WO2019235414A1 - 車両用冷凍サイクル装置 - Google Patents

車両用冷凍サイクル装置 Download PDF

Info

Publication number
WO2019235414A1
WO2019235414A1 PCT/JP2019/021953 JP2019021953W WO2019235414A1 WO 2019235414 A1 WO2019235414 A1 WO 2019235414A1 JP 2019021953 W JP2019021953 W JP 2019021953W WO 2019235414 A1 WO2019235414 A1 WO 2019235414A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
temperature
expansion valve
battery
air
Prior art date
Application number
PCT/JP2019/021953
Other languages
English (en)
French (fr)
Inventor
賢吾 杉村
伊藤 誠司
祐一 加見
寛幸 小林
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201980037560.5A priority Critical patent/CN112272622B/zh
Priority to DE112019002912.6T priority patent/DE112019002912B4/de
Publication of WO2019235414A1 publication Critical patent/WO2019235414A1/ja
Priority to US17/110,641 priority patent/US11525611B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • B60H1/06Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant directly from main radiator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32281Cooling devices using compression characterised by refrigerant circuit configurations comprising a single secondary circuit, e.g. at evaporator or condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/003Component temperature regulation using an air flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3248Cooling devices information from a variable is obtained related to pressure
    • B60H2001/3252Cooling devices information from a variable is obtained related to pressure of the refrigerant at an evaporating unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3257Cooling devices information from a variable is obtained related to temperature of the refrigerant at a compressing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3258Cooling devices information from a variable is obtained related to temperature of the air at a condensing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3261Cooling devices information from a variable is obtained related to temperature of the air at an evaporating unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • B60H2001/3272Cooling devices output of a control signal related to a compressing unit to control the revolving speed of a compressor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/3285Cooling devices output of a control signal related to an expansion unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present disclosure relates to a vehicle refrigeration cycle apparatus that performs air cooling and battery cooling.
  • Patent Document 1 describes a vehicular refrigeration cycle apparatus that cools air blown into a vehicle compartment and cools a battery.
  • the air cooling evaporator and the battery cooling heat exchanger are arranged in parallel with each other in the refrigerant flow.
  • the temperature of the air blown into the passenger compartment rises and affects the cooling comfort, or the dehumidifying performance decreases and the anti-fogging property is affected.
  • the battery becomes hot and deterioration is accelerated.
  • the present disclosure aims to secure both air cooling capacity and battery cooling capacity as much as possible.
  • the first aspect of the present disclosure includes a compressor, a radiator, a first expansion valve, a second expansion valve, a first evaporator, a second evaporator, and a control unit.
  • Compressor sucks and discharges refrigerant.
  • the radiator radiates heat from the refrigerant discharged from the compressor.
  • the first expansion valve and the second expansion valve depressurize the refrigerant radiated by the radiator and are arranged in parallel with each other in the refrigerant flow.
  • the first evaporator evaporates the refrigerant decompressed by the first expansion valve by exchanging heat with the air blown into the passenger compartment.
  • the second evaporator evaporates the refrigerant decompressed by the second expansion valve by exchanging heat with a heat medium for cooling the battery.
  • the control unit controls the throttle opening of the second expansion valve.
  • the control unit includes a second evaporator priority control for controlling a throttle opening degree of the second expansion valve based on a refrigerant state of the second evaporator, a temperature of the first evaporator, a temperature of the refrigerant flowing through the first evaporator,
  • the first evaporator priority control for controlling the throttle opening degree of the second expansion valve based on at least one of the temperatures of the air exchanged by the first evaporator can be switched.
  • the control unit switches at least one of the temperature of the first evaporator, the temperature of the refrigerant flowing through the first evaporator, and the temperature of the air heat-exchanged in the first evaporator. When the temperature is over the temperature, the first evaporator priority control is switched.
  • the battery cooling capacity by the second evaporator can be preferentially exhibited.
  • the air cooling capability of the first evaporator can be preferentially exhibited.
  • the first evaporator priority control when at least one of the temperature of the refrigerant flowing through the first evaporator and the temperature of the air subjected to heat exchange in the first evaporator becomes equal to or higher than the switching temperature, the first evaporator Since the priority control is switched, when the air cooling capacity is reduced during the second evaporator priority control, the first cooling priority control can be switched to ensure the air cooling capacity over the battery cooling capacity.
  • FIG. 5 is a control characteristic diagram used for calculating an allowable temperature difference in the second control process shown in FIG. 4.
  • FIG. 5 is a control characteristic diagram used for opening / closing switching of a second expansion valve in the second control process shown in FIG. 4.
  • the refrigeration cycle apparatus 10 shown in FIG. 1 is a vehicle refrigeration cycle apparatus.
  • the refrigeration cycle apparatus 10 is applied to an engine 1 (in other words, an internal combustion engine) and a hybrid vehicle that obtains a driving force for traveling from a traveling electric motor.
  • the hybrid vehicle of this embodiment is configured as a so-called plug-in hybrid vehicle. Therefore, the hybrid vehicle of the present embodiment is configured such that the battery 2 mounted on the vehicle can be charged with the power supplied from the external power source (for example, commercial power source) when the vehicle is stopped.
  • the battery for example, a lithium ion battery can be used.
  • the driving force output from the engine 1 is used not only for driving the vehicle but also for operating the generator.
  • the hybrid vehicle can store the electric power generated by the generator and the electric power supplied from the external power source in the battery 2.
  • the electric power stored in the battery 2 is not only the electric motor for traveling, Supplied to various in-vehicle devices mounted on hybrid vehicles.
  • the hybrid vehicle travels in the EV travel mode when the remaining amount of power stored in the battery 2 is equal to or greater than the predetermined reference remaining amount for travel as at the start of travel.
  • the EV travel mode means a travel mode in which the vehicle travels by driving a travel electric motor using electric power from the battery 2.
  • the hybrid vehicle travels in the HV traveling mode when the remaining amount of charge of the battery 2 is lower than the traveling reference remaining amount during traveling of the vehicle.
  • the HV travel mode is a travel mode in which the vehicle travels mainly by the driving force output from the engine 1, but when the vehicle travel load becomes high, the travel electric motor is operated to assist the engine 1. To do.
  • the hybrid vehicle thus switches between the EV travel mode and the HV travel mode, thereby suppressing the fuel consumption of the engine 1 with respect to a normal vehicle that obtains the driving force for vehicle travel only from the engine 1. It improves fuel economy.
  • the engine 1 is a power unit in a hybrid vehicle.
  • the refrigeration cycle apparatus 10 cools the air blown into the vehicle interior in order to cool or dehumidify the vehicle interior of the vehicle. That is, the refrigeration cycle apparatus 10 is also a vehicle air cooling apparatus.
  • a secondary battery such as the battery 2 is desirably used in an appropriate temperature range in order to make full use of the charge / discharge capacity without promoting deterioration.
  • the refrigeration cycle apparatus 10 has a function of cooling the battery 2 so as to maintain the temperature of the battery 2 within an appropriate temperature range. That is, the refrigeration cycle apparatus 10 is also a vehicle battery cooling apparatus.
  • the refrigeration cycle apparatus 10 cools the air blown into the passenger compartment and the battery 2 by a vapor compression refrigeration cycle.
  • the refrigeration cycle apparatus 10 is configured to be able to switch between an air cooling single operation, a battery cooling single operation, and an air battery cooling operation in order to perform air cooling and battery cooling.
  • air cooling single operation air cooling is performed and battery cooling is not performed.
  • battery cooling single operation air cooling is not performed but battery cooling is performed.
  • air battery cooling operation both air cooling and battery cooling are performed.
  • the flow of the refrigerant in the refrigerant circuit in the air-cooling single operation is indicated by white arrows.
  • the flow of the refrigerant in the refrigerant circuit of the battery cooling single operation is indicated by hatched arrows.
  • the flow of the refrigerant in the refrigerant circuit in the air battery cooling operation is indicated by black arrows.
  • an HFC-based refrigerant (specifically, R1234yf) is employed as the refrigerant, and the vapor compression subcriticality in which the pressure of the refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant. It constitutes the refrigeration cycle.
  • Refrigerating machine oil for lubricating the compressor 11 is mixed in the refrigerant, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the refrigeration cycle apparatus 10 includes a compressor 11, a radiator 12, a first expansion valve 13, a first evaporator 14, a second expansion valve 15, and a second evaporator 16.
  • the compressor 11 sucks in the refrigerant in the refrigeration cycle apparatus 10, compresses it, and discharges it.
  • the compressor 11 is configured by an electric compressor that rotationally drives a fixed capacity type compression mechanism with a fixed discharge capacity by an electric motor.
  • the refrigerant discharge capacity (that is, the rotation speed) in the compressor 11 is controlled by a control signal output from the control device 50.
  • the compressor 11 is arrange
  • the refrigerant inlet side of the radiator 12 is connected to the discharge port of the compressor 11.
  • the radiator 12 condenses the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the vehicle exterior air (hereinafter referred to as outside air) blown by the outside air fan 12a shown in FIG. It is an outdoor heat exchanger.
  • the radiator 12 is arranged on the front side in the vehicle bonnet.
  • the outside air fan 12a is constituted by an electric blower.
  • the blowing capacity (that is, the rotation speed) of the outside air fan 12 a is controlled by a control voltage output from the control device 50.
  • the inlet side of the first three-way joint 17 is connected to the refrigerant outlet side of the radiator 12.
  • the first three-way joint 17 has three inlet / outlet ports communicating with each other.
  • the first three-way joint 17 is formed by joining a plurality of pipes.
  • the first three-way joint 17 may be formed by providing a plurality of refrigerant passages in a metal block or a resin block.
  • the inlet side of the first expansion valve 13 is connected to one outlet of the first three-way joint 17.
  • An inlet side of the second expansion valve 15 is connected to the other outlet of the first three-way joint 17.
  • the first expansion valve 13 is a first decompression unit that decompresses the high-pressure refrigerant that has flowed out of the radiator 12 during the air cooling single operation or the air battery cooling operation.
  • the first expansion valve 13 is an electric variable throttle mechanism that includes a valve body that can change the throttle opening degree and an electric actuator that changes the opening degree of the valve body.
  • the first expansion valve 13 adjusts the decompression amount of the refrigerant by adjusting the opening area of the flow path through which the refrigerant flows.
  • the basic configuration of the second expansion valve 15 is the same as that of the first expansion valve 13.
  • the first expansion valve 13 and the second expansion valve 15 have a fully-open function that functions as a simple refrigerant passage without substantially exhibiting a flow rate adjusting action and a refrigerant pressure-reducing action by fully opening the valve opening degree, and a valve opening degree. Is fully closed to close the refrigerant passage.
  • the first expansion valve 13 and the second expansion valve 15 can switch the refrigerant circuit of each operation described above by the full open function and the full close function. Therefore, the first expansion valve 13 and the second expansion valve 15 also have a function as a refrigerant circuit switching device.
  • the first expansion valve 13 and the second expansion valve 15 are controlled by a control signal (for example, a control pulse) output from the control device 50.
  • the refrigerant inlet side of the first evaporator 14 is connected to the outlet side of the first expansion valve 13.
  • the first evaporator 14 is disposed in the air conditioning case 31 of the indoor air conditioning unit 30.
  • the first evaporator 14 is an air cooler.
  • the first evaporator 14 evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant decompressed by the first expansion valve 13 and the air blown from the blower 32 during the air-cooling single operation or the air battery cooling operation.
  • the air is cooled by causing the low-pressure refrigerant to exhibit an endothermic effect.
  • One outlet side of the second three-way joint 19 is connected to the outlet side of the first evaporator 14.
  • the basic configuration of the second three-way joint 19 is the same as that of the first three-way joint 17.
  • the outlet side of the second evaporator 16 is connected to the other inlet side of the second three-way joint 19.
  • the inlet of the compressor 11 is connected to the outlet of the second three-way joint 19.
  • the refrigerant inlet side of the second evaporator 16 is connected to the outlet side of the second expansion valve 15.
  • the second evaporator 16 is an evaporator that evaporates the low-pressure refrigerant by causing the low-pressure refrigerant flowing out of the second expansion valve 15 to absorb heat from the cooling water of the low-temperature cooling water circuit 20.
  • the other inlet side of the second three-way joint 19 is connected to the refrigerant outlet side of the second evaporator 16.
  • the low-temperature cooling water circuit 20 is a heat medium circuit that circulates the heat medium between the second evaporator 16 of the refrigeration cycle apparatus 10, the battery heat exchanger 21, and the radiator 22.
  • a heat medium in the low-temperature cooling water circuit 20 cooling water is used.
  • cooling water water, ethylene glycol aqueous solution, etc. are employable, for example.
  • a low-temperature cooling water pump 23 In the low-temperature cooling water circuit 20, a low-temperature cooling water pump 23, a second evaporator 16, a battery heat exchanger 21 and a radiator 22 are arranged. In the low-temperature cooling water circuit 20, these components are connected by a cooling water flow path.
  • the low-temperature cooling water circuit 20 constitutes a closed circuit through which cooling water can circulate.
  • the low-temperature cooling water pump 23 is a water pump that sucks cooling water and pumps it.
  • the battery heat exchanger 21 is a heat exchanger that cools the battery 2 by causing the cooling water of the low-temperature cooling water circuit 20 to absorb heat from the battery 2.
  • the radiator 22 is a heat exchanger that radiates heat from the cooling water of the low-temperature cooling water circuit 20 by exchanging heat between the cooling water of the low-temperature cooling water circuit 20 and the outside air.
  • the radiator 22 is disposed on the front side in the vehicle bonnet. Outside air is blown to the radiator 22 by the outside air fan 12a.
  • the low-temperature cooling water circuit 20 has a bypass flow path 24 and a three-way valve 25.
  • the bypass flow path 24 is a cooling water flow path in which cooling water flows in parallel to the radiator 22.
  • the three-way valve 25 is an electromagnetic valve that switches between a state where the cooling water flows through the radiator 22 and does not flow through the bypass flow path 24 and a state where the cooling water flows through the bypass flow path 24 without flowing through the radiator 22. The operation of the three-way valve 25 is controlled by the control device 50.
  • the refrigeration cycle apparatus 10 includes a receiver (not shown) or an accumulator (not shown).
  • the receiver stores the refrigerant that has been radiated and condensed by the radiator 12.
  • the accumulator is a gas-liquid separator that separates the gas-liquid refrigerant flowing out of the first evaporator 14 and the second evaporator 16 and stores excess liquid-phase refrigerant in the cycle.
  • the indoor air conditioning unit 30 blows air into the vehicle cabin.
  • the indoor air conditioning unit 30 blows out the air whose temperature has been adjusted by the refrigeration cycle apparatus 10 into the vehicle interior.
  • the indoor air conditioning unit 30 is arranged inside the instrument panel (in other words, an instrument panel) at the forefront of the vehicle interior.
  • the indoor air conditioning unit 30 is configured by accommodating a blower 32, a first evaporator 14, a heater core 33, and the like in an air conditioning case 31 that forms an outer shell thereof. That is, in the indoor air conditioning unit 30, the first evaporator 14, the heater core 33 and the like are arranged in an air passage formed inside the air conditioning case 31.
  • the air conditioning case 31 forms an air passage for air blown into the vehicle interior.
  • the air conditioning case 31 is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent in strength.
  • An inside / outside air switching device 34 is disposed on the most upstream side of the air flow in the air conditioning case 31.
  • the inside / outside air switching device 34 switches and introduces inside air (that is, vehicle interior air) and outside air (that is, vehicle interior air) into the air conditioning case 31.
  • the inside / outside air switching device 34 continuously adjusts the opening area of the inside air introduction port for introducing the inside air into the air conditioning case 31 and the outside air introduction port for introducing the outside air by the inside / outside air switching door, and the introduction amount of the inside air and the outside air are adjusted.
  • the introduction ratio with the introduction air volume is changed.
  • the inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door.
  • the electric actuator is controlled by a control signal output from the control device 50.
  • a blower 32 is disposed on the downstream side of the air flow of the inside / outside air switching device 34.
  • the blower 32 is configured by an electric blower that drives a centrifugal multiblade fan with an electric motor.
  • the blower 32 blows air sucked through the inside / outside air switching device 34 toward the vehicle interior.
  • the blowing capacity (that is, the rotation speed) of the blower 32 is controlled by a control voltage output from the control device 50.
  • the first evaporator 14 and the heater core 33 are arranged in this order with respect to the air flow on the downstream side of the air flow of the blower 32. That is, the first evaporator 14 is disposed on the upstream side of the air flow with respect to the heater core 33.
  • the heater core 33 is a heating heat exchanger that heats air by exchanging heat between the cooling water circulating in the high-temperature cooling water circuit 40 and the air that has passed through the first evaporator 14.
  • An air mix door 35 is disposed on the air flow downstream side of the first evaporator 14 in the air conditioning case 31 and on the air flow upstream side of the heater core 33.
  • the air mix door 35 is an air volume ratio adjusting unit that adjusts an air volume ratio between the air that has passed through the first evaporator 14 and the air that passes through the heater core 33 and the air that flows by bypassing the heater core 33.
  • the air mix door 35 is driven by an electric actuator for the air mix door.
  • the electric actuator is controlled by a control signal output from the control device 50.
  • a mixing space is provided on the downstream side of the air flow of the heater core 33.
  • the mixing space is a space for mixing hot air that has passed through the heater core 33 and cold air that has flowed through the heater core 33.
  • an opening for blowing the air mixed in the mixing space (that is, the conditioned air) into the passenger compartment that is the air conditioned space is disposed.
  • the opening As the opening, a face opening, a foot opening, and a defroster opening (all not shown) are provided.
  • the face opening is an opening for blowing conditioned air toward the upper body of the passenger in the passenger compartment.
  • the foot opening is an opening for blowing conditioned air toward the passenger's feet.
  • the defroster opening is an opening for blowing conditioned air toward the inner side surface of the vehicle front window glass.
  • the face opening, the foot opening, and the defroster opening are respectively connected to a face outlet, a foot outlet, and a defroster outlet (not shown) through a duct that forms an air passage. )It is connected to the.
  • the air mix door 35 adjusts the air volume ratio between the air that passes through the heater core 33 and the air that bypasses the heater core 33, whereby the temperature of the conditioned air mixed in the mixing space is adjusted. Thereby, the temperature of the air (in other words, conditioned air) blown out from each outlet into the vehicle compartment is adjusted.
  • a face door, a foot door, and a defroster door are arranged on the upstream side of the air flow of the face opening, the foot opening, and the defroster opening, respectively.
  • the face door adjusts the opening area of the face opening.
  • the foot door adjusts the opening area of the foot opening.
  • the defroster door adjusts the opening area of the defroster opening.
  • These face doors, foot doors, and defroster doors are outlet mode switching devices that switch the outlet mode. These doors are connected to an electric actuator for driving the air outlet mode door via a link mechanism and the like, and are rotated in conjunction with each other. The electric actuator is controlled by a control signal output from the control device 50.
  • outlet mode switched by the outlet mode switching device include a face mode, a bi-level mode, and a foot mode.
  • the face mode is a blowout mode that blows out air from the face blowout toward the upper body of the passenger in the passenger compartment with the face blowout opening fully open.
  • the bi-level mode is an air outlet mode in which both the face air outlet and the foot air outlet are opened and air is blown toward the upper body and the feet of the passengers in the passenger compartment.
  • the foot mode is a blowout port mode in which the foot blowout opening is fully opened and the defroster blowout opening is opened by a small opening so that air is mainly blown from the foot blowout opening.
  • the occupant can also set the defroster mode by manually operating the blow mode switch provided on the operation panel 62 shown in FIG.
  • the defroster mode is a blower outlet mode in which the defroster blower outlet is fully opened and air is blown from the defroster blower outlet to the inner surface of the vehicle front window glass.
  • the high-temperature coolant circuit 40 is a heat medium circuit that circulates the heat medium between the engine 1 and the heater core 33.
  • a heat medium in the high-temperature cooling water circuit 40 cooling water is used.
  • cooling water water, ethylene glycol aqueous solution, etc. are employable, for example.
  • a high-temperature cooling water pump 41, the engine 1, and the heater core 33 are arranged in the high-temperature cooling water circuit 40. In the high temperature cooling water circuit 40, these components are connected by a cooling water flow path.
  • the high-temperature coolant circuit 40 constitutes a closed circuit through which coolant can circulate.
  • the high-temperature cooling water pump 41 is a water pump that sucks cooling water and pumps it.
  • the cooling water of the high temperature cooling water circuit 40 circulates through the engine 1, whereby the engine 1 is cooled and the cooling water of the high temperature cooling water circuit 40 is heated.
  • the heater core 33 heats the air by exchanging heat between the cooling water heated by the engine 1 and the air that has passed through the first evaporator 14 in the indoor air conditioning unit 30.
  • a water heater may be disposed in the high-temperature cooling water circuit 40 instead of the engine 1.
  • the water heater has, for example, a PTC element, a nichrome wire, and the like, and generates heat when heated and heats the cooling water.
  • the refrigeration cycle apparatus 10 has a control device 50.
  • the control device 50 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof.
  • the control device 50 performs various calculations and processes based on the air conditioning control program stored in the ROM, and controls various devices to be controlled connected to the output side.
  • the devices to be controlled include a compressor 11, an outside air fan 12a, a first expansion valve 13, a second expansion valve 15, a low temperature cooling water pump 23, a three-way valve 25, a blower 32, a high temperature cooling water pump 41, and the like.
  • Various air conditioning sensor groups used for operation control by the refrigeration cycle apparatus 10 are connected to the input side of the control device 50.
  • the control device 50 receives detection signals from these air conditioning sensor groups.
  • the air conditioning sensor group includes an inside air temperature sensor 51, an outside air temperature sensor 52, a solar radiation sensor 53, a discharge refrigerant temperature sensor 54, a radiator outlet pressure sensor 55, a radiator outlet temperature sensor 56, and a first evaporator.
  • a temperature sensor 57, a first evaporator outlet temperature sensor 58, a second evaporator outlet pressure sensor 59, a second evaporator outlet temperature sensor 60, a cooling water temperature sensor 61, and the like are included.
  • the inside air temperature sensor 51 is an inside air temperature detecting unit that detects a vehicle interior temperature Tr (hereinafter referred to as an inside air temperature).
  • the outside air temperature sensor 52 is an outside air temperature detecting unit that detects a vehicle compartment outside temperature Tam (hereinafter referred to as an outside air temperature).
  • the solar radiation sensor 53 is a solar radiation amount detection unit that detects the solar radiation amount As irradiated into the vehicle interior.
  • the discharge refrigerant temperature sensor 54 is a discharge refrigerant temperature detector that detects the discharge temperature of the refrigerant discharged from the compressor 11.
  • the radiator outlet pressure sensor 55 is a radiator outlet pressure detector that detects the pressure of the refrigerant flowing out of the radiator 12.
  • the radiator outlet temperature sensor 56 is a radiator outlet temperature detector that detects the temperature T3 of the refrigerant that has flowed out of the radiator 12.
  • the first evaporator temperature sensor 57 is an evaporator temperature detector that detects a refrigerant evaporation temperature TE in the first evaporator 14 (hereinafter referred to as a temperature TE of the first evaporator 14). For example, the first evaporator temperature sensor 57 detects the fin temperature of the first evaporator 14.
  • the first evaporator outlet temperature sensor 58 is a first evaporator outlet temperature detector that detects the temperature of the refrigerant flowing out of the first evaporator 14.
  • the second evaporator outlet pressure sensor 59 is a second evaporator outlet pressure detector that detects the pressure of the refrigerant that has flowed out of the second evaporator 16.
  • the second evaporator outlet temperature sensor 60 is a second evaporator outlet temperature detector that detects the temperature of the refrigerant that has flowed out of the second evaporator 16.
  • the cooling water temperature sensor 61 is a cooling water temperature detection unit that detects the temperature of the cooling water flowing into the battery heat exchanger 21.
  • an operation panel 62 is connected to the input side of the control device 50.
  • the operation panel 62 is disposed near the instrument panel in the front part of the vehicle interior and has various operation switches. Accordingly, operation signals from various operation switches are input to the control device 50.
  • the various operation switches on the operation panel 62 include, in addition to the temperature setting switch 62a, an auto switch, an air conditioner switch, an air volume setting switch, a blow mode switching switch and the like.
  • the temperature setting switch 62a is operated when setting the target temperature Tset in the passenger compartment.
  • the auto switch is operated when setting / releasing automatic control operation of the refrigeration cycle apparatus 10.
  • the air conditioner switch is operated when requesting cooling of the air blown into the passenger compartment by the refrigeration cycle apparatus 10.
  • the air volume setting switch is operated when manually setting the air volume of the blower 32.
  • the blowing mode changeover switch is operated when manually setting the blowing mode in the refrigeration cycle apparatus 10.
  • a vehicle control device 70 is connected to the input side of the control device 50. As described above, in the hybrid vehicle, the vehicle control device 70 performs switching control between the EV travel mode and the HV travel mode. Therefore, a travel mode signal indicating the travel mode of the hybrid vehicle (that is, the HV travel mode or the EV travel mode) is input to the control device 50.
  • Vehicle control device 70 determines whether or not it is necessary to cool battery 2 based on the temperature of battery 2 detected by battery temperature sensor 71, and outputs the determination result to control device 50. Therefore, the control device 50 receives a signal indicating whether or not the battery 2 needs to be cooled.
  • the vehicle control device 70 also outputs the temperature of the battery 2 detected by the battery temperature sensor 71 to the control device 50. Therefore, the temperature of the battery 2 detected by the battery temperature sensor 71 is also input to the control device 50.
  • the control device 50 is integrally configured with a control unit that controls various devices to be controlled connected to the output side. Each control unit of the control device 50 controls each control target device. The configuration (hardware and software) controls each control target device.
  • control device 50 is a compressor control unit 50a, a throttle control unit 50b, and a three-way valve control unit 50c.
  • the compressor control unit 50 a is configured to control the compressor 11 in the control device 50.
  • the throttle control unit 50 b is configured to control the first expansion valve 13 and the second expansion valve 15 in the control device 50.
  • the three-way valve control unit 50 c is configured to control the three-way valve 25 in the control device 50.
  • the refrigeration cycle apparatus 10 can cool the air blown into the passenger compartment and cool the battery 2.
  • the refrigeration cycle apparatus 10 switches between an air cooling single operation, a battery cooling single operation, and an air battery cooling operation for cooling the air blown into the vehicle interior and cooling the battery 2.
  • Switching of each operation mode of the refrigeration cycle apparatus 10 is performed by executing a control program.
  • the control program is executed when the ignition switch of the vehicle is turned on.
  • the first expansion valve 13 is opened at a predetermined throttle opening, and the second expansion valve 15 is closed.
  • the refrigerant flows as indicated by white arrows in FIG. That is, the refrigerant decompressed by the first expansion valve 13 flows through the first evaporator 14, and no refrigerant flows through the second evaporator 16. Therefore, the air blown into the vehicle compartment by the refrigeration cycle apparatus 10 is cooled, and the refrigeration cycle apparatus 10 does not cool the battery 2.
  • the first expansion valve 13 is closed and the second expansion valve 15 is opened at a predetermined throttle opening. Further, the low-temperature cooling water pump 23 is operated. Thereby, the refrigerant flows as shown by the hatched arrows in FIG. That is, the refrigerant does not flow to the first evaporator 14 and the refrigerant decompressed by the second expansion valve 15 flows to the second evaporator 16, so that the air is not cooled by the refrigeration cycle apparatus 10, and the refrigeration cycle apparatus 10 Battery 2 is cooled.
  • the first expansion valve 13 is opened at a predetermined throttle opening, and the second expansion valve 15 is opened at a predetermined throttle opening. Further, the low-temperature cooling water pump 23 is operated. As a result, the refrigerant flows as shown by the black arrows in FIG. That is, since the refrigerant depressurized by the first expansion valve 13 flows to the first evaporator 14 and the refrigerant depressurized by the second expansion valve 15 flows to the second evaporator 16, the refrigeration cycle apparatus 10 blows air into the vehicle interior. The cooled air is cooled, and the battery 2 is cooled by the refrigeration cycle apparatus 10.
  • an air conditioning control program is executed. More specifically, in the main routine of the air conditioning control program, the detection signals of the above-described sensor group for air conditioning control and operation signals from various air conditioning operation switches are read. And based on the value of the read detection signal and operation signal, the target blowing temperature TAO which is the target temperature of the blowing air which blows off into the vehicle interior is calculated based on Formula F1.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ As + C (F1)
  • Tset is the target temperature in the vehicle interior (in other words, the vehicle interior set temperature) set by the temperature setting switch 62a.
  • Tr is the inside air temperature detected by the inside air temperature sensor 51.
  • Tam is the outside air temperature detected by the outside air temperature sensor 52.
  • As is the amount of solar radiation detected by the solar radiation sensor 53.
  • Kset, Kr, Kam, Ks are control gains, and C is a correction constant.
  • the control device 50 brings the first expansion valve 13 into a throttled state that exerts a pressure reducing action, and puts the second expansion valve 15 into a fully closed state.
  • the refrigerant in the order of the compressor 11, the radiator 12, the first expansion valve 13, the first evaporator 14, and the compressor 11. Constitutes a vapor compression refrigeration cycle.
  • the control device 50 determines the refrigerant discharge capacity of the compressor 11 (that is, a control signal output to the electric motor of the compressor 11). Specifically, the compressor 11 is controlled so that the temperature TE of the first evaporator 14 becomes the target evaporator temperature TEO.
  • the target evaporator temperature TEO is determined on the basis of the target outlet temperature TAO with reference to a control map stored in the control device 50 in advance. In the control map, it is determined that the target evaporator temperature TEO decreases as the target outlet temperature TAO decreases. Furthermore, the target evaporator temperature TEO is determined within a range (specifically, 1 ° C. or higher) in which frost formation of the first evaporator 14 can be suppressed.
  • the refrigeration cycle apparatus 10 includes a receiver (not shown) or an accumulator (not shown).
  • the control device 50 adjusts the throttle opening of the first expansion valve 13 so that the superheat degree of the refrigerant flowing out from the first evaporator 14 becomes the target superheat degree.
  • the target superheat degree is determined with reference to a control map stored in advance in the control device 50 based on the pressure of the refrigerant flowing out of the first evaporator 14 and the temperature of the refrigerant flowing out of the first evaporator 14. The In the control map, the target superheat degree is determined so that the coefficient of performance COP of the cycle approaches the maximum value.
  • the first expansion valve 13 may be a temperature type expansion valve.
  • the control device 50 increases the throttle opening of the first expansion valve 13 so that the subcooling degree of the refrigerant flowing into the first expansion valve 13 becomes the target subcooling degree. adjust.
  • the target degree of supercooling is determined with reference to a control map stored in advance in the control device 50 based on the pressure of the refrigerant flowing out of the radiator 12 and the temperature of the refrigerant flowing out of the radiator 12. In the control map, the target supercooling degree is determined so that the coefficient of performance COP of the cycle approaches the maximum value.
  • the heat absorbed from the air when the refrigerant evaporates in the first evaporator 14 is radiated to the outside air by the radiator 12. Thereby, the air can be cooled by the first evaporator 14.
  • step S100 it is determined whether or not the air conditioner switch of operation panel 62 is turned on.
  • step S100 If it is determined in step S100 that the air conditioner switch is not turned on, the process proceeds to step S110 to determine whether or not there is a battery cooling request from the battery control device 75.
  • step S110 If it is determined in step S110 that there is no battery cooling request from the battery control device 75, both air cooling and battery cooling are not necessary, and therefore the process proceeds to step S120 and the refrigeration cycle apparatus 10 is not operated. Specifically, the compressor 11 is stopped without being operated.
  • step S110 determines whether there is a battery cooling request from the battery control device 75. If it is determined in step S110 that there is a battery cooling request from the battery control device 75, since air cooling is not required but battery cooling is required, the process proceeds to step S130 and the battery cooling single operation is performed. To decide.
  • step S130 When it is determined in step S130 that the battery cooling single operation is performed, the process proceeds to step S170, and it is determined whether or not the battery cooling water temperature exceeds the outside air temperature. If it is determined in step S170 that the temperature of the battery cooling water does not exceed the temperature of the outside air, the battery cooling water cannot be cooled by the outside air, and the battery cooling water needs to be cooled by the second evaporator 16. Therefore, it progresses to step S180 and cooling of the cooling water using a refrigerant
  • the refrigeration cycle apparatus 10 is operated, the first expansion valve 13 is closed to prevent the refrigerant from flowing into the first evaporator 14, and the second expansion valve 15 is opened at a predetermined throttle opening degree. 2 Let the refrigerant flow through the evaporator 16. Further, the low-temperature cooling water pump 23 is operated, and the three-way valve 25 is controlled so that the cooling water circulates between the second evaporator 16 and the battery heat exchanger 21. As a result, the cooling water of the battery is cooled by the second evaporator 16 without air cooling by the first evaporator 14. Therefore, the battery 2 is cooled without air cooling.
  • step S170 determines whether or not. If it is determined in step S170 that the temperature of the battery cooling water is higher than the temperature of the outside air, the process proceeds to step S190, and the cooling amount of the battery using the outside air is cooled by the radiator 22 and the battery cooling amount is insufficient. It is determined whether or not.
  • the battery cooling amount is insufficient if the temperature of the battery 2 or the cooling water temperature of the low-temperature cooling water circuit tends to rise even after cooling the cooling water using outside air by the radiator 22, it is determined that the battery cooling amount is insufficient.
  • step S190 If it is determined in step S190 that the cooling water using the outside air is cooled by the radiator 22 and it is determined that the battery cooling amount is not insufficient, the process proceeds to step S200 to cool the cooling water using the outside air.
  • the refrigerant is prevented from flowing through both the first evaporator 14 and the second evaporator 16 by not operating the refrigeration cycle apparatus 10. Further, the low-temperature cooling water pump 23 is operated, and the three-way valve 25 is controlled so that the cooling water circulates between the radiator 22 and the battery heat exchanger 21. Thereby, the air cooling is not performed by the first evaporator 14, and the battery cooling water is cooled by the outside air by the radiator 22. Therefore, cooling of the battery 2 using outside air is performed without air cooling.
  • step S190 determines that the cooling amount of the battery using the outside air is cooled by the radiator 22 and the amount of battery cooling is insufficient
  • the process proceeds to step S210, where the cooling water is cooled using the outside air and the refrigerant.
  • the refrigeration cycle apparatus 10 is operated, the first expansion valve 13 is closed to prevent the refrigerant from flowing into the first evaporator 14, and the second expansion valve 15 is opened at a predetermined throttle opening degree. 2 Let the refrigerant flow through the evaporator 16. Further, the low-temperature cooling water pump 23 is operated, and the three-way valve 25 is controlled so that the cooling water circulates between the second evaporator 16 and the radiator 22 and the battery heat exchanger 21.
  • the target temperature of the cooling water cooled by the second evaporator 16 is determined so that the inlet cooling water temperature of the radiator 22 is equal to or higher than the outside air temperature. This is to prevent the radiator 22 from absorbing heat from the outside air.
  • the target temperature is calculated based on, for example, the outside air temperature, the cooling water flow rate, and the battery heat generation amount.
  • cooling of the cooling water is also performed by the second evaporator 16 and the radiator 22 without air cooling by the first evaporator 14. Therefore, cooling of the battery 2 using the outside air and the refrigerant is performed without air cooling.
  • step S100 if it is determined in step S100 that the air conditioner switch is turned on, the process proceeds to step S140, and it is determined whether or not there is a battery cooling request from the battery control device 75.
  • step S140 If it is determined in step S140 that there is no battery cooling request from the battery control device 75, air cooling is required but battery cooling is not required. Therefore, the process proceeds to step S150, and the refrigeration cycle apparatus 10 is operated to air-condition. Operate alone.
  • step S140 determines whether there is a battery cooling request from the battery control device 75, both air cooling and battery cooling are required. If it is determined in step S140 that there is a battery cooling request from the battery control device 75, both air cooling and battery cooling are required, so the process proceeds to step S160 and the refrigeration cycle apparatus 10 is operated. Decide to perform air battery cooling operation.
  • step S160 If it is decided to perform the air battery cooling operation in step S160, the process proceeds to step S170, and it is determined whether or not the battery cooling water temperature exceeds the outside air temperature. If it is determined in step S170 that the temperature of the battery cooling water does not exceed the temperature of the outside air, the battery cooling water cannot be cooled by the outside air, and the battery cooling water needs to be cooled by the second evaporator 16. Therefore, it progresses to step S180 and cooling of the cooling water using a refrigerant
  • both the first expansion valve 13 and the second expansion valve 15 are opened at a predetermined throttle opening so that the refrigerant flows through both the first evaporator 14 and the second evaporator 16. Further, the low-temperature cooling water pump 23 is operated, and the three-way valve 25 is controlled so that the cooling water circulates between the second evaporator 16 and the battery heat exchanger 21. As a result, air cooling is performed in the first evaporator 14, and battery cooling water is also cooled in the second evaporator 16. Therefore, both air cooling and battery 2 cooling are performed.
  • step S170 determines whether or not. If it is determined in step S170 that the temperature of the battery cooling water is higher than the temperature of the outside air, the process proceeds to step S190, and the cooling amount of the battery using the outside air is cooled by the radiator 22 and the battery cooling amount is insufficient. It is determined whether or not.
  • the battery cooling amount is insufficient if the temperature of the battery 2 or the cooling water temperature of the low-temperature cooling water circuit tends to rise even after cooling the cooling water using outside air by the radiator 22, it is determined that the battery cooling amount is insufficient.
  • step S190 If it is determined that the cooling amount of the cooling water using the outside air is cooled by the radiator 22 in step S190, it is determined that the battery cooling amount is not insufficient, the process proceeds to step S200, and the refrigeration cycle apparatus 10 is operated to cool the air. Cooling of the cooling water using the outside air.
  • the first expansion valve 13 is opened at a predetermined throttle opening to allow the refrigerant to flow through the first evaporator 14, and the second expansion valve 15 is closed to prevent the refrigerant from flowing through the second evaporator 16.
  • the low-temperature cooling water pump 23 is operated, and the three-way valve 25 is controlled so that the cooling water circulates between the radiator 22 and the battery heat exchanger 21.
  • air cooling is performed by the first evaporator 14, and the battery cooling water is cooled by the outside air by the radiator 22. Accordingly, air cooling is performed and the battery 2 is cooled using outside air.
  • step S190 determines that the cooling amount of the cooling water using the outside air is cooled by the radiator 22 and the battery cooling amount is insufficient.
  • the process proceeds to step S210 and the refrigeration cycle apparatus 10 is operated to perform air cooling. Cooling of cooling water using outside air and refrigerant is performed.
  • both the first expansion valve 13 and the second expansion valve 15 are opened at a predetermined throttle opening so that the refrigerant flows through both the first evaporator 14 and the second evaporator 16. Further, the low-temperature cooling water pump 23 is operated, and the three-way valve 25 is controlled so that the cooling water circulates between the second evaporator 16 and the radiator 22 and the battery heat exchanger 21.
  • the target temperature of the cooling water cooled by the second evaporator 16 is determined so that the inlet cooling water temperature of the radiator 22 is equal to or higher than the outside air temperature. This is to prevent the radiator 22 from absorbing heat from the outside air.
  • the target temperature is calculated based on, for example, the outside air temperature, the cooling water flow rate, and the battery heat generation amount.
  • steps S300 to S350 shown in FIG. 4 are performed. Second expansion valve control is performed.
  • step S300 it is determined whether or not there is sufficient capacity for air cooling. Specifically, it is determined whether or not the temperature TE of the first evaporator 14 is below a predetermined evaporator temperature ⁇ .
  • the predetermined evaporator temperature ⁇ is a temperature close to the target evaporator temperature TEO.
  • step S300 If it is determined in step S300 that there is no surplus air cooling, the second expansion valve 15 is closed in order to prioritize the air cooling over the battery cooling. Thereby, air cooling is performed in the 1st evaporator 14, and cooling of the cooling water by the 2nd evaporator 16 is not performed.
  • step S300 if it is determined in step S300 that there is sufficient capacity for air cooling, the initial opening degree control of the second expansion valve 15 is performed.
  • the second expansion valve 15 is set to a predetermined initial opening degree.
  • the predetermined initial opening degree is the opening degree of the second expansion valve 15 where the influence on the air cooling is minimized.
  • the predetermined initial opening is an opening that is smaller than the opening of the second expansion valve 15 that has a great influence on air cooling.
  • the second expansion valve 15 when the second expansion valve 15 is opened and the refrigerant flows into the second evaporator 16, it is possible to suppress the refrigerant flowing into the first evaporator 14 from greatly decreasing. Therefore, the amount of heat exchange in the first evaporator 14 can be reduced and the temperature of the air cooled by the first evaporator 14 can be suppressed from greatly fluctuating.
  • the throttle opening degree of the second expansion valve 15 may be gradually increased at a predetermined valve opening speed.
  • the valve opening speed is an increase amount of the throttle opening per unit time.
  • the predetermined valve opening speed is the valve opening speed of the second expansion valve 15 that minimizes the influence on air cooling. In other words, the predetermined valve opening speed is a valve opening speed that is lower than the valve opening speed of the second expansion valve 15 that has a great influence on air cooling.
  • the second expansion valve 15 when the second expansion valve 15 is opened and the refrigerant flows into the second evaporator 16, it is possible to suppress the refrigerant flowing into the first evaporator 14 from greatly decreasing. Therefore, the amount of heat exchange in the first evaporator 14 can be reduced and the temperature of the air cooled by the first evaporator 14 can be suppressed from greatly fluctuating.
  • step S330 it is determined whether or not there is an influence on air cooling by battery cooling. Specifically, the rotational speed NC of the compressor 11 exceeds a predetermined rotational speed NC1, and the difference TE-TEO obtained by subtracting the target evaporator temperature TEO from the temperature TE of the first evaporator 14 gives the allowable temperature difference ⁇ TE. Determine if it has exceeded.
  • the allowable temperature difference ⁇ TE is calculated based on the battery cooling request level (in other words, the temperature of the battery 2).
  • the battery temperatures TB1, TB2, TB3, and TB4 have a relationship of TB1 ⁇ TB2 ⁇ TB3 ⁇ TB4.
  • the battery temperature TB1 is a temperature close to the maximum temperature in the adjustment temperature range (for example, 10 to 40 ° C.) of the battery 2. For example, when the adjustment temperature range of the battery 2 is 10 to 40 ° C., the battery temperature TB1 is about 40 ° C.
  • the battery temperature TB4 is a temperature close to the upper limit temperature (for example, 50 ° C.) of the battery 2.
  • the allowable temperature differences ⁇ TE1, ⁇ TE2, and ⁇ TE3 have a relationship of ⁇ TE1 ⁇ TE2 ⁇ TE3.
  • the allowable temperature difference ⁇ TE1 is 3 ° C., for example.
  • the allowable temperature difference ⁇ TE3 is 12 ° C., for example.
  • Step S330 when it is determined that there is no influence on the air cooling by the battery cooling, the process proceeds to Step S340, and the superheat degree control is performed on the second expansion valve 15.
  • the opening degree of the second expansion valve 15 is controlled by determining the amount of increase in the opening degree of the second expansion valve 15 so that the degree of superheat of the outlet refrigerant of the second evaporator 16 becomes a predetermined superheat degree.
  • the superheat degree control is second evaporator priority control that controls the second expansion valve 15 with priority given to the cooling capacity of the second evaporator 16.
  • the control device 50 calculates the degree of superheat of the outlet refrigerant of the second evaporator 16 from the pressure and temperature of the outlet refrigerant of the second evaporator 16.
  • the degree of superheat of the outlet refrigerant of the second evaporator 16 may be calculated from the temperature difference between the inlet refrigerant and the outlet refrigerant of the second evaporator 16.
  • the rotation speed of the compressor 11 is controlled so that the temperature TE of the first evaporator 14 becomes the target evaporator temperature TEO.
  • step S350 as the second expansion valve 15, the smaller opening change of the opening change amount of the second expansion valve 15 by the superheat degree control and the opening change amount of the second expansion valve 15 by the capacity restriction control. Select the amount.
  • the capacity restriction control In the capacity restriction control, the amount of increase in the opening of the second expansion valve 15 is determined according to the difference between the temperature TE of the first evaporator 14 and the target evaporator temperature TEO, and the opening of the second expansion valve 15 is determined. Control. That is, the capacity restriction control is a first evaporator priority control that controls the second expansion valve 15 with priority given to the cooling capacity of the first evaporator 14.
  • the increase amount of the opening of the second expansion valve 15 is set to 0.
  • the increase amount of the opening degree of the second expansion valve 15 that limits the cooling capacity of the second evaporator 16 as the difference between the temperature TE of the first evaporator 14 and the target evaporator temperature TEO increases can be determined.
  • steps S340 and S350 opening / closing control of the second expansion valve 15 shown in FIG. 6 is also performed.
  • the target water temperature is the target temperature of the cooling water in the low-temperature cooling water circuit 20
  • the actual water temperature is the actual temperature of the cooling water in the low-temperature cooling water circuit 20.
  • the opening / closing control of the second expansion valve 15 is performed based on the difference obtained by subtracting the actual temperature of the cooling water in the low-temperature cooling water circuit 20 from the target temperature of the cooling water in the low-temperature cooling water circuit 20.
  • the second expansion valve 15 is opened.
  • the difference obtained by subtracting the actual temperature of the cooling water in the low-temperature cooling water circuit 20 from the target temperature of the cooling water in the low-temperature cooling water circuit 20 exceeds the valve closing value Tw2, the battery 2 does not need to be cooled, so the second expansion valve 15 is closed.
  • the valve closing value Tw2 is set to a value larger than the valve opening value Tw1.
  • the valve closing speed is a reduction amount of the throttle opening per unit time.
  • FIG. 7 shows an operation example in the present embodiment. In this operation example, first, the air cooling single operation is performed.
  • the refrigerant of the refrigeration cycle apparatus 10 does not flow to the second evaporator 16 but all flows to the first evaporator 14.
  • the rotation speed of the compressor 11 is controlled so that the temperature TE of the first evaporator 14 becomes the target evaporator temperature TEO. Therefore, the temperature TE of the first evaporator 14 is maintained at a temperature close to the target evaporator temperature TEO.
  • the second expansion valve 15 is opened and the operation is switched to the air cooling cooperative operation.
  • the refrigerant of the refrigeration cycle apparatus 10 is distributed to the first evaporator 14 and the second evaporator 16.
  • the rotational speed of the compressor 11 is increased so that the temperature TE of the first evaporator 14 becomes the target evaporator temperature TEO. Even if the rotation speed of the compressor 11 reaches the maximum rotation speed, if the air cooling capacity in the first evaporator 14 becomes insufficient, the temperature TE of the first evaporator 14 gradually increases.
  • the superheat degree control is performed on the second expansion valve 15 until the difference between the temperature TE of the first evaporator 14 and the target evaporator temperature TEO exceeds the allowable temperature difference ⁇ TE. That is, since the opening degree of the second expansion valve 15 is controlled so that the degree of superheat of the outlet refrigerant of the second evaporator 16 becomes a predetermined degree of superheat, the degree of superheat of the outlet refrigerant of the second evaporator 16 gradually decreases. .
  • the capacity restriction control is performed on the second expansion valve 15. Is done. That is, in the capacity restriction control, the increase amount of the opening degree of the second expansion valve 15 is made smaller than in the superheat degree control.
  • the broken line in the graph of FIG. 7 shows the operation when it is assumed that the superheat degree control is continued without performing the capacity restriction control.
  • the opening degree of the second expansion valve 15 is suppressed to be smaller than that in the superheat degree control, so that the refrigerant flowing through the second evaporator 16 decreases and the refrigerant flows through the first evaporator 14. Will increase.
  • the air cooling capacity of the first evaporator 14 can be secured with priority over the battery cooling capacity of the second evaporator 16, an increase in the temperature of the air blown into the passenger compartment can be suppressed.
  • the allowable temperature difference ⁇ TE is changed to a large value when the temperature of the battery 2 increases. Therefore, when the temperature of the battery 2 increases, not the capacity restriction control but the superheat degree control is performed, and the superheat degree of the outlet refrigerant of the second evaporator 16 decreases so as to approach the target superheat degree. Therefore, since the battery cooling capacity of the second evaporator 16 can be secured with priority over the air cooling capacity of the first evaporator 14, an increase in the temperature of the battery 2 can be suppressed.
  • the temperature of the cooling water flowing to the second evaporator 16 and the temperature of the battery 2 gradually decrease.
  • the difference obtained by subtracting the actual cooling water temperature from the target temperature of the cooling water flowing to the second evaporator 16 exceeds the valve opening value Tw1, it is not necessary to cool the battery 2.
  • the second expansion valve 15 is closed to stop the refrigerant flow to the second evaporator 16. By stopping the refrigerant flow to the second evaporator 16, the temperature of the battery 2 rises.
  • the temperature of the cooling water flowing through the second evaporator 16 and the temperature of the battery 2 can be adjusted within a certain range with respect to the target temperature.
  • the allowable temperature difference ⁇ TE is changed to a larger value as the temperature of the battery 2 becomes higher. Therefore, the battery cooling capacity of the second evaporator 16 is given priority over the air cooling capacity of the first evaporator 14. The increase in temperature of the battery 2 can be suppressed.
  • the control device 50 can switch between superheat degree control and capacity limit control.
  • the throttle opening degree of the second expansion valve 15 is controlled based on the superheat degree (in other words, the refrigerant state) of the outlet refrigerant of the second evaporator 16.
  • the throttle opening degree of the second expansion valve 15 is controlled based on the temperature TE of the first evaporator 14.
  • control apparatus 50 switches to capacity
  • the battery cooling ability by the second evaporator 16 can be preferentially exhibited.
  • the air cooling capacity by the first evaporator 14 can be preferentially exhibited.
  • the air cooling capacity when the air cooling capacity is reduced during the superheat control, the air cooling capacity can be secured with priority over the battery cooling capacity by switching to the capacity restriction control.
  • the throttle opening degree of the second expansion valve 15 may be controlled based on the refrigerant state of the second evaporator 16.
  • the second expansion is performed based on at least one of the temperature of the first evaporator 14, the temperature of the refrigerant flowing through the first evaporator 14, and the temperature of the air heat-exchanged in the first evaporator 14.
  • the throttle opening degree of the valve 15 may be controlled.
  • control apparatus 50 may switch to capacity
  • control device 50 increases the switching temperature as the temperature of the battery 2 increases.
  • the control device 50 may increase the switching temperature as the temperature of the battery cooling water is higher.
  • the control device 50 opens the second expansion valve 15 to control the degree of superheat and the capacity restriction control. Switch.
  • the control device 50 closes the second expansion valve 15 and does not perform both the superheat degree control and the capacity restriction control. Thereby, the battery 2 can be cooled without excess and deficiency and can be maintained within a predetermined range.
  • the control device 50 opens the second expansion valve 15 to perform switching between superheat degree control and capacity limitation control.
  • the second control valve 50 opens.
  • the expansion valve 15 may be closed so that neither the superheat degree control nor the capacity restriction control is performed.
  • the control device 50 when it is necessary to cool the battery 2, the control device 50 performs the second operation if the temperature of the first evaporator 14 exceeds the predetermined evaporator temperature ⁇ .
  • the expansion valve 15 is closed.
  • the control device 50 opens the second expansion valve 15 when the temperature of the first evaporator 14 is equal to or lower than the predetermined evaporator temperature.
  • the control device 50 sets the throttle opening degree of the second expansion valve 15 or the increase amount of the throttle opening degree per unit time to a predetermined value or less.
  • the flow rate of the refrigerant flowing through the first evaporator 14 can be prevented from greatly decreasing, so that the temperature of the air cooled by the first evaporator 14 is greatly increased. Can be suppressed.
  • the control device 50 sets the reduction amount of the throttle opening per unit time of the second expansion valve 15 to a predetermined reduction amount or less.
  • the refrigeration cycle apparatus 10 performs cooling of the air blown into the passenger compartment and cooling of the battery 2, but in the present embodiment, as shown in FIG. Cooling and heating of air blown into the passenger compartment and cooling of the battery 2 can be performed.
  • the cooling water of the high-temperature cooling water circuit 40 is heated by the waste heat of the engine 1, but in this embodiment, the cooling water of the high-temperature cooling water circuit 40 is used as a heat radiator for air heating. Heat at 80.
  • the air heating radiator 80 is disposed between the compressor 11 and the radiator 12 in the refrigerant flow of the refrigeration cycle apparatus 10, and cools the refrigerant discharged from the compressor 11 and the high-temperature cooling water circuit 40. Heat exchange with water.
  • the heating expansion valve 81 is a third decompression unit that decompresses the high-pressure refrigerant that has flowed out of the radiator 12 during the heating operation.
  • the heating expansion valve 81 is an electric variable throttle mechanism that includes a valve body that can change the throttle opening degree and an electric actuator that changes the opening degree of the valve body. The heating expansion valve 81 adjusts the amount of decompression of the refrigerant by adjusting the opening area of the flow path through which the refrigerant flows.
  • bypass passage 82 One end of a bypass passage 82 is connected to the outlet side of the air heating radiator 80 and the inlet side of the heating expansion valve 81 via a third three-way joint 83.
  • the other end of the bypass channel 82 is connected to the outlet side of the radiator 12 and the inlet side of the first three-way joint 17 via a fourth three-way joint 84.
  • the bypass flow path 82 is a refrigerant flow path that guides the refrigerant flowing out of the air heating radiator 80 to the inlet side of the first three-way joint 17 by bypassing the heating expansion valve 81 and the radiator 12.
  • a bypass opening / closing valve 85 is disposed in the bypass channel 82.
  • the bypass opening / closing valve 85 is an electromagnetic valve that opens and closes the bypass flow path 82, and is controlled to open / close by a control signal output from the control device 50.
  • An evaporation pressure adjusting valve 86 is arranged on the outlet side of the second three-way joint 19.
  • the evaporating pressure adjusting valve 86 controls the refrigerant pressure at the outlet side of the first evaporator 14 and the outlet side of the second evaporator 16 in order to suppress frost formation of the first evaporator 14 and the second evaporator 16. It is a pressure adjusting unit that maintains a predetermined reference pressure or higher.
  • the evaporation pressure adjusting valve 86 is composed of a mechanical variable throttle mechanism that increases the valve opening as the refrigerant pressure on the outlet side of the first evaporator 14 increases. Thereby, the evaporation pressure regulating valve can maintain the refrigerant evaporation temperature in the first evaporator 14 as much as possible above the reference temperature at which frost formation of the first evaporator 14 can be suppressed.
  • An accumulator 87 is disposed on the outlet side of the evaporation pressure adjusting valve 86 and on the suction port side of the compressor 11.
  • the accumulator 87 is a gas-liquid separator that separates the gas-liquid of the refrigerant that has flowed into the accumulator 87 and stores excess refrigerant in the cycle.
  • the suction port side of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 87. Accordingly, the accumulator 87 prevents the liquid refrigerant from being sucked into the compressor 11 and prevents liquid compression in the compressor 11.
  • a check valve 88 is disposed on the outlet side of the radiator 12 and the inlet side of the fourth three-way joint 84.
  • the check valve 88 allows the refrigerant to flow from the outlet side of the radiator 12 to the inlet side of the fourth three-way joint 84, and flows the refrigerant from the inlet side of the fourth three-way joint 84 to the outlet side of the radiator 12. Is prohibited.
  • the check valve 88 can prevent the refrigerant joined from the bypass flow path 82 to the fourth three-way joint 84 from flowing back to the radiator 12 side.
  • One end of a heating flow path 89 is connected to the outlet side of the radiator 12 and the inlet side of the check valve 88 via a fifth three-way joint 90.
  • the other end of the heating flow path 89 is connected to the outlet side of the evaporation pressure adjusting valve 86 and the inlet side of the accumulator 87 via a sixth three-way joint 91.
  • the heating flow path 89 is a refrigerant flow path that guides the refrigerant flowing out of the radiator 12 to the inlet side of the accumulator 87 by bypassing the first expansion valve 13 and the first evaporator 14.
  • a heating on-off valve 92 is disposed in the heating channel 89.
  • the heating on-off valve 92 is an electromagnetic valve that opens and closes the heating flow path 89 and is controlled to open and close by a control signal output from the control device 50.
  • the heating expansion valve 81 Since the heating expansion valve 81 is fully opened and the bypass on-off valve 85 and the heating on-off valve 92 are closed, the refrigerant does not flow into the bypass passage 82 and the heating passage 89, so that the air cooling operation is performed as in the above embodiment. In addition, battery cooling operation can be performed.
  • the heating expansion valve 81 is set to a predetermined throttle opening, the bypass on-off valve 85 and the heating on-off valve 92 are closed, and the first expansion valve 13 is opened at a predetermined throttle opening, so that the compressor 11 and the air heating radiation
  • a refrigerant circuit through which refrigerant flows is formed in the order of the condenser 80, the heating expansion valve 81, the radiator 12, the first expansion valve 13, the first evaporator 14, the evaporation pressure adjusting valve 86, the accumulator 87, and the compressor 11.
  • the refrigerant absorbs heat in the radiator 12 and the first evaporator 14, and the refrigerant dissipates heat in the air heating radiator 80, so that the air that is blown into the passenger compartment is cooled and dehumidified by the first evaporator 14 before the heater core
  • the 1st dehumidification heating operation heated by 33 can be performed.
  • the battery 2 can also be cooled by opening the second expansion valve 15 at a predetermined throttle opening.
  • Two refrigerant circuits are formed by setting the heating expansion valve 81 to a predetermined throttle opening, opening the bypass on-off valve 85, closing the heating on-off valve 92, and opening the first expansion valve 13 at a predetermined throttle opening. Is done. That is, the compressor 11, the air heating radiator 80, the heating expansion valve 81, the radiator 12, the accumulator 87, the refrigerant circuit through which the refrigerant flows in this order, the compressor 11, the air heating radiator 80, A refrigerant circuit through which refrigerant flows is formed in the order of the first expansion valve 13, the first evaporator 14, the evaporation pressure adjusting valve 86, the accumulator 87, and the compressor 11.
  • heat is absorbed by the radiator 12 and the first evaporator 14 and is radiated by the air heating radiator 80, so that the air blown into the passenger compartment is cooled and dehumidified by the first evaporator 14 and then heated by the heater core 33.
  • the second dehumidifying and heating operation can be performed.
  • the temperature of the refrigerant flowing into the radiator 12 can be lowered as compared with the first dehumidifying and heating operation, so that the amount of heat absorbed from the outside air can be increased to increase the heating capacity.
  • the battery 2 can also be cooled by opening the second expansion valve 15 at a predetermined throttle opening.
  • the heating expansion valve 81 is set to a predetermined throttle opening, the bypass opening / closing valve 85 is closed, the heating opening / closing valve 92 is opened, and the first expansion valve 13 is closed, whereby the compressor 11, the air heating radiator 80, heating A refrigerant circuit through which refrigerant flows is formed in the order of the expansion valve 81, the radiator 12, the accumulator 87, and the compressor 11.
  • the radiator 12 absorbs heat and the air heating radiator 80 radiates heat, so that the air blown into the passenger compartment is heated by the heater core 33 without being cooled and dehumidified by the first evaporator 14. Can do.
  • the battery 2 can also be cooled by opening the second expansion valve 15 at a predetermined throttle opening.
  • the heating expansion valve 81 is fully opened, the bypass opening / closing valve 85, the heating opening / closing valve 92, and the first expansion valve 13 are closed, and the second expansion valve 15 is opened at a predetermined throttle opening, whereby the compressor 11, air heating is performed.
  • the refrigerant circuit through which the refrigerant flows is formed in the order of the radiator 80 for heating, the expansion valve 81 for heating, the radiator 12, the second expansion valve 15, the second evaporator 16, the evaporation pressure adjusting valve 86, the accumulator 87, and the compressor 11. .
  • the second evaporator 16 absorbs heat and the radiator 12 dissipates heat, so that the battery 2 can be cooled.
  • the air heating radiator 80 exchanges heat between the refrigerant discharged from the compressor 11 and the cooling water of the high-temperature cooling water circuit 40, but is not limited thereto.
  • the air heating radiator 80 is accommodated in the air conditioning case 31 instead of the heater core 33, and heat exchange is performed between the refrigerant discharged from the compressor 11 and the air that has passed through the first evaporator 14, The air that has passed through the first evaporator 14 may be heated.
  • the allowable temperature difference ⁇ TE can be finely changed according to the temperature of the battery 2, the superheat degree control and the capacity restriction control can be switched more appropriately.
  • R1234yf is adopted as the refrigerant
  • the refrigerant is not limited to this.
  • R134a, R600a, R410A, R404A, R32, R407C, etc. may be adopted. You may employ
  • Carbon dioxide may be employed as the refrigerant to constitute a supercritical refrigeration cycle in which the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant.
  • the temperature TE of the first evaporator 14 is detected by the first evaporator temperature sensor 57, but the temperature TE of the first evaporator 14 may be estimated.
  • the temperature TE of the first evaporator 14 may be substituted with a physical quantity such as pressure or volume.
  • the temperature of the refrigerant flowing through the first evaporator 14, the temperature of the air heat-exchanged by the first evaporator 14, and other various temperatures may also be detected or estimated by the temperature sensor. These temperatures may be substituted with physical quantities such as pressure and volume.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

空気冷却能力および電池冷却能力の両方を極力確保することを目的とする。制御部(50)は、第2蒸発器(16)の冷媒状態に基づいて第2膨張弁(15)の絞り開度を制御する第2蒸発器優先制御と、第1蒸発器(14)の温度、第1蒸発器(14)を流れる冷媒の温度、および第1蒸発器(14)で熱交換された空気の温度のうち少なくとも1つの温度に基づいて第2膨張弁(15)の絞り開度を制御する第1蒸発器優先制御とを切り替え可能になっており、第2蒸発器優先制御において、第1蒸発器(14)の温度、第1蒸発器(14)を流れる冷媒の温度、および第1蒸発器(14)で熱交換された空気の温度のうち少なくとも1つの温度が切替温度以上になると、第1蒸発器優先制御に切り替える。

Description

車両用冷凍サイクル装置 関連出願の相互参照
 本出願は、2018年6月8日に出願された日本特許出願番号2018-110428号に基づくもので、ここにその記載内容を援用する。
 本開示は、空気の冷却と電池の冷却とを行う車両用冷凍サイクル装置に関する。
 従来、特許文献1には、車室内へ送風される空気の冷却と電池の冷却とを行う車両用冷凍サイクル装置が記載されている。
 具体的には、空気冷却用蒸発器と電池冷却用熱交換器とが、冷媒流れにおいて互いに並列に配置されている。
特開2015-120505号公報
 しかしながら、上記従来技術によると、夏場の高速走行時などのように空気冷却に必要な能力および電池冷却に必要な能力の両方が大きくなると、それぞれの能力を満足できなくなる。
 例えば、空気冷却用蒸発器と電池冷却用熱交換器とに冷媒が互いに並列に流れるため、夏場に空気冷却を行っている状態で電池冷却を行うと、電池冷却を行わない場合に比べて空気冷却用蒸発器に流れる冷媒流量が少なくなり空気冷却性能が低下してしまう。
 その結果、車室内へ吹き出される空気の温度が上昇して冷房快適性に影響を及ぼしたり、除湿性能が低下して防曇性に影響を及ぼしたりしてしまう。また、電池が高温になって劣化が早まってしまう可能性もある。
 本開示は上記点に鑑みて、空気冷却能力および電池冷却能力の両方を極力確保することを目的とする。
 上記目的を達成するため、本開示の第1の態様では、圧縮機と放熱器と第1膨張弁と第2膨張弁と第1蒸発器と第2蒸発器と制御部とを備える。
 圧縮機は、冷媒を吸入して吐出する。放熱器は、圧縮機から吐出された冷媒から放熱させる。第1膨張弁および第2膨張弁は、放熱器で放熱された冷媒を減圧させ、冷媒の流れにおいて互いに並列に配置されている。第1蒸発器は、第1膨張弁で減圧された冷媒を、車室内に送風される空気と熱交換させて蒸発させる。第2蒸発器は、第2膨張弁で減圧された冷媒を、電池を冷却するための熱媒体と熱交換させて蒸発させる。制御部は、第2膨張弁の絞り開度を制御する。
 制御部は、第2蒸発器の冷媒状態に基づいて第2膨張弁の絞り開度を制御する第2蒸発器優先制御と、第1蒸発器の温度、第1蒸発器を流れる冷媒の温度、および第1蒸発器で熱交換された空気の温度のうち少なくとも1つの温度に基づいて第2膨張弁の絞り開度を制御する第1蒸発器優先制御とを切り替え可能になっている。、
 制御部は、第2蒸発器優先制御において、第1蒸発器の温度、第1蒸発器を流れる冷媒の温度、および第1蒸発器で熱交換された空気の温度のうち少なくとも1つの温度が切替温度以上になると、第1蒸発器優先制御に切り替える。
 これによると、第2蒸発器優先制御では、第2蒸発器による電池冷却能力を優先的に発揮できる。第1蒸発器優先制御では、第1蒸発器による空気冷却能力を優先的に発揮できる。
 そして、第2蒸発器優先制御において、第1蒸発器を流れる冷媒の温度、および第1蒸発器で熱交換された空気の温度のうち少なくとも1つの温度が切替温度以上になると、第1蒸発器優先制御に切り替えるので、第2蒸発器優先制御時に空気冷却能力が低下した場合、第1蒸発器優先制御に切り替えて、電池冷却能力よりも空気冷却能力を優先して確保できる。
第1実施形態における冷凍サイクル装置を示す全体構成図である。 第1実施形態における冷凍サイクル装置の電気制御部を示すブロック図である。 第1実施形態における冷凍サイクル装置の制御装置が実行する第1の制御処理を示すフローチャートである。 第1実施形態における冷凍サイクル装置の制御装置が実行する第2の制御処理を示すフローチャートである。 図4に示す第2の制御処理において許容温度差の算出に用いられる制御特性図である。 図4に示す第2の制御処理において第2膨張弁の開閉切替に用いられる制御特性図である。 第1実施形態における冷凍サイクル装置の作動例を示すタイムチャートである。 第2実施形態における冷凍サイクル装置を示す全体構成図である。 第2実施形態における冷凍サイクル装置の制御装置が実行する制御処理において許容温度差の算出に用いられる制御特性図である。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
 (第1実施形態)
 以下、実施形態について図に基づいて説明する。図1に示す冷凍サイクル装置10は車両用冷凍サイクル装置である。冷凍サイクル装置10は、エンジン1(換言すれば内燃機関)、および走行用電動モータから走行用の駆動力を得るハイブリッド車両に適用されている。
 本実施形態のハイブリッド車両は、いわゆるプラグインハイブリッド自動車として構成されている。したがって、本実施形態のハイブリッド車両は、車両停車時に外部電源(例えば、商用電源)から供給された電力を、車両に搭載された電池2に充電可能に構成されている。電池としては、例えば、リチウムイオン電池を用いることができる。
 ハイブリッド車両において、エンジン1から出力される駆動力は、車両走行用として用いられるだけではなく、発電機を作動させるためにも用いられる。そして、ハイブリッド車両は、発電機にて発電された電力、及び外部電源から供給された電力を、電池2に蓄えることができる、電池2に蓄えられた電力は、走行用電動モータだけではなく、ハイブリッド車両に搭載された各種車載機器に供給される。
 ハイブリッド車両は、走行開始時のように電池2の蓄電残量が予め定めた走行用基準残量以上になっているときには、EV走行モードで走行する。EV走行モードは、電池2の電力による走行用電動モータの駆動によって車両を走行させる走行モードを意味する。
 ハイブリッド車両は、車両走行中に電池2の蓄電残量が走行用基準残量よりも低くなっているときには、HV走行モードで走行する。HV走行モードは、主にエンジン1が出力する駆動力によって車両を走行させる走行モードであるが、車両走行負荷が高負荷となった際には、走行用電動モータを作動させてエンジン1を補助する。
 ハイブリッド車両は、このようにEV走行モードとHV走行モードとを切り替えることで、車両走行用の駆動力をエンジン1だけから得る通常の車両に対してエンジン1の燃料消費量を抑制して、車両燃費を向上させている。
 ハイブリッド車両において、EV走行モードとHV走行モードとの切り替えは、図2に示す車両制御装置70によって制御される。エンジン1は、ハイブリッド車両における動力装置である。
 冷凍サイクル装置10は、車両の車室内を冷房または除湿するため、車室内に吹き出される空気を冷却する。すなわち、冷凍サイクル装置10は、車両用空気冷却装置でもある。
 電池2のような二次電池は、劣化を促進させることなく充放電容量を充分に活かすために、適正温度帯で使用されることが望ましい。このため、冷凍サイクル装置10は、電池2の温度を適正温度帯内に維持するように、電池2を冷却する機能を有している。すなわち、冷凍サイクル装置10は、車両用電池冷却装置でもある。
 冷凍サイクル装置10は、蒸気圧縮式の冷凍サイクルにより、車室内へ送風される空気および電池2を冷却する。
 冷凍サイクル装置10は、空気冷却および電池冷却を行うために、空気冷却単独運転、電池冷却単独運転、空気電池冷却運転の冷媒回路を切り替え可能に構成されている。
 空気冷却単独運転では、空気冷却を行い、電池冷却を行わない。電池冷却単独運転では、空気冷却を行わず、電池冷却を行う。空気電池冷却運転では、空気冷却および電池冷却の両方を行う。
 図1では、空気冷却単独運転の冷媒回路における冷媒の流れを白抜き矢印で示している。電池冷却単独運転の冷媒回路における冷媒の流れを斜線ハッチング付き矢印で示している。空気電池冷却運転の冷媒回路における冷媒の流れを黒塗り矢印で示している。
 冷凍サイクル装置10では、冷媒としてHFC系冷媒(具体的には、R1234yf)が採用されており、圧縮機11から吐出された吐出冷媒の圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
 冷凍サイクル装置10は、圧縮機11、放熱器12、第1膨張弁13、第1蒸発器14、第2膨張弁15および第2蒸発器16を有している。
 圧縮機11は、冷凍サイクル装置10において冷媒を吸入し、圧縮して吐出する。圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて回転駆動する電動圧縮機により構成されている。
 圧縮機11における冷媒吐出能力(すなわち回転数)は、制御装置50から出力される制御信号によって制御される。圧縮機11は、車両ボンネット内に配置されている。
 圧縮機11の吐出口には、放熱器12の冷媒入口側が接続されている。放熱器12は、圧縮機11から吐出された高圧冷媒と、図2に示す外気ファン12aにより送風された車室外空気(以下、外気と言う。)とを熱交換させることによって高圧冷媒を凝縮させる室外熱交換器である。放熱器12は、車両ボンネット内の前方側に配置されている。
 外気ファン12aは、電動式の送風機によって構成されている。外気ファン12aの送風能力(すなわち回転数)は、制御装置50から出力される制御電圧によって制御される。
 放熱器12の冷媒出口側には、第1三方継手17の流入口側が接続されている。第1三方継手17は、互いに連通する3つの流入出口を有している。例えば、第1三方継手17は、複数の配管を接合して形成されている。第1三方継手17は、金属ブロックや樹脂ブロックに複数の冷媒通路を設けることによって形成されていてもよい。
 第1三方継手17の一方の流出口には、第1膨張弁13の入口側が接続されている。第1三方継手17の他方の流出口には、第2膨張弁15の入口側が接続されている。
 第1膨張弁13は、空気冷却単独運転時または空気電池冷却運転時に、放熱器12から流出した高圧冷媒を減圧させる第1減圧部である。第1膨張弁13は、絞り開度を変更可能に構成された弁体と、弁体の開度を変化させる電動アクチュエータとを有して構成される電気式の可変絞り機構である。第1膨張弁13は、冷媒が流れる流路の開口面積を調整することによって冷媒の減圧量を調整する。
 第2膨張弁15の基本的構成は、第1膨張弁13と同様である。これらの第1膨張弁13、第2膨張弁15は、弁開度を全開にすることで流量調整作用および冷媒減圧作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能、および弁開度を全閉にすることで冷媒通路を閉塞する全閉機能を有している。
 全開機能および全閉機能によって、第1膨張弁13、第2膨張弁15は、上述した各運転の冷媒回路を切り替えることができる。したがって、第1膨張弁13、第2膨張弁15は、冷媒回路切替装置としての機能を兼ね備えている。第1膨張弁13および第2膨張弁15は、制御装置50から出力される制御信号(例えば制御パルス)によって制御される。
 第1膨張弁13の出口側には、第1蒸発器14の冷媒入口側が接続されている。第1蒸発器14は、室内空調ユニット30の空調ケース31内に配置されている。
 第1蒸発器14は空気冷却器である。第1蒸発器14は、空気冷却単独運転時または空気電池冷却運転時に、第1膨張弁13にて減圧された低圧冷媒と送風機32から送風された空気とを熱交換させて低圧冷媒を蒸発させ、低圧冷媒に吸熱作用を発揮させることによって空気を冷却する。
 第1蒸発器14の出口側には、第2三方継手19の一方の流入口側が接続されている。第2三方継手19の基本的構成は、第1三方継手17と同様である。第2三方継手19の他方の流入口側には、第2蒸発器16の出口側が接続されている。第2三方継手19の流出口には、圧縮機11の吸入口側が接続されている。
 第2膨張弁15の出口側には、第2蒸発器16の冷媒入口側が接続されている。第2蒸発器16は、第2膨張弁15を流出した低圧冷媒に低温冷却水回路20の冷却水から吸熱させることによって低圧冷媒を蒸発させる蒸発器である。第2蒸発器16の冷媒出口側には、第2三方継手19の他方の流入口側が接続されている。
 低温冷却水回路20は、冷凍サイクル装置10の第2蒸発器16や電池用熱交換器21とラジエータ22との間で、熱媒体を循環させる熱媒体回路である。低温冷却水回路20における熱媒体としては、冷却水が用いられている。冷却水としては、例えば、水やエチレングリコール水溶液等を採用することができる。
 低温冷却水回路20には、低温冷却水ポンプ23、第2蒸発器16、電池用熱交換器21およびラジエータ22が配置されている。低温冷却水回路20では、冷却水流路によって、これらの構成機器が接続されている。低温冷却水回路20は、冷却水が循環可能な閉回路を構成している。
 低温冷却水ポンプ23は、冷却水を吸い込んで圧送する水ポンプである。電池用熱交換器21は、低温冷却水回路20の冷却水に電池2から吸熱させることによって電池2を冷却する熱交換器である。ラジエータ22は、低温冷却水回路20の冷却水と外気とを熱交換させることによって低温冷却水回路20の冷却水から放熱させる熱交換器である。ラジエータ22は、車両ボンネット内の前方側に配置されている。ラジエータ22には、外気ファン12aにより外気が送風される。
 低温冷却水回路20は、バイパス流路24と三方弁25とを有している。バイパス流路24は、冷却水がラジエータ22に対して並列に流れる冷却水流路である。三方弁25は、冷却水がラジエータ22を流れてバイパス流路24を流れない状態と、冷却水がラジエータ22を流れずにバイパス流路24を流れる状態とを切り替える電磁弁である。三方弁25の作動は、制御装置50によって制御される。
 冷凍サイクル装置10は、図示しないレシーバ、または図示しないアキュムレータを備えている。レシーバは、放熱器12で放熱して凝縮した冷媒を蓄える。アキュムレータは、第1蒸発器14および第2蒸発器16から流出した冷媒の気液を分離して、サイクル内の余剰液相冷媒を蓄える気液分離器である。
 室内空調ユニット30は、車両の車室内へ空気を送風する。室内空調ユニット30は、冷凍サイクル装置10によって温度調整された空気を車室内へ吹き出す。室内空調ユニット30は、車室内最前部の計器盤(換言すれば、インストルメントパネル)の内側に配置されている。
 室内空調ユニット30は、その外殻を形成する空調ケース31に、送風機32、第1蒸発器14、ヒータコア33等を収容して構成されている。すなわち、室内空調ユニット30において、第1蒸発器14、ヒータコア33等は、空調ケース31の内部に形成された空気通路に配置されている。
 空調ケース31は、車室内に送風される空気の空気通路を形成している。空調ケース31は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)によって成形されている。
 空調ケース31における空気流れの最上流側には、内外気切替装置34が配置されている。内外気切替装置34は、空調ケース31内へ内気(すなわち車室内空気)と外気(すなわち車室外空気)とを切替導入する。
 内外気切替装置34は、空調ケース31内へ内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の導入風量と外気の導入風量との導入割合を変化させる。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動される。電動アクチュエータは、制御装置50から出力される制御信号によって制御される。
 内外気切替装置34の空気流れ下流側には、送風機32が配置されている。送風機32は、遠心多翼ファンを電動モータにて駆動する電動送風機によって構成されている。送風機32は、内外気切替装置34を介して吸入した空気を車室内へ向けて送風する。そして、送風機32の送風能力(すなわち回転数)は、制御装置50から出力される制御電圧によって制御される。
 送風機32の空気流れ下流側には、第1蒸発器14、ヒータコア33が、空気流れに対して、この順に配置されている。つまり、第1蒸発器14は、ヒータコア33よりも、空気流れ上流側に配置されている。
 ヒータコア33は、高温冷却水回路40を循環する冷却水と第1蒸発器14を通過した空気とを熱交換させて、空気を加熱する加熱用熱交換器である。
 空調ケース31内の第1蒸発器14の空気流れ下流側であって、かつ、ヒータコア33の空気流れ上流側には、エアミックスドア35が配置されている。
 エアミックスドア35は、第1蒸発器14通過後の空気のうち、ヒータコア33を通過する空気と、ヒータコア33をバイパスして流れる空気との風量割合を調整する風量割合調整部である。
 エアミックスドア35は、エアミックスドア用の電動アクチュエータによって駆動される。電動アクチュエータは、制御装置50から出力される制御信号によって制御される。
 ヒータコア33の空気流れ下流側には、混合空間が設けられている。混合空間は、ヒータコア33を通過した温風と、ヒータコア33をバイパスして流れた冷風とを混合させるための空間である。
 空調ケース31における空気流れの下流部には、混合空間にて混合された空気(すなわち空調風)を、空調対象空間である車室内へ吹き出すための開口部が配置されている。
 開口部としては、フェイス開口部、フット開口部、及びデフロスタ開口部(いずれも図示せず)が設けられている。フェイス開口部は、車室内の乗員の上半身に向けて空調風を吹き出すための開口部である。フット開口部は、乗員の足元に向けて空調風を吹き出すための開口部である。デフロスタ開口部は、車両前面窓ガラス内側面に向けて空調風を吹き出すための開口部である。
 これらのフェイス開口部、フット開口部、及びデフロスタ開口部は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口及びデフロスタ吹出口(いずれも図示せず)に接続されている。
 エアミックスドア35が、ヒータコア33を通過させる空気とヒータコア33をバイパスさせる空気との風量割合を調整することによって、混合空間にて混合される空調風の温度が調整される。これにより、各吹出口から車室内へ吹き出される空気(換言すれば空調風)の温度が調整されることになる。
 フェイス開口部、フット開口部およびデフロスタ開口部の空気流れ上流側には、それぞれ、フェイスドア、フットドアおよびデフロスタドアが配置されている。フェイスドアは、フェイス開口部の開口面積を調整する。フットドアは、フット開口部の開口面積を調整する。デフロスタドアは、デフロスタ開口部の開口面積を調整する。
 これらのフェイスドア、フットドア、デフロスタドアは、吹出口モードを切り替える吹出口モード切替装置である。これらのドアは、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。電動アクチュエータは、制御装置50から出力される制御信号によって制御される。
 吹出口モード切替装置によって切り替えられる吹出口モードとしては、具体的に、フェイスモード、バイレベルモード、フットモード等がある。
 フェイスモードは、フェイス吹出口を全開としてフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出す吹出口モードである。バイレベルモードは、フェイス吹出口とフット吹出口の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出す吹出口モードである。フットモードは、フット吹出口を全開にすると共にデフロスタ吹出口を小開度だけ開口して、フット吹出口から主に空気を吹き出す吹出口モードである。
 乗員が、図2に示す操作パネル62に設けられた吹出モード切替スイッチをマニュアル操作することによって、デフロスタモードにすることもできる。デフロスタモードは、デフロスタ吹出口を全開としてデフロスタ吹出口から車両フロント窓ガラス内面に空気を吹き出す吹出口モードである。
 高温冷却水回路40は、エンジン1とヒータコア33との間で熱媒体を循環させる熱媒体回路である。高温冷却水回路40における熱媒体としては、冷却水が用いられている。冷却水としては、例えば、水やエチレングリコール水溶液等を採用することができる。
 高温冷却水回路40には、高温冷却水ポンプ41、エンジン1およびヒータコア33が配置されている。高温冷却水回路40では、冷却水流路によって、これらの構成機器が接続されている。高温冷却水回路40は、冷却水が循環可能な閉回路を構成している。
 高温冷却水ポンプ41は、冷却水を吸い込んで圧送する水ポンプである。高温冷却水回路40の冷却水がエンジン1を循環することによって、エンジン1が冷却され、高温冷却水回路40の冷却水が加熱される。ヒータコア33は、エンジン1で加熱された冷却水と、室内空調ユニット30内の第1蒸発器14を通過した空気とを熱交換させて、空気を加熱する。
 例えば電気自動車のようにエンジンを有さない車両においては、エンジン1の代わりに水加熱ヒータが高温冷却水回路40に配置されていてもよい。水加熱ヒータは、例えば、PTC素子やニクロム線等を有しており、電力が供給されることによって発熱して冷却水を加熱する。
 次に、冷凍サイクル装置10の電気制御部について説明する。図2に示すように、冷凍サイクル装置10は、制御装置50を有している。制御装置50は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。
 制御装置50は、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された各種制御対象機器を制御する。制御対象機器は、圧縮機11、外気ファン12a、第1膨張弁13、第2膨張弁15、低温冷却水ポンプ23、三方弁25、送風機32、高温冷却水ポンプ41等を含んでいる。
 制御装置50の入力側には、冷凍サイクル装置10による運転制御に用いられる各種空調センサ群が接続されている。そして、制御装置50には、これらの空調センサ群の検出信号が入力される。
 図2に示すように、空調センサ群は、内気温センサ51、外気温センサ52、日射センサ53、吐出冷媒温度センサ54、放熱器出口圧力センサ55、放熱器出口温度センサ56、第1蒸発器温度センサ57、第1蒸発器出口温度センサ58、第2蒸発器出口圧力センサ59、第2蒸発器出口温度センサ60、冷却水温度センサ61等を含んでいる。
 内気温センサ51は、車室内温度Tr(以下、内気温と言う。)を検出する内気温検出部である。外気温センサ52は、車室外温度Tam(以下、外気温と言う。)を検出する外気温検出部である。日射センサ53は、車室内へ照射される日射量Asを検出する日射量検出部である。
 吐出冷媒温度センサ54は、圧縮機11から吐出された冷媒の吐出温度を検出する吐出冷媒温度検出部である。放熱器出口圧力センサ55は、放熱器12から流出した冷媒の圧力を検出する放熱器出口圧力検出部である。放熱器出口温度センサ56は、放熱器12から流出した冷媒の温度T3を検出する放熱器出口温度検出部である。
 第1蒸発器温度センサ57は、第1蒸発器14における冷媒蒸発温度TE(以下、第1蒸発器14の温度TEと言う。)を検出する蒸発器温度検出部である。例えば、第1蒸発器温度センサ57は、第1蒸発器14のフィン温度を検出する。
 第1蒸発器出口温度センサ58は、第1蒸発器14から流出した冷媒の温度を検出する第1蒸発器出口温度検出部である。
 第2蒸発器出口圧力センサ59は、第2蒸発器16から流出した冷媒の圧力を検出する第2蒸発器出口圧力検出部である。第2蒸発器出口温度センサ60は、第2蒸発器16から流出した冷媒の温度を検出する第2蒸発器出口温度検出部である。
 冷却水温度センサ61は、電池用熱交換器21に流入する冷却水の温度を検出する冷却水温度検出部である。
 図3に示すように、制御装置50の入力側には、操作パネル62が接続されている。操作パネル62は、車室内前部の計器盤付近に配置されており、各種操作スイッチを有している。したがって、制御装置50には、各種操作スイッチからの操作信号が入力される。
 操作パネル62における各種操作スイッチは、温度設定スイッチ62aの他、オートスイッチ、エアコンスイッチ、風量設定スイッチ、吹出モード切替スイッチ等を含んでいる。
 温度設定スイッチ62aは、車室内の目標温度Tsetを設定する際に操作される。オートスイッチは、冷凍サイクル装置10の自動制御運転を設定・解除する際に操作される。
 エアコンスイッチは、冷凍サイクル装置10により車室内へ送風される空気の冷却を行うことを要求する際に操作される。風量設定スイッチは、送風機32の風量をマニュアル設定する際に操作される。吹出モード切替スイッチは、冷凍サイクル装置10における吹出モードをマニュアル設定する際に操作される。
 制御装置50の入力側には、車両制御装置70が接続されている。上述したように、ハイブリッド車両において、車両制御装置70がEV走行モードとHV走行モードとの切り替え制御を行う。したがって、制御装置50には、ハイブリッド車両の走行モード(すなわち、HV走行モード又はEV走行モード)を示す走行モード信号が入力される。
 車両制御装置70は、電池温度センサ71が検出した電池2の温度に基づいて電池2を冷却する必要があるか否かを判定し、その判定結果を制御装置50に出力する。したがって、制御装置50には、電池2を冷却する必要があるか否かを示す信号が入力される。
 車両制御装置70は、電池温度センサ71が検出した電池2の温度も制御装置50に出力する。したがって、制御装置50には、電池温度センサ71が検出した電池2の温度も入力される。
 制御装置50には、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されている。制御装置50の各制御部は、それぞれの制御対象機器を制御する構成(ハードウェア及びソフトウェア)は、それぞれの制御対象機器を制御する。
 例えば、制御装置50は、圧縮機制御部50a、絞り制御部50b、三方弁制御部50cである。圧縮機制御部50aは、制御装置50のうち圧縮機11を制御する構成である。絞り制御部50bは、制御装置50のうち第1膨張弁13および第2膨張弁15を制御する構成である。三方弁制御部50cは、制御装置50のうち三方弁25を制御する構成である。
 続いて、冷凍サイクル装置10の各運転モードについて説明する。上述したように、冷凍サイクル装置10は、車室内へ送風される空気の冷却と、電池2の冷却とを行うことができる。
 冷凍サイクル装置10は、車室内へ送風される空気の冷却と電池2の冷却とのために、空気冷却単独運転、電池冷却単独運転、空気電池冷却運転を切り替える。
 冷凍サイクル装置10の各運転モードの切り替えは、制御プログラムが実行されることによって行われる。制御プログラムは、車両のイグニッションスイッチが投入された際に実行される。
 空気冷却単独運転では、第1膨張弁13を所定の絞り開度で開け、第2膨張弁15を閉じる。これにより、図1の白抜き矢印に示すように冷媒が流れる。すなわち、第1蒸発器14に第1膨張弁13で減圧された冷媒が流れ、第2蒸発器16に冷媒が流れない。したがって、冷凍サイクル装置10によって車室内へ送風される空気が冷却され、冷凍サイクル装置10による電池2の冷却が行われない。
 電池冷却単独運転では、第1膨張弁13を閉じ、第2膨張弁15を所定の絞り開度で開ける。さらに、低温冷却水ポンプ23を作動させる。これにより、図1の斜線ハッチング付き矢印に示すように冷媒が流れる。すなわち、第1蒸発器14に冷媒が流れず、第2蒸発器16に第2膨張弁15で減圧された冷媒が流れるので、冷凍サイクル装置10による空気の冷却が行われず、冷凍サイクル装置10によって電池2が冷却される。
 空気電池冷却運転では、第1膨張弁13を所定の絞り開度で開け、第2膨張弁15を所定の絞り開度で開ける。さらに、低温冷却水ポンプ23を作動させる。これにより、図1の黒塗り矢印に示すように冷媒が流れる。すなわち、第1蒸発器14に第1膨張弁13で減圧された冷媒が流れ、第2蒸発器16に第2膨張弁15で減圧された冷媒が流れるので、冷凍サイクル装置10によって車室内へ送風される空気が冷却され、冷凍サイクル装置10によって電池2が冷却される。
 空気冷却単独運転および空気電池冷却運転では、空調制御プログラムが実行される。より具体的には、空調制御プログラムのメインルーチンでは、上述の空調制御用のセンサ群の検出信号及び各種空調操作スイッチからの操作信号を読み込む。そして、読み込んだ検出信号および操作信号の値に基づいて、車室内へ吹き出す吹出空気の目標温度である目標吹出温度TAOを、数式F1に基づいて算出する。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×As+C…(F1)
 数式F1において、Tsetは温度設定スイッチ62aによって設定された車室内の目標温度(換言すれば車室内設定温度)である。数式F1において、Trは内気温センサ51によって検出された内気温である。数式F1において、Tamは外気温センサ52によって検出された外気温である。数式F1において、Asは日射センサ53によって検出された日射量である。数式F1において、Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
 空気冷却単独運転および空気電池冷却運転では、制御装置50は、第1膨張弁13については、減圧作用を発揮する絞り状態とし、第2膨張弁15を全閉状態にする。
 これにより、冷房モードの冷凍サイクル装置10においては、図1の白抜き矢印に示すように、圧縮機11、放熱器12、第1膨張弁13、第1蒸発器14、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
 このサイクル構成で、制御装置50は、圧縮機11の冷媒吐出能力(すなわち、圧縮機11の電動モータへ出力される制御信号)を決定する。具体的には、第1蒸発器14の温度TEが目標蒸発器温度TEOとなるように、圧縮機11を制御する。
 目標蒸発器温度TEOは、目標吹出温度TAOに基づいて、予め制御装置50に記憶されている制御マップを参照して決定される。制御マップでは、目標吹出温度TAOの低下に伴って、目標蒸発器温度TEOが低下するように決定される。さらに、目標蒸発器温度TEOは、第1蒸発器14の着霜を抑制可能な範囲(具体的には、1℃以上)で決定される。
 上述したように、冷凍サイクル装置10は、図示しないレシーバ、または図示しないアキュムレータを備えている。
 冷凍サイクル装置10がレシーバを備えている場合、制御装置50は、第1蒸発器14から流出した冷媒の過熱度が目標過熱度となるように、第1膨張弁13の絞り開度を調整する。目標過熱度は、第1蒸発器14から流出した冷媒の圧力、および第1蒸発器14から流出した冷媒の温度に基づいて、予め制御装置50に記憶されている制御マップを参照して決定される。制御マップでは、サイクルの成績係数COPが極大値に近づくように目標過熱度が決定される。
 冷凍サイクル装置10がレシーバを備えている場合、第1膨張弁13は温度式膨張弁であってもよい。
 冷凍サイクル装置10がアキュムレータを備えている場合、制御装置50は、第1膨張弁13へ流入する冷媒の過冷却度が目標過冷却度となるように、第1膨張弁13の絞り開度を調整する。目標過冷却度は、放熱器12から流出した冷媒の圧力、および放熱器12から流出した冷媒の温度に基づいて、予め制御装置50に記憶されている制御マップを参照して決定される。制御マップでは、サイクルの成績係数COPが極大値に近づくように目標過冷却度が決定される。
 このようにして、空気冷却単独運転および空気電池冷却運転では、第1蒸発器14にて冷媒が蒸発する際に空気から吸熱した熱を放熱器12にて外気に放熱する。これにより、第1蒸発器14にて空気を冷却することができる。
 制御装置50が実行する制御処理を図3に示すフローチャートに基づいて説明する。ステップS100では、操作パネル62のエアコンスイッチがオンされているか否かを判定する。
 ステップS100にて、エアコンスイッチがオンされていないと判定した場合、ステップS110に進み、電池制御装置75からの電池冷却要求があるか否かを判定する。
 ステップS110にて、電池制御装置75からの電池冷却要求がないと判定した場合、空気冷却および電池冷却の両方が必要ないことから、ステップS120へ進み、冷凍サイクル装置10を作動させない。具体的には、圧縮機11を作動させずに停止させる。
 一方、ステップS110にて、電池制御装置75からの電池冷却要求があると判定した場合、空気冷却は必要ないが電池冷却が必要であることから、ステップS130へ進み、電池冷却単独運転を行うことを決定する。
 ステップS130にて電池冷却単独運転を行うことが決定されると、ステップS170へ進み、電池冷却水温が外気温を上回っているか否かを判定する。ステップS170にて電池冷却水の温度が外気の温度を上回っていないと判定した場合、電池冷却水を外気で冷却することができず、電池冷却水を第2蒸発器16で冷却する必要があることから、ステップS180へ進み、冷媒を利用した冷却水の冷却を行う。
 具体的には、冷凍サイクル装置10を作動させるとともに、第1膨張弁13を閉じて第1蒸発器14に冷媒を流さないようにし、第2膨張弁15を所定の絞り開度で開けて第2蒸発器16に冷媒を流すようにする。さらに、低温冷却水ポンプ23を作動させるとともに、第2蒸発器16と電池用熱交換器21との間で冷却水が循環するように三方弁25を制御する。これにより、第1蒸発器14にて空気冷却が行われることなく、第2蒸発器16にて電池冷却水の冷却が行われる。したがって、空気冷却が行われることなく、電池2が冷却される。
 一方、ステップS170にて電池冷却水の温度が外気の温度を上回っていると判定した場合、ステップS190へ進み、ラジエータ22にて外気を利用した冷却水の冷却を行っても電池冷却量が不足しているか否かを判定する。
 例えば、ラジエータ22にて外気を利用した冷却水の冷却を行っても電池2の温度または低温冷却水回路の冷却水温度が上昇傾向にある場合、電池冷却量が不足していると判定する。
 ステップS190にてラジエータ22にて外気を利用した冷却水の冷却を行えば電池冷却量が不足しないと判定した場合、ステップS200へ進み、外気を利用した冷却水の冷却を行う。
 具体的には、冷凍サイクル装置10を作動させないことによって、第1蒸発器14および第2蒸発器16の両方に冷媒を流さないようにする。さらに、低温冷却水ポンプ23を作動させるとともに、ラジエータ22と電池用熱交換器21との間で冷却水が循環するように三方弁25を制御する。これにより、第1蒸発器14にて空気冷却が行われることなく、ラジエータ22にて電池冷却水が外気で冷却される。したがって、空気冷却が行われることなく、外気を利用した電池2の冷却が行われる。
 一方、ステップS190にてラジエータ22にて外気を利用した冷却水の冷却を行っても電池冷却量が不足すると判定した場合、ステップS210へ進み、外気および冷媒を利用した冷却水の冷却を行う。
 具体的には、冷凍サイクル装置10を作動させるとともに、第1膨張弁13を閉じて第1蒸発器14に冷媒を流さないようにし、第2膨張弁15を所定の絞り開度で開けて第2蒸発器16に冷媒を流すようにする。さらに、低温冷却水ポンプ23を作動させるとともに、第2蒸発器16およびラジエータ22と電池用熱交換器21との間で冷却水が循環するように三方弁25を制御する。
 このとき、第2蒸発器16によって冷却される冷却水の目標温度は、ラジエータ22の入口冷却水温度が外気温度以上になるように決定される。ラジエータ22で外気から吸熱することを防止するためである。目標温度は、例えば、外気温度、冷却水流量および電池発熱量に基づいて算出される。
 これにより、第1蒸発器14にて空気冷却が行われることなく、第2蒸発器16およびラジエータ22にて冷却水の冷却も行われる。したがって、空気冷却が行われることなく、外気および冷媒を利用した電池2の冷却が行われる。
 一方、ステップS100にて、エアコンスイッチがオンされていると判定した場合、ステップS140に進み、電池制御装置75からの電池冷却要求があるか否かを判定する。
 ステップS140にて、電池制御装置75からの電池冷却要求がないと判定した場合、空気冷却は必要であるが電池冷却は必要ないことから、ステップS150へ進み、冷凍サイクル装置10を作動させて空調単独運転を行う。
 一方、ステップS140にて、電池制御装置75からの電池冷却要求があると判定した場合、空気冷却および電池冷却の両方が必要であることから、ステップS160へ進み、冷凍サイクル装置10を作動させて空気電池冷却運転を行うことを決定する。
 ステップS160にて空気電池冷却運転を行うことが決定されると、ステップS170へ進み、電池冷却水温が外気温を上回っているか否かを判定する。ステップS170にて電池冷却水の温度が外気の温度を上回っていないと判定した場合、電池冷却水を外気で冷却することができず、電池冷却水を第2蒸発器16で冷却する必要があることから、ステップS180へ進み、冷媒を利用した冷却水の冷却を行う。
 具体的には、第1膨張弁13および第2膨張弁15の両方を所定の絞り開度で開けて、第1蒸発器14および第2蒸発器16の両方に冷媒を流すようにする。さらに、低温冷却水ポンプ23を作動させるとともに、第2蒸発器16と電池用熱交換器21との間で冷却水が循環するように三方弁25を制御する。これにより、第1蒸発器14にて空気冷却が行われ、第2蒸発器16にて電池冷却水の冷却も行われる。したがって、空気冷却および電池2の冷却の両方が行われる。
 一方、ステップS170にて電池冷却水の温度が外気の温度を上回っていると判定した場合、ステップS190へ進み、ラジエータ22にて外気を利用した冷却水の冷却を行っても電池冷却量が不足しているか否かを判定する。
 例えば、ラジエータ22にて外気を利用した冷却水の冷却を行っても電池2の温度または低温冷却水回路の冷却水温度が上昇傾向にある場合、電池冷却量が不足していると判定する。
 ステップS190にてラジエータ22にて外気を利用した冷却水の冷却を行えば電池冷却量が不足しないと判定した場合、ステップS200へ進み、冷凍サイクル装置10を作動させて空気冷却を行うとともに、外気を利用した冷却水の冷却を行う。
 具体的には、第1膨張弁13を所定の絞り開度で開けて第1蒸発器14に冷媒を流し、第2膨張弁15を閉じて第2蒸発器16に冷媒を流さないようにする。さらに、低温冷却水ポンプ23を作動させるとともに、ラジエータ22と電池用熱交換器21との間で冷却水が循環するように三方弁25を制御する。これにより、第1蒸発器14にて空気冷却が行われ、ラジエータ22にて電池冷却水が外気で冷却される。したがって、空気冷却が行われるとともに、外気を利用した電池2の冷却が行われる。
 一方、ステップS190にてラジエータ22にて外気を利用した冷却水の冷却を行っても電池冷却量が不足すると判定した場合、ステップS210へ進み、冷凍サイクル装置10を作動させて空気冷却を行うとともに、外気および冷媒を利用した冷却水の冷却を行う。
 具体的には、第1膨張弁13および第2膨張弁15の両方を所定の絞り開度で開けて、第1蒸発器14および第2蒸発器16の両方に冷媒を流すようにする。さらに、低温冷却水ポンプ23を作動させるとともに、第2蒸発器16およびラジエータ22と電池用熱交換器21との間で冷却水が循環するように三方弁25を制御する。
 このとき、第2蒸発器16によって冷却される冷却水の目標温度は、ラジエータ22の入口冷却水温度が外気温度以上になるように決定される。ラジエータ22で外気から吸熱することを防止するためである。目標温度は、例えば、外気温度、冷却水流量および電池発熱量に基づいて算出される。
 これにより、第1蒸発器14にて空気冷却が行われ、第2蒸発器16およびラジエータ22にて冷却水の冷却も行われる。したがって、空気冷却が行われるとともに、外気および冷媒を利用した電池2の冷却が行われる。
 空気電池冷却運転において、ステップS180にて冷媒を利用した冷却水の冷却を行う場合、またはステップS210にて外気および冷媒を利用した冷却水の冷却を行う場合、図4に示すステップS300~S350の第2膨張弁制御を行う。
 ステップS300では、空気冷却に余力があるか否かを判定する。具体的には、第1蒸発器14の温度TEが所定蒸発器温度αを下回っているか否かを判定する。所定蒸発器温度αは、目標蒸発器温度TEOに近い温度である。
 ステップS300にて空気冷却に余力がないと判定した場合、空気の冷却を電池の冷却よりも優先させるために、第2膨張弁15を閉じる。これにより、第1蒸発器14にて空気冷却が行われ、第2蒸発器16による冷却水の冷却は行われない。
 一方、ステップS300にて空気冷却に余力があると判定した場合、第2膨張弁15の初期開度制御を行う。
 具体的には、第2膨張弁15の初期開度制御では、第2膨張弁15を所定の初期開度にする。所定の初期開度は、空気冷却への影響が極力小さくなる第2膨張弁15の開度である。換言すれば、所定の初期開度は、空気冷却への影響が大きくなる第2膨張弁15の開度よりも小さい開度である。
 これにより、第2膨張弁15を開けて第2蒸発器16に冷媒が流れるようになった時に、第1蒸発器14に流れる冷媒が大きく減少することを抑制できる。したがって、第1蒸発器14での熱交換量が減少して第1蒸発器14で冷却された空気の温度が大きく変動することを抑制できる。
 第2膨張弁15の初期開度制御では、第2膨張弁15の絞り開度を所定の開弁速度にて徐々に大きくするようにしてもよい。開弁速度とは、単位時間当たりの絞り開度の増加量である。所定の開弁速度は、空気冷却への影響が極力小さくなる第2膨張弁15の開弁速度である。換言すれば、所定の開弁速度は、空気冷却への影響が大きくなる第2膨張弁15の開弁速度よりも小さい開弁速度である。
 これにより、第2膨張弁15を開けて第2蒸発器16に冷媒が流れるようになった時に第1蒸発器14に流れる冷媒が大きく減少することを抑制できる。したがって、第1蒸発器14での熱交換量が減少して第1蒸発器14で冷却された空気の温度が大きく変動することを抑制できる。
 続くステップS330では、電池冷却による空気冷却への影響があるか否かを判定する。具体的には、圧縮機11の回転数NCが所定回転数NC1を超えており、かつ第1蒸発器14の温度TEから目標蒸発器温度TEOを減じた差TE-TEOが許容温度差ΔTEを超えているか否かを判定する。
 図5に示すように、許容温度差ΔTEは、電池冷却要求のレベル(換言すれば、電池2の温度)に基づいて算出される。
 電池2の温度が高いほど、電池冷却要求のレベルは高くされる。電池冷却要求のレベルが高いほど、許容温度差ΔTEが大きな値に決定される。電池冷却要求のレベルが高いほど、許容温度差ΔTEは階段状に大きな値になる。電池2の温度が非常に高くなって電池冷却要求のレベルが非常に高くなった緊急時には、電池単独運転に移行する。
 図5中、電池温度TB1、TB2、TB3、TB4は、TB1<TB2<TB3<TB4の関係になっている。電池温度TB1は、電池2の調整温度範囲(例えば10~40℃)の最大温度に近い温度である。例えば、電池2の調整温度範囲が10~40℃である場合、電池温度TB1は、約40℃である。電池温度TB4は、電池2の上限温度(例えば50℃)に近い温度である。
 図5中、許容温度差ΔTE1、ΔTE2、ΔTE3は、ΔTE1<ΔTE2<ΔTE3の関係になっている。許容温度差ΔTE1は、例えば3℃である。許容温度差ΔTE3は、例えば12℃である。
 ステップS330にて、電池冷却による空気冷却への影響がないと判定した場合、ステップS340へ進み、第2膨張弁15に対して過熱度制御を行う。具体的には、第2蒸発器16の出口冷媒の過熱度が所定過熱度になるように第2膨張弁15の開度の増加量を決定して、第2膨張弁15の開度を制御する。すなわち、過熱度制御は、第2蒸発器16の冷却能力を優先して第2膨張弁15を制御する第2蒸発器優先制御である。
 制御装置50は、第2蒸発器16の出口冷媒の圧力および温度から、第2蒸発器16の出口冷媒の過熱度を算出する。第2蒸発器16の入口冷媒と出口冷媒との温度差から、第2蒸発器16の出口冷媒の過熱度を算出してもよい。
 このとき、圧縮機11の回転数は、第1蒸発器14の温度TEが目標蒸発器温度TEOになるように制御される。
 一方、ステップS330にて、電池冷却による空気冷却への影響があると判定した場合、ステップS350へ進む。ステップS350では、第2膨張弁15として、過熱度制御による第2膨張弁15の開度変化量と、能力制限制御による第2膨張弁15の開度変化量とのうち小さい方の開度変化量を選択する。
 能力制限制御では、第1蒸発器14の温度TEと目標蒸発器温度TEOとの差に応じて第2膨張弁15の開度の増加量を決定して、第2膨張弁15の開度を制御する。すなわち、能力制限制御は、第1蒸発器14の冷却能力を優先して第2膨張弁15を制御する第1蒸発器優先制御である。
 具体的には、第1蒸発器14の温度TEと目標蒸発器温度TEOとの差が0である場合、第2膨張弁15の開度の増加量を0にする。第1蒸発器14の温度TEと目標蒸発器温度TEOとの差が小さいほど、第2膨張弁15の開度の増加量を大きくする。第1蒸発器14の温度TEと目標蒸発器温度TEOとの差が大きいほど、第2膨張弁15の開度の増加量を小さくする。
 これにより、第1蒸発器14の温度TEと目標蒸発器温度TEOとの差が大きいほど第2蒸発器16の冷却能力を制限するような第2膨張弁15の開度の増加量を決定できる。
 ステップS340およびS350では、図6に示す第2膨張弁15の開閉制御も行う。図6中、目標水温とは、低温冷却水回路20の冷却水の目標温度のことであり、実水温は、低温冷却水回路20の冷却水の実際の温度のことである。
 すなわち、低温冷却水回路20の冷却水の目標温度から低温冷却水回路20の冷却水の実際の温度を減じた差に基づいて、第2膨張弁15の開閉制御を行う。
 具体的には、低温冷却水回路20の冷却水の目標温度から低温冷却水回路20の冷却水の実際の温度を減じた差が開弁値Tw1を下回ると、電池2を冷却する必要があるため第2膨張弁15を開弁させる。低温冷却水回路20の冷却水の目標温度から低温冷却水回路20の冷却水の実際の温度を減じた差が閉弁値Tw2を上回ると、電池2を冷却する必要がないため第2膨張弁15を閉弁させる。
 なお、低温冷却水回路20の冷却水の目標温度は予め設定されている。閉弁値Tw2は、開弁値Tw1よりも大きな値に設定されている。
 第2膨張弁15を閉弁させる場合、第2膨張弁15の開度を所定の閉弁速度にて徐々に小さくして、第2膨張弁15を徐々に閉弁させる。閉弁速度とは、単位時間当たりの絞り開度の減少量である。
 これにより、第2膨張弁15を閉弁させる際に、第2膨張弁15へ流れる冷媒が急激に少なくなって第1蒸発器14へ流れる冷媒が急激に多くなって、第1蒸発器14の温度が急激に低下して第1蒸発器14がフロストすることを防止できる。
 図7は、本実施形態における作動例を示している。この作動例では、まず空気冷却単独運転が行われる。
 空気冷却単独運転では、第2膨張弁15が閉じられるので、冷凍サイクル装置10の冷媒が第2蒸発器16に流れず、全て第1蒸発器14に流れる。このとき、圧縮機11の回転数は、第1蒸発器14の温度TEが目標蒸発器温度TEOになるように制御される。そのため、第1蒸発器14の温度TEが目標蒸発器温度TEOに近い温度に維持される。
 やがて電池2の温度が上昇して電池制御装置75から電池冷却要求が出力されると、第2膨張弁15が開かれて空気冷却連携運転に切り替わる。空気冷却連携運転では、冷凍サイクル装置10の冷媒が第1蒸発器14と第2蒸発器16とに分配される。
 そのため、第1蒸発器14の温度TEが目標蒸発器温度TEOになるように圧縮機11の回転数が上昇する。圧縮機11の回転数が最大回転数になっても第1蒸発器14における空気冷却能力が不足するようになると、第1蒸発器14の温度TEが徐々に上昇する。
 第1蒸発器14の温度TEと目標蒸発器温度TEOとの差が許容温度差ΔTEを超えるまでは、第2膨張弁15に対して過熱度制御を行う。すなわち、第2蒸発器16の出口冷媒の過熱度が所定過熱度になるように第2膨張弁15の開度を制御するので、第2蒸発器16の出口冷媒の過熱度が徐々に低下する。
 第1蒸発器14の温度TEがさらに上昇して第1蒸発器14の温度TEと目標蒸発器温度TEOとの差が許容温度差ΔTEを超えると、第2膨張弁15に対して能力制限制御が行われる。すなわち、能力制限制御では、過熱度制御と比較して第2膨張弁15の開度の増加量を小さくする。
 図7のグラフ中の破線は、能力制限制御を行わず過熱度制御を継続したと仮定した場合の作動を示している。このように、能力制限制御では、過熱度制御と比較して第2膨張弁15の開度が小さく抑えられるので、第2蒸発器16を流れる冷媒が減少して第1蒸発器14を流れる冷媒が増加する。
 そのため、第1蒸発器14の温度TEの上昇が抑制される一方、第2蒸発器16の出口冷媒の過熱度の低下が抑制される。
 したがって、第2蒸発器16の電池冷却能力よりも、第1蒸発器14の空気冷却能力を優先して確保できるので、車室内へ吹き出される空気の温度の上昇を抑制できる。
 図5で説明したように、許容温度差ΔTEは、電池2の温度が高くなると大きな値に変更される。そのため、電池2の温度が高くなると能力制限制御ではなく過熱度制御が行われ、第2蒸発器16の出口冷媒の過熱度が目標過熱度に近づくように低下する。そのため、第1蒸発器14の空気冷却能力よりも、第2蒸発器16の電池冷却能力を優先して確保できるので、電池2の温度の上昇を抑制できる。
 過熱度制御が継続されると、第2蒸発器16に流れる冷却水の温度や電池2の温度が徐々に低下していく。図6で説明したように、第2蒸発器16に流れる冷却水の目標温度から実際の冷却水の温度を減じた差が開弁値Tw1を上回ると、電池2を冷却する必要がなくなることから第2膨張弁15を閉じて第2蒸発器16への冷媒流れを止める。第2蒸発器16への冷媒流れを止めることによって電池2の温度が上昇する。
 図6で説明したように、低温冷却水回路20の冷却水の目標温度から低温冷却水回路20の冷却水の実際の温度を減じた差が開弁値Tw1を下回ると第2膨張弁15を開いて第2蒸発器16へ冷媒を流す。これにより、電池2が冷却される。
 これを繰り返すことで、第2蒸発器16に流れる冷却水や電池2の温度を目標温度に対し、ある範囲内で調整することができる。
 上述したように、許容温度差ΔTEは、電池2の温度が高くなると大きな値に変更されるので、第1蒸発器14の空気冷却能力よりも第2蒸発器16の電池冷却能力を優先して確保して電池2の温度の上昇を抑制できる。
 しかしながら、許容温度差ΔTEを大きくしても電池2の温度の上昇を抑制できず、電池2の温度が上限温度に近づく場合は、第1膨張弁13を閉じるとともに第2膨張弁15を開いて電池冷却単独運転に移行する。これにより、冷凍サイクル装置10の冷媒が第1蒸発器14に流れず、全て第2蒸発器16に流れるので、空気冷却が行われず、電池冷却を高い能力で行われるので、電池2の温度を確実に低下させることができる。
 本実施形態では、ステップS330~S350で説明したように、制御装置50は、過熱度制御と能力制限制御とを切り替え可能になっている。過熱度制御では、第2蒸発器16の出口冷媒の過熱度(換言すれば冷媒状態)に基づいて第2膨張弁15の絞り開度を制御する。能力制限制御では、第1蒸発器14の温度TEに基づいて第2膨張弁15の絞り開度を制御する。
 そして、制御装置50は、過熱度制御において、第1蒸発器14の温度TEが切替温度以上になると、能力制限制御に切り替える。
 これによると、過熱度制御では、第2蒸発器16による電池冷却能力を優先的に発揮できる。能力制限制御では、第1蒸発器14による空気冷却能力を優先的に発揮できる。
 そして、過熱度制御において、第1蒸発器14の温度TEが切替温度以上になると、能力制限制御に切り替える。
 したがって、過熱度制御を行っている際に空気冷却能力が低下した場合、能力制限制御に切り替えて、電池冷却能力よりも空気冷却能力を優先して確保できる。
 過熱度制御では、第2蒸発器16の冷媒状態に基づいて第2膨張弁15の絞り開度を制御してもよい。
 能力制限制御では、第1蒸発器14の温度、第1蒸発器14を流れる冷媒の温度、および第1蒸発器14で熱交換された空気の温度のうち少なくとも1つの温度に基づいて第2膨張弁15の絞り開度を制御してもよい。
 そして、制御装置50は、過熱度制御において、少なくとも1つの温度が切替温度以上になると、能力制限制御に切り替えてもよい。
 本実施形態では、図5で説明したように、制御装置50は、電池2の温度が高いほど切替温度を高くする。制御装置50は、電池冷却水の温度が高いほど切替温度を高くしてもよい。
 これにより、電池2を冷却する必要性が高い場合、電池冷却能力が制限されることを抑制できるので、電池冷却能力が過剰に制限されてしまうことを抑制できる。
 本実施形態では、図6で説明したように、制御装置50は、低温冷却水回路20の冷却水の温度が開弁温度を上回ると第2膨張弁15を開けて過熱度制御および能力制限制御の切り替えを実施する。制御装置50は、低温冷却水回路20の冷却水の温度が閉弁温度を下回ると第2膨張弁15を閉じて過熱度制御および能力制限制御をともに実施しない。これにより、電池2の冷却を過不足なく行って、所定範囲内に維持することができる。
 制御装置50は、電池2の温度が開弁温度を上回ると第2膨張弁15を開けて過熱度制御および能力制限制御の切り替えを実施し、電池2の温度が閉弁温度を下回ると第2膨張弁15を閉じて過熱度制御および能力制限制御をともに実施しないようにしてもよい。
 本実施形態では、ステップS300~S320で説明したように、制御装置50は、電池2を冷却する必要がある場合、第1蒸発器14の温度が所定蒸発器温度αを超えていれば第2膨張弁15を閉じる。制御装置50は、第1蒸発器14の温度が所定蒸発器温度以下であれば第2膨張弁15を開ける。
 これにより、電池2の冷却を開始することによって空気冷却能力が不足してしまうことを抑制できる。
 本実施形態では、制御装置50は、電池2の冷却を開始する場合、第2膨張弁15の絞り開度または単位時間当たりの絞り開度の増加量を所定値以下にする。
 これにより、電池2の冷却を開始した場合に第1蒸発器14を流れる冷媒の流量が大きく減少することを抑制できるので、第1蒸発器14で冷却された空気の温度が大きく上昇することを抑制できる。
 本実施形態では、制御装置50は、電池2を冷却する必要がなくなった場合、第2膨張弁15の単位時間当たりの絞り開度の減少量を所定減少量以下にする。
 これにより、電池2の冷却を終了する場合に第1蒸発器14を流れる冷媒の流量が大きく増加することを抑制できるので、第1蒸発器14の温度が大きく低下して第1蒸発器14にフロストが発生することを抑制できる。
 (第2実施形態)
 上記第1実施形態では、冷凍サイクル装置10は、車室内へ送風される空気の冷却と電池2の冷却とを行うが、本実施形態では、図8に示すように、冷凍サイクル装置10は、車室内へ送風される空気の冷却および加熱と、電池2の冷却とを行うことができる。
 具体的には、上記第1実施形態では、高温冷却水回路40の冷却水をエンジン1の廃熱で加熱するが、本実施形態では、高温冷却水回路40の冷却水を空気加熱用放熱器80で加熱する。
 空気加熱用放熱器80は、冷凍サイクル装置10の冷媒流れにおいて、圧縮機11と放熱器12との間に配置されており、圧縮機11から吐出された冷媒と、高温冷却水回路40の冷却水とを熱交換させる。
 空気加熱用放熱器80と放熱器12との間には、暖房用膨張弁81が配置されている。暖房用膨張弁81は、暖房運転時に、放熱器12から流出した高圧冷媒を減圧させる第3減圧部である。暖房用膨張弁81は、絞り開度を変更可能に構成された弁体と、弁体の開度を変化させる電動アクチュエータとを有して構成される電気式の可変絞り機構である。暖房用膨張弁81は、冷媒が流れる流路の開口面積を調整することによって冷媒の減圧量を調整する。
 空気加熱用放熱器80の出口側かつ暖房用膨張弁81の入口側には、バイパス流路82の一端が、第3三方継手83を介して接続されている。バイパス流路82の他端は、放熱器12の出口側かつ第1三方継手17の流入口側に、第4三方継手84を介して接続されている。
 バイパス流路82は、空気加熱用放熱器80から流出した冷媒を、暖房用膨張弁81および放熱器12を迂回させて第1三方継手17の流入口側に導く冷媒流路である。
 バイパス流路82にはバイパス開閉弁85が配置されている。バイパス開閉弁85は、バイパス流路82を開閉する電磁弁であり、制御装置50から出力される制御信号により開閉制御される。
 第2三方継手19の流出口側には蒸発圧力調整弁86が配置されている。蒸発圧力調整弁86は、第1蒸発器14および第2蒸発器16の着霜を抑制するために、第1蒸発器14の出口側かつ第2蒸発器16の出口側における冷媒の圧力を、予め定めた基準圧力以上に維持する圧力調整部である。
 蒸発圧力調整弁86は、第1蒸発器14出口側冷媒の圧力の上昇に伴って、弁開度を増加させる機械式の可変絞り機構で構成されている。これにより、蒸発圧力調整弁は、第1蒸発器14における冷媒蒸発温度を、第1蒸発器14の着霜を抑制可能な基準温度以上に極力維持することができる。
 蒸発圧力調整弁86の出口側かつ圧縮機11の吸入口側には、アキュムレータ87が配置されている。アキュムレータ87は、その内部に流入した冷媒の気液を分離して、サイクル内の余剰冷媒を蓄える気液分離器である。アキュムレータ87の気相冷媒出口には、圧縮機11の吸入口側が接続されている。従って、アキュムレータ87は、圧縮機11に液相冷媒が吸入されることを抑制し、圧縮機11における液圧縮を防止する。
 放熱器12の出口側かつ第4三方継手84の流入口側には、逆止弁88が配置されている。逆止弁88は、放熱器12の出口側から第4三方継手84の入口側への冷媒の流れを許容し、第4三方継手84の入口側から放熱器12の出口側への冷媒の流れを禁止する。バイパス流路82から第4三方継手84に合流した冷媒が放熱器12側へ逆流することを逆止弁88によって防止することができる。
 放熱器12の出口側かつ逆止弁88の入口側には、暖房用流路89の一端が、第5三方継手90を介して接続されている。暖房用流路89の他端は、蒸発圧力調整弁86の出口側かつアキュムレータ87の入口側に、第6三方継手91を介して接続されている。
 暖房用流路89は、放熱器12から流出した冷媒を、第1膨張弁13および第1蒸発器14を迂回させてアキュムレータ87の入口側に導く冷媒流路である。
 暖房用流路89には暖房用開閉弁92が配置されている。暖房用開閉弁92は、暖房用流路89を開閉する電磁弁であり、制御装置50から出力される制御信号により開閉制御される。
 暖房用膨張弁81を全開にし、バイパス開閉弁85および暖房用開閉弁92を閉じることによって、バイパス流路82および暖房用流路89に冷媒が流れなくなるので、上記実施形態と同様に空気冷却運転および電池冷却運転を行うことができる。
 暖房用膨張弁81を所定の絞り開度にし、バイパス開閉弁85および暖房用開閉弁92を閉じ、第1膨張弁13を所定の絞り開度で開けることによって、圧縮機11、空気加熱用放熱器80、暖房用膨張弁81、放熱器12、第1膨張弁13、第1蒸発器14、蒸発圧力調整弁86、アキュムレータ87、圧縮機11の順に冷媒が流れる冷媒回路が形成される。
 これにより、放熱器12および第1蒸発器14で冷媒が吸熱し、空気加熱用放熱器80で冷媒が放熱するので、車室内へ送風される空気を第1蒸発器14で冷却除湿した後にヒータコア33で加熱する第1除湿暖房運転を行うことができる。
 第1除湿暖房運転において、第2膨張弁15を所定の絞り開度で開けることにより、電池2の冷却も行うことができる。
 暖房用膨張弁81を所定の絞り開度にし、バイパス開閉弁85を開け、暖房用開閉弁92を閉じ、第1膨張弁13を所定の絞り開度で開けることによって、2つの冷媒回路が形成される。すなわち、圧縮機11、空気加熱用放熱器80、暖房用膨張弁81、放熱器12、アキュムレータ87、圧縮機11の順に冷媒が流れる冷媒回路と、圧縮機11、空気加熱用放熱器80、第1膨張弁13、第1蒸発器14、蒸発圧力調整弁86、アキュムレータ87、圧縮機11の順に冷媒が流れる冷媒回路とが形成される。
 これにより、放熱器12および第1蒸発器14で吸熱し、空気加熱用放熱器80で放熱するので、車室内へ送風される空気を第1蒸発器14で冷却除湿した後にヒータコア33で加熱する第2除湿暖房運転を行うことができる。
 第2除湿暖房運転では、第1除湿暖房運転と比較して、放熱器12に流入する冷媒の温度を低くできるので外気からの吸熱量を増加させて暖房能力を高めることができる。
 第2除湿暖房運転において、第2膨張弁15を所定の絞り開度で開けることにより、電池2の冷却も行うことができる。
 暖房用膨張弁81を所定の絞り開度にし、バイパス開閉弁85を閉じ、暖房用開閉弁92を開け、第1膨張弁13を閉じることによって、圧縮機11、空気加熱用放熱器80、暖房用膨張弁81、放熱器12、アキュムレータ87、圧縮機11の順に冷媒が流れる冷媒回路が形成される。
 これにより、放熱器12で吸熱し、空気加熱用放熱器80で放熱するので、車室内へ送風される空気を第1蒸発器14で冷却除湿することなくヒータコア33で加熱する暖房運転を行うことができる。
 暖房運転において、第2膨張弁15を所定の絞り開度で開けることにより、電池2の冷却も行うことができる。
 暖房用膨張弁81を全開にし、バイパス開閉弁85、暖房用開閉弁92および第1膨張弁13を閉じ、第2膨張弁15を所定の絞り開度で開けることによって、圧縮機11、空気加熱用放熱器80、暖房用膨張弁81、放熱器12、第2膨張弁15、第2蒸発器16、蒸発圧力調整弁86、アキュムレータ87、圧縮機11の順に冷媒が流れる冷媒回路が形成される。
 これにより、第2蒸発器16で吸熱し、放熱器12で放熱するので、電池2の冷却を行うことができる。
 本実施形態によると、電気自動車のようにエンジンを持たない車両においても、車室内の冷暖房と電池2の冷却とを行うことができる。
 空気加熱用放熱器80は、圧縮機11から吐出された冷媒と高温冷却水回路40の冷却水とを熱交換させるが、これに限定されない。例えば、空気加熱用放熱器80は、ヒータコア33の代わりに空調ケース31内に収容されていて、圧縮機11から吐出された冷媒と第1蒸発器14を通過した空気とを熱交換させて、第1蒸発器14を通過した空気を加熱するようになっていてもよい。
 (第3実施形態)
 上記実施形態では、電池冷却要求のレベルが高いほど、許容温度差ΔTEは階段状に大きな値になるが、本実施形態では、図9に示すように、電池冷却要求のレベルが高いほど、許容温度差ΔTEは連続的(図9の例では線形的)に大きな値になる。
 本実施形態によると、許容温度差ΔTEを電池2の温度に応じてきめ細かく変化させることができるので、過熱度制御と能力制限制御とを一層適切に切り替えることができる。
 上述の実施形態では、冷媒としてR1234yfを採用した例を説明したが、冷媒はこれに限定されない。例えば、R134a、R600a、R410A、R404A、R32、R407C等を採用してもよい。これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。
 冷媒として二酸化炭素を採用して、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成してもよい。
 上記実施形態では、第1蒸発器14の温度TEを第1蒸発器温度センサ57で検出するが、第1蒸発器14の温度TEを推定してもよい。第1蒸発器14の温度TEを圧力や体積等の物理量で代用してもよい。
 第1蒸発器14を流れる冷媒の温度、第1蒸発器14で熱交換された空気の温度、およびその他の種々の温度についても、温度センサで検出してもよいし推定してもよい。これらの温度を圧力や体積等の物理量で代用してもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (6)

  1.  冷媒を吸入して吐出する圧縮機(11)と、
     前記圧縮機から吐出された前記冷媒から放熱させる放熱器(12)と、
     前記放熱器で放熱された前記冷媒を減圧させ、前記冷媒の流れにおいて互いに並列に配置された第1膨張弁(13)および第2膨張弁(15)と、
     前記第1膨張弁で減圧された前記冷媒を、車室内に送風される空気と熱交換させて蒸発させる第1蒸発器(14)と、
     前記第2膨張弁で減圧された前記冷媒を、電池(2)を冷却するための熱媒体と熱交換させて蒸発させる第2蒸発器(16)と、
     前記第2膨張弁の絞り開度を制御する制御部(50)とを備え、
     前記制御部は、
     前記第2蒸発器の冷媒状態に基づいて前記第2膨張弁の絞り開度を制御する第2蒸発器優先制御と、前記第1蒸発器の温度、前記第1蒸発器を流れる前記冷媒の温度、および前記第1蒸発器で熱交換された前記空気の温度のうち少なくとも1つの温度に基づいて前記第2膨張弁の絞り開度を制御する第1蒸発器優先制御とを切り替え可能になっており、
     前記第2蒸発器優先制御において、前記少なくとも1つの温度が切替温度以上になると、前記第1蒸発器優先制御に切り替える車両用冷凍サイクル装置。
  2.  前記制御部は、前記電池の温度、または前記熱媒体の温度が高いほど前記切替温度を高くする請求項1に記載の車両用冷凍サイクル装置。
  3.  前記制御部は、前記熱媒体または前記電池の温度が開弁温度を上回ると前記第2膨張弁を開けて前記第2蒸発器優先制御および前記第1蒸発器優先制御の切り替えを実施し、前記熱媒体または前記電池の温度が閉弁温度を下回ると前記第2膨張弁を閉じて前記第2蒸発器優先制御および前記第1蒸発器優先制御をともに実施しない請求項1または2に記載の車両用冷凍サイクル装置。
  4.  前記制御部は、前記電池を冷却する必要がある場合、前記第1蒸発器の温度が所定蒸発器温度(α)を超えていれば前記第2膨張弁を閉じ、前記第1蒸発器の温度が前記所定蒸発器温度以下であれば前記第2膨張弁を開ける請求項1ないし3のいずれか1つに記載の車両用冷凍サイクル装置。
  5.  前記制御部は、前記電池の冷却を開始する場合、前記第2膨張弁の絞り開度または前記第2膨張弁の単位時間当たりの絞り開度の増加量を所定値以下にする請求項1ないし4のいずれか1つに記載の車両用冷凍サイクル装置。
  6.  前記制御部は、前記電池を冷却する必要がなくなった場合、前記第2膨張弁の単位時間当たりの絞り開度の減少量を所定減少量以下にする請求項1ないし5のいずれか1つに記載の車両用冷凍サイクル装置。
PCT/JP2019/021953 2018-06-08 2019-06-03 車両用冷凍サイクル装置 WO2019235414A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980037560.5A CN112272622B (zh) 2018-06-08 2019-06-03 车辆用制冷循环装置
DE112019002912.6T DE112019002912B4 (de) 2018-06-08 2019-06-03 Kältekreisvorrichtung für ein Fahrzeug
US17/110,641 US11525611B2 (en) 2018-06-08 2020-12-03 Refrigeration cycle device for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018110428A JP7147279B2 (ja) 2018-06-08 2018-06-08 車両用冷凍サイクル装置
JP2018-110428 2018-06-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/110,641 Continuation US11525611B2 (en) 2018-06-08 2020-12-03 Refrigeration cycle device for vehicle

Publications (1)

Publication Number Publication Date
WO2019235414A1 true WO2019235414A1 (ja) 2019-12-12

Family

ID=68769885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021953 WO2019235414A1 (ja) 2018-06-08 2019-06-03 車両用冷凍サイクル装置

Country Status (5)

Country Link
US (1) US11525611B2 (ja)
JP (1) JP7147279B2 (ja)
CN (1) CN112272622B (ja)
DE (1) DE112019002912B4 (ja)
WO (1) WO2019235414A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166270A1 (ja) * 2019-02-11 2020-08-20 株式会社デンソー 冷凍サイクル装置
US20220026123A1 (en) * 2020-07-23 2022-01-27 Carrier Corporation Integrated heating and cooling system and method for transportion refrigeration unit

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200125791A (ko) * 2019-04-25 2020-11-05 현대자동차주식회사 전기차용 열관리시스템
JP7352866B2 (ja) * 2020-02-25 2023-09-29 マツダ株式会社 車両用空調装置
JP7467988B2 (ja) * 2020-03-04 2024-04-16 株式会社デンソー 車両用空調装置
DE102021101127A1 (de) * 2020-03-19 2021-09-23 Hanon Systems System zum Klimatisieren der Luft eines Fahrgastraums und zur Wärmeübertragung mit Antriebskomponenten eines Kraftfahrzeugs sowie Verfahren zum Betreiben des Systems
JP7494139B2 (ja) 2021-03-24 2024-06-03 サンデン株式会社 車両用空調装置
JP2022164260A (ja) * 2021-04-16 2022-10-27 株式会社デンソー 冷凍サイクル装置
CN113154725A (zh) * 2021-05-27 2021-07-23 江苏拓米洛环境试验设备有限公司 一种制冷系统多间室电子膨胀阀的控制方法及制冷系统
CN115355637B (zh) * 2021-06-29 2023-09-15 江苏拓米洛高端装备股份有限公司 制冷系统多间室电子膨胀阀的控制方法、装置及制冷系统
JP2023132720A (ja) * 2022-03-11 2023-09-22 株式会社デンソー 複合型熱交換器、熱交換システム
DE102022131933B3 (de) 2022-12-02 2023-11-23 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Steuern eines Kälteverteilsystems und Kraftfahrzeug

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04185526A (ja) * 1990-11-21 1992-07-02 Zexel Corp 複数の蒸発器を持つ車両用空調制御装置
JP2004224291A (ja) * 2003-01-27 2004-08-12 Nissan Motor Co Ltd 車両用空調装置
JP2007163074A (ja) * 2005-12-15 2007-06-28 Denso Corp 冷凍サイクル
JP2008196775A (ja) * 2007-02-13 2008-08-28 Sharp Corp 空気調和機
JP2013189118A (ja) * 2012-03-14 2013-09-26 Denso Corp 車両用空調システム
WO2014073151A1 (ja) * 2012-11-07 2014-05-15 株式会社デンソー 冷凍サイクル装置
JP2015117866A (ja) * 2013-12-17 2015-06-25 トヨタ自動車株式会社 車両用燃料冷却装置
CN105539067A (zh) * 2016-03-02 2016-05-04 天津三电汽车空调有限公司 带电池热管理功能的车辆空调系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104047A (ja) * 2001-09-28 2003-04-09 Sanyo Electric Co Ltd 自動車用空調システム
US20150013367A1 (en) 2012-03-28 2015-01-15 Magna E-Car Systems Of America, Inc. Vehicle cooling with adjustable flow expansion valve
US10071614B2 (en) * 2013-07-26 2018-09-11 Panasonic Intellectual Property Management Co., Ltd. Vehicle air conditioner
FR3013269B1 (fr) 2013-11-18 2017-05-26 Valeo Systemes Thermiques Systeme de refroidissement des batteries d'un vehicule electrique ou hybride
JP6252186B2 (ja) * 2014-01-15 2017-12-27 株式会社デンソー 車両用熱管理システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04185526A (ja) * 1990-11-21 1992-07-02 Zexel Corp 複数の蒸発器を持つ車両用空調制御装置
JP2004224291A (ja) * 2003-01-27 2004-08-12 Nissan Motor Co Ltd 車両用空調装置
JP2007163074A (ja) * 2005-12-15 2007-06-28 Denso Corp 冷凍サイクル
JP2008196775A (ja) * 2007-02-13 2008-08-28 Sharp Corp 空気調和機
JP2013189118A (ja) * 2012-03-14 2013-09-26 Denso Corp 車両用空調システム
WO2014073151A1 (ja) * 2012-11-07 2014-05-15 株式会社デンソー 冷凍サイクル装置
JP2015117866A (ja) * 2013-12-17 2015-06-25 トヨタ自動車株式会社 車両用燃料冷却装置
CN105539067A (zh) * 2016-03-02 2016-05-04 天津三电汽车空调有限公司 带电池热管理功能的车辆空调系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166270A1 (ja) * 2019-02-11 2020-08-20 株式会社デンソー 冷凍サイクル装置
US20220026123A1 (en) * 2020-07-23 2022-01-27 Carrier Corporation Integrated heating and cooling system and method for transportion refrigeration unit

Also Published As

Publication number Publication date
DE112019002912B4 (de) 2023-07-06
CN112272622B (zh) 2024-01-16
CN112272622A (zh) 2021-01-26
US20210108841A1 (en) 2021-04-15
JP7147279B2 (ja) 2022-10-05
JP2019209938A (ja) 2019-12-12
DE112019002912T5 (de) 2021-03-04
US11525611B2 (en) 2022-12-13

Similar Documents

Publication Publication Date Title
WO2019235414A1 (ja) 車両用冷凍サイクル装置
US20190111756A1 (en) Refrigeration cycle device
WO2020203150A1 (ja) 冷凍サイクル装置
JP6332560B2 (ja) 車両用空調装置
WO2020166270A1 (ja) 冷凍サイクル装置
JP2019045034A (ja) 冷凍サイクル装置
US20220234416A1 (en) Refrigeration cycle device
JP6669042B2 (ja) 車両用空調装置
WO2019194027A1 (ja) 電池冷却装置
US11560039B2 (en) Vehicular heater
JP7155771B2 (ja) 冷凍サイクル装置
JP7159712B2 (ja) 冷凍サイクル装置
US20210101451A1 (en) Refrigeration cycle device
US20230382195A1 (en) Air conditioner
JP2012081870A (ja) 車両用空調装置
WO2020095637A1 (ja) 車両用空調装置
WO2020050039A1 (ja) 冷凍サイクル装置
WO2021220661A1 (ja) 車両用空調装置
JP2019104443A (ja) 車両用空調装置
WO2023053746A1 (ja) 冷凍サイクル装置
WO2023248868A1 (ja) ヒートポンプサイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814680

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19814680

Country of ref document: EP

Kind code of ref document: A1