WO2019235754A1 - Zsm-5계 제올라이트의 제조방법 - Google Patents

Zsm-5계 제올라이트의 제조방법 Download PDF

Info

Publication number
WO2019235754A1
WO2019235754A1 PCT/KR2019/005992 KR2019005992W WO2019235754A1 WO 2019235754 A1 WO2019235754 A1 WO 2019235754A1 KR 2019005992 W KR2019005992 W KR 2019005992W WO 2019235754 A1 WO2019235754 A1 WO 2019235754A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
zeolite
zsm
reaction mother
mother liquor
Prior art date
Application number
PCT/KR2019/005992
Other languages
English (en)
French (fr)
Inventor
강나영
박용기
김창환
이유진
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to US17/058,208 priority Critical patent/US11542171B2/en
Priority to JP2020565839A priority patent/JP7116194B2/ja
Priority to EP19815590.5A priority patent/EP3778485B1/en
Priority to CN201980039053.5A priority patent/CN112292349B/zh
Priority to ES19815590T priority patent/ES2948197T3/es
Publication of WO2019235754A1 publication Critical patent/WO2019235754A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • C01B33/28Base exchange silicates, e.g. zeolites
    • C01B33/2807Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • C07C2/864Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an alcohol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/20Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00033Continuous processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00168Controlling or regulating processes controlling the viscosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/00745Inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/00745Inorganic compounds
    • B01J2219/00747Catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/34Reaction with organic or organometallic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • the present invention relates to a method for producing a ZSM-5 zeolite.
  • Zeolites have a unique three-dimensional structure of alumino-silicate and are large in pore size and ion exchangeability compared to other alumino-silicate crystals, resulting in catalyst, adsorbent, molecular sieve and ion exchange. It is widely used as a lantern.
  • Zeolites are increasingly being used. In order to diversify the use of zeolites, it is necessary to arbitrarily adjust the crystal size, particle size distribution and shape of the zeolites as well as an economic synthesis method.
  • ZSM-5 zeolites form three-dimensional pores consisting of a 10-tetrahedron ring, the size of which is intermediate to zeolites A, X and zeolites. It also features unique adsorption and diffusion characteristics.
  • It is a kind of pentasil zeolite. It has a high SiO 2 / Al 2 0 3 ratio, which generally has good thermal stability and hydrophobicity, and a large Lewis acid point, while the Bronsted acid point is small.
  • One aspect of the present invention provides a ZSM-5 system that can be manufactured through continuous synthesis.
  • One aspect of the present invention provides a silica source, an alumina source, a neutralizer, and a crystalline ZSM-5 nucleus. 2019/235754 1 »(: 1/10 ⁇ 019/005992
  • w a is the content of the salt in the reaction mother liquor
  • w b is the content of silica in the reaction mother liquor.
  • heating temperature is from 30 to 60 O C, the heating time is from 1 to 3 days time.
  • the salt may comprise sodium sulfate (Na 2 SO 4 ), sodium nitrate (NaNO 3 ), trisodium phosphate (Na 3 PO 4 ), or a combination thereof.
  • the hydrothermal synthesis reactor may be a continuous stirred tank reactor (CSTR) or a plug flow reactor (PFR).
  • CSTR continuous stirred tank reactor
  • PFR plug flow reactor
  • the second solution may be an unreacted filtrate of the hydrothermal synthesis reactor.
  • reaction temperature is the number of days from 150 to 200 O C.
  • the viscosity of the reaction mother liquor may be between 1000 and 2700 cP.
  • Equation 1 may satisfy the following Equation 2.
  • W a is the content of the salt in the reaction mother liquor
  • W b is the reaction mother liquor
  • One aspect of the present invention provides a ZSM-5 zeolite prepared according to a method for preparing a ZSM-5 zeolite of one aspect of the present invention.
  • One aspect of the present invention provides a ZSM-5 zeolite of one aspect of the present invention.
  • ZSM-5 zeolite of one embodiment of the present invention According to the production method of the ZSM-5 zeolite of one embodiment of the present invention, clogging of the reactor which can occur due to gelation of the reaction mother liquor is prevented, and thus, ZSM-5 zeolite can be produced by a long-term continuous synthesis.
  • a single phase ZSM-5 zeolite having a high crystallinity of uniform size can be easily and continuously produced in a short time. 2019/235754 1 »(: 1 ⁇ 1 ⁇ 2019/005992
  • FIG. 1 is X-ray diffraction analysis data of ZSM-5 prepared in Examples 1 to 3.
  • FIG. 1 is X-ray diffraction analysis data of ZSM-5 prepared in Examples 1 to 3.
  • FIG. 3 is X-ray diffraction analysis data of ZSM-5 prepared in Comparative Examples 1 to 6.
  • FIG. 3 is X-ray diffraction analysis data of ZSM-5 prepared in Comparative Examples 1 to 6.
  • FIG. 5 is a photograph of a mesh attached to a continuous synthesis reactor after the production of ZSM-5 of Examples 1 to 3 through optical microscopy.
  • FIG. 6 is a photograph illustrating observation of a mesh attached to a continuous synthesis reactor after the manufacture of ZSM-5 of Comparative Examples 1 to 6 through an optical microscope.
  • a method of preparing a solution comprising: heating a mixture comprising a silica source, an alumina source, a neutralizer, and a crystalline ZSM-5 nucleus to prepare a first solution in a solution state; Preparing a reaction mother liquor by mixing a second solution comprising; and continuously supplying the reaction mother liquor to a hydrothermal synthesis reactor; continuously preparing crystals of ZSM-5 zeolite that satisfies Equation 1 below.
  • W a is the content of the salt in the reaction mother liquor
  • W b is the content of silica in the reaction mother liquor.
  • One aspect of the present invention solves this problem and provides a method for easily and continuously manufacturing a single phase zeolite having a uniform high crystallinity in a short time.
  • a mixture containing a silica source, an alumina source, a neutralizer, and a crystalline 5-5 nucleus is heated to mix a first solution obtained in a solution state with a second solution containing a salt as a reaction mother solution.
  • Single phase urethane-based zeolites of uniform size and high crystallinity can be produced in continuous synthesis.
  • the mixture gels at room temperature due to the acid-base reaction of the silica source and the neutralizing agent. If this state is used as the reaction mother solution, it is difficult to continuously inject the solidified gel into the reactor.
  • the solvent can be watered and a low viscosity solution can be prepared after heating.
  • silica source More specifically, silica source, alumina source, neutralizer, and crystalline urine nucleus.
  • the heating temperature for producing a containing mixture in aqueous solution can be 30 to 60 ° C.
  • the heating time can also be 1 to 3 hours.
  • the first solution does not contain an organic structure-inducing substance
  • the silica source may be silica sol, water glass ( ⁇ vater ⁇ , or sodium silicate).
  • the alumina source may be sodium aluminate, aluminum nitrate, aluminum sulfate, aluminum chloride and combinations thereof, preferably sodium aluminate, aluminum nitrate, aluminum sulfate and combinations thereof.
  • the neutralizing agent is a substance in which the silica source and the alumina source contain a lot of alkali components, so as to eliminate the difficulty in controlling the composition of the reactants.
  • the neutralizing agent may be nitric acid, phosphoric acid, sulfuric acid, or aluminum sulfate, and specifically, sulfuric acid.
  • the first solution and the second solution can be mixed to satisfy the following formula (1). Is the content of salt in the application liquid, and ⁇ is the content of silica in the reaction mother liquid.
  • Equation 1 may satisfy Equation 2 below.
  • the viscosity of the final reaction solution rapidly increases, which may cause a problem that cannot be continuously injected into the hydrothermal synthesis reactor. After a short continuous reaction, the crystallinity of 23] -5 decreases, and thus, it is difficult to produce single crystals and high crystals ⁇ 8-5 after a long continuous reaction.
  • the solvent of the second solution may also use water.
  • the zeolite adheres to the reactor, thereby preventing the blockage in the reactor, thereby preventing the blockage in the reactor, and having a single crystal having a high degree of crystallinity of uniform size by continuous synthesis. Production of -5-type zeolites may be possible and is also confirmed by the examples described below.
  • the salts may comprise sodium sulfate 2 0 4 ), sodium nitrate 0 3 ), trisodium phosphate S0 4 ), or a combination thereof, preferably sodium sulfate.
  • the salt may be included in the amount of 1 to 5% by weight based on the total amount of the reaction mother liquor, but is not limited thereto.
  • the reaction mother liquor may have a low viscosity in the range of 1000 to 2700, and thus can be stirred without the involvement of a large shear force, and can be continuously synthesized by being introduced into the reactor continuously.
  • the step of continuously crystallizing the reaction mother liquor by supplying it to a hydrothermal synthesis reactor may be performed at a temperature of 150 to 200 0: 0.
  • the residence time in the hydrothermal synthesis reactor of the reaction mother liquor may be 6 to 300 hours, but is not particularly limited thereto.
  • the hydrothermal synthesis reactor is a continuous stirring tank reactor (
  • plug flow reactor 13 ⁇ 4 1 () ⁇ ⁇ ⁇ : may be.
  • the filtrate is used after the hydrothermal synthesis reaction, and part of the unreacted filtrate in the hydrothermal synthesis reactor can be recycled to the front of the hydrothermal synthesis reactor, and the first solution and the filtrate can be mixed and introduced into the reactor. 2)
  • the unreacted filtrate in the hydrothermal reactor may contain the salts described above,
  • the filtrate can be recycled to the reactor front stage, mixed with the first solution, and a half-quadrant solution is continuously introduced into the reactor, so that the operation of the process can be performed without preparing a second solution.
  • a method of preparing a zeolite which comprises continuously supplying the reaction mother solution to a hydrothermal synthesis reactor, followed by filtration and washing of crystallized 33 ⁇ 41-5. Drying for 10 to 15 hours at a temperature of 120 ° C.
  • Zeolite can be obtained.
  • the zeolite prepared in the production method of one embodiment of the present invention can be used as a catalyst for producing light olefins from hydrocarbons, oxygen-containing organic compounds, or mixtures thereof.
  • the zeolite is itself or a specific treatment such as surface modification.
  • the hydrocarbon may include normally available naphtha
  • the oxygen-containing organic compound may include methanol, which is not particularly limited in the present invention.
  • the light olefin may include ethylene and / or propylene, but is not limited thereto.
  • the first solution was heated to 60 ° to prepare an aqueous solution.
  • Step 3 The reaction mother liquor prepared in Step 2 was heated to 150 °.
  • the autoclave was infused into the reactor at a rate of 20 ⁇ / ⁇ 11 for crystallization.
  • the reaction mother liquor was continuously supplied to extend the crystallization reaction for at least 30 days.
  • the crystal structure and shape of the zeolite obtained after the continuous synthesis were determined as follows: ⁇ 1 £> (11 ⁇ ⁇ 11] 0 ( > £> III) and scanning electron microscopy, and the results are shown in Table 1, Figures 1 and 2.
  • a meshed body (1 ⁇ ⁇ ) was observed through an optical microscope and the results are shown in FIG.
  • step 2 of Example 1 the second solution 50 was added to the first solution 50.
  • FIG. 1 and FIG. 2 are shown.
  • Step 2 of Example 1 the second solution 40 was added to the first solution 60.
  • step 2 of Example 1 the second solution 95] 3 ⁇ 4 was added to the first solution 5] 3 ⁇ 4.
  • step 2 of Example 1 10 kg of the first solution was added to 90 kg of the second solution.
  • a 45-mesh mesh attached to the reactor is provided via an optical microscope.
  • step 2 of Example 1 the second solution 80 was added to the first solution 20.
  • Zeolite was prepared in the same manner as in Example 1, except that the second solution 30 was added to the first solution 70 in step 2 of Example 1.
  • a 45-meter-sized eye attached to the reactor is provided via an optical microscope.
  • Zeolite was prepared in the same manner as in Example 1, except that the second solution 20 was added to the first solution 80 in Step 2 of Example 1.
  • step 2 of Example 1 the first solution 100 was used without adding a filtrate.
  • the reaction mother liquor according to the present invention is used, so that the continuous injection of the reaction mother liquor without clogging in the reactor and 5 -5 molecular sieve.
  • the continuous recovery of was possible, and a good 51-5 molecular sieve was synthesized with uniform particle size and single phase high crystallinity.
  • Na 2 S0 4 / and 0 2 weight ratio in the final reaction mother liquor produced ranges from 0.20 to 0.40, more specifically from 0.22 to 0.32 There, not only can consecutive composite 30, is on a single highly crystalline ⁇ 3 -5 molecular sieve were obtained. However, if the final reaction mother liquor within 2 0 4 / 3 ⁇ 40 2 weight ratio is lower, the molecular sieve on a single

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

ZSM-5계 제올라이트의 제조방법에 관한 것으로, 실리카 원, 알루미나 원, 중화제, 및 결정성 ZSM-5 핵을 포함하는 혼합물을 가열하여 용액 상태의 제 1 용액을 제조하는 단계; 상기 제 1 용액에 염을 포함하는 제 2 용액을 혼합하여 반응모액을 제조하는 단계; 및 상기 반응모액을 수열합성반응기에 연속적으로 공급하여 연속결정화하는 단계;를 포함하고, 하기 식 1을만족하는 ZSM-5계 제올라이트의 제조방법을 제공할 수 있다. [식 1] 0.20≤Wa/Wb≤0.40

Description

2019/235754 1»(:1/10公019/005992
1 명세서
발명의명칭: ZSM-5계제올라이트의제조방법 기술분야
[1] 본발명은 ZSM-5계제올라이트의제조방법에관한것이다.
배경기술
[2] 제올라이트는알루미노-실리케이트 (alumino-silicate)의삼차원적인특이한 구조로되어있으며다른알루미노-실리케이트결정에비하여세공이크고,이온 교환성이羊수하여촉매,흡착제,분자체및이온교환제등으로널리사용된다.
[3] 천연제올라이트는구조적인제약등으로용도가제한되어있으나합성
제올라이트는그용도가점차확대되고있는실정이다.제올라이트의용도를 다양화하기위해서는경제적인합성방법뿐만아니라제올라이트의결정크기 , 입도분포및형태등을임의로조절하는것이요구된다.
[4] ZSM-5제올라이트는 10-테트라헤드론고리 (tetrahedron ring)로구성된 3차원 기공을형성하며그크기는제올라이트 A, X와제올라이트 의중간정도가 된다.또한독특한흡착및확산특성을나타내는형상선택성촉매인
펜타실 (pentasil)제올라이트의일종으로, SiO 2/Al 20 3비가높아일반적으로열적 안정성이좋고소수성이있으며,루이스산점이큰반면브뢴스테드산점은 작다.
[5] 종래 ZSM-5제올라이트 (zeolite)의제조는배치식반응기를이용하였다.즉, 실리카원및알루미나원을포함하는원료및알칼리수용액을포함하는반응물 슬러리를교반날개가구비된배치식반응기에공급하고포화증기를투입하여 가압및가열조건하에서접촉혼합에의해제올라이트화반응을유도하는 방법이이용되었다.
[6] 그러나,회분식반응기를이용한제조방법은,반응물슬러리의제올라이트화 반응이완료되기이전에는다음공정으로이행하는것이불가능하다.이에따라 배치식반응기의부피에의해생산량이결정되고,전체적인생산성이떨어지는 문제점이있다.
[기 이에,종래의회분식반응기를이용한제조방법의한계를극복하기위해, 연속식합성을통해 ZSM-5제올라이트를제조하는방법의개발이요구되고 있다.
발명의상세한설명
기술적과제
[8] 본발명의일양태는,연속식합성을통해제조가가능한 ZSM-5계
제올라이트의제조방법을제공하고자한다.
과제해결수단
[9] 본발명의일양태는,실리카원,알루미나원,중화제,및결정성 ZSM-5핵을 2019/235754 1»(:1/10公019/005992
2 포함하는혼합물을가열하여용액상태의제 1용액을제조하는단계;상기제 1 용액에염을포함하는제 2용액을혼합하여반응모액을제조하는단계;및상기 반응모액을수열합성반응기에연속적으로공급하여연속결정화하는단계;를 포함하고,하기식 1을만족하는 ZSM-5계제올라이트의제조방법을제공한다.
[식 1]
0.20<W a/W b<0.40
상기식 1에서 w a는상기반응모액내염의함량이며, w b는상기반응모액 내의실리카의함량이다.
상기제 1용액을제조하는단계;의가열온도는 30내지 60 OC이고,가열시간은 1내지 3시간일수있다.
상기염은,황산나트륨 (Na 2S04),질산나트륨 (NaNO 3),트리소둠포스페이트 (Na 3PO 4),또는이들의조합을포함할수있다.
상기수열합성반응기는연속교반탱크반응기 (Continuous Stirred-Tank Reactor, CSTR),또는플러그흐름반응기 (Plug Flow Reactor, PFR)일수있다.
상기제 2용액은,상기수열합성반응기의미반응여액일수있다.
상기반응모액을제조하는단계;에서,상기제 2용액이상기
수열합성반응기의전단으로재순환되어상기제 1용액과혼합되는것일수 있다.
상기연속결정화하는단계;의반응온도는 150내지 200 OC일수있다. 상기반응모액의점도는 1000내지 2700 cP일수있다.
상기식 1은하기식 2를만족하는것일수있다.
[식 2]
0.22<W /W b£0.32
상기식 1에서 W a는상기반응모액내염의함량이며, W b는상기반응모액
6423097846510231
[2 내의실리카의함량이다.
본발명의일양태는,상기본발명의일양태의 ZSM-5계제올라이트의 제조방법에따라제조된 ZSM-5계제올라이트를제공한다.
[25] 본발명의일양태는,상기본발명의일양태의 ZSM-5계제올라이트를
이용하여탄화수소,산소함유유기화합물,또는이들의혼합물로부터경질 올레핀을제조하는방법을제공한다.
발명의효과
본발명의일양태의 ZSM-5계제올라이트의제조방법에따르면,반응모액의 겔화에따라발생할수있는반응기의막힘현상이방지되어장기간연속식 합성으로 ZSM-5계제올라이트를제조할수있다.
[27] 또한,본발명의일양태의 ZSM-5계제올라이트의제조방법에따르면,균일한 크기의고결정화도를갖는단일상의 ZSM-5계제올라이트를단시간내에 연속적으로쉽게제조할수있다. 2019/235754 1»(:1^1{2019/005992
3
[28] 이에 ,본발명의일양태의 ZSM-5계제올라이트의제조방법에따라,
제올라이트의생산성이극대화되어공정경제성이향상되고, ZSM-5계
제올라이트촉매생산기술의산업상적용이기대된다.
도면의간단한설명
[29] 도 1은실시예 1내지 3에서제조된 ZSM-5의 X선회절분석데이터이다.
[3이 도 2는실시예 1내지 3에서제조된 ZSM-5의주사전자현미경 (Scanning Electron
Microscope, SEM)사진이다.
[31] 도 3은비교예 1내지 6에서제조된 ZSM-5의 X선회절분석데이터이다.
[32] 도 4는비교예 1내지 6에서제조된 ZSM-5의주사전자현미경 (Scanning Electron
Microscope, SEM)사진이다.
[33] 도 5는실시예 1내지 3의 ZSM-5제조후,연속합성반응기에부착된 mesh를 광학현미경을통해관찰한사진이다.
[34] 도 6은비교예 1내지 6의 ZSM-5제조후,연속합성반응기에부착된 mesh를 광학현미경을통해관찰한사진이다.
발명의실시를위한형태
[35] 다른정의가없다면본명세서에서사용되는모든용어 (기술및과학적용어를 포함)는본발명이속하는기술분야에서통상의지식을가진자에게공통적으로 이해될수있는의미로사용될수있을것이다.명세서전체에서어떤부분이 어떤구성요소를 "포함”한다고할때,이는특별히반대되는기재가없는한다른 구성요소를제외하는것이아니라다른구성요소를더포함할수있는것을 의미한다.또한단수형은문구에서특별히언급하지않는한복수형도포함한다.
[36] 본명세서전체에서다른특별한정의가없는한, "A내지 B”는 "A이상 B
이하’’를의미한다.
[37]
[38] 본발명의일양태는,실리카원,알루미나원,중화제,및결정성 ZSM-5핵을 포함하는혼합물을가열하여용액상태의제 1용액을제조하는단계;상기제 1 용액에염을포함하는제 2용액을혼합하여반응모액을제조하는단계;및상기 반응모액을수열합성반응기에연속적으로공급하여연속결정화하는단계;를 포함하고,하기식 1을만족하는 ZSM-5계제올라이트의제조방법을제공한다.
[39] [식 1]
[40] 0.20<W /W b<0.40
[41] 상기식 1에서 W a는상기반응모액내염의함량이며, W b는상기반응모액 내의실리카의함량이다.
[42] ZSM-5계제올라이트의연속식반응을통한제조를위해서는연속적으로
제올라이트합성을위한반응모액이공급됨과동시에고온의수열합성반응기를 거쳐결정화된제올라이트케이크 (cake)들이연속적으로회수되는과정이 지속적으로진행되어야한다. 2019/235754 1»(:1^1{2019/005992
4
[43] 일예로, 3] -5계제올라이트제조를위한실리카원으로서가장저렴하고 흔히사용되는물유리를사용할경우,물유리내의과량의 염기성분을제거하기 위해추가된산성분에의해급격한산-염기반응이 일어나게되고,연이어 혼합물의점도도급격히증가하게됨으로써굳어진겔이형성된다.
[44] 종래와같은회분식반응기를이용한합성의경우에는굳어진형태의 겔을 채우고난후,합성이완료되기전까지추가로채우는과정이 없기 때문에 운전상의문제가발견되지않지만,연속식합성의경우고압주입펌프를이용해 고온의수열합성반응기안으로굳어진겔을연속주입하는작업은불가능하기 때문에,점도가낮은용액형태의합성모액이제조되어야한다.이와동시에, 장기간의 연속합성이진행될수있도록반응기내막힘현상이방지될수있어야 한다.
[45] 본발명의 일양태는이러한문제를해결하여,균일한크기의고결정화도를 갖는단일상의 계제올라이트를단시간내에 연속적으로쉽게제조할수 있는제조방법을제공한다.
[46] 구체적으로,실리카원,알루미나원,중화제,및결정성 5 -5핵을포함하는 혼합물을가열하여용액상태로얻어진제 1용액과염을포함하는제 2용액을 혼합한것을반응모액으로함으로써,균일한크기의고결정화도를갖는 단일상의 요 -5계제올라이트를연속식합성으로제조할수있다.
[4刀 상기실리카원,알루미나원,중화제,및결정성 3] -5핵을포함하는
혼합물은실리카원과중화제의산-염기반응에의해상온에서 겔화되는데,이 상태그대로반응모액으로사용하는경우이렇게굳어진겔을연속적으로 반응기에주입하기어려운문제가있다.
[48] 이에,실리카원,알루미나원,중화제,및결정성 요 핵을포함하는
혼합물을가열하여저점도의용액상태로함으로써,연속주입이가능하게할수 있다.이러한용액상태에서용매는물을사용할수있으며,가열후저점도의 수용액을제조하여사용할수있다.
[49] 보다구체적으로,실리카원,알루미나원,중화제,및결정성 요 핵을
포함하는혼합물을수용액상태로제조하기위한가열온도는 30내지 60ᄋ(:일수 있다.또한,가열시간은 1내지 3시간일수있다.
[50] 위와같은가열조건에서,실리카원,알루미나원,중화제,및결정성
핵을포함하는혼합물이불균일한상태의 겔이형성되어후공정으로염을 포함하는제 2용액과혼합할때혼합이어려워균일한상태의수용액을얻기 어려운문제와,과도한에너지가공급되어 입자들이응집된
알루미노실리케이트덩어리가발생하는문제없이,용이하게수용액상태의제 1 용액을제조하고,연속식합성에 이용할수있어좋을수있다.
[51] 또한,상기제 1용액에는유기구조유도물질이포함되지 않으며,실리카원은 실리카졸,물유리(\vater용^ ,또는소튬실리케이트일수있고,보다
구체적으로는물유리일수있다. 2019/235754 1»(:1/10公019/005992
5 상기알루미나원은소둠알루미네이트,알루미늄나이트레이트,알루미늄 설페이트,알루미늄클로라이드및이들의조합일수있으며,바람직하게는소둠 알루미네이트,알루미늄나이트레이트,알루미늄설페이트및이들의조합일수 있다.
상기중화제는실리카원및알루미나원이알칼리성분을많이함유하고있어 반응물조성제어의어려움을해소하기위하여넣어주는물질로질산,인산,황산 또는황산알루미늄일수있으며,구체적으로는황산일수있다.
본발명의일양태의 계제올라이트의제조방법에서,상기제 1용액에 염을포함하는제 2용액을혼합하여반응모액을제조하는단계;를통해최종 반응모액이제조되는더ᅵ,이때,반응모액이하기식 1을만족하도록제 1용액 및제 2용액을혼합할수있다.
Figure imgf000006_0001
응모액내염의함량이며, \\ 는상기반응모액 내의실리카의함량이다.
상기식 1은보다구체적으로는하기식 2를만족할수있다.
[식 2]
0.22< „<0.32
Figure imgf000006_0002
최종반응모액내실리카함량에대한염의함량비가너무작을경우,최종 반응모액이점도가급격히증가하여수열합성반응기내로연속주입이 불가능한문제가발생할수있고,너무큰경우연속주입은가능하나,다른 결정상의제올라이트가함께성장하거나,짧은연속반응수행뒤에 23】 -5의 결정화도가저하되어장시간연속반응을수행하여단결정및고결정의 å8 -5를 제조하기어려운문제가발생할수있다.
2용액의용매또한물을사용할수있다.
또한,제 2용액내염및실리카의함량이상기관계를만족함으로써,반응기에 제올라이트가붙어자라는현상을억제하여반응기내막힘현상을방지하여 연속식합성에의한균일한크기의고결정화도를갖는단일상의 25] -5계 제올라이트의제조가가능할수있으며,후술되는실시예로도확인된다.
염을포함하는제 2용액에서,염은황산나트륨 2 04),질산나트륨 0 3), 트리소둠포스페이트 少0 4),또는이들의조합을포함할수있으며 , 바람직하게는황산나트륨을포함할수있다.
염을포함하는제 2용액에서,상기염은상기반응모액총량에대해 1내지 5 중량%로포함될수있으나,반드시이에제한되지않는다.
본발명의일양태의 계제올라이트의제조방법에서,상기반응모액은 1000내지 2700 범위의낮은점도를가질수있으며,이에따라큰전단력의 개입없이교반될수있고,연속적으로반응기에투입하여연속식합성이가능할 수있다. \¥0 2019/235754 1*<그1'/1田12019/005992
6
[67] 본발명의 일양태의 계제올라이트의제조방법에서,상기 반응모액을 수열합성반응기에연속적으로공급하여연속결정화하는단계;는 150내지 200ᄋ 0:의온도에서수행될수있다.
[68] 또한,반응모액의수열합성반응기내체류시간은 6시간내지 300시간일수 있으나,특별히이에제한되지는않는다.
[69] 또한,상기수열합성반응기는연속교반탱크반응기(
Figure imgf000007_0001
加·, 。 묘),또는플러그흐름반응기에1¾ 1()\¥ 加:, 일수있다.
[70] 본발명의 일양태의 å5] -5계제올라이트의제조방법에서상기반응모액의 제조및반응기로의투입 양태에 대해보다상세히설명하면,상기반응모액은 제 1용액과제 2용액이따로제조된후,반응기투입전에혼합되어반응기로 연속투입될수있다.
[71] 다른양태로는,수열합성반응후여액을이용하는것으로,수열합성반응기내 미반응여액중일부를수열합성반응기전단으로재순환하여,제 1용액과 여액을혼합하여반응기로투입할수있다. - 2] 수열합성반응기내미반응여액에는상술한염이포함되어 있을수있고,
이러한여액을반응기전단으로재순환하여제 1용액과혼합및반 4모액을 제조하여반응기내로연속적으로투입함으로써,별도의제 2용액의제조없이 공정의운전이가능할수있다.
[73] 이에,공정의단순화가가능해지기 때문에 이러한양태가더바람직할수있다.
[74] 본발명의 일양태의 則 계제올라이트의제조방법은,상기반응모액을 수열합성반응기에연속적으로공급하여 연속결정화하는단계;이후에, 결정화된 3¾1-5를여과및세척하는단계;및 120ᄋ 의온도에서 10시간내지 15시간동안건조하는단계;를더포함할수있다.
[75] 이로써최종적으로균일한크기의고결정화도를갖는단일상의 25】 -5계
제올라이트를수득할수있다.
[76] 본발명의 일양태의제조방법에서제조된 계제올라이트는탄화수소, 산소함유유기화합물,또는이들의혼합물로부터경질올레핀을제조하는 촉매로사용될수있다.
[77] 이 때, 계제올라이트는그자체로서 ,또는표면개질등의특정처리
후에촉매로서사용될수있으며,본발명에서구체적인양태는특별히 한정되지 않는다.
[78] 또한,상기탄화수소는통상적으로입수가능한나프타를포함할수있고, 산소함유유기화합물은메탄올을포함할수있으나,이또한본발명에서특별히 한정되는것은아니다.
9] 또한,상기경질올레핀은에틸렌및/또는프로필렌을포함할수있으나,이에 한정되지않는다.
[80]
[81] 이하본발명의바람직한실시예및비교예를기재한다.그러나하기실시예는 2019/235754 1»(:1^1{2019/005992
7 본발명의바람직한일실시예일뿐본발명이하기실시예에한정되는것은 아니다.
[82]
[83] [실시예 1]
[84] (단계 1)실리카원인물유리(
Figure imgf000008_0001
증류수 23
1¾을첨가하고 30분동안교반한후,결정성 핵을 0.4 을첨가한용액에, 알루미늄염( 20 3 = 8 %) 3.1노용,황산 0.9뇨용및증류수 23 을 30분동안 교반하여혼합한용액을첨가하고, 1시간동안유지하여제 1용액을
제조하였다.이때,상기상기제 1용액의 겔화를막기위해,제 1용액을 60ᄋ 로 가열하여수용액상태로제조하였다.
[85] (단계 2)상기단계 1에서제조된제 1용액 40 1¾에염을함유한제 2용액어크 2 80 4 = 2 \ %, 20 = 2 \ %, 0 2 = 4 %) 60 을첨가하여 1시간동안교반한 후,하루동안실온에서숙성하여반응모액을제조하였다.이와같이제조된 반응모액의점도분석결과는표 1에나타내었다.
[86] 반응모액의점도는점도계田11001대 1必 £>\ᄌ-11+1>1'0)를이용하여 25°(:에서의 점도를측정하였다.
[87] (단계 3)상기단계 2에서제조된반응모액을 150。(:로가열된
오토클레이브知마 ^이반응기에 20용/血11의속도로주입하여결정화하였다. 이러한수열합성반응이진행되는동안연속적으로반응모액을공급하여 30일 이상결정화반응을연장시켜진행하였고,연속합성후얻어진제올라이트의 결정구조와형상은;幻1£>(11^此11 ] 0(此 £> III)와주사전자현미경을통해 분석되었으며그결과는표 1,도 1및도 2에나타내었다.
[88] 얻어진제올라이트의결정구조와결정화도는 X-선회절분석장치(11 11 산 0/¾切표 III)를이용하여 å3] -5의특성피크에해당하는 20 7~9°및 22-25° 데이터를수집함으로써분석하였고,결정화도는다음과같이 계산하였다.
Figure imgf000008_0002
사용하였음)
[89] - 합성된생성물의 선회절분석후얻어진 22-25°의피크면적
Figure imgf000008_0003
념。와 1 °} 상업용묫及 - 5의; ^선회절분석후얻어진 22-25°의피크면적
[90] 또한반응기내막힘현상을확인하기위해,반응기내부착된 45 크기의
체눈을가진메쉬(1^此)를광학현미경을통해관찰하였고그결과는도 5에 나타내었다.
[91]
[92] [실시예 2]
[93] 실시예 1의단계 2에서제 1용액 50 에제 2용액 50 을첨가한것을
제외하고는실시예 1과동일한방법으로제올라이트를제조하였다.
[94] 반응모액의 점도분석결과는표 1에나타내었다.연속합성후얻어진
제올라이트의결정구조와형상은 묘!)와
Figure imgf000008_0004
을통해분석되었으며그결과는 \\ ) 2019/235754 1»(:1^1{2019/005992
8 표 1,도 1및도 2에나타내었다.
[95] 또한,반응기내부착된
Figure imgf000009_0001
분석되었고그결과는도 5에나타내었다.
[96]
[97] [실시예 3 ]
[98] 실시예 1의단계 2에서제 1용액 60 에제 2용액 40 을첨가한것을
제외하고는실시예 1과동일한방법으로제올라이트를제조하였다.
[99] 1차연속합성모액의점도분석 결과는표 1에나타내었다.연속합성후얻어진 제올라이트의결정구조와형상은표111)와 5표] 을통해분석되었으며그결과는 표 1,도 1및도 2에나타내었다.
[100] 반응기내부착된 45 ^크기의체눈을가진 1^ 는광학현미경을통해
분석되었고그결과는도 5에나타내었다
[101]
[102] [비교예 1]
[103] 실시예 1의단계 2에서제 1용액 5 ]¾에제 2용액 95 ]¾을첨가한것을
제외하고는실시예 1과동일한방법으로제올라이트를제조하였다.
[104] 반응모액의 점도분석결과는표 1에나타내었다.
[105] 연속합성기간은 3일동안유지되었고,그후에는막힘현상으로인해
연속주입과회수가불가능하였다.
[106] 연속합성후얻어진제올라이트의결정구조와형상은 111)와 묘 을통해 분석되었으며그결과는표 1,도 3및도 4에나타내었다.
[10刀 반응기내부착된 45 ^크기의체눈을
Figure imgf000009_0002
분석되었고그결과는도 6에나타내었다.
[108]
[109] [비교예 2]
[110] 실시예 1의단계 2에서제 1용액 10 kg에제 2용액 90 kg을첨가한것을
제외하고는실시예 1과동일한방법으로제올라이트를제조하였다.
[111] 반응모액의점도분석결과는표 1에나타내었다.
[112] 연속합성기간은 5일동안유지되었고,그후에는막힘현상으로인해
연속주입과회수가불가능하였다.
[113] 연속합성후얻어진분자체의결정구조와형상은 XRD와 SEM을통해
분석되었으며그결과는표 1,도 3및도 4에나타내었다.
[114] 반응기내부착된 45 크기의체눈을가진 mesh는광학현미경을통해
분석되었고그결과는도 6에나타내었다.
[115]
[116] [비교예 3]
[117] 실시예 1의단계 2에서제 1용액 20 에제 2용액 80 을첨가한것을
제외하고는실시예 1과동일한방법으로제올라이트를제조하였다. 2019/235754 1»(:1^1{2019/005992
9
[118] 반응모액의점도분석결과는표 1에나타내었다.
[119] 연속합성기간은 8일동안유지되었고,그후에는막힘현상으로인해
연속주입과회수가불가능하였다.
[120] 연속합성후얻어진제올라이트의결정구조와형상은
Figure imgf000010_0001
분석되었으며그결과는표 1,도 3및도 4에나타내었다.
[121] 반응기내부착된 45 크기의체눈을
Figure imgf000010_0002
광학현미경을통해
분석되었고그결과는도 6에나타내었다.
[122]
[123] [비교예 4]
[124] 실시예 1의단계 2에서제 1용액 70 에제 2용액 30 을첨가한것을 제외하고는실시예 1과동일한방법으로제올라이트를제조하였다.
[125] 반응모액의점도분석결과는표 1에나타내었다.
[126] 연속합성기간은약 12시간동안유지되었고,그후에는막힘현상으로인해 연속주입과회수가불가능하였다.
[12刀 연속합성후얻어진제올라이트의결정구조와형상은
Figure imgf000010_0003
분석되었으며그결과는표 1,도 3및도 4에나타내었다.
[128] 반응기내부착된 45 m크기의체눈을가진 1 는광학현미경을통해
분석되었고그결과는도 6에나타내었다.
[129]
[130] [비교예 5]
[131] 실시예 1의단계 2에서제 1용액 80 에제 2용액 20 을첨가한것을 제외하고는실시예 1과동일한방법으로제올라이트를제조하였다.
[132] 반응모액의점도분석결과는표 1에나타내었다.
[133] 연속합성기간은약 8시간동안유지되었고,그후에는막힘현상으로인해 연속주입과회수가불가능하였다.
[134] 연속합성후얻어진제올라이트의결정구조와형상은표묘!)와 묘 을통해 분석되었으며그결과는표 1,도 3및도 4에나타내었다.
[135] 반응기내부착된 45 m크기의체눈을가진 016 는광학현미경을통해
분석되었고그결과는도 6에나타내었다.
[136]
[137] [비교예幻
[138] 실시예 1의단계 2에서여액첨가없이,제 1용액 100 을사용한것을
제외하고는실시예 1과동일한방법으로제올라이트를제조하였다.
[139] 반응모액의점도분석결과는표 1에나타내었다.
[140] 연속합성기간은약 2시간동안유지되었고,그후에는막힘현상으로인해 연속주입과회수가불가능하였다.
[141] 연속합성후얻어진제올라이트의결정구조와형상은 111)와 3£] 을통해 분석되었으며그결과는표 1,도 3및도 4에나타내었다. 2019/235754 1»(:1^1{2019/005992
10
[142] 반응기내부착된
Figure imgf000011_0001
광학현미경을통해
분석되었고그결과는도 6에나타내었다.
[143]
[144] [표 1]
Figure imgf000011_0002
[145] 상기표 1에서알수있는바와같이,연속합성반응을통해 분자체를 합성할경우본발명에따른반응모액을사용함으로써,반응기내의막힘 현상없이반응모액의연속주입과 5] -5분자체의연속회수가가능하였으며 , 균일한입자크기와단일상의고결정성을가지는질좋은 51 -5분자체가 합성되었다.
[146] 제조된반응모액내염의첨가량에따른효과를확인한 ¾},제조된최종반응 모액내 Na 2S0 4 /와0 2중량비가 0.20내지 0.40범위,보다구체적으로는 0.22 내지 0.32의값을가질경우에는, 30일이상연속합성이가능하였을뿐만 아니라,단일상의고결정성 å3 -5분자체가얻어졌다.하지만,최종반응모액 내 2 0 4/¾0 2중량비가낮은경우에는단일상의 분자체가
얻어졌음에도불구하고반응기내막힘현상에의해연속가능한합성기간이 매우짧았고,최종반응모액내 230 4/ 0 2중량비가높은경우에는일부 원하지않은다른결정구조의 111이:(¾11 6상이함께성장한분자체를얻을수 있었다.
[147] 뿐만아니라도 5와도 6에서알수있듯이,연속합성반응기내부착되었던 2019/235754 1»(:1/10公019/005992
11 금속 11½ 를확인한결과,모액내염의함량에따라제올라이트가붙어자라는 정도가달라지는것을알수있으며,비교예의경우실시예들에비해 제올라이트가붙어자라는정도가심하여연속합성가능한기간이매우 짧아짐을알수있었다.
[148]

Claims

2019/235754 1 1/10公019/005992 12 청구범위 [청구항 1] 실리카원,알루미나원,중화제,및결정성 ZSM-5핵을포함하는 혼합물을가열하여용액상태의제 1용액을제조하는단계; 상기제 1용액에염을포함하는제 2용액을혼합하여반응모액을 제조하는단계 ;및 상기반응모액을수열합성반응기에연속적으로공급하여 연속결정화하는단계;를포함하고, 하기식 1을만족하는 ZSM-5계제올라이트의제조방법.
[식 1]
0.20<W a/W b<0.40
(상기식 1에서 w a는상기반응모액내염의함량이며, w b는상기 반응모액내의실리카의함량이다.)
[청구항 2] 제 1항에서,
상기제 1용액을제조하는단계;의가열온도는 30내지 60 °C이고,가열 시간은 1내지 3시간인 ZSM-5계제올라이트의제조방법 .
[청구항 3] 제 1항에서,
상기염은,황산나트륨 (Na 2SO 4),질산나트륨 (NaNO 3), 트리소듐포스페이트 (Na 3P0 4),또는이들의조합을포함하는 ZSM-5계 제올라이트의제조방법.
[청구항 4] 제 1항에서 ,
상기수열합성반응기는연속교반탱크반응기 (Continuous Stirred-Tank Reactor, CSTR),또는플러그흐름반응기 (Plug Flow Reactor, PFR)인 ZSM-5계제올라이트의제조방법 .
[청구항 5] 제 1항에서,
상기제 2용액은,상기수열합성반응기의미반응여액인 ZSM-5계 제올라이트의제조방법.
[청구항 6] 제 5항에서,
상기반응모액을제조하는단계;에서,상기제 2용액이상기 수열합성반응기의전단으로재순환되어상기제 1용액과혼합되는 ZSM-5계제올라이트의제조방법 .
[청구항 7] 제 1항에서 ,
상기연속결정화하는단계;의반응온도는 150내지 200 인 ZSM-5계 제올라이트의제조방법.
[청구항 8] 제 1항에서,
상기반응모액의점도는 1000내지 2700 cP인 ZSM-5계제올라이트의 제조방법.
[청구항 9] 제 1항에서, 2019/235754 1»(:1^1{2019/005992
13 상기식 1은하기식 2를만족하는 å3 -5계제올라이트의제조방법 .
[식 2]
0.22£\\, ¾八\, ^0.32
(상기식 1에서 3는상기반응모액내염의함량이며, 는상기 반응모액내의실리카의함량이다.)
[청구항 10] 제 1항의제조방법에따라제조된 계제올라이트
[청구항 11] 제 항의 계제올라이트를이용하여탄화수소,
산소함유유기화합물,또는이들의혼합물로부터경질올레핀을제조하는 방법.
PCT/KR2019/005992 2018-06-08 2019-05-02 Zsm-5계 제올라이트의 제조방법 WO2019235754A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/058,208 US11542171B2 (en) 2018-06-08 2019-05-02 Method for preparing ZSM-5 zeolite
JP2020565839A JP7116194B2 (ja) 2018-06-08 2019-05-02 Zsm‐5系ゼオライトの製造方法
EP19815590.5A EP3778485B1 (en) 2018-06-08 2019-05-02 Method for preparing zsm-5 zeolite
CN201980039053.5A CN112292349B (zh) 2018-06-08 2019-05-02 Zsm-5系沸石的制造方法
ES19815590T ES2948197T3 (es) 2018-06-08 2019-05-02 Método de preparación de zeolita ZSM-5

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0065795 2018-06-08
KR1020180065795A KR102078604B1 (ko) 2018-06-08 2018-06-08 Zsm-5계 제올라이트의 제조방법

Publications (1)

Publication Number Publication Date
WO2019235754A1 true WO2019235754A1 (ko) 2019-12-12

Family

ID=68769427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005992 WO2019235754A1 (ko) 2018-06-08 2019-05-02 Zsm-5계 제올라이트의 제조방법

Country Status (8)

Country Link
US (1) US11542171B2 (ko)
EP (1) EP3778485B1 (ko)
JP (1) JP7116194B2 (ko)
KR (1) KR102078604B1 (ko)
CN (1) CN112292349B (ko)
ES (1) ES2948197T3 (ko)
SA (1) SA520420581B1 (ko)
WO (1) WO2019235754A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240053110A (ko) 2022-10-14 2024-04-24 한국화학연구원 디젤 및/또는 케로센유분으로부터 촉매 크래킹 반응에 의한 경질 올레핀의 선택적 제조용 나노 크기 및 메조 세공 구조를 복합적으로 갖는 형태의 mfi 제올라이트 촉매, 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900001487A (ko) * 1988-07-15 1990-02-27 휘르스트 테크 지퍼 패스너 제조방법 및 장치
KR20050115693A (ko) * 2004-06-04 2005-12-08 한국화학연구원 고순도 제올라이트의 제조방법
KR20110042740A (ko) * 2009-10-20 2011-04-27 에스케이이노베이션 주식회사 나노 크기의 결정성 zsm-5 핵을 사용한 zsm-5의 제조 방법
KR20140033542A (ko) * 2012-08-24 2014-03-19 삼성토탈 주식회사 중형 세공을 갖는 제올라이트의 제조방법
KR20160027346A (ko) * 2014-08-28 2016-03-10 전남대학교산학협력단 친환경적인 제올라이트의 제조방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1142500A (en) 1979-03-28 1983-03-08 Grace (W.R.) & Co. Cyclic process for forming high purity zsm-5 catalyst
US4818507A (en) * 1986-07-14 1989-04-04 Shell Oil Company Novel process for the preparation of ZSM-5 aluminosilicate zeolite
KR900001487B1 (ko) * 1987-10-19 1990-03-12 재단법인 한국화학연구소 제올라이트의 제조방법
EP2056964B1 (en) * 2006-07-28 2019-01-30 ExxonMobil Chemical Patents Inc. A novel molecular sieve composition, a method of making and a process of using the same
WO2009156433A2 (en) 2008-06-25 2009-12-30 Total Petrochemicals Research Feluy Process to make olefins from organics
CN102046288B (zh) * 2008-08-06 2013-06-19 旭化成化学株式会社 含沸石催化剂及其制造方法以及丙烯的制造方法
CN103534025B (zh) * 2011-04-15 2016-03-09 埃克森美孚化学专利公司 分子筛材料的制备方法
US9539545B2 (en) * 2013-10-11 2017-01-10 Chevron U.S.A. Inc. Processes using molecular sieve SSZ-96

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900001487A (ko) * 1988-07-15 1990-02-27 휘르스트 테크 지퍼 패스너 제조방법 및 장치
KR20050115693A (ko) * 2004-06-04 2005-12-08 한국화학연구원 고순도 제올라이트의 제조방법
KR20110042740A (ko) * 2009-10-20 2011-04-27 에스케이이노베이션 주식회사 나노 크기의 결정성 zsm-5 핵을 사용한 zsm-5의 제조 방법
KR20140033542A (ko) * 2012-08-24 2014-03-19 삼성토탈 주식회사 중형 세공을 갖는 제올라이트의 제조방법
KR20160027346A (ko) * 2014-08-28 2016-03-10 전남대학교산학협력단 친환경적인 제올라이트의 제조방법

Also Published As

Publication number Publication date
ES2948197T3 (es) 2023-09-01
JP7116194B2 (ja) 2022-08-09
EP3778485A4 (en) 2021-12-15
EP3778485A1 (en) 2021-02-17
US11542171B2 (en) 2023-01-03
SA520420581B1 (ar) 2023-10-16
KR20190139397A (ko) 2019-12-18
US20210155489A1 (en) 2021-05-27
CN112292349A (zh) 2021-01-29
KR102078604B1 (ko) 2020-02-18
EP3778485B1 (en) 2023-03-29
JP2021526118A (ja) 2021-09-30
CN112292349B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
CN103848439B (zh) 一种zsm-5型分子筛的合成方法
CN105000574B (zh) 一种特殊形貌的hzsm‑5分子筛及其制备方法与应用
KR20110042740A (ko) 나노 크기의 결정성 zsm-5 핵을 사용한 zsm-5의 제조 방법
CN104192859B (zh) 一种小晶粒zsm‑5分子筛的快速合成法
CN104229826A (zh) 一种zsm-5 分子筛及其制备方法
CN114749205B (zh) 一种用于原油直接裂解制低碳烯烃催化剂的制备方法
CN113044853A (zh) 一种合成纳米高硅铝比zsm-5分子筛的方法
CN104386707B (zh) 一种超低钠高硅纳米zsm-5分子筛的合成方法
CN102198950B (zh) 一种高硅铝比NaY分子筛的制备方法
WO2019235754A1 (ko) Zsm-5계 제올라이트의 제조방법
CN103771452B (zh) 一种方形β分子筛及其制备方法
CN101279746A (zh) 变温晶化法快速合成zsm-5分子筛的方法
CN110407220B (zh) 一种大比表面积sapo-34分子筛的快速制备方法
EP1587756A1 (en) Method of preparing zsm-5 using variable temperature without organic template
CN104591220B (zh) 一种空心beta沸石及其制备方法
CN102050465B (zh) 一种固相原位合成y型分子筛的方法
CN101514008B (zh) 丝光沸石/y沸石共生分子筛及其合成方法
CN107902670B (zh) 插卡型形貌的ana型分子筛及其制备方法
CN110065953B (zh) 一种β分子筛的制备方法
CN101618881B (zh) 一种快速原位晶化合成八面沸石的方法
US9604851B2 (en) Method for producing high silica zeolite using recovered silica filtrate, and high silica zeolite produced according to said method
KR20110081195A (ko) 분자체 비드의 제조 방법
JPS60210517A (ja) 結晶性ゼオライトの連続製法
CN106946273B (zh) 一种eu-1/zsm-5复合分子筛及其合成方法
CN116062764B (zh) 具有核壳结构的y-y复合型分子筛及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019815590

Country of ref document: EP

Effective date: 20201102

ENP Entry into the national phase

Ref document number: 2020565839

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE