WO2019235536A1 - 電磁波吸収シート - Google Patents

電磁波吸収シート Download PDF

Info

Publication number
WO2019235536A1
WO2019235536A1 PCT/JP2019/022373 JP2019022373W WO2019235536A1 WO 2019235536 A1 WO2019235536 A1 WO 2019235536A1 JP 2019022373 W JP2019022373 W JP 2019022373W WO 2019235536 A1 WO2019235536 A1 WO 2019235536A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
absorbing sheet
wave absorbing
dielectric layer
layer
Prior art date
Application number
PCT/JP2019/022373
Other languages
English (en)
French (fr)
Inventor
豊田将之
Original Assignee
マクセルホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社 filed Critical マクセルホールディングス株式会社
Priority to EP19815440.3A priority Critical patent/EP3749077A4/en
Priority to JP2020523150A priority patent/JP7296955B2/ja
Priority to CN201980018571.9A priority patent/CN111837464B/zh
Priority to US16/978,152 priority patent/US20200413578A1/en
Publication of WO2019235536A1 publication Critical patent/WO2019235536A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/028Net structure, e.g. spaced apart filaments bonded at the crossing points
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding

Definitions

  • the present disclosure relates to an electromagnetic wave absorbing sheet having flexibility, and more particularly, to an electromagnetic wave absorbing sheet capable of absorbing electromagnetic waves in a so-called millimeter wave band of several tens of gigahertz (GHz) to several hundred gigahertz (GHz).
  • GHz gigahertz
  • GHz gigahertz
  • An electromagnetic wave absorbing sheet that absorbs electromagnetic waves is used in order to avoid the influence of leaked electromagnetic waves emitted from the electric circuit or the like to the outside or electromagnetic waves that are undesirably reflected.
  • electromagnetic wave absorbers that absorb unnecessary electromagnetic waves and electromagnetic wave absorbing sheets that are sheet-like electromagnetic wave absorbers that improve user convenience are also used in millimeters. It is conceivable that the demand for an electromagnetic wave that can absorb electromagnetic waves in the wave band and beyond is higher.
  • an electromagnetic wave absorbing sheet As such an electromagnetic wave absorbing sheet, a resistive film is formed on one surface of the dielectric layer, and an electromagnetic wave shielding layer that reflects electromagnetic waves is formed on the other surface, and the phase of the reflected wave is 1 ⁇ 2 wavelength relative to the incident wave.
  • a so-called electromagnetic interference type (also known as ⁇ / 4 type or reflection type) electromagnetic wave absorbing sheet is known in which the incident wave and the reflected wave on the electromagnetic wave absorbing sheet cancel each other out to absorb the electromagnetic wave. ing.
  • the electromagnetic wave interference type electromagnetic wave absorbing sheet is lighter than an electromagnetic wave absorbing sheet of a type that magnetically absorbs electromagnetic waves with magnetic particles having a large specific gravity, and can be easily manufactured, so that the cost can be reduced. Has advantages.
  • a resistive film formed on the surface of a dielectric layer is made of a metal oxide such as indium tin oxide (ITO), indium oxide, tin oxide, or zinc oxide.
  • ITO indium tin oxide
  • a metal nitride or a mixture thereof formed by ion plating, vapor deposition, sputtering, or the like is known (see Patent Document 1 and Patent Document 2).
  • an electromagnetic wave interference type electromagnetic wave absorber a resistive layer of a transparent conductor such as indium tin oxide (ITO) film, a transparent dielectric layer such as glass and acrylic resin, and formed in this dielectric layer,
  • ITO indium tin oxide
  • An electromagnetic wave absorber having flame retardancy and translucency, which includes a reflective film made of a metal such as silver, gold, copper, or aluminum has been proposed (see Patent Document 3).
  • impedance matching is performed by setting the surface resistance of the resistive film formed on the surface of the dielectric layer to a value in the vicinity of 377 ⁇ / sq, and the electromagnetic wave is reflected on the surface of the absorbing sheet ⁇ Prevents a decrease in electromagnetic wave absorption effect due to scattering.
  • the electromagnetic wave interference-type electromagnetic wave absorbing sheet has higher flexibility because the thickness of the dielectric layer becomes thinner as the electromagnetic wave to be absorbed becomes higher in frequency.
  • the electromagnetic wave absorbing sheet that is thinner and can be easily bent increases the place where it can be applied and improves the convenience for the user, but increases the chance that the user is strongly bent.
  • the resistance film made of a metal oxide film or the like formed by sputtering or the like is strongly bent and easily cracked, the surface resistance value becomes large, impedance matching is lost, and electromagnetic wave absorption characteristics are deteriorated. There is.
  • An object of the present disclosure is to solve the above-described conventional problems, and to achieve an electromagnetic wave interference-type electromagnetic wave absorbing sheet that can absorb electromagnetic waves in a frequency band equal to or higher than the millimeter wave band and can be manufactured at low cost. To do.
  • the electromagnetic wave absorbing sheet disclosed in the present application is an electromagnetic interference type in which a resistance film formed of a conductive organic polymer, an adhesive dielectric layer, and an electromagnetic wave shielding layer are sequentially laminated.
  • the electromagnetic wave absorbing sheet is characterized in that the entire sheet is flexible, and the dielectric layer is set to a layer thickness capable of absorbing electromagnetic waves in a millimeter wave band or higher.
  • the resistance film is formed of a conductive organic polymer, impedance matching is maintained and high electromagnetic wave absorbing characteristics can be maintained even when the sheet is strongly bent.
  • the dielectric layer itself has adhesiveness, the resistance film and the electromagnetic wave shielding layer can be easily bonded to the dielectric layer, and electromagnetic waves in the millimeter wave band or higher can be absorbed at a low cost.
  • a highly convenient electromagnetic wave absorbing sheet having flexibility can be realized.
  • An electromagnetic wave absorbing sheet disclosed in the present application is an electromagnetic wave interference type electromagnetic wave absorbing sheet in which a resistance film formed of a conductive organic polymer, an adhesive dielectric layer, and an electromagnetic wave shielding layer are sequentially laminated.
  • the entire sheet has flexibility, and the dielectric layer is set to a layer thickness capable of absorbing electromagnetic waves in the millimeter wave band or higher.
  • the dielectric layer has adhesiveness means that the dielectric layer itself has adhesiveness, and the laminated resistance film and electromagnetic wave shielding layer are not formed without using a separately formed adhesive layer. It means a state in which the layers are integrated as a bonded layer.
  • the “adhesive dielectric layer” uses a material having adhesiveness as a member constituting the dielectric layer (for example, acrylic resin, urethane resin, polyethylene resin) or a silicone-based adhesive for the dielectric layer. It can be realized by adding an adhesive such as an adhesive, an acrylic adhesive, and a urethane adhesive to impart adhesiveness.
  • the electromagnetic wave absorbing sheet disclosed in the present application is an electromagnetic wave interference type electromagnetic wave absorbing sheet formed by laminating a resistance film, a dielectric layer, and an electromagnetic wave shielding layer.
  • the film is less likely to crack, and can maintain high impedance matching and exhibit high electromagnetic wave absorption characteristics.
  • the dielectric layer itself has adhesiveness, the dielectric layer and the resistance film, and the dielectric layer and the electromagnetic wave shielding layer can be easily bonded.
  • An electromagnetic wave absorbing sheet that can absorb electromagnetic waves in the millimeter wave band or higher can be realized at low cost.
  • the resistance film and the dielectric layer are both translucent, and the electromagnetic wave shielding layer is formed of a conductive mesh, and the entire sheet has a total light transmittance of 30%. It is preferable to have the above translucency. By doing in this way, as an electromagnetic wave absorption sheet which has translucency, still higher convenience can be provided.
  • the dielectric layer includes at least one pressure sensitive adhesive such as a silicone pressure sensitive adhesive, an acrylic pressure sensitive adhesive, and a urethane pressure sensitive adhesive.
  • pressure-sensitive adhesives are so-called OCA materials having high translucency, and can satisfactorily bond the resistance film, the dielectric layer, and the electromagnetic wave shielding layer, and realize high optical characteristics of the entire sheet.
  • the electromagnetic wave shielding layer has a surface resistance value of 0.3 ⁇ / sq or less.
  • the aperture ratio of the electromagnetic wave shielding layer is preferably 35 to 85%. By doing in this way, it can be set as the electromagnetic wave shielding layer which has translucency and implement
  • the resistance film contains poly (3,4-ethylenedioxythiophene).
  • an adhesive layer can be provided on the surface of the electromagnetic wave shielding layer opposite to the dielectric layer.
  • the electromagnetic wave absorbing sheet disclosed in the present application will be described with reference to the drawings.
  • the electromagnetic wave absorbing sheet has flexibility, and the sheet as a whole has light-transmitting properties that transmit light.
  • FIG. 1 is a cross-sectional view showing a configuration of an electromagnetic wave absorbing sheet according to the present embodiment.
  • FIG. 1 is a figure described in order to make it easy to understand the configuration of the electromagnetic wave absorbing sheet according to the present embodiment, and the size and thickness of the members shown in the figure are represented in actuality. It is not a thing.
  • the electromagnetic wave absorbing sheet exemplified in the present embodiment is an electromagnetic wave interference type ( ⁇ / 4 type, reflective type) electromagnetic wave absorbing sheet, which is formed by laminating a resistive film 1, a dielectric layer 2, and an electromagnetic wave shielding layer 3. Yes.
  • the adhesive layer 4 is laminated on the back side of the electromagnetic wave shielding layer 3, that is, on the surface opposite to the side where the dielectric layer 2 is disposed in the electromagnetic wave shielding layer 3. Is formed.
  • a protective layer 5 is laminated on the front side of the resistance film 1, that is, on the surface opposite to the side where the dielectric layer 2 is disposed in the resistance film 1.
  • the electromagnetic wave 11 incident on the dielectric layer 2 is reflected at the interface between the electromagnetic wave shielding layer 3 and the dielectric layer 2 disposed on the back side of the dielectric layer 2,
  • the reflected wave 12 is emitted to the outside again.
  • the phase 11a of the incident wave 11 and the phase 12a of the reflected wave 12 are obtained. Absorbs the electromagnetic waves that are canceled and incident on the electromagnetic wave absorbing sheet.
  • d ⁇ / (4 ⁇ r )
  • the thickness d of the dielectric layer 2 can be reduced by 1 / (4 ⁇ r ).
  • the dielectric layer 2 has adhesiveness.
  • an organic material having adhesiveness such as a resin and an adhesive can be used.
  • the electromagnetic wave shielding layer 3 formed by being laminated on the back side of the dielectric layer 2 is a layer that reflects electromagnetic waves incident on the surface on the dielectric layer 2 side that is a boundary surface with the dielectric layer 2.
  • the electromagnetic wave shielding layer 3 needs to function as a reflective layer that reflects electromagnetic waves. Moreover, in order for the electromagnetic wave absorption sheet shown as this embodiment to have flexibility and translucency, it is necessary to provide flexibility and translucency as an electromagnetic wave shielding layer.
  • a conductive mesh formed of conductive fibers or a conductive lattice formed of conductive wires such as ultrafine metal can be used.
  • the dielectric layer 2 and the electromagnetic wave shielding layer 3 are disposed in contact with each other, so that the electromagnetic wave shielding layer 3 and the dielectric layer 2 are caused by the adhesiveness of the dielectric layer 2. It can be in close contact.
  • the resistive film 1 is formed on the front side of the dielectric layer 2, that is, on the side opposite to the side where the electromagnetic wave shielding layer 3 of the dielectric layer 2 is laminated, on the side where the absorbed electromagnetic waves are incident, Impedance matching between the seat and air.
  • the input impedance value of the electromagnetic wave absorbing sheet is brought close to 377 ⁇ , which is an impedance value in the air (actually, an impedance value of vacuum), to the electromagnetic wave absorbing sheet. It is possible to prevent the electromagnetic wave reflection and scattering from occurring when the electromagnetic wave is incident, thereby deteriorating the electromagnetic wave absorption characteristics.
  • the resistance film 1 is formed as a conductive organic polymer film, thereby ensuring flexibility as the electromagnetic wave absorbing sheet and resistance even when the electromagnetic wave absorbing sheet is strongly bent. The film 1 is not cracked and the like, and good impedance matching can be maintained without changing the surface resistance value.
  • the adhesive layer 4 is a layer formed on the back side of the electromagnetic wave shielding layer 3 so that the electromagnetic wave absorbing sheet can be easily attached to a predetermined place.
  • the adhesive layer 4 can be easily formed by applying an adhesive resin paste.
  • the adhesive layer 4 is not an essential member in the electromagnetic wave absorbing sheet according to the present embodiment.
  • a member for adhesion may be disposed on the member side to which the electromagnetic wave absorbing sheet is attached, and when the electromagnetic wave absorbing sheet is disposed at the predetermined location.
  • Adhesive methods such as supplying an adhesive between the electromagnetic wave absorbing sheet and the arrangement location or using a double-sided tape can be employed.
  • the protective layer 5 is a member that is formed on the surface of the resistance film 1, that is, the outermost surface on the electromagnetic wave absorbing sheet side where the electromagnetic wave is incident, and protects the resistance film 1.
  • the surface resistance value of the conductive organic polymer forming the resistance film 1 of the electromagnetic wave absorbing sheet of the present embodiment may change due to the influence of humidity in the air.
  • it since it is a resin film, there is a risk of scratching when a sharp member comes into contact with the surface or when it is rubbed with a hard material. For this reason, it is preferable to protect the resistive film 1 by covering the surface of the resistive film 1 with the protective layer 5.
  • the protective layer 5 is not an essential constituent element in the electromagnetic wave absorbing sheet according to the present embodiment, and changes in the surface resistance value due to the adhesion of moisture to the surface or the resistance film 1 due to the material of the conductive organic polymer. When there is little concern about the surface being damaged, a configuration of an electromagnetic wave absorbing sheet without the protective layer 5 can be selected.
  • the protective layer 5 a resin material such as polyethylene terephthalate can be used as described later. Although the resin material used as the protective layer 5 has a certain resistance value, the effect of the presence or absence of the protective layer 5 on the surface resistance value of the electromagnetic wave absorbing sheet can be impedance-matched by setting the protective layer 5 thin. Can be set to a level that does not cause a problem in practice.
  • the resistance film 1 is made of a conductive organic polymer.
  • the conductive organic polymer a conjugated conductive organic polymer is used, and it is preferable to use polythiophene or a derivative thereof, polypyrrole or a derivative thereof.
  • polythiophene-based conductive polymer suitable for use in the resistive film 1 of the electromagnetic wave absorbing sheet according to the present embodiment include poly (thiophene), poly (3-methylthiophene), poly (3-ethylthiophene) ), Poly (3-propylthiophene), poly (3-butylthiophene), poly (3-hexylthiophene), poly (3-heptylthiophene), poly (3-octylthiophene), poly (3-decylthiophene), Poly (3-dodecylthiophene), poly (3-octadecylthiophene), poly (3-bromothiophene), poly (3-chlorothiophene), poly (3-iodothiophene), poly (3-cyanothiophene), poly ( 3-phenylthiophene), poly (3,4-dimethylthiophene), poly (3,4-dibutylthio) Phen), poly (3-
  • polypyrrole conductive polymer suitable for use in the resistance film 1 include polypyrrole, poly (N-methylpyrrole), poly (3-methylpyrrole), poly (3-ethylpyrrole), Poly (3-n-propylpyrrole), poly (3-butylpyrrole), poly (3-octylpyrrole), poly (3-decylpyrrole), poly (3-dodecylpyrrole), poly (3,4-dimethylpyrrole) ), Poly (3,4-dibutylpyrrole), poly (3-carboxypyrrole), poly (3-methyl-4-carboxypyrrole), poly (3-methyl-4-carboxyethylpyrrole), poly (3-methyl) -4-carboxybutylpyrrole), poly (3-hydroxypyrrole), poly (3-methoxypyrrole), poly (3-ethoxypyrrole) , Poly (3-Butokishipiroru), poly (3-hexyloxy-pyrrole), poly (3-butokish
  • an organic polymer whose main chain is composed of a ⁇ -conjugated system can be used as the resistance film 1, and a polyacetylene conductive polymer, a polyphenylene conductive polymer, a polyphenylene vinylene conductive
  • a conductive polymer, a polyaniline conductive polymer, a polyacene conductive polymer, a polythiophene vinylene conductive polymer, and a copolymer thereof can be used.
  • a polyanion can be used as a counter anion as a conductive organic polymer used for the resistance film.
  • a polyanion it does not specifically limit as a polyanion, What contains the anion group which can produce a chemical oxidation dope in the conjugated conductive organic polymer used for the resistive film mentioned above is preferable.
  • an anionic group include groups represented by the general formulas —O—SO 3 X, —O—PO (OX) 2 , —COOX, —SO 3 X (in each formula, X represents a hydrogen atom) Among them, the groups represented by —SO 3 X and —O—SO 3 X are particularly preferable because of the excellent doping effect on the conjugated conductive organic polymer. .
  • polyanions include polystyrene sulfonic acid, polyvinyl sulfonic acid, polyallyl sulfonic acid, polyacryl sulfonic acid, polymethacryl sulfonic acid, poly (2-acrylamido-2-methylpropane sulfonic acid), polyisoprene sulfone.
  • Polymers having a sulfonic acid group such as acid, polysulfoethyl methacrylate, poly (4-sulfobutyl methacrylate), polymethacryloxybenzenesulfonic acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid And polymers having a carboxylic acid group such as polymethacrylic carboxylic acid, poly (2-acrylamido-2-methylpropane carboxylic acid), polyisoprene carboxylic acid and polyacrylic acid. These homopolymers may be sufficient and 2 or more types of copolymers may be sufficient.
  • a polyanion may be used individually by 1 type, and may use 2 or more types together.
  • a polymer having a sulfonic acid group is preferable, and polystyrene sulfonic acid is more preferable.
  • the above conductive organic polymer may be used alone or in combination of two or more.
  • polypyrrole poly (3-methoxythiophene), poly (3,4-ethylenedioxythiophene), poly (2-anilinesulfonic acid)
  • polypyrrole poly (3-methoxythiophene)
  • poly (3,4-ethylenedioxythiophene) poly (2-anilinesulfonic acid)
  • a polymer composed of one or two selected from poly (3-anilinesulfonic acid) is preferable.
  • PEDOT poly(1,4-ethylenedioxythiophene: PEDOT) and polystyrenesulfonic acid (PSS) as a combination of a conjugated conductive organic polymer and a polyanion.
  • PEDOT poly(3,4-ethylenedioxythiophene: PEDOT) and polystyrenesulfonic acid (PSS) as a combination of a conjugated conductive organic polymer and a polyanion.
  • dopants include halogens such as iodine and chlorine, Lewis acids such as BF 3 and PF 5 , proton acids such as nitric acid and sulfuric acid, transition metals, alkali metals, amino acids, nucleic acids, surfactants, dyes, chloranil, tetra Cyanoethylene, TCNQ, etc. can be used.
  • the surface resistance value of the resistance film 1 is preferably set to a value of about plus / minus several percent with respect to 377 ⁇ .
  • the resistance film 1 As a material for forming the resistance film 1, it is preferable to include polyvinylidene fluoride in addition.
  • Polyvinylidene fluoride can be added to the composition for coating conductive organic polymer to serve as a binder in the conductive organic polymer film, improving film formability and adhering to the substrate. Can increase the sex.
  • the resistance coating 1 contains a water-soluble polyester. Since the water-soluble polyester is highly compatible with the conductive polymer, the conductive polymer is fixed in the resistive film 1 by adding the water-soluble polyester to the conductive organic polymer coating composition forming the resistive film 1. And a more uniform film can be formed. As a result, the use of water-soluble polyester reduces the change in surface resistance even when placed in a severer high-temperature and high-humidity environment, and maintains impedance matching with the impedance value in the air. Can do.
  • the weather resistance of the resistance film 1 is improved, so that the change in the surface resistance value of the resistance film 1 over time is suppressed, and stable electromagnetic wave absorption characteristics are achieved.
  • a highly reliable electromagnetic wave absorbing sheet that can be maintained can be realized.
  • the content of the conductive organic polymer in the resistance film 1 is preferably 10% by mass or more and 35% by mass or less with respect to the total mass of the solid content included in the resistance film 1 composition.
  • the content is less than 10% by mass, the conductivity of the resistance film 1 tends to be lowered. For this reason, it becomes difficult to achieve impedance matching with the impedance value in the air, and the electromagnetic wave absorption performance is lowered.
  • the surface electrical resistance value of the resistance film 1 is set within a predetermined range for impedance matching, the film thickness of the resistance film 1 is increased, so that the entire electromagnetic wave absorbing sheet is increased, and optical characteristics such as translucency are obtained. There is a tendency to decrease.
  • the coating suitability when coating the resistive film 1 is reduced due to the structure of the conductive organic polymer, and it becomes difficult to form a good resistive film 1 and resistance.
  • the haze of the film 1 increases, and the optical characteristics tend to decrease.
  • the resistance film 1 can be formed by applying a coating composition as a resistance film-forming coating material onto a substrate and drying as described above.
  • Examples of the method for applying the resistance film-forming coating onto the substrate include a bar coating method, a reverse method, a gravure coating method, a micro gravure coating method, a die coating method, a dipping method, a spin coating method, a slit coating method, and a spray.
  • a coating method such as a coating method can be used.
  • the drying after the application may be performed under the condition that the solvent component of the resistance film-forming coating material evaporates, and is preferably performed at 100 to 150 ° C. for 5 to 60 minutes. If the solvent remains in the resistance film 1, the strength tends to be inferior.
  • a drying method for example, a hot air drying method, a heat drying method, a vacuum drying method, natural drying, or the like can be used.
  • the transparent base material which has translucency is preferable.
  • various materials such as resin, rubber, glass and ceramics can be used.
  • the electromagnetic wave incident on the electromagnetic wave absorbing sheet is in the air. Impedance can be matched, and electromagnetic wave reflection and scattering on the surface of the electromagnetic wave absorbing sheet can be reduced to obtain better electromagnetic wave absorption characteristics.
  • the dielectric layer 2 of the electromagnetic wave absorbing sheet according to the present embodiment preferably uses a transparent optical adhesive film (OCA film: Optical Clear Adhesive Film) which is a light-transmitting and adhesive material. it can.
  • OCA film Optical Clear Adhesive Film
  • MHMSI-500 (trade name: manufactured by Niei Engineering Co., Ltd.) that is a silicone-based OCA
  • MHM-FWV trade name: manufactured by Niei Engineering Co., Ltd.
  • Free that is a urethane-based OCA Crystal® (trade name: manufactured by Bando Chemical Co., Ltd.)
  • silicone OCA is superior to other materials in terms of heat resistance and cold resistance.
  • the electromagnetic wave absorption sheet produced using silicone OCA is a preferable material in that there are few restrictions on environmental temperature as a place of use.
  • the dielectric layer 2 has adhesiveness, so that the adhesion between the resistive film 1 formed as a thin film of resin material and the dielectric layer 2 is adhered on the dielectric layer 2. This can be realized by laminating the resistive film 1. For this reason, the process (for example, laminating process etc.) which bonds the resistive film 1 and the dielectric layer 2 required when the dielectric layer 2 is not adhesive becomes unnecessary, and manufacture of an electromagnetic wave absorbing sheet Can be simplified and the manufacturing cost can be reduced. In some cases, the resistance coating 1 and the dielectric layer 2 may be laminated in an appropriate manner so that they can be bonded with higher adhesive strength.
  • the electromagnetic wave shielding layer 3 is made a dielectric by the adhesiveness of the dielectric layer 2. It can arrange
  • the adhesive property of the dielectric layer 2 is preferably 8 to 35 N / 25 mm as a result of measurement by a 180 ° peel adhesion test method. When the adhesive strength is 8 N / 25 mm or less, the dielectric layer 2 and the electromagnetic wave shielding layer 3 are easily peeled off. When the adhesive strength is 35 N / mm or more, the adhesion is too strong and the rework property when reattaching is lowered. , Restrictions on the production of the electromagnetic wave absorbing sheet are increased.
  • the dielectric layer 2 can be formed as a single layer structure with one kind of material, and can also have a structure in which two or more layers of the same kind and different kinds of materials are laminated.
  • a coating method, a press molding method, an extrusion molding method, or the like can be used.
  • the electromagnetic wave absorbing sheet according to the present embodiment shifts the phase between the electromagnetic wave incident on the electromagnetic wave absorbing sheet and the reflected wave reflected by the electromagnetic wave shielding layer 3 by 1 ⁇ 2 wavelength, so that the incident wave and the reflected wave are shifted.
  • the thickness of the dielectric layer (d in FIG. 1) is determined in accordance with the wavelength of the electromagnetic wave to be absorbed.
  • the value of the thickness d of the dielectric layer 2 by rate is used large, 1 / ⁇ r can be reduced, it is possible to reduce the total thickness of the electromagnetic wave absorber sheet.
  • the electromagnetic wave absorbing sheet according to this embodiment has flexibility, it can be easily bent as the thickness of the dielectric layer 2 constituting the electromagnetic wave absorbing sheet or the electromagnetic wave absorbing sheet itself is small. More preferred. Further, considering that the electromagnetic wave absorbing sheet according to the present embodiment is often used by being attached to a member that is desired to prevent leakage of electromagnetic waves through an adhesive layer 4 or the like described later, the thickness of the electromagnetic wave absorbing sheet is It is preferable that it is thin and easily conforms to the shape of the sticking portion, and that the sheet is further reduced in weight.
  • the dielectric layer 2 is adjusted by adjusting the value of the dielectric constant ⁇ r of the dielectric used as the dielectric layer 2 and the thickness of the dielectric layer 2. It can control so that the electromagnetic wave of the high frequency band beyond a millimeter wave band can be absorbed with the electromagnetic wave absorption sheet
  • the gap portion has a dielectric constant, the dielectric constant of the dielectric layer 2 deviates from a predetermined value, and the frequency of the electromagnetic wave to be absorbed fluctuates.
  • the dielectric layer having adhesiveness according to the present embodiment it is possible to satisfactorily avoid such an inconvenience.
  • the electromagnetic wave shielding layer 3 of the electromagnetic wave absorbing sheet according to this embodiment is incident through the resistive coating 1 disposed on the opposite side (back side) of the electromagnetic wave incident surface of the electromagnetic wave absorbing sheet via the dielectric layer 2. It is a member that reflects electromagnetic waves.
  • the electromagnetic wave shielding layer 3 can be curved following at least when the resistance film 1 and the dielectric layer 2 are curved. It is necessary to have flexibility and translucency.
  • a conductive mesh made of conductive fibers can be employed as the electromagnetic wave shielding layer 3 that can meet such requirements.
  • the conductive mesh can be formed by attaching a metal to a mesh woven with polyester monofilament to make it conductive.
  • the metal copper, silver, or the like having high conductivity can be used.
  • the black anti-reflective layer on the outer side of the metal film is also commercialized.
  • the electromagnetic wave shielding layer 3 a conductive grid in which metal wires such as thin copper wires having a diameter of several tens to several hundreds of ⁇ m are arranged vertically and horizontally can be used.
  • the electromagnetic wave shielding layer 3 made of the mesh or the conductive lattice described above has a minimum thickness as long as the surface resistance value required as the electromagnetic wave shielding layer can be realized in order to ensure flexibility and translucency. Will be configured.
  • a reinforcing layer and a protective layer made of a light-transmitting resin are formed on the back side of the conductive lattice, so that it is configured as a laminate of an electromagnetic wave reflection portion made of a conductive material and a resin film portion.
  • the electromagnetic wave shielding layer 3 can be used.
  • FIG. 2 is a model diagram showing the shape of the electromagnetic wave shielding layer used for the verification.
  • the attenuation amount of the electromagnetic wave incident on the plate-shaped electromagnetic wave shielding layer is expressed in dB as the cutoff SE
  • the input / output impedance of the metal plate is Z 0
  • the conductivity of the metal plate is ⁇ ( ⁇ ⁇ 1 ⁇ m ⁇ 1 ).
  • the thickness of the plate is expressed as the following formula (2), where d (m).
  • the electromagnetic wave shielding SE can be expressed by the following equation (4).
  • Table 1 shows the results of calculating the aperture ratio (formula (1)) and the cutoff SE (formula (4)) by changing the pitch P of the wires constituting the metal mesh.
  • the aperture ratio is 75%
  • the transmittance is 60%
  • the cutoff SE is 21.2 dB.
  • the total light transmittance in the electromagnetic wave shielding layer is considered to be required to be about 30% or more, and the interval P between the metal lines for realizing this is 50 ⁇ m,
  • the aperture ratio was 35%
  • the cutoff SE indicating the attenuation of electromagnetic waves was 45.0 dB.
  • the aperture ratio is 35 to 85% based on the electromagnetic wave shielding effect in the electromagnetic wave shielding layer 3 and the optical characteristics of the electromagnetic wave shielding layer 3, and when the conductive mesh or the conductive lattice is used. It can be said that this is a favorable condition. Moreover, in order to obtain favorable electromagnetic wave reflection characteristics as the electromagnetic wave shielding layer 3, it can be determined that the surface resistance value is preferably 0.3 ⁇ / sq or less as a preferable condition.
  • the electromagnetic wave absorbing sheet which is a laminate of the resistive film 1, the dielectric layer 2, and the electromagnetic wave shielding layer 3, can be used as a housing for housing an electric circuit. It can be attached to a desired position such as an inner surface or an inner surface or an outer surface of an electric device.
  • the electromagnetic wave absorbing sheet of the present embodiment has flexibility, it can be easily attached on a curved surface, and the electromagnetic wave absorbing sheet can be easily handled by providing the adhesive layer 4 on the back surface. Improves.
  • the adhesive layer 4 a known material used as an adhesive layer such as an adhesive tape, an acrylic adhesive, a rubber adhesive, a silicone adhesive, or the like can be used. Moreover, a tackifier and a crosslinking agent can also be used in order to adjust the adhesive force to the adherend and reduce adhesive residue.
  • the adhesive strength to the adherend is preferably 5 N / 10 mm to 12 N / 10 mm as a result of measurement by a 180 ° peel adhesive strength test method. When the adhesive strength is less than 5 N / 10 mm, the electromagnetic wave absorbing sheet may be easily peeled off from the adherend or may be displaced. Moreover, when adhesive force is larger than 12 N / 10mm, it will become difficult to peel an electromagnetic wave absorption sheet from a to-be-adhered body.
  • the thickness of the adhesive layer 4 is preferably 20 ⁇ m to 100 ⁇ m.
  • the thickness of the adhesive layer 4 is less than 20 ⁇ m, the adhesive strength is reduced, and the electromagnetic wave absorbing sheet may be easily peeled off or displaced from the adherend.
  • the thickness of the adhesive layer 4 is larger than 100 ⁇ m, it is difficult to peel the electromagnetic wave absorbing sheet from the adherend.
  • the cohesive force of the adhesive layer is small, adhesive residue may be generated on the adherend when the electromagnetic wave absorbing sheet is peeled off. Moreover, it becomes a factor which reduces the flexibility as the whole electromagnetic wave absorption sheet.
  • the adhesive layer 4 used for the electromagnetic wave absorption sheet concerning this embodiment, while being able to make the electromagnetic wave absorption sheet the adhesive layer 4 which cannot be peeled on an adherend, the peelable sticking is possible. It can also be set as the adhesive layer 4 to perform.
  • the adhesive layer 4 it is not an essential requirement that the adhesive layer 4 is provided. It can adhere
  • the protective layer 5 can be provided on the electromagnetic wave incident surface side which is the surface of the resistance film 1.
  • the surface resistance value of the conductive organic polymer used as the resistance film 1 may change due to the influence of humidity in the air. For this reason, by providing the protective layer 5 on the surface of the resistance film 1, it is possible to reduce the influence of humidity and effectively suppress the deterioration of the electromagnetic wave absorption characteristics due to impedance matching.
  • the protective layer 5 for example, polyethylene terephthalate having a thickness of 25 ⁇ m can be used, and this is configured by being attached to the surface of the resistance film 1 with an adhesive of a resin material. Can do.
  • the protective layer 5 is a film that covers the entire surface of the resistance film 1, thereby preventing the resistance film 1 from being affected by humidity in the air.
  • the component of the surface resistance value of the protective layer 5 formed as a resin film is considered to affect the component of the surface resistance value of the laminated resistance film 1 as being connected in parallel. For this reason, if the thickness of the protective layer 5 does not become too thick, it is thought that the influence which it has on the input impedance of an electromagnetic wave absorption sheet is very small.
  • the thickness of the protective layer 5 is preferably thinner as long as the resistance film 1 can be protected.
  • the thickness of the protective layer 5 is preferably 150 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the thickness of the protective layer exceeds 150 ⁇ m, the electromagnetic wave absorption performance is lowered, and the electromagnetic wave absorption amount may be less than 20 dB.
  • the thickness of the whole electromagnetic wave absorption sheet becomes large, flexibility falls.
  • an electromagnetic wave absorbing sheet (sheet 1, sheet 4, sheet 5) using silicone OCA as a dielectric layer, and acrylic OCA as a dielectric layer are used.
  • the electromagnetic wave absorbing sheets of the examples (sheets 1 to 5) and the resistance film of the electromagnetic wave absorbing sheet of the comparative example were both produced with the above-described composition on a polyethylene terephthalate sheet (50 ⁇ m thickness) as a base material.
  • the resistance coating solution was applied in an amount such that the thickness after drying was about 120 nm by a bar coating method, and then heated at 150 ° C. for 5 minutes to form a film. In this case, the surface resistance of each resistance film was 377 ⁇ / sq.
  • Dielectric layer The following members were used as the dielectric layer of the electromagnetic wave absorbing sheet of the example.
  • a polyethylene terephthalate (PET) resin was used as follows, and a sheet other than the dielectric layer was produced in the same manner as Sheet 1.
  • Silicone OCA MHMSI-500 (trade name: manufactured by Niei Engineering Co., Ltd.) Thickness 500 ⁇ m Adhesive strength 10N / 25mm Dielectric constant 3.0 Acrylic OCA MHM-FWV (trade name: manufactured by Niei Engineering Co., Ltd.) Thickness 500 ⁇ m Adhesive strength 30N / 25mm Dielectric constant 3.5 Urethane OCA Free Crystal (Brand name: Bando Chemical Co., Ltd.) Thickness 500 ⁇ m Adhesive strength 25N / 25mm Dielectric constant 2.3 Comparative Example 1 PET U32 (trade name: manufactured by Toray Industries, Inc.) Thickness 500 ⁇ m (250 ⁇ m + 250 ⁇ m).
  • the electromagnetic wave shielding layer was formed on the sheets 1 to 3 using the conductive mesh Su-4X-13227 (trade name: aperture ratio 75%) manufactured by Seiren Co., Ltd. as the electromagnetic wave shielding layer 1.
  • the conductive mesh Su-4X-9027 manufactured by Seiren Co., Ltd.
  • the electromagnetic wave shielding layer 2 Product name: Opening ratio 82%.
  • a conductive mesh Su-4X-27036 (trade name: aperture ratio 38%) manufactured by Seiren Co., Ltd. was used as the electromagnetic wave shielding layer 3.
  • the electromagnetic wave shielding layer 1 having an aperture ratio of 75% was used as the electromagnetic wave shielding layer of the electromagnetic wave absorbing sheet of the comparative example.
  • a resistive film is bonded to the dielectric layer using the adhesive strength of each dielectric layer, and further, a conductive mesh that is an electromagnetic wave shielding layer is formed.
  • the dielectric layer was bonded to the surface opposite to the surface on which the resistance film was bonded.
  • the electromagnetic wave absorption sheet using PET which is a comparative example as a dielectric material layer bonded the resistance film and the electromagnetic wave shielding layer to the dielectric material layer using acrylic OCA having a thickness of 20 ⁇ m.
  • the total light transmittance and the haze value were measured according to JIS K7105 using HazeMeter NDH2000 (product name) manufactured by Nippon Denshoku Co., Ltd. LightC was used as the light source.
  • the electromagnetic wave absorption characteristics can be measured with respect to each electromagnetic wave absorbing sheet using the free space measuring device manufactured by Keycom Corporation and the vector network analyzer MS4647B (trade name) manufactured by Anritsu Corporation using the free space method as described above.
  • the intensity ratio between the incident wave and the reflected wave when the electromagnetic wave was irradiated was grasped as a voltage value.
  • the electromagnetic wave absorbing sheet 1 using the silicone OCA for the dielectric layer has a total light transmittance of 60%.
  • the electromagnetic wave absorbing sheet 2 having a haze value of 12 and acrylic OCA as the dielectric layer the total light transmittance is 60%, the haze value is 12, and the electromagnetic wave absorbing sheet 3 using urethane OCA as the dielectric layer is The light transmittance was 60% and the haze value was 12.
  • the total light transmittance is 59.9% and the haze value is 21. Therefore, it was confirmed that the optical characteristics of the electromagnetic wave absorbing sheets of the examples were all superior to the optical characteristics of the electromagnetic wave absorbing sheets of the comparative examples.
  • the electromagnetic wave absorbing sheet 4 using the conductive mesh having an aperture ratio of 82% for the electromagnetic wave shielding layer and using the silicone OCA for the dielectric layer the total light transmittance is 66%, the haze value is 7, and the conductive mesh is used. It was confirmed that when the aperture ratio increased from 75% to 82%, both the total light transmittance and haze value were improved, and an electromagnetic wave absorbing sheet capable of obtaining a transmitted light image with less distortion and bleeding was obtained.
  • the electromagnetic wave absorbing sheet 5 using a conductive mesh with an aperture ratio of 38% for the electromagnetic wave shielding layer and silicone OCA for the dielectric layer has a total light transmittance of 30% and a haze value of 40. Although a high value can be obtained, it can be said that this is an acceptable characteristic in terms of translucency.
  • the electromagnetic wave absorbing sheet having translucency when used as the electromagnetic wave absorbing sheet according to the present embodiment, it is preferable that the total light transmittance of the entire sheet is 30% or more. Moreover, it is preferable that the surface resistance value of the electromagnetic wave shielding layer constituted by the conductive mesh is 0.3 ⁇ / sq or less. Further, the opening ratio of the conductive mesh is preferably 35 to 85%, more preferably 38% to 82% based on the examples.
  • the prepared electromagnetic wave absorbing sheet 1, electromagnetic wave absorbing sheet 2, electromagnetic wave absorbing sheet 3, electromagnetic wave absorbing sheet 4, and electromagnetic wave absorbing sheet 5 are each cut into a size of 5 ⁇ 10 cm, and the initial surface resistance is measured. The surface resistance value was confirmed to be 377 ⁇ .
  • the resistance film is placed face-up on a cylindrical rod (mandrel) made of aluminum having six types of diameters of 10 mm, 8 mm, 6 mm, 4 mm, 2 mm, and 0.5 mm arranged horizontally.
  • a 300 g weight was attached to both ends of the sheet and maintained for 30 seconds, and both ends were pulled downward with the central portion of the sheet bent. Thereafter, the surface resistance of each electromagnetic wave absorbing sheet was measured again.
  • the surface resistance value (377 ⁇ ) of the resistance film does not change, and even if the surface of each sheet is observed with a microscope having a magnification of 100 times, It was confirmed that there were no cracks on the surface.
  • a resistance film is formed of a transparent conductive film (ITO), and an electromagnetic wave absorbing sheet (sheet of Comparative Example 2) in which the rest is the same as that of the sheet 1 is produced under the same conditions.
  • ITO transparent conductive film
  • sheet of Comparative Example 2 an electromagnetic wave absorbing sheet
  • the flexibility of the electromagnetic wave absorbing sheet disclosed in the present application in the flexibility test using the above-described aluminum cylindrical rod, there is a change in the surface resistance value after the end of the test. It can be said that it is preferably less than 2 times, and more preferably 1.5 times or less.
  • the resistance film is formed of a transparent conductive film (ITO)
  • ITO transparent conductive film
  • the electromagnetic wave absorbing sheet according to the present embodiment when a conductive organic polymer is used for the resistance film, the flexibility of the sheet is improved, and a load that strongly bends the sheet with a small diameter is applied. However, it was confirmed that the electromagnetic wave absorption characteristics can be maintained.
  • the electromagnetic wave absorbing sheet according to the present embodiment is configured to bend the electromagnetic wave absorbing sheet strongly by configuring the resistive film 1 disposed on the surface on the side on which the absorbing electromagnetic wave is incident with the conductive organic polymer.
  • the electromagnetic wave absorption characteristics can be maintained even when
  • the resistive coating 1, the dielectric layer 2, and the electromagnetic wave shielding layer 3 are all made of a translucent member, whereby an electromagnetic wave absorbing sheet having translucency in addition to flexibility can be obtained.
  • it can be suitably used in a situation where it is required to absorb and transmit undesired electromagnetic waves while making the inside or outside visible, such as a curtain in a room placed in an electromagnetic wave shield state.
  • the dielectric layer 2 has adhesiveness, adhesion between the resistance film 1 and the dielectric layer 2 and adhesion between the dielectric layer 2 and the electromagnetic wave shielding layer 3 can be easily performed. For this reason, when a conductive polymer is used as the resistance film 1 and a conductive mesh or conductive lattice is used as the electromagnetic wave shielding layer 3, a laminate that has been conventionally required for adhesion to the dielectric layer is used. A special bonding step such as a step is not necessary, and the manufacturing cost of the electromagnetic wave absorbing sheet can be reduced.
  • the electromagnetic wave absorbing sheet as a whole has been described as having a translucency and having a total light transmittance of 30% or more. However, it is not always necessary to have translucency as the electromagnetic wave absorbing sheet disclosed in the present application.
  • the electromagnetic wave absorbing sheet can be formed using a material having no translucency as a resistance coating, a dielectric layer, and an electromagnetic wave shielding layer.
  • the body layer has adhesiveness, an electromagnetic wave interference type electromagnetic wave absorbing sheet that is flexible and can absorb electromagnetic waves with a high frequency of the millimeter wave band or higher can be realized at low cost.
  • a material for forming the dielectric layer it is possible to select a material in which a dielectric material such as titanium oxide, polyvinylidene fluoride, polyester resin, glass, or silicone rubber is mixed with various adhesive materials. it can.
  • the electromagnetic wave shielding layer is not a translucent form such as a mesh or a lattice, but a reflective sheet or the like in which metal is deposited on the surface of a metal foil or a resin base material. Can be appropriately selected within a range that does not hinder the flexibility of.
  • a metal foil or a metal vapor deposition film is attached to the back side of the dielectric layer so that no gap is generated between the dielectric layer and the electromagnetic wave shielding layer. be able to.
  • the electromagnetic wave absorbing sheet disclosed in the present application can stably absorb electromagnetic waves in a high frequency band of the millimeter wave band or higher, and is useful as a low-cost electromagnetic wave absorbing sheet having flexibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

ミリ波帯域以上の周波数帯域の電磁波を良好に吸収することができ、低コストで作製可能な電磁波干渉型の電磁波吸収シートを実現する。導電性有機高分子によって形成された抵抗皮膜1と、粘着性を有する誘電体層2と、電磁波遮蔽層3とが順次積層された電磁波干渉型の電磁波吸収シートであって、シート全体が可撓性を有し、前記誘電体層がミリ波帯域以上の電磁波を吸収可能な層厚に設定されている。

Description

電磁波吸収シート
 本開示は、可撓性を有する電磁波吸収シート、特に、数十ギガヘルツ(GHz)から数百ギガヘルツ(GHz)のいわゆるミリ波帯域以上の電磁波を吸収可能な電磁波吸収シートに関する。
 電気回路などから外部へと放出される漏洩電磁波や、不所望に反射した電磁波の影響を回避するために、電磁波を吸収する電磁波吸収シートが用いられている。
 近年は、携帯電話などの移動体通信や無線LAN、料金自動収受システム(ETC)などで、数ギガヘルツ(GHz)の周波数帯域を持つセンチメートル波、さらには、30ギガヘルツから300ギガヘルツの周波数を有するミリ波帯、ミリ波帯域を超えた高い周波数帯域の電磁波として、1テラヘルツ(THz)の周波数を有する電磁波を利用する技術の研究も進んでいる。
 このようなより高い周波数の電磁波を利用する技術トレンドに対応して、不要な電磁波を吸収する電磁波吸収体やユーザの利便性を向上したシート状の電磁波吸収体である電磁波吸収シートにおいても、ミリ波帯域からそれ以上の帯域の電磁波を吸収可能とするものへの要望は、より高くなることが考えられる。
 このような電磁波吸収シートとして、誘電体層の一方の表面に抵抗皮膜が、他方の表面に電磁波を反射する電磁波遮蔽層がそれぞれ形成され、反射波の位相を入射波に対して1/2波長分ずらすことで電磁波吸収シートへの入射波と反射波とが打ち消し合って電磁波を吸収する、いわゆる電磁波干渉型(λ/4型、または、反射型とも称される)の電磁波吸収シートが知られている。電磁波干渉型の電磁波吸収シートは、比重の大きな磁性体粒子によって磁気的に電磁波を吸収する方式の電磁波吸収シートなどと比べて軽量であり、容易に製造することができるため低コスト化が可能という利点を有している。
 従来、いわゆる電磁波干渉型の電磁波吸収シート(電磁波吸収体)として、誘電体層の表面に形成される抵抗皮膜を、酸化インジウムスズ(ITO)、酸化インジウム、酸化スズ、酸化亜鉛などの金属酸化物、金属窒化物ないしはこれらの混合体を、イオンプレーティング法、蒸着法、スパッタリング法などによって形成したものが知られている(特許文献1、特許文献2参照)。
 また、電磁波干渉型の電磁波吸収体として、酸化インジウム錫(ITO)膜などの透明導電体の抵抗層と、ガラス、アクリル樹脂などの透明な誘電体層と、この誘電体層に形成された、銀、金、銅、アルミなどの金属からなる反射膜とを備えた、難燃性と透光性とを有する電磁波吸収体が提案されている(特許文献3参照)。
特開平06-120689号公報 特開平09-232787号公報 特開2006- 86446号公報
 上記従来の電磁波吸収シートや電磁波吸収体では、誘電体層の表面に形成される抵抗皮膜の面抵抗値を377Ω/sq近傍の値とするインピーダンス整合を行って、電磁波が吸収シートの表面で反射・散乱することによる電磁波吸収効果の低下を防いでいる。
 一方、電磁波干渉型の電磁波吸収シートでは、吸収する電磁波が高周波となるにしたがって誘電体層の厚さが薄くなるため、より高い可撓性を有するようになる。より薄く、容易に湾曲させることができる電磁波吸収シートは、貼付可能な場所が広がって使用者の利便性が向上するが、使用者に強く曲げられてしまう機会が増える。このとき、スパッタリング法などによって形成された金属酸化膜などによる抵抗皮膜は強く曲げられることでひびが入りやすく、表面抵抗値が大きくなってインピーダンス整合が崩れてしまい、電磁波吸収特性が低下するという問題がある。
 また、光を透過する透光性を備え、かつ、可撓性を備えた電磁波吸収シートは、従来は実現されていなかった。
 本開示は、上記従来の課題を解決し、ミリ波帯域以上の周波数帯域の電磁波を良好に吸収することができ、低コストで作製可能な電磁波干渉型の電磁波吸収シートを実現することを目的とする。
 上記課題を解決するため本願で開示する電磁波吸収シートは、導電性有機高分子によって形成された抵抗皮膜と、粘着性を有する誘電体層と、電磁波遮蔽層とが順次積層された電磁波干渉型の電磁波吸収シートであって、シート全体が可撓性を有し、前記誘電体層がミリ波帯域以上の電磁波を吸収可能な層厚に設定されていることを特徴とする。
 本願で開示する電磁波吸収シートは、抵抗皮膜が導電性有機高分子によって形成されているため、シートが強く曲げられた場合でもインピーダンス整合を維持して高い電磁波吸収特性を保ち続けることができる。また、誘電体層自体が粘着性を有するため、抵抗皮膜および電磁波遮蔽層と誘電体層との接着を容易に行うことができ、低コストでありながらミリ波帯域以上の電磁波を吸収可能であり、可撓性を備えた利便性の高い電磁波吸収シートを実現することができる。
本実施形態にかかる電磁波吸収シートの構成を説明する断面図である。 開口率の検討に用いた電磁波遮蔽層の形状を説明するモデル図である。
 本願で開示する電磁波吸収シートは、導電性有機高分子によって形成された抵抗皮膜と、粘着性を有する誘電体層と、電磁波遮蔽層とが順次積層された電磁波干渉型の電磁波吸収シートであって、シート全体が可撓性を有し、前記誘電体層がミリ波帯域以上の電磁波を吸収可能な層厚に設定されている。
 なお、本願発明において「誘電体層が粘着性を有する」とは、誘電体層自体が粘着性を有し、別途形成された接着層を介さずとも、積層された抵抗被膜および電磁波遮蔽層と接着された層として一体化される状態であることを意味する。また、「粘着性を有する誘電体層」は、誘電体層を構成する部材(例えばアクリル樹脂、ウレタン樹脂、ポリエチレン樹脂)として粘着性を有するものを用いること、または、誘電体層にシリコーン系粘着剤、アクリル系粘着剤、およびウレタン系粘着剤などの粘着剤を添加して粘着性を持たせることにより、実現することができる。
 このようにすることで、本願で開示する電磁波吸収シートは、抵抗皮膜と誘電体層と電磁波遮蔽層とが積層して形成された電磁波干渉型の電磁波吸収シートとして、強く湾曲された場合でも抵抗皮膜にひび割れなどが生じにくく、インピーダンス整合を維持して高い電磁波吸収特性を発揮することができる。また、誘電体層自体が粘着性を有するため、誘電体層と抵抗皮膜、また、誘電体層と電磁波遮蔽層との接着を容易に行うことができるため、電磁波吸収シート全体として可撓性を有しミリ波帯域以上の電磁波を吸収可能な電磁波吸収シートを低コストで実現することができる。
 本願で開示する電磁波吸収シートにおいて、前記抵抗皮膜と、前記誘電体層とが、いずれも透光性を有するとともに、前記電磁波遮蔽層が導電メッシュにより構成され、シート全体で全光線透過率30%以上の透光性を有することが好ましい。このようにすることで、透光性を有する電磁波吸収シートとして、さらに高い利便性を備えることができる。
 また、前記誘電体層が、シリコーン系粘着剤、アクリル系粘着剤、およびウレタン系粘着剤の少なくとも1種の粘着剤を含むことが好ましい。これらの粘着剤は、いずれも透光性が高いいわゆるOCA材料であり、抵抗被膜と誘電体層と電磁波遮蔽層とを良好に接着できるとともに、シート全体の高い光学特性を実現できる。
 さらに、前記電磁波遮蔽層の表面抵抗値が、0.3Ω/sq以下であることが好ましい。 また、前記電磁波遮蔽層の開口率が35~85%であることが好ましい。このようにすることで、透光性を有するとともに高い電磁波吸収特性を実現する電磁波遮蔽層とすることができる。
 さらにまた、前記抵抗皮膜に、ポリ(3、4-エチレンジオキシチオフェン)を含むことが好ましい。このようにすることで、シート全体が強く湾曲された場合でもインピーダンス整合が維持され、高い電磁波吸収特性を備えた電磁波吸収シートを実現することができる。
 また、前記電磁波遮蔽層の前記誘電体層とは反対側の表面に接着層を有することができる。このようにすることで、電磁波吸収シートを所望の場所に容易に貼着できて、利便性がさらに向上する。
 以下、本願で開示する電磁波吸収シートについて、図面を参照して説明する。以下の実施の形態では、電磁波吸収シートが可撓性を備えるとともに、シート全体として光を透過する透光性を備えたものを例示する。
 (実施の形態)
 まず、本実施形態にかかる電磁波吸収シートの全体構成について説明する。
 図1は、本実施形態にかかる電磁波吸収シートの構成を示す断面図である。
 なお、図1は、本実施形態にかかる電磁波吸収シートの構成を理解しやすくするために記載された図であり、図中に示された部材の大きさや厚みについて現実に即して表されたものではない。
 本実施形態で例示する電磁波吸収シートは、電磁波干渉型(λ/4型、反射型)の電磁波吸収シートであり、抵抗皮膜1、誘電体層2、電磁波遮蔽層3が積層されて形成されている。なお、図1に示す電磁波吸収シートでは、電磁波遮蔽層3の背面側、すなわち、電磁波遮蔽層3において誘電体層2が配置されている側とは反対側の表面には、接着層4が積層形成されている。また、抵抗皮膜1の前面側、すなわち、抵抗皮膜1において誘電体層2が配置されている側とは反対側の表面には、保護層5が積層形成されている。
 本実施形態にかかる電磁波吸収シートは、誘電体層2に入射した電磁波11が、誘電体層2の背面側に配置されている電磁波遮蔽層3と誘電体層2との界面で反射されて、反射波12として再び外部へと放出される。このとき、誘電体層2の厚さdを、入射した電磁波の波長λの1/4とする(d=λ/4)ことで、入射波11の位相11aと反射波12の位相12aとが打ち消し合って電磁波吸収シートに入射した電磁波を吸収する。
 なお、d=λ/4となるのは、誘電体層2として空気(誘電率ε=1)が用いられる場合であり、誘電体層2に用いられる誘電体の誘電率がεrである場合には、d=λ/(4√εr)となって誘電体層2の厚さdを、1/(4√εr)だけ薄くすることができる。誘電体層2を薄く形成することで、電磁波吸収シート全体の薄型化を実現でき、より可撓性に優れた電磁波吸収シートを実現することができる。
 また、本実施形態に示す電磁波吸収シートでは、誘電体層2が粘着性を有している。誘電体層2としては、樹脂、粘着剤などの粘着性を有する有機材料を用いることができる。
 誘電体層2の背面側に積層して形成される電磁波遮蔽層3は、誘電体層2との境界面である誘電体層2側の表面で入射してきた電磁波を反射する層である。
 本実施形態にかかる、電磁波干渉型の電磁波吸収シートにおける電磁波吸収の原理から、電磁波遮蔽層3は電磁波を反射する反射層として機能することが必要である。また、本実施形態として示す電磁波吸収シートが可撓性と透光性とを有するためには、電磁波遮蔽層としても可撓性と透光性とを備えることが必要である。このような要求に対応できる電磁波遮蔽層3としては、導電性の繊維により構成された導電性メッシュや、極細線の金属などの導電性ワイヤーにより構成された導電性格子を用いることができる。
 なお、本実施形態にかかる電磁波吸収シートでは、誘電体層2と電磁波遮蔽層3とが接して配置されることで、誘電体層2の粘着性によって電磁波遮蔽層3と誘電体層2とが密着した状態にすることができる。 抵抗皮膜1は、誘電体層2の前面側、すなわち誘電体層2の電磁波遮蔽層3が積層されている側とは反対の側の、吸収される電磁波が入射する側に形成され、電磁波吸収シートと空気との間のインピーダンス整合を行う。
 空気中を伝搬してきた電磁波が電磁波吸収シートに入射する際、電磁波吸収シートの入力インピーダンス値を空気中のインピーダンス値(実際には真空のインピーダンス値)である377Ωに近づけることで、電磁波吸収シートへの電磁波の入射時に電磁波の反射・散乱が生じて電磁波吸収特性が低下することを防ぐことができる。本実施形態の電磁波吸収シートでは、抵抗皮膜1を導電性有機高分子の膜として形成することで、電磁波吸収シートとしての可撓性を確保するとともに、電磁波吸収シートが強く折り曲げられた場合でも抵抗皮膜1のひび割れなどが生じず、表面抵抗値が変化せずに良好なインピーダンス整合を維持することができる。
 接着層4は、電磁波吸収シートを所定の場所に容易に貼り付けることができるように、電磁波遮蔽層3の背面側に形成される層である。接着層4は、粘着性の樹脂ペーストを塗布することで容易に形成できる。
 なお、接着層4は、本実施形態にかかる電磁波吸収シートにおいて必須の部材ではない。電磁波吸収シートを所定の場所に配置するに当たっては、電磁波吸収シートが貼り付けられる部材側に接着のための部材が配置されていてもよく、また、電磁波吸収シートを所定の場所に配置する際に、電磁波吸収シートと配置場所との間に接着剤を供給する、または、両面テープを用いるなどの接着方法を採用することができる。
 保護層5は、抵抗皮膜1の表面、すなわち、電磁波吸収シートにおいて電磁波が入射する側の最表面に形成され、抵抗皮膜1を保護する部材である。
 本実施形態の電磁波吸収シートの抵抗皮膜1を形成する導電性有機高分子は、空気中の湿度の影響によりその表面抵抗値が変化する場合がある。また、樹脂製の膜であるために、表面に尖った部材が接触した場合や、硬い材質のもので擦られた場合には、傷が付く畏れがある。このため、抵抗皮膜1の表面を保護層5で覆って抵抗皮膜1を保護することが好ましい。
 なお、保護層5は、本実施形態にかかる電磁波吸収シートにおいて必須の構成要件ではなく、導電性有機高分子の材料によって、表面への水分の付着に伴う表面抵抗値の変化や抵抗皮膜1の表面が傷つくことへの懸念が小さい場合には、保護層5がない電磁波吸収シートの構成を選択可能である。
 保護層5としては、後述のようにポリエチレンテレフタレートなどの樹脂材料を用いることができる。保護層5として用いられる樹脂材料は一定の抵抗値を有するが、保護層5の膜厚を薄く設定することで、保護層5の有無による電磁波吸収シートの表面抵抗値への影響を、インピーダンス整合を行う上で実用上問題ないレベルとすることができる。
 次に、本実施形態にかかる電磁波吸収シートを構成する各部材について詳述する。
 [抵抗皮膜]
 本実施形態にかかる電磁波吸収シートにおいて、抵抗皮膜1は、導電性有機高分子で構成される。
 導電性有機高分子としては、共役導電性有機高分子が用いられ、ポリチオフェンやその誘導体、ポリピロールやその誘導体を用いることが好ましい。
 本実施形態にかかる電磁波吸収シートの抵抗皮膜1に用いられることが好適なポリチオフェン系導電性高分子の具体例としては、ポリ(チオフェン)、ポリ(3-メチルチオフェン)、ポリ(3-エチルチオフェン)、ポリ(3-プロピルチオフェン)、ポリ(3-ブチルチオフェン)、ポリ(3-ヘキシルチオフェン)、ポリ(3-ヘプチルチオフェン)、ポリ(3-オクチルチオフェン)、ポリ(3-デシルチオフェン)、ポリ(3-ドデシルチオフェン)、ポリ(3-オクタデシルチオフェン)、ポリ(3-ブロモチオフェン)、ポリ(3-クロロチオフェン)、ポリ(3-ヨードチオフェン)、ポリ(3-シアノチオフェン)、ポリ(3-フェニルチオフェン)、ポリ(3,4-ジメチルチオフェン)、ポリ(3,4-ジブチルチオフェン)、ポリ(3-ヒドロキシチオフェン)、ポリ(3-メトキシチオフェン)、ポリ(3-エトキシチオフェン)、ポリ(3-ブトキシチオフェン)、ポリ(3-ヘキシルオキシチオフェン)、ポリ(3-ヘプチルオキシチオフェン)、ポリ(3-オクチルオキシチオフェン)、ポリ(3-デシルオキシチオフェン)、ポリ(3-ドデシルオキシチオフェン)、ポリ(3-オクタデシルオキシチオフェン)、ポリ(3,4-ジヒドロキシチオフェン)、ポリ(3,4-ジメトキシチオフェン)、ポリ(3,4-ジエトキシチオフェン)、ポリ(3,4-ジプロポキシチオフェン)、ポリ(3,4-ジブトキシチオフェン)、ポリ(3,4-ジヘキシルオキシチオフェン)、ポリ(3,4-ジヘプチルオキシチオフェン)、ポリ(3,4-ジオクチルオキシチオフェン)、ポリ(3,4-ジデシルオキシチオフェン)、ポリ(3,4-ジドデシルオキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)、ポリ(3,4-プロピレンジオキシチオフェン)、ポリ(3,4-ブテンジオキシチオフェン)、ポリ(3-メチル-4-メトキシチオフェン)、ポリ(3-メチル-4-エトキシチオフェン)、ポリ(3-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシエチルチオフェン)、ポリ(3-メチル-4-カルボキシブチルチオフェン)等が挙げられる。
 また、抵抗皮膜1に用いられることが好適なポリピロール系導電性高分子の具体例としては、ポリピロール、ポリ(N-メチルピロール)、ポリ(3-メチルピロール)、ポリ(3-エチルピロール)、ポリ(3-n-プロピルピロール)、ポリ(3-ブチルピロール)、ポリ(3-オクチルピロール)、ポリ(3-デシルピロール)、ポリ(3-ドデシルピロール)、ポリ(3,4-ジメチルピロール)、ポリ(3,4-ジブチルピロール)、ポリ(3-カルボキシピロール)、ポリ(3-メチル-4-カルボキシピロール)、ポリ(3-メチル-4-カルボキシエチルピロール)、ポリ(3-メチル-4-カルボキシブチルピロール)、ポリ(3-ヒドロキシピロール)、ポリ(3-メトキシピロール)、ポリ(3-エトキシピロール)、ポリ(3-ブトキシピロール)、ポリ(3-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)等が挙げられる。
 この他にも、抵抗皮膜1としては、主鎖がπ共役系で構成されている有機高分子を使用することができ、ポリアセチレン系導電性高分子、ポリフェニレン系導電性高分子、ポリフェニレンビニレン系導電性高分子、ポリアニリン系導電性高分子、ポリアセン系導電性高分子、ポリチオフェンビニレン系導電性高分子、および、これらの共重合体等を用いることができる。
 なお、抵抗皮膜に用いられる導電性有機高分子として、ポリアニオンをカウンターアニオンとして用いることができる。ポリアニオンとしては特に限定されないが、上述した抵抗皮膜に用いられる共役導電性有機高分子に、化学酸化ドープを生じさせることができるアニオン基を含有するものが好ましい。このようなアニオン基としては、例えば、一般式-O-SO3X、-O-PO(OX)2、-COOX、-SO3Xで表される基等(各式中、Xは水素原子またはアルカリ金属原子を示す。)が挙げられ、中でも、共役導電性有機高分子へのドープ効果に優れることから、-SO3X、および、-O-SO3Xで表される基が特に好ましい。
 このようなポリアニオンの具体例としては、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリスルホエチルメタクリレート、ポリ(4-スルホブチルメタクリレート)、ポリメタクリルオキシベンゼンスルホン酸等のスルホン酸基を有する高分子や、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ(2-アクリルアミド-2-メチルプロパンカルボン酸)、ポリイソプレンカルボン酸、ポリアクリル酸等のカルボン酸基を有する高分子が挙げられる。これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。ポリアニオンは1種を単独で使用してもよいし、2種以上を併用してもよい。 これらポリアニオンのなかでも、スルホン酸基を有する高分子が好ましく、ポリスチレンスルホン酸がより好ましい。
 上記導電性有機高分子は、1種を単独で使用してもよいし2種以上を併用してもよい。上記例示した材料の中でも、透光性と導電性とがより高くなることから、ポリピロール、ポリ(3-メトキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)、ポリ(2-アニリンスルホン酸)、ポリ(3-アニリンスルホン酸)から選ばれる1種または2種からなる重合体が好ましい。
 特に、共役系の導電性有機高分子とポリアニオンの組み合わせとしては、ポリ(3、4-エチレンジオキシチオフェン:PEDOT)と、ポリスチレンスルホン酸(PSS)を用いることが好ましい。
 また、本実施形態にかかる抵抗皮膜1においては、導電性有機高分子の電気伝導度を制御して、電磁波吸収シートの入力インピーダンスを空気中のインピーダンス値と整合させるために、ドーパントを併用することができる。ドーパントとしては、ヨウ素、塩素等のハロゲン類、BF3、PF5等のルイス酸類、硝酸、硫酸等のプロトン酸類や、遷移金属、アルカリ金属、アミノ酸、核酸、界面活性剤、色素、クロラニル、テトラシアノエチレン、TCNQ等が使用できる。より具体的には、抵抗皮膜1の表面抵抗値を377Ωに対してプラス/マイナス数%程度の値にすることが好ましく、このとき、導電性有機高分子とドーパントとの配合割合は、一例として質量比で導電性高分子:ドーパント=1:2~1:4とすることができる。
 さらに、抵抗皮膜1を形成する材料としては、他にポリフッ化ビニリデンを含むことが好ましい。
 ポリフッ化ビニリデンは、導電性有機高分子をコーティングする際の組成物に加えることで、導電性有機高分子膜の中でバインダーとしての機能を果たし、成膜性を向上させるとともに基材との密着性を高めることができる。
 また、さらに、抵抗被膜1に水溶性ポリエステルを含むことが好ましい。水溶性ポリエステルは導電性高分子との相溶性が高いため、抵抗皮膜1を形成する導電性有機高分子のコーティング組成物に水溶性ポリエステルを加えることで抵抗皮膜1内において導電性高分子を固定化させ、より均質な皮膜を形成することができる。この結果、水溶性ポリエステルを用いることで、より厳しい高温高湿環境下におかれた場合でも表面抵抗値の変化が小さくなり、空気中のインピーダンス値とのインピーダンス整合がなされた状態を維持することができる。
 抵抗皮膜1にポリフッ化ビニリデン、水溶性ポリエステルを含むことで、抵抗皮膜1の耐候性が向上するため、抵抗皮膜1の表面抵抗値の経時的な変化が抑えられて、安定した電磁波吸収特性を維持することができる信頼性の高い電磁波吸収シートを実現することができる。
 抵抗皮膜1における導電性有機高分子の含有量は、抵抗皮膜1組成物に含まれる固形分の全質量に対して、10質量%以上35質量%以下であることが好ましい。含有量が10質量%を下回ると、抵抗皮膜1の導電性が低下する傾向にある。このため、空気中のインピーダンス値とのインピーダンス整合をとることが困難になり、電磁波吸収性能が低下する。また、インピーダンス整合をとるために抵抗皮膜1の表面電気抵抗値を所定の範囲とすると抵抗皮膜1の膜厚が大きくなることによって、電磁波吸収シート全体が厚くなり、透光性などの光学特性が低下する傾向がある。一方、含有量が35質量%を超えると、導電性有機高分子の構造に起因して抵抗皮膜1をコーティングする際の塗布適性が低下して、良好な抵抗皮膜1を形成しづらくなり、抵抗皮膜1のヘイズが上昇して、やはり光学特性が低下する傾向にある。
 なお、抵抗皮膜1は、上述のように抵抗皮膜の形成用塗料としてのコーティング組成物を基材の上に塗布して乾燥することにより形成することができる。
 抵抗皮膜形成用塗料を基材の上に塗布する方法としては、例えば、バーコート法、リバース法、グラビアコート法、マイクログラビアコート法、ダイコート法、ディッピング法、スピンコート法、スリットコート法、スプレーコート法等の塗布方法を用いることができる。塗布後の乾燥は、抵抗皮膜形成用塗料の溶媒成分が蒸発する条件であればよく、100~150℃で5~60分間行うことが好ましい。溶媒が抵抗皮膜1に残っていると強度が劣る傾向にある。乾燥方法としては、例えば、熱風乾燥法、加熱乾燥法、真空乾燥法、自然乾燥等により行うことができる。また、必要に応じて、塗膜にUV光(紫外線)やEB(電子線)を照射して塗膜を硬化させることで抵抗皮膜1を形成してもよい。
 なお、抵抗皮膜1を形成するために用いられる基材としては特に限定されないが、透光性を有する透明基材が好ましい。このような透明基材の材質としては、例えば、樹脂、ゴム、ガラス、セラミックス等の種々のものが使用できる。
 本実施形態にかかる電磁波吸収シートでは、上述した導電性有機高分子を用いて表面抵抗値が377Ω/sqの抵抗皮膜1を構成することで、電磁波吸収シートに入射する電磁波に対して空気中のインピーダンスと整合させることができ、電磁波吸収シート表面での電磁波の反射や散乱を低下させてより良好な電磁波吸収特性を得ることができる。
 [誘電体層]
 本実施形態にかかる電磁波吸収シートの誘電体層2は、透光性を有し、かつ、粘着性を有する材料である透明光学粘着フィルム(OCAフィルム:Optical Clear Adhesive Film)を好適に用いることができる。
 より具体的には、シリコーン系OCAであるMHMSI-500(商品名:日栄加工株式会社製)、アクリル系OCAであるMHM-FWV(商品名:日栄加工株式会社製)、ウレタン系OCAであるFree Crystal (商品名:バンドー化学株式会社製)、を用いることができる。
 なお、上述の各材料の中でシリコーンOCAは、耐熱性、耐寒性の観点で他の材料よりも優れている。このため、シリコーンOCAを用いて作製された電磁波吸収シートは、使用場所として環境温度上の制約が少ない点で好ましい材料である。
 本実施形態にかかる電磁波吸収シートにおいて、誘電体層2が粘着性を有することで、樹脂製材料の薄膜として形成される抵抗被膜1と誘電体層2との接着を、誘電体層2上に抵抗被膜1を積層することによって実現できる。このため、誘電体層2が粘着性を有していない場合に必要な、抵抗被膜1と誘電体層2とを貼り合わせる工程(例えば、ラミネート加工工程など)が不要となり、電磁波吸収シートの製造を簡素化して製造コストを低減することができる。なお、抵抗被膜1と誘電体層2を積層した状態で適宜ラミネートすることで、より高い接着力で接着することができる場合がある。
 また、透光性を有する電磁波吸収シートとするために、電磁波遮蔽層3として導電性メッシュや導電性格子材料を用いる場合にも、誘電体層2が有する粘着性によって電磁波遮蔽層3を誘電体層2の背面側に密接した状態で配置することができる。誘電体層2が有する粘着性としては、180°ピール粘着力試験法による測定結果として、8~35N/25mmであることが好ましい。粘着力が8N/25mm以下の場合は誘電体層2と電磁波遮蔽層3とが剥離しやすくなってしまい、35N/mm以上であると粘着が強すぎて貼り直し時のリワーク性が低下して、電磁波吸収シートの製造上の制約が大きくなる。
 なお、誘電体層2は、1種の材料で1層の構成として形成することができ、また、同種、異種の材料を2層以上積層した構成とすることもできる。誘電体層2の形成には、塗布法やプレス成型法、押出成型法などを用いることができる。
 上述のように、本実施形態にかかる電磁波吸収シートは、電磁波吸収シートに入射した電磁波と電磁波遮蔽層3で反射された反射波との位相を1/2波長ずらすことで、入射波と反射波とが打ち消し合って電磁波を吸収する電磁波干渉型(λ/4型)の電磁波吸収シートである。このため、誘電体層の厚さ(図1におけるd)は、吸収しようとする電磁波の波長に対応して定められる。
 なお、dの値は、抵抗皮膜1と電磁波遮蔽層3との間が空間となっている場合、すなわち、誘電体層2が空気で形成されている場合は、d=λ/4が成り立つが、誘電体層2を誘電率εrの材料で形成した場合には、d=λ/(4(√εr))となるため、誘電体層2を構成する材料として、材料自体が有する誘電率が大きなものを用いることで誘電体層2の厚さdの値を、1/√εr小さくすることができ、電磁波吸収シート全体の厚さを低減させることができる。本実施形態にかかる電磁波吸収シートは、可撓性を有するものであることから、電磁波吸収シートを構成する誘電体層2や電磁波吸収シート自体の厚さが小さいほど容易に湾曲させることができてより好ましい。また、本実施形態にかかる電磁波吸収シートが、後述する接着層4などを介して電磁波の漏洩を防ぎたい部材に貼着して使用されることが多いことを考慮すると、電磁波吸収シートの厚みが薄く容易に貼着部分の形状に沿うこと、また、シートがより軽量化されていることが好ましい。
 このように、本実施形態にかかる電磁波吸収シートでは、誘電体層2として用いられる誘電体の誘電率εrの値や、誘電体層2の厚みを調整することで、当該誘電体層2を備えた電磁波吸収シートでミリ波帯域以上の高い周波数帯域の電磁波を吸収可能なように制御することができる。また、誘電体層2が粘着性を有することで、抵抗皮膜1と誘電体層2、さらには、後述する電磁波遮蔽層3と誘電体層2とを密着して配置することができる。電磁波干渉型の電磁波吸収シートでは、各層間に隙間があるとこの隙間部分が誘電率を持ってしまって誘電体層2の誘電率が所定の値からずれて、吸収する電磁波の周波数が変動するという不都合が生じるが、本実施形態の粘着性を有する誘電体層では、そのような不都合な事態が生じることを良好に回避することができる。
 [電磁波遮蔽層]
 本実施形態にかかる電磁波吸収シートの電磁波遮蔽層3は、誘電体層2を介して電磁波吸収シートの電磁波入射面の反対側(背面側)に配置された、抵抗皮膜1を貫通して入射した電磁波を反射させる部材である。
 同時に、本実施形態の電磁波吸収シートが可撓性と透光性とを有することから、電磁波遮蔽層3は、少なくとも抵抗皮膜1と誘電体層2が湾曲した際には追従して湾曲する可撓性と、透光性とを有していることが必要である。
 このような要求に対応できる電磁波遮蔽層3として、導電性の繊維により構成された導電性メッシュが採用できる。導電性メッシュは、一例としてポリエステルモノフィラメントで織ったメッシュに金属を付着させて導電性とすることで構成できる。金属としては、導電性の高い銅、銀などを用いることができる。また、メッシュの表面を覆う金属膜による反射を低減するために、金属膜のさらに外側に黒色の反射防止層を付与したものも製品化されている。
 また、電磁波遮蔽層3としては、他にも、直径が数十から数百μmの細い銅線などの金属線が、縦横に配置された導電性格子を用いることができる。
 なお、上述のメッシュや導電性格子による電磁波遮蔽層3は、可撓性と透光性とを確保するために、電磁波遮蔽層として求められる表面抵抗値を実現できる限りにおいて、最低限の厚さを有して構成されることとなる。また、導電性メッシュの繊維や導電性格子のワイヤーが傷ついたり、切断したりしてしまった場合には、所望する表面抵抗値を実現することが困難となる。このため、導電性格子のさらに背面側に、透光性を有する樹脂による補強層かつ保護層を形成して、導電性の材料による電磁波反射部分と樹脂製の膜部分との積層体として構成された電磁波遮蔽層3を用いることができる。
 次に、電磁波遮蔽層の開口率と表面抵抗値との関係について検証してみた。
 図2は、検証に用いた電磁波遮蔽層の形状を示すモデル図である。
 図2に示すように、電磁波遮蔽層として、縦方向と横方向に金属ワイヤーが延在する格子状の金属メッシュを想定し、金属ワイヤーのピッチpを変化させたときの開口率と、導電部材としての金属ワイヤー形成する1つの格子をループとしてインダクタンス素子(コイル)として捉えて金属層としての導電率を計算した。
 より具体的には、金属ワイヤーとして直径27μmのものを用いたと想定した。このとき、電磁波遮蔽層の開口率は、ピッチP=ワイヤーの直径L+ワイヤー間の間隙Sから、下記の式(1)として表される。
Figure JPOXMLDOC01-appb-M000001
 また、板状の電磁波遮蔽層に入射した電磁波の減衰量を遮断SEとしてdBで表すと、金属板の入出力インピーダンスをZ0、金属板の導電率をσ(Ω-1・m-1)、板の厚みをd(m)として、以下の式(2)として表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、金属メッシュの一つ一つの升目をコイルとして考えて、金属板としての抵抗値R=1/(σ・d)をjωLに置き換えると、上記の式(2)は、以下の式(3)と変換できる。
Figure JPOXMLDOC01-appb-M000003
 ここで、ω=2πLであるから、電磁波の遮蔽SEは、以下の式(4)と表すことができる。
Figure JPOXMLDOC01-appb-M000004
 金属メッシュを構成するワイヤーのピッチPを変化させて、開口率(式(1))と遮断SE(式(4))とを求めた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 表1に示すように、電磁波の周波数が60~90GHzの場合に、導電性メッシュを構成する金属線の間隔(P)が250μmの時、遮断SEとして99%の減衰量に相当する20dBを確保できる(20.2dB)。このとき、メッシュの開口率は85%であり、金属線の湾曲を考慮した導電性メッシュの透過率は66%であった。なお、上述のように、本実施形態の電磁波吸収シートでは、誘電体層に透過率が高い透明光学粘着フィルム(OCA)を使用することができ、電磁波遮蔽層の透過率がほぼそのまま電磁波吸収シートの透過率となる。
 導電性メッシュを構成する金属線の間隔Pが170μmの時は開口率が75%、透過率が60%、遮断SEが21.2dBとなる。透光性を有する電磁波吸収シートとするためには、電磁波遮蔽層での全光線透過率は30%程度以上が必要であると考えられ、これを実現するための金属線の間隔Pは50μm、このときの開口率は35%、電磁波の減衰量を示す遮断SEは45.0dBであった。
 以上の検討結果を踏まえると、電磁波遮蔽層3における電磁波遮蔽効果と電磁波遮蔽層3の光学特性とから、開口率が35~85%であることが、導電性メッシュや導電性格子を用いた場合の良好な条件であるということができる。また、電磁波遮蔽層3として良好な電磁波反射特性を得るためには、表面抵抗値が0.3Ω/sq以下であることが好ましい条件であると判断することができる。
 [接着層]
 本実施形態にかかる電磁波吸収シートにおいて、接着層4を設けることで、抵抗皮膜1、誘電体層2、電磁波遮蔽層3との積層体である電磁波吸収シートを、電気回路を収納する筐体の内面や、電気機器の内面または外面などの所望の位置に貼着することができる。特に、本実施形態の電磁波吸収シートは可撓性を有するものであるため、湾曲した曲面上にも容易に貼着することができ、背面に接着層4を設けることで電磁波吸収シートの取り扱い容易性が向上する。
 接着層4としては、粘着テープなどの粘着層として利用される公知の材料、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤等を用いることができる。また被着体に対する粘着力の調節、糊残りの低減のために、粘着付与剤や架橋剤を用いることもできる。被着体に対する粘着力は、180°ピール粘着力試験法による測定結果として、5N/10mm~12N/10mmが好ましい。粘着力が5N/10mmより小さいと、電磁波吸収シートが被着体から容易に剥がれてしまったり、ずれてしまったりすることがある。また、粘着力が12N/10mmより大きいと、電磁波吸収シートを被着体から剥離しにくくなる。
 また接着層4の厚さは、20μm~100μmが好ましい。接着層4の厚さが20μmより薄いと、粘着力が小さくなり、電磁波吸収シートが被着体から容易に剥がれたり、ずれたりすることがある。接着層4の厚さが100μmより大きいと、電磁波吸収シートを被着体から剥離しにくくなる。また接着層の凝集力が小さい場合は、電磁波吸収シートを剥離した場合、被着体に糊残りが生じる場合がある。また、電磁波吸収シート全体としての可撓性を低下させる要因となる。
 なお、本実施形態にかかる電磁波吸収シートに用いられる接着層4としては、電磁波吸収シートを被着物体に剥離不可能に貼着する接着層4とすることができるとともに、剥離可能な貼着を行う接着層4とすることもできる。また、前述のように、本実施形態にかかる電磁波吸収シートにおいて、接着層4を備えた構成とすることは必須の要件ではなく、電磁波吸収シートを所望する部材に対して、従来一般的な各種の接着方法を用いて接着することができる。
 [保護層]
 本実施形態にかかる電磁波吸収シートでは、抵抗皮膜1の表面である電磁波の入射面側に保護層5を設けることができる。
 本実施形態にかかる電磁波吸収シートにおいて、抵抗皮膜1として用いられている導電性有機高分子は、空気中の湿度の影響を受けてその表面抵抗値が変化する場合がある。このため、抵抗皮膜1の表面に保護層5を設けることで湿度の影響を小さくして、インピーダンス整合による電磁波の吸収特性が低下することを効果的に抑制できる。
 本実施形態の電磁波吸収シートにおいて保護層5としては、一例として、厚さ25μmのポリエチレンテレフタレートを用いることができ、これを、樹脂材料の接着剤によって抵抗皮膜1の表面に貼り付けて構成することができる。
 なお、保護層5は、抵抗皮膜1の表面全体を覆う膜とすることで、抵抗皮膜1への空気中の湿度による影響を防ぐことができる。樹脂製の膜として形成される保護層5の表面抵抗値の成分は、積層される抵抗皮膜1の表面抵抗値の成分に対して並列接続されたものとして影響すると考えられる。このため、保護層5の厚みが厚くなりすぎなければ、電磁波吸収シートの入力インピーダンスに与える影響は極めて小さいと考えられる。また、電磁波吸収シートとしての入力インピーダンスとして、保護層5の表面抵抗値の影響を考慮した上で、抵抗皮膜1の表面抵抗値をより適した数値に設定することも可能である。
 保護層5の厚みとしては、抵抗皮膜1を保護できる範囲においてより薄いことが好ましい。具体的には、保護層5の厚みは、150μm以下が好ましく100μm以下であればより好ましい。保護層の厚みが150μmを超えると、電磁波の吸収性能が低下して電磁波吸収量が20dBを下回る場合がある。また、電磁波吸収シート全体の厚みが大きくなるので、可撓性が低下する。
 [実施例]
 以下、本実施形態にかかる電磁波吸収シートを実際に作製して、各種の特性を測定した結果について説明する。
 <電磁波吸収シートの作製>
 以下に記載する材料を用いて、本実施形態にかかる電磁波吸収シートとして、誘電体層にシリコーンOCAを用いた電磁波吸収シート(シート1、シート4、シート5)、誘電体層にアクリルOCAを用いた電磁波吸収シート(シート2)、誘電体層にウレタンOCAを用いた電磁波吸収シート(シート3)を作製した。また、比較例として、誘電体層にPETを用いた電磁波吸収シート(比較例1)を作製した。
 [抵抗皮膜]
 以下の成分を添加、混合して抵抗皮膜液を調整した
(1)導電性高分子分散体(PEDOT-PSS)   36.7部
   (PH-1000(商品名:ヘレウス株式会社製))
   固形分濃度 1.2質量%
(2)PVDF分散液                 5.6部
   LATEX32(商品名:アルケマ株式会社製)、
   固形分濃度 20質量%、 溶媒 水
(3)水溶性ポリエステル水溶液            0.6部
   プラスコートZ561(商品名:瓦応化工業株式会社製)
   固形分濃度 25質量%
(4)有機溶媒(ジメチルスルホキシド)        9.9部
(5)水溶性溶媒(エタノール)           30.0部
(6)水                      17.2部。
 実施例の電磁波吸収シート(シート1~5)、および、比較例の電磁波吸収シートの抵抗皮膜は、いずれも、基材としてのポリエチレンテレフタレート製シート(50μm厚)上に、上述の組成で作製した抵抗皮膜液を、バーコート法によって乾燥後の厚さが約120nmとなる量を塗布し、その後150℃で5分加熱し成膜した。この場合の抵抗皮膜の表面抵抗は、いずれも377Ω/sqとなった。
 [誘電体層]
 実施例の電磁波吸収シートの誘電体層として、以下の部材を用いた。また、比較例1の電磁波吸収シートとして、以下の通りポリエチレンテレフタレート(PET)樹脂を用い、誘電体層以外をシート1と同様にして作製した。
 シリコーンOCA
  MHMSI-500(商品名:日栄加工株式会社製)
  厚さ500μm  粘着力10N/25mm  誘電率3.0
 アクリルOCA
  MHM-FWV(商品名:日栄加工株式会社製)
  厚さ500μm  粘着力30N/25mm  誘電率3.5
 ウレタンOCA
  Free Crystal (商品名:バンドー化学株式会社製)
  厚さ500μm  粘着力25N/25mm  誘電率2.3
 比較例1
  PET      U32(商品名:東レ株式会社製)
  厚さ500μm(250μm+250μm)。
 [電磁波遮蔽層]
 電磁波遮蔽層は、シート1~3では電磁波遮蔽層1としてセーレン株式会社製の導電メッシュSu-4X-13227(商品名:開口率75%)を用いて形成した。また、導電性メッシュの開口率の差による特性の変化を確認するために、誘電体層にシリコーンOCAを用いたシート4では電磁波遮蔽層2としてセーレン株式会社製の導電メッシュSu-4X-9027(商品名:開口率82%)を用いた。さらに、シート5では、電磁波遮蔽層3としてセーレン株式会社製の導電メッシュSu-4X-27036(商品名:開口率38%)を用いた。
 なお、比較例の電磁波吸収シートの電磁波遮蔽層として、上述の開口率75%の電磁波遮蔽層1を用いた。
 [シートの形成]
 上記で説明した実施例の電磁波吸収シート1~5では、各誘電体層が有する粘着力を用いて、まず、抵抗皮膜を誘電体層に貼り合わせ、さらに、電磁波遮蔽層である導電性メッシュを、誘電体層の抵抗皮膜を貼り合わせた面とは反対側の面に貼り合わせた。なお、比較例であるPETを誘電体層として用いた電磁波吸収シートは、厚さ20μmのアクリルOCAを用いて、抵抗皮膜と電磁波遮断層とを誘電体層に貼り合わせた。
 [測定方法]
 上述のようにした作製された実施例(シート1~5)と比較例の電磁波吸収シートについて、全光線透過率とヘイズ値とを測定した。
 なお、全光線透過率とヘイズ値については、日本電色株式会社製のHazeMeterNDH2000(製品名)を用い、JIS K7105に準拠して測定した。光源は、LightCを用いた。
 また、電磁波吸収特性は、上記と同様フリースペース法により、キーコム株式会社製の自由区間測定装置と、アンリツ株式会社製のベクトルネットワークアナライザMS4647B(商品名)を用いて、各電磁波吸収シートに対して電磁波を照射した際の入射波と反射波の強度比をそれぞれ電圧値として把握した。
 測定結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000006
 表2に示すように、電磁波遮蔽層に開口率75%の導電性メッシュを用いた電磁波吸収シートの場合、誘電体層にシリコーンOCAを用いた電磁波吸収シート1では、全光線透過率が60%、ヘイズ値が12、誘電体層にアクリルOCAを用いた電磁波吸収シート2では、全光線透過率が60%、ヘイズ値が12、誘電体層にウレタンOCAを用いた電磁波吸収シート3では、全光線透過率が60%、ヘイズ値が12となった。
 これに対し、電磁波遮蔽層に同じく開口率75%の導電性メッシュを用い、誘電体層にPETを用いた比較例の電磁波吸収シートでは、全光線透過率が59.9%、ヘイズ値が21であったため、実施例の電磁波吸収シートの光学特性は、いずれも比較例の電磁波吸収シートの光学特性よりも優れていることが確認できた。
 また、電磁波遮蔽層に開口率82%の導電性メッシュを用い、誘電体層にシリコーンOCAを用いた電磁波吸収シート4では、全光線透過率が66%、ヘイズ値が7であり、導電性メッシュの開口率が75%から82%へと大きくなると、全光線透過率、ヘイズ値ともによくなって、歪みや滲みの少ない透過光像が得られる電磁波吸収シートが得られることが確認できた。一方、電磁波遮蔽層に開口率38%の導電性メッシュを用い、誘電体層にシリコーンOCAを用いた電磁波吸収シート5では、全光線透過率が30%、ヘイズ値が40であり、電磁波吸収特性としては高い値が得られるものの透光性という観点では許容範囲の特性であると言える。
 これらの測定結果から、本実施形態にかかる電磁波吸収シートとして透光性を有する電磁波吸収シートとする場合には、シート全体での全光線透過率が30%以上の透光性を有することが好ましい。また、導電性メッシュにより構成される電磁波遮蔽層の表面抵抗値は0.3Ω/sq以下であることが好ましい。さらに、導電性メッシュの開口率は35~85%であることが好ましく、実施例に基づくと38%~82%であることがより好ましい。
 [可撓性の確認]
 次に、本実施形態にかかる電磁波吸収シートの可撓性について確認した。
 上記作製した、電磁波吸収シート1、電磁波吸収シート2、電磁波吸収シート3、電磁波吸収シート4、および、電磁波吸収シート5それぞれを5×10cmの大きさに切り出し、初期値となる表面抵抗を測定し、表面抵抗値が377Ωであることを確認した。
 次に、水平に配置された直径10mm、8mm、6mm、4mm、2mm、0.5mmの6種類の太さのアルミ製の円筒型棒(マンドレル)上に、抵抗皮膜が表向きになるようにして被せ、シートの両端に300gの錘を付けて30秒間維持して、シートの中央部分が曲がった状態で両端を下側に引っ張った。その後、再びそれぞれの電磁波吸収シートの表面抵抗を測定した。
 結果、上記電磁波吸収シート1~電磁波吸収シート5のいずれにおいても、抵抗皮膜の表面抵抗の値(377Ω)に変化が生じず、倍率100倍のマイクロスコープで各シートの表面を観察しても、表面にヒビなどが生じていないことが確認できた。
 一方、可撓性の確認における比較例として抵抗皮膜を透明導電膜(ITO)で形成し、これ以外をシート1と同様にした電磁波吸収シート(比較例2のシート)を作製して同じ条件で確認してみたところ、アルミ製の円筒型棒の直径が10mmの場合は表面抵抗値の変化が認められなかったが、アルミ製の円筒型棒の直径が6mmの場合には、表面抵抗値は、750Ω/sqと約2倍に増加した。さらに、アルミ製の円筒型棒の直径が2mm、0.5mmと小さい場合は、表面抵抗値は無限大となってしまい、抵抗皮膜として使用できないものとなった。
 以上の結果を踏まえて、本願で開示される電磁波吸収シートの有する可撓性としては、上述したアルミ製の円筒型棒を用いた可撓性試験において、試験終了後の表面抵抗値の変化が2倍より小さいことが好ましく、1.5倍以下であることが更に好ましいと言うことができる。
 また、抵抗皮膜を透明導電膜(ITO)で形成した可撓性の確認における比較例の場合には、直径6mmのアルミ製の円筒型棒に巻き付けた電磁波吸収シートの表面に、クラックが入っていることが確認でき、直径0.5mmのアルミ製の円筒型棒に巻き付けた電磁波吸収シートの表面には、より多くのクラックが確認できた。
 このことから、本実施形態にかかる電磁波吸収シートでは、抵抗皮膜に導電性有機高分子を用いることで、シートの可撓性が向上し、シートを小さい径で強く折り曲げるような負荷がかかった場合でも、電磁波吸収特性を維持できることが確認できた。
 以上説明したように、本実施形態にかかる電磁波吸収シートは、吸収する電磁波が入射する側の表面に配置される抵抗皮膜1を導電性有機高分子で構成することで、電磁波吸収シートを強く折り曲げた場合でも電磁波吸収特性を維持することができる。また、抵抗被膜1、誘電体層2、電磁波遮蔽層3をいずれも透光性を有する部材で構成することで、可撓性に加えて透光性を備えた電磁波吸収シートとすることができ、例えば、電磁波シールド状態に置かれる居室のカーテンなど、内部、もしくは、外部の様子を視認可能としつつも不所望な電磁波を吸収して透過させないことが求められる状況下で好適に使用できる。
 さらに、誘電体層2が、粘着性を備えることで、抵抗被膜1と誘電体層2との接着、誘電体層2と電磁波遮蔽層3との接着を容易に行うことができる。このため、抵抗被膜1として導電性高分子を用い、また、電磁波遮蔽層3として導電性メッシュや導電性格子をもいた場合に、誘電体層との接着のために従来必要であった、ラミネート工程などの特別な接着工程が不要となり、電磁波吸収シートの製造コストを低減することができる。
 (他の構成例について)
 上記実施形態では、電磁波吸収シート全体として透光性を有し全光線透過率が30%以上のものを例示して説明した。しかし、本願で開示する電磁波吸収シートとして透光性を有することは必ずしも必要ではない。
 シートに透光性が要求されない場合には、抵抗被膜、誘電体層、電磁波遮蔽層として透光性を有さない材料を用いて電磁波吸収シートを形成することができ、この場合においても、誘電体層が粘着性を有することで、可撓性を有しミリ波帯域以上の高い周波数の電磁波を吸収可能な電磁波干渉型の電磁波吸収シートを低コストで実現することができる。
 電磁波吸収シートとして透光性を有する必要がない場合には、抵抗被膜を構成する導電性有機高分子材料や、適宜添加ドーパントなどの材料選択の余地が広がる。また、誘電体層を形成する材料としても、酸化チタン、ポリフッ化ビニリデン、ポリエステル樹脂、ガラス、シリコーンゴムなどの誘電体材料と各種の粘着性を有する材料とが混合された材料を選択することができる。
 さらに、電磁波遮蔽層としては、メッシュや格子などの透光性を有する形態ではなく、金属箔や樹脂製基材の表面に金属が蒸着形成された反射性シートなどを、抵抗被膜や誘電体層が有する可撓性を妨げない範囲において適宜選択することができる。この場合において誘電体層の粘着性を利用して、誘電体層の背面側に金属箔や金属蒸着膜を貼り付けて、誘電体層と電磁波遮蔽層との間に間隙が生じないようにすることができる。
 本願で開示する電磁波吸収シートは、ミリ波帯域以上の高い周波数帯域の電磁波を安定して吸収することができ、可撓性を備えた低コストの電磁波吸収シートとして有用である。
    1   抵抗皮膜
    2   誘電体層
    3   電磁波遮蔽層
    4   接着層
    5   保護層

Claims (7)

  1.  導電性有機高分子によって形成された抵抗皮膜と、
     粘着性を有する誘電体層と、
     電磁波遮蔽層とが順次積層された電磁波干渉型の電磁波吸収シートであって、
     シート全体が可撓性を有し、前記誘電体層がミリ波帯域以上の電磁波を吸収可能な層厚に設定されていることを特徴とする、電磁波吸収シート。
  2.  前記抵抗皮膜と、前記誘電体層とが、いずれも透光性を有するとともに、前記電磁波遮蔽層が導電メッシュにより構成され、シート全体で全光線透過率30%以上の透光性を有する、請求項1に記載の電磁波吸収シート。
  3.  前記誘電体層が、シリコーン系粘着剤、アクリル系粘着剤、およびウレタン系粘着剤の少なくとも1種の粘着剤を含む、請求項1または2に記載の電磁波吸収シート。
  4.  前記電磁波遮蔽層の表面抵抗値が、0.3Ω/sq以下である、請求項2または3に記載の電磁波吸収シート。
  5.  前記電磁波遮蔽層の開口率が35~85%である、請求項2~4のいずれかに記載の電磁波吸収シート。
  6.  前記抵抗皮膜に、ポリ(3、4-エチレンジオキシチオフェン)を含む、請求項1~5のいずれかに記載の電磁波吸収シート。
  7.  前記電磁波遮蔽層の前記誘電体層とは反対側の表面に接着層を有する、請求項1~6のいずれかに記載の電磁波吸収シート。
PCT/JP2019/022373 2018-06-07 2019-06-05 電磁波吸収シート WO2019235536A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19815440.3A EP3749077A4 (en) 2018-06-07 2019-06-05 ABSORPTION LAYER FOR ELECTROMAGNETIC WAVES
JP2020523150A JP7296955B2 (ja) 2018-06-07 2019-06-05 電磁波吸収シート
CN201980018571.9A CN111837464B (zh) 2018-06-07 2019-06-05 电磁波吸收片
US16/978,152 US20200413578A1 (en) 2018-06-07 2019-06-05 Electromagnetic wave absorption sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018109623 2018-06-07
JP2018-109623 2018-06-07

Publications (1)

Publication Number Publication Date
WO2019235536A1 true WO2019235536A1 (ja) 2019-12-12

Family

ID=68770507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022373 WO2019235536A1 (ja) 2018-06-07 2019-06-05 電磁波吸収シート

Country Status (5)

Country Link
US (1) US20200413578A1 (ja)
EP (1) EP3749077A4 (ja)
JP (1) JP7296955B2 (ja)
CN (1) CN111837464B (ja)
WO (1) WO2019235536A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11477925B2 (en) 2017-03-10 2022-10-18 Maxell, Ltd. Electromagnetic wave absorbing sheet
WO2019163087A1 (ja) * 2018-02-23 2019-08-29 日本電業工作株式会社 網目状透明導電体を備える構造体、アンテナ構造体、電波遮蔽構造体及びタッチパネル
JP2021163794A (ja) * 2020-03-30 2021-10-11 日東電工株式会社 電波吸収体

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120689A (ja) 1991-12-24 1994-04-28 Tdk Corp 電波吸収体
JPH09232787A (ja) 1996-02-27 1997-09-05 Tosoh Corp 電波吸収体
JP2006086446A (ja) 2004-09-17 2006-03-30 Mitsubishi Cable Ind Ltd 電波吸収体
JP2008124154A (ja) * 2006-11-09 2008-05-29 Takiron Co Ltd 電波吸収体
JP2008135485A (ja) * 2006-11-27 2008-06-12 Taika:Kk 電波吸収体およびその製造方法
JP2009084400A (ja) * 2007-09-28 2009-04-23 Gunze Ltd 近赤外線吸収性粘着剤組成物及び多層光学フィルム
US20100097048A1 (en) * 2007-01-04 2010-04-22 Werner Douglas H Passive detection of analytes
JP2011066094A (ja) * 2009-09-15 2011-03-31 Nitta Corp 電磁波吸収体、パーティション、電波暗箱、建材、無線通信システムおよび無線通信方法
WO2018088492A1 (ja) * 2016-11-10 2018-05-17 マクセルホールディングス株式会社 電磁波吸収シート
JP2018117073A (ja) * 2017-01-19 2018-07-26 日東電工株式会社 電磁波吸収体及び電磁波吸収構造

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59702929D1 (de) * 1996-07-31 2001-02-22 Dyconex Patente Zug Verfahren zur herstellung von verbindungsleitern
KR101701522B1 (ko) * 2008-08-12 2017-02-01 쓰리엠 이노베이티브 프로퍼티즈 컴파니 부식 민감성 층과 상용성이 있는 접착제
US20150305144A1 (en) * 2012-06-07 2015-10-22 Tatsuta Electric Wire & Cable Co., Ltd. Shield film and shield printed wiring board
US11477925B2 (en) * 2017-03-10 2022-10-18 Maxell, Ltd. Electromagnetic wave absorbing sheet
US20210144890A1 (en) * 2017-09-13 2021-05-13 Maxell Holdings, Ltd. Electromagnetic-wave absorbing sheet

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120689A (ja) 1991-12-24 1994-04-28 Tdk Corp 電波吸収体
JPH09232787A (ja) 1996-02-27 1997-09-05 Tosoh Corp 電波吸収体
JP2006086446A (ja) 2004-09-17 2006-03-30 Mitsubishi Cable Ind Ltd 電波吸収体
JP2008124154A (ja) * 2006-11-09 2008-05-29 Takiron Co Ltd 電波吸収体
JP2008135485A (ja) * 2006-11-27 2008-06-12 Taika:Kk 電波吸収体およびその製造方法
US20100097048A1 (en) * 2007-01-04 2010-04-22 Werner Douglas H Passive detection of analytes
JP2009084400A (ja) * 2007-09-28 2009-04-23 Gunze Ltd 近赤外線吸収性粘着剤組成物及び多層光学フィルム
JP2011066094A (ja) * 2009-09-15 2011-03-31 Nitta Corp 電磁波吸収体、パーティション、電波暗箱、建材、無線通信システムおよび無線通信方法
WO2018088492A1 (ja) * 2016-11-10 2018-05-17 マクセルホールディングス株式会社 電磁波吸収シート
JP2018117073A (ja) * 2017-01-19 2018-07-26 日東電工株式会社 電磁波吸収体及び電磁波吸収構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3749077A4

Also Published As

Publication number Publication date
US20200413578A1 (en) 2020-12-31
CN111837464A (zh) 2020-10-27
JP7296955B2 (ja) 2023-06-23
EP3749077A4 (en) 2021-05-12
EP3749077A1 (en) 2020-12-09
JPWO2019235536A1 (ja) 2021-07-08
CN111837464B (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
WO2018163584A1 (ja) 電磁波吸収シート
JP7311685B2 (ja) 電磁波吸収シート
EP3684155B1 (en) Electromagnetic-wave absorbing sheet
WO2019235536A1 (ja) 電磁波吸収シート
Hong et al. Transparent microstrip patch antennas with multilayer and metal-mesh films
KR101976760B1 (ko) 나노와이어 기반 투명 전도성 필름 및 그 제조 방법
JP7141546B2 (ja) 測定システム、および電波遮蔽部
JP2014240907A (ja) 熱線遮蔽フィルム
US20240098954A1 (en) Electric-wave absorber and manufacturing method for electric-wave absorber
JPWO2022158562A5 (ja)
JP2023025502A (ja) 電波吸収体、および電波吸収体の製造方法
JP2023132076A (ja) 電波吸収体
WO2023171427A1 (ja) 電波反射体
JP2024021424A (ja) 電磁波吸収シート
JP2022135025A (ja) 電波吸収シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523150

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019815440

Country of ref document: EP

Effective date: 20200903

NENP Non-entry into the national phase

Ref country code: DE