WO2020095637A1 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
WO2020095637A1
WO2020095637A1 PCT/JP2019/040580 JP2019040580W WO2020095637A1 WO 2020095637 A1 WO2020095637 A1 WO 2020095637A1 JP 2019040580 W JP2019040580 W JP 2019040580W WO 2020095637 A1 WO2020095637 A1 WO 2020095637A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat medium
air conditioning
heat
temperature
Prior art date
Application number
PCT/JP2019/040580
Other languages
English (en)
French (fr)
Inventor
樋口 輝一
隆光 草葉
裕次 青木
宏 福浦
泰司 近藤
浩太郎 福田
佳典 熊本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112019005618.2T priority Critical patent/DE112019005618T5/de
Priority to CN201980073016.6A priority patent/CN112969604B/zh
Publication of WO2020095637A1 publication Critical patent/WO2020095637A1/ja
Priority to US17/308,516 priority patent/US20210252941A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2221Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters arrangements of electric heaters for heating an intermediate liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • B60H1/034Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant from the cooling liquid of the propulsion plant and from an electric heating device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2218Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters controlling the operation of electric heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32284Cooling devices using compression characterised by refrigerant circuit configurations comprising two or more secondary circuits, e.g. at evaporator and condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/323Cooling devices using compression characterised by comprising auxiliary or multiple systems, e.g. plurality of evaporators, or by involving auxiliary cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit

Definitions

  • the present disclosure relates to a vehicle air conditioner that heats blown air.
  • Patent Document 1 discloses a vehicle air conditioner that is applied to a hybrid vehicle and heats blown air that is blown into a vehicle compartment that is an air conditioning target space.
  • the hybrid vehicle is a vehicle that obtains driving force for traveling from both the engine and the electric motor for traveling.
  • the vehicle air conditioner of Patent Document 1 when the vehicle interior is heated, the blown air is heated using the engine cooling water as a heat source.
  • the vehicle air conditioner of Patent Document 1 has a heat medium circuit that circulates cooling water between the engine and the heater core.
  • the heater core is a heating heat exchange unit that heats the blast air by exchanging heat between the cooling water and the blast air. Further, in the heat medium circuit, an electric heater that heats the cooling water when the engine is stopped is arranged.
  • the circuit configuration of the heat medium circuit is switched according to the operating state of the engine. Specifically, when the engine is operating, the circuit is switched to a normal heating operation circuit in which the cooling water heated by the engine and the electric heater flows into the heater core. Further, when the engine is stopped, the circuit is switched to a bypass heating operation circuit that bypasses the engine and causes the cooling water heated by the electric heater to flow into the heater core.
  • the heat medium circuit is bypassed from the bypass heating circuit. Switch to the circuit for normal heating operation. If such switching is performed, the temperature of the cooling water flowing into the heater core will rapidly rise. As a result, the temperature of the blown air blown into the vehicle compartment unnecessarily rises.
  • the heat medium circuit is removed from the bypass heating operation circuit. Switch to the circuit for normal heating operation. If such switching is performed, the temperature of the cooling water flowing into the heater core will drop. As a result, the temperature of the blown air blown into the vehicle interior is lowered.
  • an object of the present disclosure is to provide a vehicle air conditioner capable of realizing comfortable air conditioning in the vehicle interior.
  • the vehicle air conditioner according to one aspect of the present disclosure is applied to a hybrid vehicle that obtains driving force for traveling from an internal combustion engine and an electric motor for traveling.
  • the vehicle air conditioner includes a first heat medium circuit, a first heating heat exchange unit, a first pump, a first water pressure feeding capacity control unit, a second heat medium circuit, and a second heating heat exchange unit. And a second pump and a second hydraulic pressure feeding capacity control unit.
  • the first heat medium circuit circulates the first heat medium heated by the exhaust heat of the internal combustion engine.
  • the first heating heat exchange unit is arranged in the first heat medium circuit and heat-exchanges the first heat medium with the blast air blown into the vehicle compartment to heat the blast air.
  • the first pump is arranged in the first heat medium circuit and pumps the first heat medium to the first heat exchange section side.
  • the first water pressure feeding capacity control unit controls the operation of the first pump.
  • the second heat medium circuit circulates the second heat medium heated by the heating unit whose heating capacity is adjustable.
  • the second heating heat exchange unit is arranged in the second heating medium circuit to heat-exchange the second heating medium with the blowing air to heat the blowing air.
  • the second pump is arranged in the second heat medium circuit and pumps the second heat medium to the second heating heat exchange section side.
  • the second water pressure feeding capacity control unit controls the operation of the second pump.
  • the first heat medium circuit and the second heat medium circuit are independent heat medium circuits.
  • the first water pressure feeding capacity control unit operates the first pump, the second water pressure feeding capacity control unit stops the second pump, and the first heating heat exchange unit heats the first pump.
  • the blown air is blown into the vehicle compartment.
  • the second water pressure supply capacity control unit operates the second pump, the first water pressure supply capacity control unit stops the first pump, and the air blown by the second heat exchange unit is heated. Blows air into the passenger compartment.
  • the first water pressure feeding capacity control unit operates the first pump and the second water pressure feeding capacity control unit operates the second pump, so that the first heating heat exchange unit and the second heating heat The air blown by the exchange unit is blown into the passenger compartment.
  • the first heat medium circuit and the second heat medium circuit are independent heat medium circuits that do not mix the first heat medium and the second heat medium. Therefore, comfortable air conditioning of the vehicle interior can be realized by switching the first to third air conditioning modes according to the operating state of the internal combustion engine and the like.
  • the second air conditioning mode can be executed when the internal combustion engine is stopped.
  • a comfortable air conditioning of the vehicle interior can be realized by appropriately adjusting the temperature of the second heat medium in the heating unit.
  • the heating unit appropriately adjusts the temperature of the second heat medium in accordance with the temperature increase of the first heat medium, whereby comfortable air conditioning of the vehicle interior can be realized.
  • the temperature of the first heat medium reaches an appropriate temperature during execution of the third air conditioning mode, it is possible to switch to the first air conditioning mode.
  • comfortable air conditioning of the vehicle interior can be realized by using the first heat medium as a heat source.
  • the first heat medium and the second heat medium do not mix with each other, and an inappropriate temperature change of each heat medium does not occur. Therefore, when it is applied to a hybrid vehicle, it is possible to suppress the temperature change of the blown air blown into the vehicle interior, and it is possible to provide a vehicle air conditioner capable of realizing comfortable air conditioning in the vehicle interior.
  • the vehicle air conditioner 1 of the present embodiment is applied to a hybrid vehicle in which driving power for traveling is obtained from an engine (that is, an internal combustion engine) EG and an electric motor MG for traveling. Further, the hybrid vehicle is a plug-in hybrid vehicle capable of charging battery 50 with electric power supplied from an external power source (for example, commercial power source) when the vehicle is stopped.
  • an engine that is, an internal combustion engine
  • an electric motor MG for traveling.
  • the hybrid vehicle is a plug-in hybrid vehicle capable of charging battery 50 with electric power supplied from an external power source (for example, commercial power source) when the vehicle is stopped.
  • an external power source for example, commercial power source
  • the -Plug-in hybrid vehicles can switch between driving modes. Specifically, when the state of charge SOC of the battery 50 is equal to or greater than a predetermined reference state of charge KSOC, the EV traveling mode is in which the vehicle is driven mainly by the driving force of the traveling electric motor. On the other hand, when the state of charge SOC is lower than the reference state of charge KSOC, the HV traveling mode in which the vehicle mainly travels by the driving force of the engine EG is set.
  • the engine EG is operated to assist the traveling electric motor MG.
  • the traveling electric motor MG is operated to assist the engine EG.
  • the plug-in hybrid vehicle by switching between the EV driving mode and the HV driving mode in this way, it is possible to improve the fuel consumption of the vehicle as compared with a normal vehicle that obtains the driving force for vehicle traveling only from the engine EG. Switching between the EV traveling mode and the HV traveling mode is controlled by the driving force control device 70.
  • the vehicle air conditioner 1 includes a refrigeration cycle device 10, a first heat medium circuit 20, a second heat medium circuit 30, an indoor air conditioning unit 40, and the like.
  • the refrigeration cycle device 10 cools the air blown into the vehicle interior in the vehicle air conditioner 1.
  • the refrigeration cycle device 10 includes a compressor 11, a condenser 12, an expansion valve 13, and an evaporator 14, which are annularly connected via a refrigerant pipe.
  • the refrigeration cycle device 10 uses an HFO-based refrigerant (specifically, R1234yf) as a refrigerant.
  • the refrigeration cycle apparatus 10 constitutes a vapor compression type subcritical refrigeration cycle in which the pressure of the discharged refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant.
  • Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant.
  • a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 draws in the refrigerant, compresses it, and discharges it.
  • the compressor 11 is arranged in a drive device chamber that houses an internal combustion engine, a traveling electric motor, and the like.
  • the drive device compartment is arranged on the front side of the vehicle compartment.
  • the compressor 11 is an electric compressor whose rotation speed (that is, refrigerant discharge capacity) is controlled by a control signal output from the air conditioning controller 60.
  • the refrigerant inlet side of the condenser 12 is connected to the discharge port of the compressor 11.
  • the condenser 12 is a heat exchange unit for condensation that causes the refrigerant discharged from the compressor 11 and the outside air blown from the outdoor blower to exchange heat with each other to condense the refrigerant.
  • the condenser 12 is disposed on the front side in the drive device chamber. Therefore, traveling wind can be applied to the condenser 12 when the vehicle is traveling.
  • the inlet of the receiver 12a is connected to the refrigerant outlet of the condenser 12.
  • the receiver 12a is a liquid storage unit having a gas-liquid separation function. That is, the receiver 12 a separates the gas and liquid of the refrigerant flowing out from the condenser 12. Then, a part of the separated liquid-phase refrigerant is stored as a surplus refrigerant of the cycle.
  • the inlet side of the expansion valve 13 is connected to the liquid-phase refrigerant outlet of the receiver 12a.
  • the expansion valve 13 is a decompression unit that decompresses the refrigerant flowing out from the receiver 12a.
  • the expansion valve 13 is a thermal expansion valve having a valve body section for adjusting the throttle opening and a temperature sensing section for displacing the valve body section.
  • the temperature sensing portion has a diaphragm that is a deformable member that deforms according to the temperature and pressure of the refrigerant on the outlet side of the evaporator 14. Then, in the expansion valve 13, by transmitting the deformation of the diaphragm to the valve body portion, the valve opening degree (that is, the throttle opening degree) is adjusted so that the superheat degree of the refrigerant on the outlet side of the evaporator 14 approaches a predetermined value. Adjusted.
  • the refrigerant inlet side of the evaporator 14 is connected to the outlet of the expansion valve 13.
  • the evaporator 14 is arranged in the air conditioning case 41 of the indoor air conditioning unit 40.
  • the evaporator 14 heat-exchanges the low pressure refrigerant decompressed by the expansion valve 13 and the blast air blown into the vehicle compartment to evaporate the low pressure refrigerant.
  • the evaporator 14 is an endothermic heat exchange section that cools the blown air by evaporating the low-pressure refrigerant and exerting an endothermic effect.
  • the refrigerant outlet of the evaporator 14 is connected to the suction port side of the compressor 11.
  • the first heat medium circuit 20 is a heat medium circulation circuit that circulates the first heat medium heated by the exhaust heat of the engine EG between the cooling water passage of the engine EG and the first heater core 21.
  • the first heat medium circuit 20 mainly heats blown air that is blown into the vehicle interior in the HV traveling mode.
  • a solution containing ethylene glycol, dimethylpolysiloxane, a nanofluid or the like, an antifreeze solution or the like can be adopted.
  • a cooling water passage for the engine EG a first heater core 21, a first pump 22, a radiator 23, and a thermostat 24 are arranged.
  • the first heater core 21 is arranged in the air conditioning case 41 of the indoor air conditioning unit 40.
  • the first heater core 21 is a first heating heat exchange unit that heats the blast air by exchanging heat between the blast air and the first heat medium flowing out from the cooling water passage of the engine EG.
  • the suction port side of the first pump 22 is connected to the heat medium outlet of the first heater core 21.
  • the first pump 22 is a water pump that pumps the first heat medium flowing out from the first heater core 21 to the cooling water passage side of the engine EG. Therefore, when the first pump 22 is operated, the first heat medium can be circulated between the cooling water passage of the engine EG and the first heater core 21.
  • the operation of the first pump 22 is controlled by the control voltage output from the driving force control device 70.
  • the driving force control device 70 operates the first pump 22 so as to exert a predetermined water pressure feeding capability when the engine EG is operating, as in the HV traveling mode.
  • the first heat medium circuit 20 is provided with a bypass passage 25 that bypasses the first heater core 21 and bypasses the first heat medium flowing out from the cooling water passage of the engine EG to the suction port side of the first pump 22. ing.
  • the radiator 23 is connected to the bypass passage 25. That is, the radiator 23 and the first heater core 21 are connected in parallel to the cooling water passages of the first pump 22 and the engine EG.
  • the radiator 23 is a heat radiating heat exchange section that cools the first heat medium by exchanging heat between the first heat medium flowing out from the cooling water passage of the engine EG and the outside air blown from the outdoor blower.
  • the radiator 23 is arranged on the front side in the drive device chamber. Therefore, the traveling wind can be applied to the radiator 23 when the vehicle is traveling.
  • the thermostat 24 is an open / close valve that opens / closes the heat medium inlet of the radiator 23 according to the temperature of the first heat medium flowing out from the cooling water passage of the engine EG.
  • the thermostat 24 is a mechanical mechanism that displaces the valve body with thermowax whose volume changes according to the temperature change of the first heat medium.
  • the heat medium inlet of the radiator 23 is opened when the temperature of the first heat medium flowing out from the cooling water passage of the engine EG is equal to or higher than the predetermined reference temperature KTw. Further, when the temperature of the first heat medium flowing out from the cooling water passage of the engine EG is lower than the reference temperature KTw, the heat medium inlet of the radiator 23 is closed.
  • the first heat medium flows into the radiator 23 when the temperature of the first heat medium flowing out from the cooling water passage of the engine EG is lower than the reference temperature KTw. It will not be cooled. Therefore, the temperature of the first heat medium circulating in the first heat medium circuit 20 increases so as to approach the reference temperature KTw.
  • the temperature of the first heat medium flowing out from the cooling water passage of the engine EG rises and becomes equal to or higher than the reference temperature KTw, part of the first heat medium pumped from the first pump 22 flows into the radiator 23. To be cooled. Therefore, the temperature of the first heat medium flowing out from the cooling water passage of the engine EG, that is, the temperature of the first heat medium flowing into the first heater core 21, approaches the reference temperature KTw.
  • the second heat medium circuit 30 is a heat medium circulation circuit that circulates the second heat medium between the water heater 33 and the second heater core 31.
  • the second heat medium circuit 30 mainly heats blown air that is blown into the vehicle interior in the EV traveling mode.
  • the same fluid as the first heat medium can be adopted.
  • a second heater core 31, a second pump 32, and a water heater 33 are arranged in the second heat medium circuit 30.
  • the second heater core 31 is arranged in the air conditioning case 41 of the indoor air conditioning unit 40.
  • the second heater core 31 is a second heat exchange unit for heating the blown air by exchanging heat between the blown air and the second heat medium heated by the water heater 33.
  • the basic configuration of the second heater core 31 is the same as that of the first heater core 21.
  • the suction port side of the second pump 32 is connected to the heat medium outlet of the second heater core 31.
  • the second pump 32 is a water pump that pumps the second heat medium flowing out from the second heater core 31 to the inlet side of the water heater 33. Therefore, when the second pump 32 is operated, the second heat medium can be circulated between the water heater 33 and the second heater core 31.
  • the basic configuration of the second pump 32 is the same as that of the first pump 22.
  • the operation of the second pump 32 is controlled by the control voltage output from the air conditioning controller 60.
  • the water heater 33 is a heating unit having an electric heater that heats the second heat medium by generating heat when supplied with electric power.
  • the heating capacity of the water heater 33 is adjusted by the control voltage output from the air conditioning controller 60.
  • the first heat medium circuit 20 and the second heat medium circuit 30 are formed as independent heat medium circuits in which the first heat medium and the second heat medium do not mix. ..
  • the indoor air conditioning unit 40 is for blowing out blown air adjusted to an appropriate temperature for air conditioning in the vehicle interior to an appropriate location in the vehicle interior.
  • the indoor air conditioning unit 40 is arranged at the front of the vehicle interior and inside the instrument panel (instrument panel).
  • the indoor air conditioning unit 40 has an indoor air blower 42, an evaporator 14, a first heater core 21, a second heater core 31, and the like housed in an air conditioning case 41 that forms an air passage for blown air. is there.
  • the air-conditioning case 41 is formed of a resin (for example, polypropylene) that has elasticity to some extent and is also excellent in strength.
  • An inside / outside air switching device 43 is arranged on the most upstream side of the blast air flow of the air conditioning case 41.
  • the inside / outside air switching device 43 switches and introduces inside air (vehicle interior air) and outside air (vehicle exterior air) into the air conditioning case 41.
  • the operation of the electric actuator for driving the inside / outside air switching device 43 is controlled by a control signal output from the air conditioning control device 60.
  • An indoor blower 42 is arranged on the downstream side of the blown air flow of the inside / outside air switching device 43.
  • the indoor blower 42 blows the air taken in via the inside / outside air switching device 43 toward the vehicle interior.
  • the indoor blower 42 is an electric blower that drives a centrifugal multi-blade fan with an electric motor.
  • the indoor blower 42 has its rotation speed (that is, blowing capacity) controlled by the control voltage output from the air conditioning controller 60.
  • the evaporator 14, the first heater core 21, and the second heater core 31 are arranged in this order on the downstream side of the blower air flow of the indoor blower 42 with respect to the blower air flow. That is, the evaporator 14 is arranged on the upstream side of the blown air flow with respect to the first heater core 21.
  • the first heater core 21 is arranged on the upstream side of the blown air flow with respect to the second heater core 31.
  • the second heater core 31 is arranged in the air passage formed in the air conditioning case 41 so as to heat the blown air that has passed through the first heater core 21.
  • a cold air bypass passage 45a is provided inside the air conditioning case 41 in which the blast air that has passed through the evaporator 14 is caused to flow bypassing the first heater core 21 and the second heater core 31.
  • the first heater core 21 and the second heater core 31 are arranged in the heating-side passage 45b.
  • an air mix door 44 is arranged on the downstream side of the blown air flow of the evaporator 14 in the air conditioning case 41 and on the upstream side of the first heater core 21 and the second heater core 31.
  • the air mix door 44 adjusts the air volume ratio of the air volume of the air blown through the cold air bypass passage 45a and the air volume of the air blown through the heating side passage 45b in the air blown after passing through the evaporator 14. It is an adjusting unit.
  • the operation of the electric actuator for driving the air mix door 44 is controlled by a control signal output from the air conditioning controller 60.
  • a mixing space 46 is formed in the air conditioning case 41 on the downstream side of the blast air flow of the cool air bypass passage 45a and the heating side passage 45b.
  • the mixing space 46 is a space that mixes the blast air that is heated when passing through the heating side passage 45b and the blast air that is not heated after passing through the cold air bypass passage 45a.
  • an opening hole for blowing out the blast air, which is mixed in the mixing space 46 and whose temperature is adjusted, into the vehicle interior is arranged at the downstream side of the blast air flow of the air conditioning case 41.
  • the face opening hole is an opening hole for blowing the conditioned air toward the upper body of the occupant in the vehicle compartment.
  • the foot opening hole is an opening hole for blowing out the conditioned air toward the feet of the occupant.
  • the defroster opening hole is an opening hole for blowing the conditioned air toward the inner surface of the vehicle front window glass.
  • the temperature of the conditioned air mixed in the mixing space 46 is adjusted by the air mix door 44 adjusting the air volume ratio between the air volume passing through the cold air bypass passage 45a and the air volume passing through the heating side passage 45b. It Then, the temperature of the blown air (air-conditioned air) blown out from each outlet into the vehicle compartment is adjusted.
  • a face door, a foot door, and a defroster door are arranged on the upstream side of the blow air flow of the face opening hole, the foot opening hole, and the defroster opening hole.
  • the face door, the foot door, and the defroster door are opening / closing portions that open and close the corresponding opening holes.
  • These doors are connected to a common electric actuator for driving via a link mechanism, etc., so that they can be rotated in conjunction with each other.
  • the operation of the electric actuators for driving these doors is controlled by a control signal output from the air conditioning controller 60.
  • the air-conditioning control device 60 is composed of a well-known microcomputer including a CPU, a ROM, a RAM and the like and its peripheral circuits. Then, various calculations and processes are performed based on the air conditioning control program stored in the ROM, and the operations of the various controlled devices 11, 32, 33, 42, etc. connected to the output side are controlled.
  • an inside air temperature sensor 61 an outside air temperature sensor 62, a solar radiation sensor 63, an evaporator temperature sensor 64, a first heat medium temperature sensor 65a, The second heat medium temperature sensor 65b and the like are connected. Then, the detection signals of these sensor groups for air conditioning control are input to the air conditioning control device 60.
  • the inside air temperature sensor 61 is an inside air temperature detection unit that detects the vehicle interior temperature (inside air temperature) Tr.
  • the outside air temperature sensor 62 is an outside air temperature detecting unit that detects the outside temperature (outside air temperature) Tam of the vehicle compartment.
  • the solar radiation sensor 63 is a solar radiation amount detection unit that detects the solar radiation amount Ts with which the vehicle interior is irradiated.
  • the evaporator temperature sensor 64 is an evaporator temperature detection unit that detects the refrigerant evaporation temperature (evaporator temperature) Tefin in the evaporator 14.
  • the evaporator temperature sensor 64 of the present embodiment specifically detects the temperature of the heat exchange fins of the evaporator 14.
  • the first heat medium temperature sensor 65a is a first heat medium temperature detecting unit that detects the first temperature Tw1 of the first heat medium flowing into the first heater core 21.
  • the second heat medium temperature sensor 65b is a second heat medium temperature detecting unit that detects the second temperature Tw2 of the second heat medium flowing into the second heater core 31.
  • an operation panel 69 arranged near the instrument panel in the front part of the vehicle compartment is connected to the input side of the air conditioning control device 60, and various operation switches provided on the operation panel 69 are operated. An operation signal is input.
  • the auto switch is an air conditioning operation setting unit that sets or cancels automatic control operation of the vehicle air conditioner 1.
  • the air conditioner switch is a cooling request unit that requests the evaporator 14 to cool the blown air.
  • the air volume setting switch is an air volume setting unit for manually setting the air volume of the indoor blower 42.
  • the temperature setting switch is a temperature setting unit that sets a target temperature Tset in the vehicle compartment.
  • the blowout mode changeover switch is a blowout mode setting unit for manually setting the blowout mode.
  • the air conditioning control device 60 is integrally configured with a control unit for controlling various control target devices connected to the output side thereof. Therefore, the configuration (hardware and software) that controls the operation of each control target device is a control unit that controls the operation of each control target device.
  • the configuration that controls the operation of the compressor 11 is the discharge capacity control unit 60a.
  • the configuration for controlling the operation of the second pump 32 is the second water pressure feeding capacity control unit 60b.
  • the configuration for controlling the operation of the water heater 33 is the heating capacity control unit 60c.
  • a driving force control device 70 is electrically connected to the air conditioning control device 60.
  • the air conditioning control device 60 and the driving force control device 70 are communicably connected to each other. Therefore, the air conditioning control device 60 can detect whether the current traveling mode of the vehicle is the EV traveling mode or the HV traveling mode based on the communication signal transmitted from the driving force control device 70. ..
  • the basic configuration of the driving force control device 70 is the same as that of the air conditioning control device 60.
  • the configuration for controlling the operation of the first pump 22 is the first water pressure feeding capacity control unit 70a.
  • the air conditioning control device 60 and the driving force control device 70 may be integrally formed as one control device.
  • the air conditioning controller 60 executes the air conditioning control program stored in advance.
  • the air conditioning control program reads the detection signals of the air conditioning control sensor group and the operation signals of the operation panel 69. Then, based on the read detection signal and operation signal, the target outlet temperature TAO of the blown air blown into the vehicle compartment is calculated.
  • the target outlet temperature TAO is calculated by the following formula F1.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ As + C ...
  • Tset is the target temperature in the vehicle compartment set by the temperature setting switch.
  • Tr is the inside air temperature detected by the inside air temperature sensor 61.
  • Tam is the outside air temperature detected by the outside air temperature sensor 62.
  • Ts is the amount of solar radiation detected by the solar radiation sensor 63.
  • Kset, Kr, Kam, and Ks are control gains.
  • C is a constant for correction.
  • the temperature of the blown air blown into the vehicle interior is output to various controlled devices connected to the output side so that the temperature of the blown air approaches the target outlet temperature TAO.
  • the control signal is appropriately determined.
  • the evaporator temperature Tefin detected by the evaporator temperature sensor 64 is determined so as to approach the target evaporator temperature TEO.
  • the target evaporator temperature TEO is determined based on the target outlet temperature TAO with reference to a control map stored in advance in the air conditioning controller 60. In the control map, the target evaporator temperature TEO is increased as the target outlet temperature TAO is increased.
  • the control voltage output to the indoor blower 42 is determined based on the target outlet temperature TAO by referring to the control map stored in advance in the air conditioning controller 60.
  • the blower volume of the indoor blower 42 is maximized in the extremely low temperature region (that is, the maximum cooling region) and the extremely high temperature region (that is, the maximum heating region) of the target outlet temperature TAO, and the air is blown as it approaches the intermediate temperature region. Reduce the air volume.
  • the control signal output to the electric actuator for driving the air mix door is determined so that the opening of the air mix door 44 approaches the target opening SW.
  • the target opening degree SW is calculated by the following mathematical formulas F2 and F3.
  • SW [(TAO-Tefin) / (Tw-Tefin)] ⁇ 100 (%) ... (F2)
  • Tw max ⁇ Tw1, Tw2 ⁇ ... (F3)
  • Tw1 is the first temperature of the first heat medium detected by the first heat medium temperature sensor 65a.
  • Tw2 is the second temperature of the second heat medium detected by the second heat medium temperature sensor 65b.
  • Tw1 and Tw2 is adopted as Tw.
  • the SW 100% of the formula F2 is the maximum heating opening. At the maximum heating opening degree, the control signal is determined so that the air mix door 44 fully closes the cold air bypass passage 45a and fully opens the heating side passage 45b.
  • SW 0% of the formula F2 is the maximum cooling opening degree. At the maximum cooling opening degree, the control signal is determined so that the air mix door 44 fully opens the cold air bypass passage 45a and fully closes the heating side passage 45b.
  • the control signal output to the second pump 32 based on the communication signal acquired from the driving force control device 70, at least when the traveling mode is switched to the EV traveling mode, the predetermined water pressure transmission is performed. It is decided to exert the ability.
  • the second temperature Tw2 is set to approach the reference temperature KTw by using the feedback control method at least when the traveling mode is switched to the EV traveling mode.
  • the control voltage is determined.
  • the air-conditioning control program outputs the control signals and the like determined as described above to various control target devices.
  • the detection signal and the operation signal are read in every predetermined control cycle until the stop of the vehicle air conditioner 1 is requested ⁇
  • the determination of the control signal and the like output to various controlled devices ⁇
  • the control A control routine for outputting signals and the like is repeated.
  • the high-temperature high-pressure refrigerant discharged from the compressor 11 flows into the condenser 12.
  • the refrigerant flowing into the condenser 12 exchanges heat with the outside air blown from the outdoor blower to be condensed.
  • the refrigerant flowing out from the condenser 12 is separated into gas and liquid by the receiver 12a.
  • the liquid-phase refrigerant separated by the receiver 12a is decompressed by the expansion valve 13.
  • the low-pressure refrigerant decompressed by the expansion valve 13 flows into the evaporator 14.
  • the refrigerant flowing into the evaporator 14 heat-exchanges with the air blown from the indoor blower 42 and evaporates. Thereby, the blown air is cooled.
  • the refrigerant flowing out from the indoor blower 42 is sucked into the compressor 11 and compressed again.
  • the blown air cooled by the evaporator 14 is distributed to the cold air bypass passage 45a and the heating side passage 45b according to the opening degree of the air mix door 44.
  • the blown air that has flowed into the heating-side passage 45b passes through the first heater core 21 and then the second heater core 31 in this order and is heated.
  • the blast air heated when passing through the heating side passage 45b is mixed with the blast air passing through the cold air bypass passage 45a in the mixing space 46.
  • the temperature of the blown air mixed in the mixing space 46 approaches the target outlet temperature TAO.
  • the blown air whose temperature is adjusted to an appropriate temperature in the mixing space 46 is blown out to an appropriate location in the vehicle compartment through the open air outlet.
  • three air conditioning modes of the first to third air conditioning modes are switched according to the traveling mode.
  • the first air conditioning mode is a mode in which the first pump 22 is operated and the second pump 32 is stopped so that the blast air heated by the first heater core 21 is blown into the vehicle interior.
  • the second air conditioning mode is a mode in which the second pump 32 is operated and the first pump 22 is stopped, and the blast air heated by the second heater core 31 is blown into the vehicle interior.
  • the third air conditioning mode is a mode in which the first pump 22 is operated and the second pump 32 is operated to blow the blast air heated by the first heater core 21 and the second heater core 31 into the vehicle interior.
  • the driving force control device 70 stops the first pump 22. Further, the air conditioning controller 60 operates the second pump 32 and supplies electric power to the water heater 33. Therefore, in the EV traveling mode, the second heating medium is heated by the water heater 33.
  • the temperature Tw2 of the second heat medium flowing into the second heater core 31 increases so as to approach the reference temperature KTw.
  • the temperature Tw1 of the first heat medium flowing into the first heater core 21 does not rise because the engine EG is stopped. Therefore, in the EV traveling mode, the air conditioning in the second air conditioning mode is executed. In other words, the second air conditioning mode is executed when the engine EG is stopped.
  • the driving force control device 70 switches the traveling mode to the HV traveling mode.
  • the engine EG operates in the HV traveling mode. Further, in the HV traveling mode, the driving force control device 70 operates the first pump 22. Therefore, in the HV traveling mode, the first heat medium is heated by the exhaust heat of the engine EG when flowing through the cooling water passage of the engine EG.
  • the air conditioning control device 60 executes the control flow shown in FIG. 4 when the traveling mode is switched from the EV traveling mode to the HV traveling mode.
  • the control flow shown in FIG. 4 is executed as a subroutine for the main routine of the air conditioning control program.
  • step S10 of the control flow shown in FIG. 4 the temperature Tw1 of the first heat medium and the temperature Tw2 of the second heat medium are read. Then, in step S20, it is determined whether or not the temperature difference ⁇ Tw (Tw2-Tw1) obtained by subtracting the temperature Tw1 from the temperature Tw2 is less than or equal to a predetermined reference temperature difference ⁇ KTw (3 ° C. in the present embodiment). .. When it is determined in step S20 that the temperature difference ⁇ Tw is less than or equal to the reference temperature difference ⁇ KTw, the process proceeds to step S30.
  • step S20 If it is determined in step S20 that the temperature difference ⁇ Tw is larger than the reference temperature difference ⁇ KTw, the process returns to step S10 after waiting for a predetermined control cycle. That is, when returning to step S10, air conditioning in the third air conditioning mode is executed. In other words, the third air conditioning mode is executed when the engine EG operates during execution of the second air conditioning mode.
  • step S30 the second pump 32 is stopped, the power supply to the water heater 33 is stopped, and the process returns to the main routine.
  • the air conditioning in the first air conditioning mode is executed.
  • the first air conditioning mode is an air conditioning mode executed when the temperature difference ⁇ Tw becomes equal to or less than the reference temperature difference ⁇ KTw during execution of the third air conditioning mode.
  • the exhaust heat of the engine EG maintains the temperature Tw1 of the first heat medium flowing into the first heater core 21 at the reference temperature KTw.
  • the temperature Tw2 of the second heat medium flowing into the second heater core 31 decreases.
  • the vehicle air conditioner 1 of the present embodiment it is possible to switch between the three air conditioning modes of the first to third air conditioning modes. At this time, since the independent heat medium circuits do not mix the first heat medium and the second heat medium, it is possible to realize comfortable air conditioning in the vehicle interior.
  • the second air conditioning mode can be executed in the EV running mode in which the engine EG is stopped.
  • the second air conditioning mode by adjusting the heating capacity of the water heater 33, the temperature of the second heat medium flowing into the second heater core 31 can be adjusted to an appropriate temperature for air conditioning the vehicle interior. it can.
  • the blown air is heated to an appropriate temperature by the second heater core 31, and the vehicle is heated. It is possible to realize comfortable air conditioning in the room.
  • the water heater 33 can adjust the temperature of the second heat medium to an appropriate temperature for air conditioning the passenger compartment in response to the temperature rise of the first heat medium.
  • the blast air can be heated to an appropriate temperature by the first heater core 21 and the second heater core 31 to realize comfortable air conditioning in the passenger compartment. That is, even if the temperature of the first heat medium flowing into the first heater core 21 has not risen sufficiently, the second heater core 31 can heat the blown air to an appropriate temperature. As a result, even if the air conditioning mode is switched, comfortable air conditioning of the vehicle interior can be realized without causing a temperature change of the blown air.
  • the blower air can be heated to an appropriate temperature by the first heater core 21 to realize comfortable air conditioning in the vehicle interior.
  • the vehicle air conditioner 1 of the present embodiment when applied to a hybrid vehicle, it is possible to suppress the temperature change of the blown air blown into the vehicle interior, and realize comfortable air conditioning in the vehicle interior. be able to.
  • the air conditioning control device 60 does not need to output a request signal requesting the driving force control device 70 to increase the output of the engine EG. Therefore, it is possible to suppress deterioration of vehicle fuel consumption.
  • step S20 of FIG. 4 when the temperature difference ⁇ Tw becomes equal to or less than the reference temperature difference ⁇ KTw during execution of the third air conditioning mode, Shift to the first air conditioning mode. According to this, it is possible to shift from the third air conditioning mode to the first air conditioning mode without causing a sudden change in the temperature of the air blown into the vehicle interior.
  • the second heater core 31 is arranged so as to heat the blown air that has passed through the first heater core 21. According to this, in the second heater core 31 arranged on the downstream side of the blast air flow, the blast air can be heated using the second heat medium whose temperature is easier to adjust than the first heat medium as the heat source. Therefore, it is easier to heat the blown air to an appropriate temperature.
  • the second temperature Tw2 may be lower than the first temperature Tw1.
  • the second pump 32 is stopped. Further, the blown air sufficiently heated by the first heater core 21 passes through the second heater core 31. Therefore, the temperature drop of the second heat medium staying in the second heater core 31 is small.
  • the degree to which the temperature adjustment of the blown air is adversely affected in the third air conditioning mode is small.
  • the third air conditioning mode may be switched to. Furthermore, you may switch to a 2nd air conditioning mode, utilizing the temperature of both a 1st heat medium and a 2nd heat medium. According to this, it is possible to effectively utilize the heat of the first heat medium and the second heat medium when the air conditioning mode changes.
  • the vehicle air conditioner 1 according to the present disclosure is applied to a plug-in hybrid vehicle
  • the application of the vehicle air conditioner 1 is not limited to this.
  • it may be applied to an ordinary hybrid vehicle that adjusts the driving force ratio between the driving force output from the engine EG and the driving force output from the traveling electric motor MG according to the vehicle running load.
  • the vehicle air conditioner 1 can be applied to a normal vehicle obtained only from the engine EG. In this case, since the first temperature Tw1 is always higher than the second temperature Tw2, it is possible to air-condition the vehicle interior in the first air-conditioning mode. Similarly, the vehicle air conditioner 1 can be applied to an electric vehicle because it is obtained only from the traveling electric motor MG. In this case, the second temperature Tw2 is always higher than the first temperature Tw1, so that the air conditioning of the vehicle interior can be performed in the second air conditioning mode.
  • the vehicle air conditioner 1 according to the present disclosure is not limited to the plug-in hybrid vehicle and can be applied to a wide variety of vehicle types. As a result, it is possible to design with common specifications (so-called series design) for a wide variety of vehicles.
  • Each configuration of the vehicle air conditioner 1 is not limited to the one disclosed in the above-described embodiment.
  • an electric compressor is used as the compressor 11 of the refrigeration cycle device 10
  • an engine-driven compressor may be used.
  • a variable displacement compressor configured so that the refrigerant discharge capacity can be adjusted by changing the discharge capacity may be adopted.
  • the electric expansion valve is an electric variable throttle mechanism including a valve body configured to change a throttle opening and an electric actuator configured to change the opening of the valve.
  • the operation of the electric expansion valve may be controlled by a control signal output from the air conditioning control device 60.
  • R1234yf is adopted as the refrigerant
  • the refrigerant is not limited to this.
  • R134a, R600a, R410A, R404A, R32, R407C, etc. may be adopted.
  • a mixed refrigerant obtained by mixing plural kinds of these refrigerants may be adopted.
  • the refrigeration cycle device 10 when the vehicle air conditioner 1 is used as a dedicated heating device, the refrigeration cycle device 10 may be omitted.
  • the refrigeration cycle device 10 described in the above embodiment may be provided with a water-refrigerant heat exchanger that heats the second heat medium by exchanging heat between the refrigerant discharged from the compressor 11 and the second heat medium.
  • the condenser 12 and the radiator 23 may be integrally formed. Then, the outside air blown from the common outside air blower may be blown to both the condenser 12 and the radiator 23.
  • step S20 of FIG. 4 the example in which the third air conditioning mode is switched to the first air conditioning mode when the temperature difference ⁇ Tw becomes equal to or less than the reference temperature difference ⁇ KTw has been described.
  • the switching of the air conditioning mode is not limited to this.
  • the third air conditioning mode may be switched to the first air conditioning mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

ハイブリッド車両に適用される車両用空調装置であって、内燃機関(EG)の排熱によって加熱された第1熱媒体を循環させる第1熱媒体回路(20)と、加熱能力を調整可能な加熱部(33)によって加熱された第2熱媒体を循環させる第2熱媒体回路(30)と、を備える。第1空調モードでは、第1熱媒体回路(20)に配置された第1加熱用熱交換部(21)で加熱された送風空気を車室内へ吹き出す。第2空調モードでは、第2熱媒体回路(30)に配置された第2加熱用熱交換部(31)で加熱された送風空気を車室内へ吹き出す。第3空調モードでは、第1加熱用熱交換部(21)および第2加熱用熱交換部(31)の双方で加熱された送風空気を車室内へ吹き出す。

Description

車両用空調装置 関連出願の相互参照
 本出願は、2018年11月8日に出願された日本特許出願2018-210307号に基づくもので、ここにその記載内容を援用する。
 本開示は、送風空気を加熱する車両用空調装置に関する。
 従来、特許文献1に、ハイブリッド車両に適用されて、空調対象空間である車室内へ送風される送風空気を加熱する車両用空調装置が開示されている。ここで、ハイブリッド車両は、エンジンおよび走行用電動モータの双方から走行用の駆動力を得る車両である。特許文献1の車両用空調装置では、車室内の暖房を行う際に、エンジンの冷却水を熱源として送風空気を加熱している。
 より具体的には、特許文献1の車両用空調装置は、エンジンとヒータコアとの間で冷却水を循環させる熱媒体回路を有している。ヒータコアは、冷却水と送風空気とを熱交換させて、送風空気を加熱する加熱用熱交換部である。さらに、熱媒体回路には、エンジンの停止時等に冷却水を加熱する電気ヒータが配置されている。
 そして、特許文献1の車両用空調装置では、エンジンの作動状態に応じて、熱媒体回路の回路構成を切り替えている。具体的には、エンジンの作動時には、エンジンおよび電気ヒータで加熱された冷却水をヒータコアへ流入させる通常暖房運転の回路に切り替える。また、エンジンの停止時には、エンジンを迂回させて電気ヒータで加熱された冷却水をヒータコアへ流入させるバイパス暖房運転の回路に切り替える。
特開2015-58886号公報
 しかしながら、特許文献1のように熱媒体回路の回路構成を切り替えると、ヒータコアへ流入する冷却水の温度を適切に調整することができなくなってしまうことがある。その結果、送風空気を適切に加熱することができなくなり、車室内の快適な空調を実現できなくなってしまう可能性がある。
 例えば、エンジンの作動時であって、エンジンの排熱によって加熱された冷却水の温度がヒータコアへ流入する冷却水の温度よりも高くなっている際に、熱媒体回路をバイパス暖房運転の回路から通常暖房運転の回路へ切り替える。このような切り替えを行うと、ヒータコアへ流入する冷却水の温度が急上昇してしまう。その結果、車室内へ送風される送風空気の温度が不必要に上昇してしまう。
 また、エンジンの始動直後のように、エンジンの排熱によって加熱された冷却水の温度がヒータコアへ流入する冷却水の温度よりも低くなっている際に、熱媒体回路をバイパス暖房運転の回路から通常暖房運転の回路へ切り替える。このような切り替えを行うと、ヒータコアへ流入する冷却水の温度が低下してしまう。その結果、車室内へ送風される送風空気の温度が低下してしまう。
 さらに、熱媒体回路をバイパス暖房運転の回路から通常暖房運転の回路へ切り替えると、冷却水の循環経路が長くなる。このため、電気ヒータが加熱しなければならない冷却水の量が増加する。従って、電気ヒータの加熱能力を増加させても、ヒータコアへ流入する
冷却水の温度を速やかに上昇させることができなくなってしまう。その結果、車室内へ送風される送風空気の温度を速やかに上昇させることができなくなってしまう。
 本開示は、上記点に鑑み、ハイブリッド車両に適用されて、車室内の快適な空調を実現可能な車両用空調装置を提供することを目的とする。
 本開示の一態様の車両用空調装置は、走行用の駆動力を内燃機関および走行用電動モータから得るハイブリッド車両に適用される。車両用空調装置は、第1熱媒体回路と、第1加熱用熱交換部と、第1ポンプと、第1水圧送能力制御部と、第2熱媒体回路と、第2加熱用熱交換部と、第2ポンプと、第2水圧送能力制御部と、を備える。
 第1熱媒体回路は、内燃機関の排熱によって加熱された第1熱媒体を循環させる。第1加熱用熱交換部は、第1熱媒体回路に配置されて第1熱媒体と車室内へ送風される送風空気とを熱交換させて送風空気を加熱する。第1ポンプは、第1熱媒体回路に配置されて第1熱媒体を第1加熱用熱交換部側へ圧送する。第1水圧送能力制御部は、第1ポンプの作動を制御する。第2熱媒体回路は、加熱能力を調整可能な加熱部によって加熱された第2熱媒体を循環させる。第2加熱用熱交換部は、第2熱媒体回路に配置されて第2熱媒体と送風空気とを熱交換させて送風空気を加熱する。第2ポンプは、第2熱媒体回路に配置されて第2熱媒体を第2加熱用熱交換部側へ圧送する。第2水圧送能力制御部は、第2ポンプの作動を制御する。第1熱媒体回路と第2熱媒体回路は、互いに独立した熱媒体回路である。
 そして、第1空調モードでは、第1水圧送能力制御部が第1ポンプを作動させるとともに第2水圧送能力制御部が第2ポンプを停止させて、第1加熱用熱交換部にて加熱された送風空気を前記車室内へ送風する。第2空調モードでは、第2水圧送能力制御部が第2ポンプを作動させるとともに第1水圧送能力制御部が第1ポンプを停止させて、第2加熱用熱交換部にて加熱された送風空気を車室内へ送風する。第3空調モードでは、第1水圧送能力制御部が第1ポンプを作動させるとともに第2水圧送能力制御部が第2ポンプを作動させて、第1加熱用熱交換部および第2加熱用熱交換部にて加熱された送風空気を車室内へ送風する。
 これによれば、第1熱媒体回路と第2熱媒体回路が、第1熱媒体と第2熱媒体を混合させることのない互いに独立した熱媒体回路になっている。従って、内燃機関の作動状態等に応じて、第1~第3空調モードを切り替えることによって、車室内の快適な空調を実現することができる。
 より詳細には、内燃機関が停止している際には、第2空調モードを実行することができる。第2空調モードでは、加熱部にて第2熱媒体の温度を適切に調整することで、車室内の快適な空調を実現することができる。
 また、第2空調モードの実行中に、内燃機関が作動した際には、第3空調モードへ切り替えることができる。第3空調モードでは、第1熱媒体の温度上昇に応じて、加熱部にて第2熱媒体の温度を適切に調整することで、車室内の快適な空調を実現することができる。
 また、第3空調モードの実行中に、第1熱媒体の温度が適切な温度となった際には、第1空調モードへ切り替えることができる。第1空調モードでは、第1熱媒体を熱源として、車室内の快適な空調を実現することができる。
 つまり、いずれの空調モードに切り替えた際にも、第1熱媒体と第2熱媒体が混ざり合うことがなく、それぞれの熱媒体の不適切な温度変化を招くことがない。従って、ハイブリッド車両に適用した際に、車室内へ吹き出される送風空気の温度変化を抑制することができ、車室内の快適な空調を実現可能な車両用空調装置を提供することができる。
一実施形態の車両用空調装置の全体構成図である。 一実施形態の車両用空調装置の電気制御部を示すブロック図である。 一実施形態の第1温度および第2温度の温度変化を示すタイムチャートである。 一実施形態の冷媒回収準備制御の制御処理を示すフローチャートである。
 図1~図4を用いて、本開示に係る車両用空調装置1の一実施形態を説明する。本実施形態の車両用空調装置1は、走行用の駆動力をエンジン(すなわち、内燃機関)EGおよび走行用電動モータMGから得るハイブリッド車両に適用されている。さらに、ハイブリッド車両は、車両停止時に外部電源(例えば、商用電源)から供給された電力をバッテリ50に充電することのできるプラグインハイブリッド車両である。
 プラグインハイブリッド車両では、走行モードを切り替えることができる。具体的には、バッテリ50の蓄電残量SOCが予め定めた基準残量KSOC以上になっているときには、主に走行用電動モータの駆動力によって走行するEV走行モードとなる。一方、蓄電残量SOCが基準残量KSOCよりも低くなっているときには、主にエンジンEGの駆動力によって走行するHV走行モードとなる。
 もちろん、EV走行モードであっても、車両走行負荷が高負荷となった際には、走行用電動モータMGを補助するためにエンジンEGを作動させる。また、HV走行モードであっても、車両走行負荷が高負荷となった際には、エンジンEGを補助するために走行用電動モータMGを作動させる。
 プラグインハイブリッド車両では、このようにEV走行モードとHV走行モードとを切り替えることによって、車両走行用の駆動力をエンジンEGのみから得る通常の車両に対して、車両燃費を向上させることができる。EV走行モードとHV走行モードとの切り替えは、駆動力制御装置70によって制御される。
 車両用空調装置1は、冷凍サイクル装置10、第1熱媒体回路20、第2熱媒体回路30、室内空調ユニット40等を有している。
 冷凍サイクル装置10は、車両用空調装置1において、車室内へ送風される送風空気を冷却する。冷凍サイクル装置10は、図1の全体構成図に示すように、圧縮機11、凝縮器12、膨張弁13、および蒸発器14を、冷媒配管を介して環状に接続したものである。
 冷凍サイクル装置10では、冷媒としてHFO系冷媒(具体的には、R1234yf)を採用している。冷凍サイクル装置10では、圧縮機11から吐出された吐出冷媒の圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。冷媒には、圧縮機11を潤滑するための冷凍機油が混入されている。冷凍機油の一部は、冷媒とともにサイクルを循環している。
 圧縮機11は、冷凍サイクル装置10において、冷媒を吸入し、圧縮して吐出する。圧縮機11は、内燃機関や走行用電動モータ等が収容される駆動装置室内に配置されている。駆動装置室は、車室の前方側に配置されている。圧縮機11は、空調制御装置60から出力される制御信号によって、回転数(すなわち、冷媒吐出能力)が制御される電動圧縮機である。
 圧縮機11の吐出口には、凝縮器12の冷媒入口側が接続されている。凝縮器12は、圧縮機11から吐出された冷媒と、室外送風機から送風された外気とを熱交換させて、冷媒を凝縮させる凝縮用熱交換部である。凝縮器12は、駆動装置室内の前方側に配置されている。従って、車両走行時には、凝縮器12に走行風を当てることができる。
 凝縮器12の冷媒出口には、レシーバ12aの入口側が接続されている。レシーバ12aは、気液分離機能を有する貯液部である。すなわち、レシーバ12aは、凝縮器12から流出した冷媒の気液を分離する。そして、分離された液相冷媒の一部をサイクルの余剰冷媒として貯える。
 レシーバ12aの液相冷媒出口には、膨張弁13の入口側が接続されている。膨張弁13は、レシーバ12aから流出した冷媒を減圧させる減圧部である。
 膨張弁13は、絞り開度を調整する弁体部、および弁体部を変位させる感温部を有する温度式膨張弁である。感温部は、蒸発器14出口側冷媒の温度および圧力に応じて変形する変形部材であるダイヤフラムを有している。そして、膨張弁13では、ダイヤフラムの変形を弁体部に伝達することによって、蒸発器14出口側冷媒の過熱度が予め定めた所定値に近づくように弁開度(すなわち、絞り開度)が調整される。
 膨張弁13の出口には、蒸発器14の冷媒入口側が接続されている。蒸発器14は、室内空調ユニット40の空調ケース41内に配置されている。蒸発器14は、膨張弁13にて減圧された低圧冷媒と車室内へ送風される送風空気とを熱交換させて、低圧冷媒を蒸発させる。さらに、蒸発器14は、低圧冷媒を蒸発させて吸熱作用を発揮させることによって、送風空気を冷却する吸熱用熱交換部である。蒸発器14の冷媒出口には、圧縮機11の吸入口側が接続されている。
 次に、第1熱媒体回路20は、エンジンEGの冷却水通路と第1ヒータコア21との間で、エンジンEGの排熱によって加熱された第1熱媒体を循環させる熱媒体循環回路である。第1熱媒体回路20は、主にHV走行モード時に、車室内へ送風される送風空気を加熱する。第1熱媒体としては、エチレングリコール、ジメチルポリシロキサン、あるいはナノ流体等を含む溶液、不凍液等を採用することができる。
 第1熱媒体回路20には、エンジンEGの冷却水通路、第1ヒータコア21、第1ポンプ22、ラジエータ23、サーモスタット24が配置されている。
 第1ヒータコア21は、室内空調ユニット40の空調ケース41内に配置されている。第1ヒータコア21は、エンジンEGの冷却水通路から流出した第1熱媒体と送風空気とを熱交換させて送風空気を加熱する第1加熱用熱交換部である。
 第1ヒータコア21の熱媒体出口には、第1ポンプ22の吸入口側が接続されている。第1ポンプ22は、第1ヒータコア21から流出した第1熱媒体を、エンジンEGの冷却水通路側へ圧送する水ポンプである。従って、第1ポンプ22を作動させると、第1熱媒体をエンジンEGの冷却水通路と第1ヒータコア21との間で循環させることができる。
 第1ポンプ22は、駆動力制御装置70から出力される制御電圧によって、その作動が制御される。駆動力制御装置70は、HV走行モードのように、エンジンEGが作動している際には、予め定めた水圧送能力を発揮するように、第1ポンプ22を作動させる。
 さらに、第1熱媒体回路20には、エンジンEGの冷却水通路から流出した第1熱媒体を第1ヒータコア21を迂回させて、第1ポンプ22の吸入口側へ導く迂回通路25が設けられている。迂回通路25には、ラジエータ23が接続されている。つまり、ラジエータ23と第1ヒータコア21は、第1ポンプ22およびエンジンEGの冷却水通路に対して、並列的に接続されている。
 ラジエータ23は、エンジンEGの冷却水通路から流出した第1熱媒体と室外送風機から送風された外気とを熱交換させて、第1熱媒体を冷却する放熱用熱交換部である。ラジエータ23は、駆動装置室内の前方側に配置されている。従って、車両走行時には、ラジエータ23に走行風を当てることができる。
 サーモスタット24は、エンジンEGの冷却水通路から流出した第1熱媒体の温度に応じて、ラジエータ23の熱媒体入口を開閉する開閉弁である。サーモスタット24は、第1熱媒体の温度変化に応じて体積変化するサーモワックスによって弁体を変位させる機械的機構である。
 本実施形態のサーモスタット24では、エンジンEGの冷却水通路から流出した第1熱媒体の温度が予め定めた基準温度KTw以上となっている際に、ラジエータ23の熱媒体入口を開く。また、エンジンEGの冷却水通路から流出した第1熱媒体の温度が基準温度KTwより低くなっている際に、ラジエータ23の熱媒体入口を閉じる。
 このため、エンジンEGが作動していても、エンジンEGの冷却水通路から流出した第1熱媒体の温度が基準温度KTwより低くなっている際には、第1熱媒体がラジエータ23へ流入して冷却されることはない。従って、第1熱媒体回路20を循環する第1熱媒体の温度は、基準温度KTwに近づくように上昇する。
 そして、エンジンEGの冷却水通路から流出した第1熱媒体の温度が上昇して基準温度KTw以上になると、第1ポンプ22から圧送された第1熱媒体の一部がラジエータ23へ流入して冷却される。このため、エンジンEGの冷却水通路から流出した第1熱媒体の温度、すなわち第1ヒータコア21へ流入する第1熱媒体の温度は、基準温度KTwに近づく。
 次に、第2熱媒体回路30は、水加熱ヒータ33と第2ヒータコア31との間で第2熱媒体を循環させる熱媒体循環回路である。第2熱媒体回路30は、主にEV走行モード時に、車室内へ送風される送風空気を加熱する。第2熱媒体としては、第1熱媒体と同様の流体を採用することができる。
 第2熱媒体回路30には、第2ヒータコア31、第2ポンプ32、水加熱ヒータ33が配置されている。
 第2ヒータコア31は、室内空調ユニット40の空調ケース41内に配置されている。第2ヒータコア31は、水加熱ヒータ33によって加熱された第2熱媒体と送風空気とを熱交換させて、送風空気を加熱する第2加熱用熱交換部である。第2ヒータコア31の基本的構成は、第1ヒータコア21と同様である。
 第2ヒータコア31の熱媒体出口には、第2ポンプ32の吸入口側が接続されている。第2ポンプ32は、第2ヒータコア31から流出した第2熱媒体を、水加熱ヒータ33の入口側へ圧送する水ポンプである。従って、第2ポンプ32を作動させると、第2熱媒体を水加熱ヒータ33と第2ヒータコア31との間で循環させることができる。
 第2ポンプ32の基本的構成は、第1ポンプ22と同様である。第2ポンプ32は、空調制御装置60から出力される制御電圧によって、その作動が制御される。
 水加熱ヒータ33は、電力を供給されることによって発熱して第2熱媒体を加熱する電気ヒータを有する加熱部である。水加熱ヒータ33は、空調制御装置60から出力される制御電圧によって、その加熱能力が調整される。
 以上の説明から明かなように、第1熱媒体回路20と第2熱媒体回路30は、第1熱媒体および第2熱媒体が混ざり合うことのない互いに独立した熱媒体回路として形成されている。
 次に、室内空調ユニット40について説明する。室内空調ユニット40は、車室内の空調のために適切な温度に調整された送風空気を車室内の適切な箇所へ吹き出すためのものである。室内空調ユニット40は、車室内の最前部であって、計器盤(インストルメントパネル)の内側に配置されている。
 室内空調ユニット40は、図1に示すように、送風空気の空気通路を形成する空調ケース41内に、室内送風機42、蒸発器14、第1ヒータコア21、第2ヒータコア31等を収容したものである。空調ケース41は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。
 空調ケース41の送風空気流れ最上流側には、内外気切替装置43が配置されている。内外気切替装置43は、空調ケース41内へ内気(車室内空気)と外気(車室外空気)とを切替導入する。内外気切替装置43の駆動用の電動アクチュエータは、空調制御装置60から出力される制御信号によって、その作動が制御される。
 内外気切替装置43の送風空気流れ下流側には、室内送風機42が配置されている。室内送風機42は、内外気切替装置43を介して吸入した空気を車室内へ向けて送風する。室内送風機42は、遠心多翼ファンを電動モータにて駆動する電動送風機である。室内送風機42は、空調制御装置60から出力される制御電圧によって、回転数(すなわち、送風能力)が制御される。
 室内送風機42の送風空気流れ下流側には、蒸発器14、第1ヒータコア21、第2ヒータコア31が、送風空気流れに対して、この順に配置されている。つまり、蒸発器14は、第1ヒータコア21よりも、送風空気流れ上流側に配置されている。第1ヒータコア21は、第2ヒータコア31よりも、送風空気流れ上流側に配置されている。換言すると、第2ヒータコア31は、空調ケース41内に形成された空気通路において、第1ヒータコア21を通過した送風空気を加熱するように配置されている。
 空調ケース41内には、蒸発器14通過後の送風空気を、第1ヒータコア21および第2ヒータコア31を迂回させて流す冷風バイパス通路45aが設けられている。第1ヒータコア21および第2ヒータコア31は、加熱側通路45bに配置されている。さらに、空調ケース41内の蒸発器14の送風空気流れ下流側であって、かつ、第1ヒータコア21および第2ヒータコア31の上流側には、エアミックスドア44が配置されている。
 エアミックスドア44は、蒸発器14通過後の送風空気のうち、冷風バイパス通路45aを通過させる送風空気の風量と、加熱側通路45bを通過させる送風空気の風量との風量割合を調整する風量割合調整部である。エアミックスドア44の駆動用の電動アクチュエータは、空調制御装置60から出力される制御信号によって、その作動が制御される。
 空調ケース41内の冷風バイパス通路45aおよび加熱側通路45bの送風空気流れ下流側には、混合空間46が形成されている。混合空間46は、加熱側通路45bを通過する際に加熱された送風空気と、冷風バイパス通路45aを通過して加熱されていない送風空気とを混合させる空間である。
 さらに、空調ケース41の送風空気流れ下流部には、混合空間46にて混合されて温度調整された送風空気を、車室内へ吹き出すための開口穴が配置されている。
 開口穴としては、フェイス開口穴、フット開口穴、およびデフロスタ開口穴(いずれも図示せず)が設けられている。フェイス開口穴は、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴は、乗員の足元に向けて空調風を吹き出すための開口穴である。デフロスタ開口穴は、車両前面窓ガラス内側面に向けて空調風を吹き出すための開口穴である。
 従って、エアミックスドア44が、冷風バイパス通路45aを通過させる風量と加熱側通路45bを通過させる風量との風量割合を調整することによって、混合空間46にて混合される空調風の温度が調整される。そして、各吹出口から車室内へ吹き出される送風空気(空調風)の温度が調整される。
 また、フェイス開口穴、フット開口穴、およびデフロスタ開口穴の送風空気流れ上流側には、フェイスドア、フットドア、およびデフロスタドア(いずれも図示せず)が配置されている。フェイスドア、フットドア、およびデフロスタドアは、対応する開口穴を開閉する開閉部である。
 これらのドアは、リンク機構等を介して、共通する駆動用の電動アクチュエータに連結されて連動して回転操作される。これらのドアの駆動用の電動アクチュエータは、空調制御装置60から出力される制御信号によって、その作動が制御される。
 次に、本実施形態の電気制御部の概要について説明する。空調制御装置60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。そして、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された各種制御対象機器11、32、33、42等の作動を制御する。
 また、空調制御装置60の入力側には、図2のブロック図に示すように、内気温センサ61、外気温センサ62、日射センサ63、蒸発器温度センサ64、第1熱媒体温度センサ65a、第2熱媒体温度センサ65b等が接続されている。そして、空調制御装置60には、これらの空調制御用のセンサ群の検出信号が入力される。
 内気温センサ61は、車室内温度(内気温)Trを検出する内気温検出部である。外気温センサ62は、車室外温度(外気温)Tamを検出する外気温検出部である。日射センサ63は、車室内へ照射される日射量Tsを検出する日射量検出部である。
 蒸発器温度センサ64は、蒸発器14における冷媒蒸発温度(蒸発器温度)Tefinを検出する蒸発器温度検出部である。本実施形態の蒸発器温度センサ64は、具体的に、蒸発器14の熱交換フィンの温度を検出している。
 第1熱媒体温度センサ65aは、第1ヒータコア21へ流入する第1熱媒体の第1温度Tw1を検出する第1熱媒体温度検出部である。第2熱媒体温度センサ65bは、第2ヒータコア31へ流入する第2熱媒体の第2温度Tw2を検出する第2熱媒体温度検出部である。
 また、空調制御装置60の入力側には、図2に示すように、車室内前部の計器盤付近に配置された操作パネル69が接続され、操作パネル69に設けられた各種操作スイッチからの操作信号が入力される。
 操作パネル69に設けられた各種操作スイッチとしては、オートスイッチ、エアコンスイッチ、風量設定スイッチ、温度設定スイッチ、吹出モード切替スイッチ等がある。オートスイッチは、車両用空調装置1の自動制御運転を設定あるいは解除する空調運転設定部である。エアコンスイッチは、蒸発器14で送風空気の冷却を行うことを要求する冷却要求部である。風量設定スイッチは、室内送風機42の風量をマニュアル設定する風量設定部である。温度設定スイッチは、車室内の目標温度Tsetを設定する温度設定部である。吹出モード切替スイッチは、吹出モードをマニュアル設定する吹出モード設定部である。
 また、空調制御装置60は、その出力側に接続された各種制御対象機器を制御する制御部が一体的に構成されたものである。従って、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部となっている。
 例えば、空調制御装置60のうち、圧縮機11の作動を制御する構成は、吐出能力制御部60aである。第2ポンプ32の作動を制御する構成は、第2水圧送能力制御部60bである。水加熱ヒータ33の作動を制御する構成は、加熱能力制御部60cである。
 また、空調制御装置60には、駆動力制御装置70が電気的に接続されている。空調制御装置60と駆動力制御装置70は、互いに通信可能に接続されている。このため、空調制御装置60では、駆動力制御装置70から送信された通信信号に基づいて、現在の車両の走行モードが、EV走行モードであるかHV走行モードであるかを検知することができる。
 駆動力制御装置70の基本的構成は、空調制御装置60と同様である。駆動力制御装置70のうち、第1ポンプ22の作動を制御する構成は、第1水圧送能力制御部70aである。もちろん、空調制御装置60および駆動力制御装置70が、1つの制御装置として、一体的に形成されていてもよい。
 次に、上記構成における本実施形態の車両用空調装置1の作動について説明する。車両用空調装置1では、操作パネル69のオートスイッチが投入されると、空調制御装置60が予め記憶している空調制御プログラムを実行する。
 空調制御プログラムでは、空調制御用のセンサ群の検出信号および操作パネル69の操作信号を読み込む。そして、読み込まれた検出信号および操作信号に基づいて、車室内へ吹き出される送風空気の目標吹出温度TAOを算定する。
 具体的には、目標吹出温度TAOは、以下数式F1によって算出される。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×As+C…(F1)
 ここで、Tsetは、温度設定スイッチによって設定された車室内の目標温度である。Trは、内気温センサ61によって検出された内気温である。Tamは、外気温センサ62によって検出された外気温である。Tsは、日射センサ63によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインである。Cは、補正用の定数である。
 さらに、空調制御プログラムでは、目標吹出温度TAO等に基づいて、車室内へ吹き出される送風空気の温度が目標吹出温度TAOに近づくように、出力側に接続された各種制御対象機器へ出力される制御信号を適宜決定する。
 例えば、圧縮機11へ出力される制御信号については、蒸発器温度センサ64によって検出された蒸発器温度Tefinが、目標蒸発器温度TEOに近づくように決定される。目標蒸発器温度TEOは、目標吹出温度TAOに基づいて、予め空調制御装置60に記憶された制御マップを参照して決定される。制御マップでは、目標吹出温度TAOの上昇に伴って目標蒸発器温度TEOを上昇させる。
 また、室内送風機42へ出力される制御電圧については、目標吹出温度TAOに基づいて、予め空調制御装置60に記憶された制御マップを参照して決定される。制御マップでは、目標吹出温度TAOの極低温域(すなわち、最大冷房域)および極高温域(すなわち、最大暖房域)で室内送風機42の送風量を最大とし、中間温度域に近づくに伴って送風量を減少させる。
 また、エアミックスドア駆動用の電動アクチュエータへ出力される制御信号については、エアミックスドア44の開度が目標開度SWに近づくように決定される。
 具体的には、目標開度SWは、以下数式F2、F3によって算出される。
SW=[(TAO-Tefin)/(Tw-Tefin)]×100(%)…(F2)
Tw=max{Tw1,Tw2}…(F3)
 ここで、Tw1は、第1熱媒体温度センサ65aによって検出された第1熱媒体の第1温度である。Tw2は、第2熱媒体温度センサ65bによって検出された第2熱媒体の第2温度である。数式F3では、Twとして、Tw1およびTw2のうち高い方の値が採用される。
 数式F2のSW=100%は、最大暖房開度である。最大暖房開度では、エアミックスドア44が、冷風バイパス通路45aを全閉とし、加熱側通路45bを全開させるように制御信号が決定される。数式F2のSW=0%は、最大冷房開度である。最大冷房開度では、エアミックスドア44が、冷風バイパス通路45aを全開させ、加熱側通路45bを全閉とするように制御信号が決定される。
 また、第2ポンプ32へ出力される制御信号については、駆動力制御装置70から取得した通信信号に基づいて、少なくとも走行モードがEV走行モードに切り替えられている際には、予め定めた水圧送能力を発揮するように決定される。
 また、水加熱ヒータ33へ出力される制御電圧については、少なくとも走行モードがEV走行モードに切り替えられている際には、フィードバック制御手法を用いて、第2温度Tw2が、基準温度KTwに近づくように制御電圧が決定される。
 さらに、空調制御プログラムでは、上記の如く決定された制御信号等を、各種制御対象機器へ出力する。その後、空調制御プログラムでは、車両用空調装置1の停止が要求されるまで、所定の制御周期毎に、検出信号および操作信号の読み込み→各種制御対象機器へ出力される制御信号等の決定→制御信号等の出力といった制御ルーチンが繰り返される。
 従って、冷凍サイクル装置10では、圧縮機11から吐出された高温高圧冷媒が、凝縮器12へ流入する。凝縮器12へ流入した冷媒が、室外送風機から送風された外気と熱交換して凝縮する。凝縮器12から流出した冷媒は、レシーバ12aにて気液分離される。レシーバ12aにて分離された液相冷媒は、膨張弁13で減圧される。
 膨張弁13で減圧された低圧冷媒は、蒸発器14へ流入する。蒸発器14へ流入した冷媒は、室内送風機42から送風された送風空気と熱交換して蒸発する。これにより、送風空が冷却される。室内送風機42から流出した冷媒は、圧縮機11へ吸入されて、再び圧縮される。
 室内空調ユニット40では、蒸発器14にて冷却された送風空気が、エアミックスドア44の開度に応じて、冷風バイパス通路45aおよび加熱側通路45bへ配風される。加熱側通路45bへ流入した送風空気は、第1ヒータコア21→第2ヒータコア31の順に通過して加熱される。
 加熱側通路45bを通過する際に加熱された送風空気は、混合空間46にて冷風バイパス通路45aを通過した送風空気と混合される。これにより、混合空間46にて混合された送風空気の温度が目標吹出温度TAOに近づく。混合空間46にて適切な温度に調整された送風空気は、開口している吹出口を介して、車室内の適切な箇所へ向けて吹き出される。
 これにより、内気温Trが外気温Tamよりも低い温度に維持される場合には、車室内の冷房が実現される。一方、内気温Trが外気温Tamよりも高い温度に維持される場合には、車室内の暖房が実現される。
 さらに、本実施形態の車両用空調装置1では、走行モードに応じて、第1~第3空調モードの3つの空調モードを切り替える。
 第1空調モードは、第1ポンプ22を作動させるとともに第2ポンプ32を停止させて、第1ヒータコア21にて加熱された送風空気を車室内へ送風するモードである。
 第2空調モードは、第2ポンプ32を作動させるとともに第1ポンプ22を停止させて、第2ヒータコア31にて加熱された送風空気を車室内へ送風するモードである。
 第3空調モードは、第1ポンプ22を作動させるとともに第2ポンプ32を作動させて、第1ヒータコア21および第2ヒータコア31にて加熱された送風空気を車室内へ送風するモードである。
 これらの空調モードの切り替えについては、図3、図4を用いて説明する。前述の如く、プラグインハイブリッド車両では、バッテリ50の蓄電残量SOCが基準残量KSOC以上になっているときは、駆動力制御装置70が、走行モードをEV走行モードに切り替える。
 EV走行モードでは、駆動力制御装置70が、第1ポンプ22を停止させる。さらに、空調制御装置60が、第2ポンプ32を作動させるとともに、水加熱ヒータ33へ電力を供給する。従って、EV走行モードでは、第2熱媒体が水加熱ヒータ33によって加熱される。
 このため、図3の太実線に示すように、第2ヒータコア31へ流入する第2熱媒体の温度Tw2が基準温度KTwに近づくように上昇する。一方、第1ヒータコア21へ流入する第1熱媒体の温度Tw1の温度は、エンジンEGが停止しているので上昇しない。従って、EV走行モードでは、第2空調モードでの空調が実行される。換言すると、第2空調モードは、エンジンEGが停止している際に実行される。
 その後、蓄電残量SOCが低下して、基準残量KSOCより低くなると、駆動力制御装置70が、走行モードをHV走行モードに切り替える。HV走行モードでは、エンジンEGが作動する。さらに、HV走行モードでは、駆動力制御装置70が、第1ポンプ22を作動させる。従って、HV走行モードでは、第1熱媒体が、エンジンEGの冷却水通路を流通する際に、エンジンEGの排熱によって加熱される。
 そして、図3の太破線に示すように、第1ヒータコア21へ流入する第1熱媒体の温度Tw1が基準温度KTwに近づくように上昇する。さらに、空調制御装置60は、走行モードがEV走行モードからHV走行モードへ切り替えられた際に、図4に示す制御フローを実行する。図4に示す制御フローは、空調制御プログラムのメインルーチンに対するサブルーチンとして実行される。
 図4に示す制御フローのステップS10では、第1熱媒体の温度Tw1および第2熱媒体の温度Tw2を読み込む。そして、ステップS20にて、温度Tw2から温度Tw1を減算した温度差ΔTw(Tw2-Tw1)が予め定めた基準温度差ΔKTw(本実施形態では、3℃)以下となっているか否かを判定する。ステップS20にて、温度差ΔTwが基準温度差ΔKTw以下となっていると判定された場合は、ステップS30へ進む。
 ステップS20にて、温度差ΔTwが基準温度差ΔKTwよりも大きいと判定された場合は、所定の制御周期の経過を待って、ステップS10へ戻る。つまり、ステップS10へ戻る場合は、第3空調モードでの空調が実行される。換言すると、第3空調モードは、第2空調モードの実行中に、エンジンEGが作動した際に実行される。
 ステップS30では、第2ポンプ32を停止させるとともに、水加熱ヒータ33への電力を供給を停止して、メインルーチンへ戻る。これにより、第1空調モードでの空調が実行される。換言すると、第1空調モードは、第3空調モードの実行中に、温度差ΔTwが基準温度差ΔKTw以下となった際に実行される空調モードである。
 そして、第1空調モードでは、図3に示すように、エンジンEGの排熱によって、第1ヒータコア21へ流入する第1熱媒体の温度Tw1が基準温度KTwとなるように維持される。一方、水加熱ヒータ33への電力を供給が停止されるので、第2ヒータコア31へ流入する第2熱媒体の温度Tw2が低下する。
 以上の如く、本実施形態の車両用空調装置1では、第1~第3空調モードの3つの空調モードを切り替えることができる。この際、第1熱媒体と第2熱媒体を混合させることのない互いに独立した熱媒体回路になっているので、車室内の快適な空調を実現することができる。
 より詳細には、エンジンEGが停止しているEV走行モードでは、第2空調モードを実行することができる。第2空調モードでは、水加熱ヒータ33の加熱能力を調整することによって、第2ヒータコア31へ流入する第2熱媒体の温度を、車室内の空調を行うために適切な温度に調整することができる。
 従って、エンジンEGの排熱によって第1ヒータコア21へ流入する第1熱媒体を加熱することができない運転条件であっても、第2ヒータコア31にて送風空気を適切な温度に加熱して、車室内の快適な空調を実現することができる。
 そして、EV走行モードからHV走行モードへ切り替えられて、第2空調モードの実行中にエンジンEGが作動した際には、第3空調モードへ切り替えることができる。第3空調モードでは、第1熱媒体の温度上昇に応じて、水加熱ヒータ33が第2熱媒体の温度を、車室内の空調を行うために適切な温度に調整することができる。
 従って、第1ヒータコア21および第2ヒータコア31にて送風空気を適切な温度に加熱して、車室内の快適な空調を実現することができる。つまり、第1ヒータコア21へ流入する第1熱媒体の温度が充分に上昇していなくても、第2ヒータコア31にて送風空気を適切な温度に加熱することができる。その結果、空調モードを切り替えても、送風空気の温度変動を招くことなく、車室内の快適な空調を実現することができる。
 そして、第3空調モードの実行中に、第1熱媒体の温度が、車室内の空調を行うために適切な温度に上昇した際には、第1空調モードへ切り替えることができる。第1空調モードでは、第1ヒータコア21にて送風空気を適切な温度に加熱して、車室内の快適な空調を実現することができる。
 つまり、いずれの空調モードに切り替えた際にも、第1熱媒体と第2熱媒体が混ざり合うことがなく、それぞれの熱媒体に不適切な温度変化を招いてしまうことがない。従って、本実施形態の車両用空調装置1によれば、ハイブリッド車両に適用した際に、車室内へ吹き出される送風空気の温度変化を抑制することができ、車室内の快適な空調を実現することができる。
 また、本実施形態の車両用空調装置1では、第3空調モードに切り替えることができる。これによれば、第1熱媒体の温度を上昇させるために、空調制御装置60が駆動力制御装置70に対してエンジンEGの出力を増加させることを要求する要求信号を出力する必要がない。従って、車両燃費の悪化を抑制することができる。
 また、本実施形態の車両用空調装置1では、図4のステップS20を用いて説明したように、第3空調モードの実行中に、温度差ΔTwが基準温度差ΔKTw以下となった際に、第1空調モードへ移行させる。これによれば、車室内へ送風される送風空気の温度の急変を招くことなく、第3空調モードから第1空調モードへ移行させることができる。
 また、本実施形態の車両用空調装置1では、第2ヒータコア31が、第1ヒータコア21を通過した送風空気を加熱するように配置されている。これによれば、送風空気流れ下流側に配置される第2ヒータコア31にて、第1熱媒体よりも温度調整が容易な第2熱媒体を熱源として送風空気を加熱することができる。従って、より一層、送風空気を適切な温度に加熱しやすい。
 ところで、第1空調モードでは、第2温度Tw2が第1温度Tw1よりも低下してしまうことがある。しかしながら、第1空調モードでは、第2ポンプ32が停止している。さらに、第1ヒータコア21にて充分に加熱された送風空気が第2ヒータコア31を通過する。このため、第2ヒータコア31内に滞留している第2熱媒体の温度低下は小さい。
 従って、第2ヒータコア31が、第1ヒータコア21を通過した送風空気を加熱するように配置されていても、第3空調モード時に送風空気の温度調整に悪影響を与えてしまう度合は少ない。
 また、第1空調モード時にエンジンEGが起動して、第1熱媒体の第1温度Tw1が基準温度KTwに近づいた場合は、第3空調モードへ移行させてもよい。さらに、第1熱媒体および第2熱媒体の両方の温度を利用しながら、第2空調モードへ移行させてもよい。これによれば、空調モードの変化時に第1熱媒体および第2熱媒体の有する熱の有効利用を図ることができる。
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
 上述の実施形態では、本開示に係る車両用空調装置1を、プラグインハイブリッド車両に適用した例を説明したが、車両用空調装置1の適用はこれに限定されない。例えば、車両走行負荷に応じて、エンジンEGから出力される駆動力と走行用電動モータMGから出力される駆動力との駆動力比を調整する通常のハイブリッド車両に適用してもよい。
 さらに、車両用空調装置1は、エンジンEGのみから得る通常の車両に適用することができる。この場合は、常に第1温度Tw1が第2温度Tw2よりも高くなるので、第1空調モードで車室内の空調を行うことができる。同様に、車両用空調装置1は、走行用電動モータMGのみから得るから電気自動車に適用することができる。この場合は、常に第2温度Tw2が第1温度Tw1よりも高くなるので、第2空調モードで車室内の空調を行うことができる。
 つまり、本開示に係る車両用空調装置1は、プラグインハイブリッド車両に限定されず、幅広い車種に適用することができる。その結果、幅広い車種に対して共通仕様の設計(いわゆる、シリーズ設計)が可能となる。
 車両用空調装置1の各構成は、上述の実施形態に開示されてものに限定されない。
 例えば、上述の実施形態では、冷凍サイクル装置10の圧縮機11として、電動圧縮機を採用した例を説明したが、エンジン駆動式の圧縮機を採用してもよい。さらに、エンジン駆動式の圧縮機としては、吐出容量を変化させることによって冷媒吐出能力を調整可能に構成された可変容量型圧縮機を採用してもよい。
 また、上述の実施形態では、冷凍サイクル装置10の膨張弁13として温度式膨張弁を採用した例を説明したが、電気式膨張弁を採用してもよい。電気式膨張弁は、絞り開度を変更可能に構成された弁体と、弁体の開度を変化させる電動アクチュエータとを有して構成される電気式の可変絞り機構である。電気式膨張弁は、空調制御装置60から出力される制御信号によって、その作動が制御されるようになっていればよい。
 また、上述の実施形態では、冷媒としてR1234yfを採用した例を説明したが、冷媒はこれに限定されない。例えば、R134a、R600a、R410A、R404A、R32、R407C、等を採用してもよい。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。
 また、上述の実施形態では、冷凍サイクル装置10を採用した例を説明したが、車両用空調装置1を暖房専用機として利用する場合は、冷凍サイクル装置10を廃止してもよい。
 また、上述の実施形態では、第2熱媒体回路30の加熱部として、水加熱ヒータ33を採用した例を説明したが、加熱部としてヒートポンプサイクルを採用してもよい。例えば、上述の実施形態で説明した冷凍サイクル装置10に、圧縮機11吐出冷媒と第2熱媒体とを熱交換させて第2熱媒体を加熱する水-冷媒熱交換器を設けてもよい。
 また、上述の実施形態では、凝縮器12とラジエータ23の詳細構成について言及していないが、凝縮器12とラジエータ23は、一体的に形成されていてもよい。そして、共通する外気送風機から送風された外気が、凝縮器12およびラジエータ23の双方に吹き付けられるようになっていてもよい。
 上述の実施形態では、図4のステップS20で説明したように、温度差ΔTwが基準温度差ΔKTw以下となった際、第3空調モードから第1空調モードへ切り替えるようにした例を説明したが、空調モードの切り替えはこれに限定されない。例えば、基準温度KTwから第2温度Tw2を減算した値が、基準温度差ΔKTw以下となった際、第3空調モードから第1空調モードへ切り替えるようになっていてもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (5)

  1.  走行用の駆動力を内燃機関(EG)および走行用電動モータ(MG)から得るハイブリッド車両に適用される車両用空調装置であって、
     前記内燃機関の排熱によって加熱された第1熱媒体を循環させる第1熱媒体回路(20)と、
     前記第1熱媒体回路に配置されて前記第1熱媒体と車室内へ送風される送風空気とを熱交換させて前記送風空気を加熱する第1加熱用熱交換部(21)と、
     前記第1熱媒体回路に配置されて前記第1熱媒体を前記第1加熱用熱交換部側へ圧送する第1ポンプ(22)と、
     前記第1ポンプの作動を制御する第1水圧送能力制御部(70a)と、
     加熱能力を調整可能な加熱部(33)によって加熱された第2熱媒体を循環させる第2熱媒体回路(30)と、
     前記第2熱媒体回路に配置されて前記第2熱媒体と前記送風空気とを熱交換させて前記送風空気を加熱する第2加熱用熱交換部(31)と、
     前記第2熱媒体回路に配置されて前記第2熱媒体を前記第2加熱用熱交換部側へ圧送する第2ポンプ(32)と、
     前記第2ポンプの作動を制御する第2水圧送能力制御部(60b)と、を備え、
     前記第1熱媒体回路と前記第2熱媒体回路は、互いに独立した熱媒体回路であり、
     第1空調モードでは、前記第1水圧送能力制御部が前記第1ポンプを作動させるとともに前記第2水圧送能力制御部が前記第2ポンプを停止させて、前記第1加熱用熱交換部にて加熱された前記送風空気を前記車室内へ送風し、
     第2空調モードでは、前記第2水圧送能力制御部が前記第2ポンプを作動させるとともに前記第1水圧送能力制御部が前記第1ポンプを停止させて、前記第2加熱用熱交換部にて加熱された前記送風空気を前記車室内へ送風し、
     第3空調モードでは、前記第1水圧送能力制御部が前記第1ポンプを作動させるとともに前記第2水圧送能力制御部が前記第2ポンプを作動させて、前記第1加熱用熱交換部および前記第2加熱用熱交換部にて加熱された前記送風空気を前記車室内へ送風する車両用空調装置。
  2.  前記第2空調モードは、前記内燃機関が停止している際に実行される空調モードである請求項1に記載の車両用空調装置。
  3.  前記第3空調モードは、前記第2空調モードの実行中に、前記内燃機関が作動した際に実行される空調モードである請求項1または2に記載の車両用空調装置。
  4.  前記第1空調モードは、前記第3空調モードの実行中に、前記第2加熱用熱交換部へ流入する前記第2熱媒体の第2温度(Tw2)から前記第1加熱用熱交換部へ流入する前記第1熱媒体の第1温度(Tw1)を減算した温度差(ΔTw)が予め定めた基準温度差(ΔKTw)以下となった際に実行される空調モードである請求項1ないし3のいずれか1つに記載の車両用空調装置。
  5.  前記第2加熱用熱交換部は、前記第1加熱用熱交換部を通過した前記送風空気を加熱するように配置されている請求項1ないし4のいずれか1つに記載の車両用空調装置。
PCT/JP2019/040580 2018-11-08 2019-10-16 車両用空調装置 WO2020095637A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019005618.2T DE112019005618T5 (de) 2018-11-08 2019-10-16 Fahrzeugklimaanlage
CN201980073016.6A CN112969604B (zh) 2018-11-08 2019-10-16 车辆用空调装置
US17/308,516 US20210252941A1 (en) 2018-11-08 2021-05-05 Vehicle air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018210307A JP2020075623A (ja) 2018-11-08 2018-11-08 車両用空調装置
JP2018-210307 2018-11-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/308,516 Continuation US20210252941A1 (en) 2018-11-08 2021-05-05 Vehicle air conditioner

Publications (1)

Publication Number Publication Date
WO2020095637A1 true WO2020095637A1 (ja) 2020-05-14

Family

ID=70611265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040580 WO2020095637A1 (ja) 2018-11-08 2019-10-16 車両用空調装置

Country Status (5)

Country Link
US (1) US20210252941A1 (ja)
JP (1) JP2020075623A (ja)
CN (1) CN112969604B (ja)
DE (1) DE112019005618T5 (ja)
WO (1) WO2020095637A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200125791A (ko) * 2019-04-25 2020-11-05 현대자동차주식회사 전기차용 열관리시스템
JP7405109B2 (ja) * 2021-03-18 2023-12-26 株式会社デンソー 空調装置
CN114435069B (zh) * 2022-01-13 2023-07-18 武汉格罗夫氢能汽车有限公司 基于二次回风混风的多温区空调箱及热泵系统总成

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008296646A (ja) * 2007-05-29 2008-12-11 Toyota Motor Corp ハイブリッド車両用空調制御装置
JP2012076710A (ja) * 2010-10-06 2012-04-19 Denso Corp 車両用空調装置
JP2015128936A (ja) * 2014-01-07 2015-07-16 トヨタ自動車株式会社 ハイブリッド車両
JP2016020186A (ja) * 2014-07-15 2016-02-04 三菱自動車工業株式会社 電動車両の空調装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3133001B2 (ja) * 1996-09-30 2001-02-05 株式会社デンソー 車両用暖房装置
JP2015058886A (ja) 2013-09-20 2015-03-30 三菱重工オートモーティブサーマルシステムズ株式会社 車両用空調装置、車両空調用ヒータ、及び車両の空調方法
DE102014001022A1 (de) * 2014-01-27 2015-07-30 Liebherr-Transportation Systems Gmbh & Co. Kg Fahrzeugkühlkreislauf
CN106828027B (zh) * 2017-01-23 2023-04-18 郑州科林车用空调有限公司 一种采用压力传感器的车用热泵空调

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008296646A (ja) * 2007-05-29 2008-12-11 Toyota Motor Corp ハイブリッド車両用空調制御装置
JP2012076710A (ja) * 2010-10-06 2012-04-19 Denso Corp 車両用空調装置
JP2015128936A (ja) * 2014-01-07 2015-07-16 トヨタ自動車株式会社 ハイブリッド車両
JP2016020186A (ja) * 2014-07-15 2016-02-04 三菱自動車工業株式会社 電動車両の空調装置

Also Published As

Publication number Publication date
CN112969604B (zh) 2024-06-14
JP2020075623A (ja) 2020-05-21
US20210252941A1 (en) 2021-08-19
CN112969604A (zh) 2021-06-15
DE112019005618T5 (de) 2021-07-29

Similar Documents

Publication Publication Date Title
US10889163B2 (en) Heat pump system
US11525611B2 (en) Refrigeration cycle device for vehicle
US20190111756A1 (en) Refrigeration cycle device
US11718156B2 (en) Refrigeration cycle device
CN107531128B (zh) 车辆用空调装置
WO2020203150A1 (ja) 冷凍サイクル装置
US9803904B2 (en) Refrigerant cycle device
CN109642756B (zh) 制冷循环装置
US11506404B2 (en) Refrigeration cycle device
CN113423596B (zh) 制冷循环装置
US20210252941A1 (en) Vehicle air conditioner
US11560039B2 (en) Vehicular heater
WO2020050040A1 (ja) 冷凍サイクル装置
WO2019194027A1 (ja) 電池冷却装置
CN113302437A (zh) 制冷循环装置
JP7294075B2 (ja) 冷凍サイクル装置
WO2022181110A1 (ja) 空調装置
WO2020095638A1 (ja) 冷凍サイクル装置
WO2024101061A1 (ja) ヒートポンプサイクル装置
WO2023106020A1 (ja) ヒートポンプサイクル装置
WO2022030182A1 (ja) 冷凍サイクル装置
JP6897185B2 (ja) 空調装置
CN117795267A (zh) 制冷循环装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881914

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19881914

Country of ref document: EP

Kind code of ref document: A1