형장치
CN115932229A (zh) 全自动在线检测型砂紧实率的系统
CN117884604A (zh) 一种脚手架盘扣铸件成型加工设备运行控制系统
KR101193690B1 (ko) 연속 주조설비용 몰드 파우더의 공급량 측정장치
CN116748477A (zh) 钢板板坯坯铸机开口度标定的实时化方法
JP2012096278A (ja) 成形不良孔検査装置及びその方法
JPH02263598A (ja) プレス機械における製品粘度測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19818717

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525323

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19818717

Country of ref document: EP

Kind code of ref document: A1