WO2023053746A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2023053746A1
WO2023053746A1 PCT/JP2022/030742 JP2022030742W WO2023053746A1 WO 2023053746 A1 WO2023053746 A1 WO 2023053746A1 JP 2022030742 W JP2022030742 W JP 2022030742W WO 2023053746 A1 WO2023053746 A1 WO 2023053746A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
heating
cooling
air
Prior art date
Application number
PCT/JP2022/030742
Other languages
English (en)
French (fr)
Inventor
辰朗 久戸
健一 大岡
英男 相澤
芳彦 上杉
貴志 檀上
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2023550435A priority Critical patent/JPWO2023053746A1/ja
Priority to CN202280055243.8A priority patent/CN117795267A/zh
Publication of WO2023053746A1 publication Critical patent/WO2023053746A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant

Definitions

  • the present disclosure relates to a refrigeration cycle device including a compressor that sucks, compresses, and discharges refrigerant.
  • Patent Document 1 at the start of heating operation, the opening of the expansion valve is made larger than the normal opening during heating operation to start the compressor, and after a set time has elapsed, the opening of the expansion valve is increased to normal.
  • a vehicle air conditioner that is controlled to return to the opening of .
  • the flow resistance of the refrigerant in the heating refrigerant circuit is reduced when the heating operation is started, and the refrigerant is easily returned to the suction part of the compressor early.
  • the internal pressure of the compressor rises early, and the operation of the driving portion of the compressor is stabilized, thereby suppressing the vibration and noise of the compressor at the start of the heating operation.
  • the distribution of the amount of refrigerant in the refrigeration cycle when it is stopped changes depending on the operating state before the stop, and also the temperature difference between parts due to environmental influences such as temperature fluctuations. For example, if the compressor is left unattended in a situation where the temperature rises from midnight to early morning in winter, the compressor, which has a larger heat capacity than the surrounding parts, becomes the coldest part, and the pressure in the compressor becomes the lowest. A phenomenon occurs in which the movement of the refrigerant occurs and the liquid refrigerant accumulates in the compressor.
  • the refrigeration cycle When the refrigeration cycle is started with liquid refrigerant accumulated in the compressor (that is, when the compressor is started), the liquid refrigerant accumulated in the compressor is discharged at once, and the flow from the compressor to the expansion valve
  • the refrigerant passage on the high pressure side may be filled with liquid refrigerant. In this state, the discharge pulsation of the compressor is not attenuated, and the refrigerant piping is strongly vibrated, resulting in abnormal noise.
  • the refrigerant passage on the high pressure side from the compressor to the expansion valve is likely to be filled with liquid refrigerant.
  • the present disclosure aims to suppress the generation of vibration and abnormal noise due to discharge pulsation of the compressor.
  • a refrigeration cycle apparatus includes a compressor, a radiator, a decompression section, and a control section.
  • the compressor sucks, compresses, and discharges refrigerant.
  • the radiator radiates heat from the refrigerant discharged from the compressor.
  • the decompression unit decompresses the refrigerant radiated by the radiator.
  • the controller controls the degree of opening of the decompression section to the normal degree of opening.
  • liquid discharge control is performed to promote discharge of the liquid-phase refrigerant accumulated from the compressor to the decompression unit. conduct.
  • a refrigeration cycle apparatus includes a compressor, a radiator, a pressure reducing section, a liquid discharge passage section, a liquid discharge opening/closing section, and a control section.
  • the compressor sucks, compresses, and discharges refrigerant.
  • the radiator radiates heat from the refrigerant discharged from the compressor.
  • the decompression unit decompresses the refrigerant radiated by the radiator.
  • the liquid discharge passage forms a refrigerant passage through which the refrigerant flowing out of the radiator bypasses the decompression portion.
  • the liquid discharge opening/closing part opens and closes the liquid discharge passage part.
  • the liquid refrigerant passes through the liquid discharge passage portion when the compressor is started, so the discharge of the liquid refrigerant accumulated in the compressor is facilitated. Therefore, since the discharge pulsation of the compressor can be suppressed, the generation of vibration and abnormal noise due to the discharge pulsation of the compressor can be suppressed.
  • FIG. 1 A first embodiment will be described with reference to FIGS. 1 to 7.
  • the refrigeration cycle device 10 is applied to a vehicle air conditioner 1 mounted on an electric vehicle that obtains driving force for running from an electric motor.
  • the vehicle air conditioner 1 has a function of adjusting the temperature of the battery 80 as well as air-conditioning the vehicle interior, which is a space to be air-conditioned. Therefore, the vehicle air conditioner 1 can also be called an air conditioner with a battery temperature adjustment function.
  • the battery 80 is a secondary battery that stores power to be supplied to in-vehicle equipment such as an electric motor.
  • the battery 80 of this embodiment is a lithium ion battery.
  • the battery 80 is a so-called assembled battery formed by stacking a plurality of battery cells 81 and electrically connecting the battery cells 81 in series or in parallel.
  • the output of this type of battery tends to decrease at low temperatures, and deterioration tends to progress at high temperatures. Therefore, the temperature of the battery must be maintained within an appropriate temperature range (15° C. or higher and 55° C. or lower in this embodiment) in which the charge/discharge capacity of the battery can be fully utilized. .
  • the cold heat generated by the refrigeration cycle device 10 can cool the battery 80 . Therefore, an object to be cooled that is different from air in the refrigeration cycle apparatus 10 of this embodiment is the battery 80 .
  • the vehicle air conditioner 1 includes a refrigeration cycle device 10, an indoor air conditioning unit 30, etc., as shown in the overall configuration diagram of FIG.
  • the refrigeration cycle device 10 heats the air blown into the vehicle interior in order to air-condition the vehicle interior. Furthermore, refrigeration cycle device 10 cools battery 80 .
  • the refrigeration cycle device 10 is configured to be able to switch refrigerant circuits for various operation modes in order to air-condition the interior of the vehicle.
  • the cooling mode refrigerant circuit, the dehumidifying and heating mode refrigerant circuit, the heating mode refrigerant circuit, and the like are configured to be switchable.
  • the refrigeration cycle device 10 can switch between an operation mode in which the battery 80 is cooled and an operation mode in which the battery 80 is not cooled in each operation mode for air conditioning.
  • the refrigeration cycle device 10 employs an HFO-based refrigerant (specifically, R1234yf) as a refrigerant.
  • the refrigeration cycle device 10 constitutes a vapor compression subcritical refrigeration cycle in which the pressure of the refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant.
  • Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant. Some of the refrigerating machine oil circulates through the cycle together with the refrigerant.
  • the compressor 11 sucks the refrigerant in the refrigeration cycle device 10, compresses it, and discharges it.
  • the compressor 11 is arranged in a drive unit room that is arranged in front of the vehicle compartment and houses an electric motor and the like.
  • the compressor 11 is an electric compressor in which a fixed displacement type compression mechanism with a fixed displacement is rotationally driven by an electric motor.
  • Compressor 11 has its rotation speed (that is, refrigerant discharge capacity) controlled by a control signal output from cycle control device 60 shown in FIG.
  • the inlet side of the indoor condenser 12 is connected to the outlet of the compressor 11 .
  • the indoor condenser 12 is a heat exchanger for heating that heat-exchanges the high-temperature, high-pressure refrigerant discharged from the compressor 11 with air, condenses the refrigerant, and heats the air.
  • the indoor condenser 12 is arranged inside the air conditioning case 31 of the indoor air conditioning unit 30 .
  • the outlet of the indoor condenser 12 is connected to the inlet side of a first three-way joint 13a having three inlets and outlets communicating with each other.
  • a three-way joint one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
  • the refrigeration cycle device 10 includes second to sixth three-way joints 13b to 13f.
  • the basic configuration of the second to sixth three-way joints 13b to 13f is similar to that of the first three-way joint 13a.
  • the inlet side of the heating expansion valve 14a is connected to one outlet of the first three-way joint 13a.
  • One inflow port side of the second three-way joint 13b is connected to the other outflow port of the first three-way joint 13a via a bypass passage 22a.
  • a dehumidifying on-off valve 15a is arranged in the bypass passage 22a.
  • the dehumidifying on-off valve 15a is an electromagnetic valve that opens and closes a refrigerant passage that connects the other outlet side of the first three-way joint 13a and one inlet side of the second three-way joint 13b. Furthermore, the refrigerating cycle device 10 includes a heating on-off valve 15b. The basic configuration of the heating on-off valve 15b is the same as that of the dehumidification on-off valve 15a.
  • the dehumidifying on-off valve 15a and the heating on-off valve 15b can switch the refrigerant circuit for each operation mode by opening and closing the refrigerant passage.
  • the dehumidifying on-off valve 15a and the heating on-off valve 15b are refrigerant circuit switching units that switch the refrigerant circuit of the cycle.
  • the operation of the dehumidifying on-off valve 15 a and the heating on-off valve 15 b is controlled by a control voltage output from the cycle control device 60 .
  • the heating expansion valve 14a reduces the pressure of the high-pressure refrigerant flowing out of the indoor condenser 12 and adjusts the flow rate (mass flow rate) of the refrigerant flowing out to the downstream side at least in the operation mode for heating the vehicle interior. Department.
  • the heating expansion valve 14a is an electric variable throttle mechanism that includes a valve body that can change the opening degree of the throttle and an electric actuator that changes the opening degree of the valve body.
  • the refrigeration cycle device 10 includes a cooling expansion valve 14b and a cooling expansion valve 14c.
  • the basic configuration of the cooling expansion valve 14b and the cooling expansion valve 14c is similar to that of the heating expansion valve 14a.
  • the heating expansion valve 14a, the cooling expansion valve 14b, and the cooling expansion valve 14c have a fully open function in which the valve opening degree is fully opened so that the flow rate adjustment action and the refrigerant pressure reduction action are hardly exhibited, and the expansion valve 14c simply functions as a refrigerant passage. And it has a fully closed function to block the refrigerant passage by fully closing the valve opening degree.
  • the heating expansion valve 14a, the cooling expansion valve 14b, and the cooling expansion valve 14c can switch the refrigerant circuit of each operation mode by the fully open function and the fully closed function.
  • the heating expansion valve 14a, the cooling expansion valve 14b, and the cooling expansion valve 14c of this embodiment also function as a refrigerant circuit switching unit.
  • the operations of the heating expansion valve 14 a , the cooling expansion valve 14 b and the cooling expansion valve 14 c are controlled by control signals (control pulses) output from the cycle control device 60 .
  • the refrigerant inlet side of the outdoor heat exchanger 16 is connected to the outlet of the heating expansion valve 14a.
  • the outdoor heat exchanger 16 is a heat exchanger that exchanges heat between the refrigerant flowing out of the heating expansion valve 14a and outside air blown by a cooling fan (not shown).
  • the outdoor heat exchanger 16 is arranged on the front side in the driving device room. Therefore, when the vehicle is running, the outdoor heat exchanger 16 can be exposed to running wind.
  • the refrigerant capacity of the outdoor heat exchanger 16 is significantly larger than the refrigerant capacity of the indoor condenser 12 .
  • the outdoor heat exchanger 16 is a high volume heat exchanger having a larger refrigerant volume than the indoor condenser 12 .
  • the refrigerant outlet of the outdoor heat exchanger 16 is connected to the inlet side of the third three-way joint 13c.
  • One inlet of the fourth three-way joint 13d is connected to one outlet of the third three-way joint 13c via the heating passage 22b.
  • a heating on-off valve 15b for opening and closing the refrigerant passage is arranged in the heating passage 22b.
  • the other inlet side of the second three-way joint 13b is connected to the other outlet of the third three-way joint 13c.
  • a check valve 17 is arranged in a refrigerant passage that connects the other outlet side of the third three-way joint 13c and the other inlet side of the second three-way joint 13b.
  • the check valve 17 allows the refrigerant to flow from the third three-way joint 13c side to the second three-way joint 13b side, and prohibits the refrigerant to flow from the second three-way joint 13b side to the third three-way joint 13c side.
  • the inlet side of the fifth three-way joint 13e is connected to the outlet of the second three-way joint 13b.
  • One outflow port of the fifth three-way joint 13e is connected to the inlet side of the cooling expansion valve 14b.
  • the inlet side of the cooling expansion valve 14c is connected to the other outflow port of the fifth three-way joint 13e.
  • the cooling expansion valve 14b reduces the pressure of the refrigerant flowing out of the outdoor heat exchanger 16 and adjusts the flow rate of the refrigerant flowing downstream (in other words, air conditioning decompression unit).
  • the refrigerant inlet side of the indoor evaporator 18 is connected to the outlet of the cooling expansion valve 14b.
  • the indoor evaporator 18 is arranged inside the air conditioning case 31 of the indoor air conditioning unit 30 .
  • the indoor evaporator 18 exchanges heat between the low-pressure refrigerant decompressed by the cooling expansion valve 14b and the air blown from the blower 32, evaporates the low-pressure refrigerant, and causes the low-pressure refrigerant to exert a heat absorption effect to convert the air.
  • It is a cooling heat exchanger for cooling (in other words, an evaporator for air).
  • One inlet side of the sixth three-way joint 13 f is connected to the refrigerant outlet of the indoor evaporator 18 .
  • the cooling expansion valve 14c is a cooling decompression unit that reduces the pressure of the refrigerant flowing out of the outdoor heat exchanger 16 and adjusts the flow rate of the refrigerant flowing out downstream at least in the operation mode for cooling the battery 80.
  • the inlet side of the cooling heat exchange section 52 is connected to the outlet of the cooling expansion valve 14c.
  • the cooling heat exchange unit 52 is a so-called direct-cooling type cooler that cools the battery 80 by evaporating the low-pressure refrigerant decompressed by the cooling expansion valve 14c and exerting an endothermic action.
  • the cooling heat exchange section 52 preferably has a plurality of refrigerant flow paths connected in parallel so that the entire area of the battery 80 can be evenly cooled.
  • the outlet of the cooling heat exchange portion 52 is connected to the other inlet side of the sixth three-way joint 13f.
  • the inlet side of the evaporation pressure regulating valve 20 is connected to the outlet of the sixth three-way joint 13f.
  • the evaporating pressure regulating valve 20 maintains the refrigerant evaporating pressure in the indoor evaporator 18 at a predetermined reference pressure or higher in order to suppress frost formation on the indoor evaporator 18 .
  • the evaporating pressure regulating valve 20 is composed of a mechanical variable throttle mechanism that increases the degree of opening of the valve as the pressure of the refrigerant on the outlet side of the indoor evaporator 18 rises.
  • the evaporation pressure regulating valve 20 maintains the refrigerant evaporation temperature in the indoor evaporator 18 at a frost suppression temperature (1° C. in this embodiment) that can suppress frost formation on the indoor evaporator 18 or higher.
  • the evaporating pressure regulating valve 20 of the present embodiment is arranged downstream of the flow of the refrigerant from the sixth three-way joint 13f, which is the confluence portion. Therefore, the evaporating pressure regulating valve 20 also maintains the refrigerant evaporating temperature in the cooling heat exchange section 52 at the frosting suppression temperature or higher.
  • the outlet of the evaporation pressure regulating valve 20 is connected to the other inlet side of the fourth three-way joint 13d.
  • the inlet side of the accumulator 21 is connected to the outflow port of the fourth three-way joint 13d.
  • the accumulator 21 is a gas-liquid separator that separates gas-liquid refrigerant that has flowed into the accumulator 21 .
  • Accumulator 21 is also a reservoir for excess liquid refrigerant in the cycle.
  • the gas-phase refrigerant outlet of the accumulator 21 is connected to the suction port side of the compressor 11 .
  • the indoor air conditioning unit 30 is for blowing out the air temperature-controlled by the refrigeration cycle device 10 into the vehicle interior.
  • the indoor air conditioning unit 30 is arranged inside the dashboard (instrument panel) at the forefront of the vehicle interior.
  • the indoor air conditioning unit 30 accommodates a blower 32, an indoor evaporator 18, an indoor condenser 12, etc. in an air passage formed in an air conditioning case 31 forming an outer shell.
  • the air conditioning case 31 forms an air passage for air blown into the vehicle interior.
  • the air-conditioning case 31 is molded from a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
  • An inside/outside air switching device 33 is arranged on the most upstream side of the air flow of the air conditioning case 31 .
  • the inside/outside air switching device 33 switches and introduces inside air (vehicle interior air) and outside air (vehicle exterior air) into the air conditioning case 31 .
  • the inside/outside air switching device 33 continuously adjusts the opening area of the inside air introduction port through which inside air is introduced into the air conditioning case 31 and the outside air introduction port through which outside air is introduced into the air conditioning case 31 by the inside/outside air switching door, so that the amount of the inside air introduced and the outside air are adjusted. It is to change the introduction ratio with the introduction air volume of .
  • the inside/outside air switching door is driven by an electric actuator for inside/outside air switching door. The operation of the electric actuator is controlled by control signals output from cycle control device 60 .
  • a blower 32 is arranged downstream of the inside/outside air switching device 33 in the air flow.
  • the blower 32 blows the air sucked through the inside/outside air switching device 33 into the vehicle interior.
  • the blower 32 is an electric blower that drives a centrifugal multi-blade fan with an electric motor.
  • the blower 32 has its rotation speed (that is, blowing capacity) controlled by a control voltage output from the cycle control device 60 .
  • the indoor evaporator 18 and the indoor condenser 12 are arranged in this order with respect to the air flow. That is, the indoor evaporator 18 is arranged upstream of the indoor condenser 12 in the air flow.
  • a cold air bypass passage 35 is provided in the air conditioning case 31 to bypass the indoor condenser 12 after passing through the indoor evaporator 18 .
  • An air mix door 34 is arranged on the air flow downstream side of the indoor evaporator 18 in the air conditioning case 31 and on the air flow upstream side of the indoor condenser 12 .
  • the air mix door 34 is an air volume ratio adjustment unit that adjusts the air volume ratio between the air volume passing through the indoor condenser 12 side and the air volume passing through the cold air bypass passage 35 among the air after passing through the indoor evaporator 18. is.
  • the air mix door 34 is driven by an air mix door electric actuator. The operation of the electric actuator is controlled by control signals output from cycle control device 60 .
  • a mixing space is arranged on the air flow downstream side of the indoor condenser 12 and the cold air bypass passage 35 in the air conditioning case 31 .
  • the mixing space is a space in which the air heated by the indoor condenser 12 and the unheated air passing through the cold air bypass passage 35 are mixed.
  • An opening hole is arranged in the air flow downstream part of the air conditioning case 31 for blowing out the air mixed in the mixing space (that is, the conditioned air) into the vehicle interior, which is the space to be air conditioned.
  • a face opening hole, a foot opening hole, and a defroster opening hole are provided as the opening holes of the air conditioning case 31 .
  • the face opening hole is an opening hole for blowing the conditioned air toward the upper body of the passenger in the passenger compartment.
  • the foot opening hole is an opening hole for blowing the conditioned air toward the passenger's feet.
  • the defroster opening hole is an opening hole for blowing the conditioned air toward the inner surface of the vehicle front window glass.
  • the face opening hole, foot opening hole, and defroster opening hole are connected to the face, foot, and defroster air outlets (none of which are shown) provided in the passenger compartment through ducts that form air passages, respectively. It is connected.
  • the air mix door 34 adjusts the air volume ratio between the air volume passing through the indoor condenser 12 and the air volume passing through the cold air bypass passage 35, thereby adjusting the temperature of the conditioned air mixed in the mixing space. . Then, the temperature of the air (air-conditioned air) blown into the vehicle interior from each outlet is adjusted.
  • a face door, a foot door, and a defroster door are arranged on the air flow upstream side of the face opening hole, the foot opening hole, and the defroster opening hole, respectively.
  • the face door adjusts the opening area of the face opening hole.
  • the foot door adjusts the opening area of the foot opening hole.
  • the defroster door adjusts the opening area of the defroster opening hole.
  • the face door, foot door, and defroster door constitute an outlet mode switching device that switches the outlet mode.
  • These doors are connected to an electric actuator for driving the outlet mode door via a link mechanism or the like, and are rotated in conjunction with each other.
  • the operation of the electric actuator is also controlled by control signals output from the cycle control device 60 .
  • Face mode is an outlet mode in which the face outlet is fully opened and air is blown out from the face outlet toward the upper body of the passenger in the vehicle.
  • the bi-level mode is an outlet mode in which both the face outlet and the foot outlet are opened to blow air toward the upper body and feet of the occupants in the vehicle.
  • the foot mode is an air outlet mode in which the foot air outlet is fully opened and the defroster air outlet is opened by a small degree of opening so that air is mainly blown out from the foot air outlet.
  • the occupant can also switch to the defroster mode by manually operating the blowout mode switch provided on the operation panel 70 .
  • the defroster mode is an outlet mode in which the defroster outlet is fully opened and air is blown from the defroster outlet to the inner surface of the windshield.
  • the cycle control device 60 is composed of a well-known microcomputer including CPU, ROM, RAM, etc. and peripheral circuits. Various calculations and processes are performed based on the control program stored in the ROM, and the operations of various controlled devices 11, 14a to 14c, 15a, 15b, 32, etc. connected to the output side are controlled.
  • a cooling heat exchange inlet temperature sensor 64g On the input side of the cycle control device 60, as shown in the block diagram of FIG. 64f, a cooling heat exchange inlet temperature sensor 64g, first and second refrigerant pressure sensors 65a and 65b, an air conditioning air temperature sensor 68, a battery control device 69, and the like are connected. Detection signals from these sensors are input to the cycle control device 60 .
  • the inside air temperature sensor 61 is an inside air temperature detection unit that detects the vehicle interior temperature (inside air temperature) Tr.
  • the outside air temperature sensor 62 is an outside air temperature detection unit that detects the vehicle outside temperature (outside air temperature) Tam.
  • the solar radiation sensor 63 is a solar radiation amount detection unit that detects the solar radiation amount Ts irradiated into the vehicle interior.
  • the first refrigerant temperature sensor 64a is a discharge refrigerant temperature detection unit that detects the temperature T1 of the refrigerant discharged from the compressor 11.
  • the second refrigerant temperature sensor 64b is a second refrigerant temperature detection section that detects the temperature T2 of the refrigerant that has flowed out of the indoor condenser 12 .
  • the third refrigerant temperature sensor 64c is a third refrigerant temperature detector that detects the temperature T3 of the refrigerant flowing out of the outdoor heat exchanger 16. As shown in FIG.
  • the fourth refrigerant temperature sensor 64d is a fourth refrigerant temperature detection section that detects the temperature T4 of the refrigerant flowing out of the indoor evaporator 18.
  • the fifth coolant temperature sensor 64e is a fifth coolant temperature detection section that detects the temperature T5 of the coolant that has flowed out of the cooling heat exchange section 52 .
  • the evaporator temperature sensor 64f is an evaporator temperature detection unit that detects the refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 18. Specifically, the evaporator temperature sensor 64f of the present embodiment detects the heat exchange fin temperature of the indoor evaporator 18 .
  • the cooling heat exchange section inlet temperature sensor 64g is a cooling heat exchange section inlet temperature detection section that detects the temperature of the refrigerant flowing into the refrigerant passage of the cooling heat exchange section 52 .
  • the first refrigerant pressure sensor 65a is a first refrigerant pressure detection section that detects the pressure P1 of the refrigerant that has flowed out of the indoor condenser 12.
  • the second refrigerant pressure sensor 65b is a second refrigerant pressure detection section that detects the pressure P2 of the refrigerant flowing out from the refrigerant passage of the cooling heat exchange section 52. As shown in FIG.
  • the air-conditioning air temperature sensor 68 is an air-conditioning air temperature detection unit that detects the air temperature TAV heated by the indoor condenser 12 .
  • the battery control device 69 is a battery control unit that controls input/output of the battery 80 .
  • a detection signal from the battery temperature sensor 69 a is input to the battery control device 69 .
  • the battery temperature sensor 69a is a battery temperature detection unit that detects the battery temperature TB (that is, the temperature of the battery 80).
  • the battery temperature sensor 69 a of this embodiment has a plurality of temperature sensors and detects temperatures at a plurality of locations of the battery 80 . Therefore, the cycle control device 60 can also detect the temperature difference between the parts of the battery 80 . Furthermore, as the battery temperature TB, an average value of detection values of a plurality of temperature sensors is used.
  • the input side of the cycle control device 60 is connected to an operation panel 70 arranged near the instrument panel in the front part of the passenger compartment. is entered.
  • the various operation switches provided on the operation panel 70 specifically include an auto switch for setting or canceling the automatic control operation of the vehicle air conditioner, an air conditioner switch for requesting cooling of the air by the indoor evaporator 18, There are an air volume setting switch for manually setting the air volume of the blower 32, a temperature setting switch for setting the target temperature Tset in the passenger compartment, a blowout mode switch for manually setting the blowout mode, and the like.
  • the cycle control device 60 of the present embodiment is configured integrally with a control unit that controls various controlled devices connected to the output side. and software) constitute a control unit that controls the operation of each controlled device.
  • the configuration for controlling the refrigerant discharge capacity of the compressor 11 constitutes a compressor control section 60a.
  • a configuration for controlling the operations of the heating expansion valve 14a, the cooling expansion valve 14b, and the cooling expansion valve 14c constitutes an expansion valve control section 60b.
  • a configuration for controlling the operation of the dehumidifying on-off valve 15a and the heating on-off valve 15b constitutes a refrigerant circuit switching control section 60c.
  • the vehicle air conditioner 1 of this embodiment not only air-conditions the interior of the vehicle, but also has the function of adjusting the temperature of the battery 80 . Therefore, in the refrigeration cycle device 10, the refrigerant circuit can be switched to operate in the following 11 types of operation modes.
  • Cooling mode is an operation mode in which the vehicle interior is cooled by cooling the air and blowing it into the vehicle interior without cooling the battery 80 .
  • the series dehumidification and heating mode is an operation mode in which the dehumidification and heating of the vehicle interior is performed by reheating the cooled and dehumidified air and blowing it into the vehicle interior without cooling the battery 80. is.
  • Parallel dehumidifying and heating mode In the parallel dehumidifying and heating mode, the cooled and dehumidified air is reheated with a higher heating capacity than in the series dehumidifying and heating mode without cooling the battery 80, and is blown out into the passenger compartment. This is an operation mode in which dehumidification and heating are performed in the passenger compartment.
  • the heating mode is an operation mode in which the vehicle interior is heated by heating the air and blowing it into the vehicle interior without cooling the battery 80 .
  • Air-conditioning cooling mode is an operation mode in which the battery 80 is cooled, and the vehicle interior is cooled by cooling the air and blowing it into the vehicle interior.
  • Parallel dehumidification heating cooling mode cools the battery 80 and reheats the cooled and dehumidified air with a higher heating capacity than the series dehumidification heating cooling mode and enters the vehicle interior. This is an operation mode for dehumidifying and heating the passenger compartment by blowing air.
  • Heating/cooling mode is an operation mode in which the battery 80 is cooled, and the vehicle interior is heated by heating the air and blowing it into the vehicle interior.
  • Heating serial cooling mode In the heating serial cooling mode, the battery 80 is cooled, and at the same time, air is heated with a higher heating capacity than in the heating/cooling mode, and is blown into the passenger compartment, thereby heating the passenger compartment. is.
  • Heating parallel cooling mode In the heating parallel cooling mode, the battery 80 is cooled, and at the same time, the air is heated with a higher heating capacity than in the heating serial cooling mode and blown out into the passenger compartment, thereby heating the passenger compartment. mode.
  • Cooling mode An operation mode in which the battery 80 is cooled without air-conditioning the vehicle interior.
  • the switching of these operation modes is performed by executing the control program.
  • the control program is executed when the automatic switch of the operation panel 70 is turned on (ON) by the operation of the passenger and the automatic control of the vehicle interior is set.
  • the control program will be described with reference to FIGS. 3 to 5. FIG. Also, each control step shown in the flowchart of FIG.
  • step S10 of FIG. 3 the detection signals of the above-described sensor group and the operation signal of the operation panel 70 are read.
  • step S20 a target blowout temperature TAO, which is the target temperature of the air to be blown into the passenger compartment, is determined based on the detection signal and the operation signal read in step S10. Therefore, step S20 is a target blowing temperature determination part.
  • the target blowing temperature TAO is calculated by the following formula F1.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ Ts+C (F1)
  • Tset is the vehicle interior set temperature set by the temperature setting switch.
  • Tr is the vehicle interior temperature detected by the inside air sensor.
  • Tam is the vehicle exterior temperature detected by the outside air sensor.
  • Ts is the amount of solar radiation detected by the solar radiation sensor.
  • Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
  • step S30 it is determined whether or not the air conditioner switch is turned on.
  • Turning on the air conditioner means that the occupant is requesting cooling or dehumidification of the passenger compartment.
  • turning on the air conditioner means that the indoor evaporator 18 is required to cool the air.
  • step S30 If it is determined in step S30 that the air conditioner switch is turned on, proceed to step S40. If it is determined in step S30 that the air conditioner switch is not turned on, the process proceeds to step S160.
  • step S40 it is determined whether the outside air temperature Tam is equal to or higher than a predetermined reference outside air temperature KA (0°C in this embodiment).
  • the reference outside air temperature KA is set so that cooling the air in the indoor evaporator 18 is effective for cooling or dehumidifying the air-conditioned space.
  • the evaporation pressure regulating valve 20 adjusts the refrigerant evaporation temperature in the indoor evaporator 18 to a frost formation suppression temperature (1° C. in this embodiment). ) or higher. Therefore, the indoor evaporator 18 cannot cool the air to a temperature lower than the frost formation suppression temperature.
  • the reference outside air temperature KA is set to a value lower than the frost formation suppression temperature so that the indoor evaporator 18 does not cool the air when the outside air temperature Tam is lower than the reference outside air temperature KA.
  • step S40 When it is determined in step S40 that the outside air temperature Tam is equal to or higher than the reference outside air temperature KA, the process proceeds to step S50. When it is determined in step S40 that the outside air temperature Tam is not equal to or higher than the reference outside air temperature KA, the process proceeds to step S160.
  • step S50 it is determined whether or not the target outlet temperature TAO is equal to or lower than the cooling reference temperature ⁇ 1. Cooling reference temperature ⁇ 1 is determined by cycle control device 60 .
  • step S50 If it is determined in step S50 that the target outlet temperature TAO is equal to or lower than the cooling reference temperature ⁇ 1, the process proceeds to step S60. If it is determined in step S50 that the target blowing temperature TAO is not equal to or lower than the cooling reference temperature ⁇ 1, the process proceeds to step S90.
  • step S60 it is determined whether or not the battery 80 needs to be cooled. Specifically, in this embodiment, when the battery temperature TB detected by the battery temperature sensor 69a is equal to or higher than a predetermined reference cooling temperature KTB (35° C. in this embodiment), the cooling of the battery 80 is necessary. Also, when the battery temperature TB is lower than the reference cooling temperature KTB, it is determined that cooling of the battery 80 is unnecessary.
  • a predetermined reference cooling temperature KTB 35° C. in this embodiment
  • step S60 When it is determined in step S60 that the battery 80 needs to be cooled, the process proceeds to step S70, and (5) the cooling cooling mode is selected as the operation mode. If it is determined in step S60 that cooling of the battery 80 is not necessary, the process proceeds to step S80, and (1) the cooling mode is selected as the operation mode.
  • step S90 it is determined whether or not the target blowout temperature TAO is equal to or lower than the dehumidifying reference temperature ⁇ 1.
  • the dehumidifying reference temperature ⁇ 1 is determined by the cycle control device 60 .
  • the dehumidifying reference temperature ⁇ 1 is determined to be higher than the cooling reference temperature ⁇ 1.
  • step S90 If it is determined in step S90 that the target blowing temperature TAO is equal to or lower than the dehumidifying reference temperature ⁇ 1, the process proceeds to step S100. If it is determined in step S90 that the target blowing temperature TAO is not equal to or lower than the dehumidifying reference temperature ⁇ 1, the process proceeds to step S130.
  • step S100 similarly to step S60, it is determined whether or not the battery 80 needs to be cooled.
  • step S100 If it is determined in step S100 that the battery 80 needs to be cooled, the process proceeds to step S110, and (6) series dehumidification heating cooling mode is selected as the operation mode of the refrigeration cycle device 10. When it is determined in step S100 that cooling of the battery 80 is not necessary, the process proceeds to step S120, and (2) series dehumidifying heating mode is selected as the operation mode.
  • step S130 similarly to step S60, it is determined whether or not the battery 80 needs to be cooled.
  • step S130 If it is determined in step S130 that the battery 80 needs to be cooled, the process proceeds to step S140, and (7) parallel dehumidification, heating, and cooling mode is selected as the operation mode of the refrigeration cycle device 10.
  • step S100 When it is determined in step S100 that cooling of the battery 80 is not necessary, the process proceeds to step S150, and (3) parallel dehumidifying heating mode is selected as the operation mode.
  • step S160 it is determined that cooling the air in the indoor evaporator 18 is not effective.
  • step S160 as shown in FIG. 4, it is determined whether or not the target air temperature TAO is equal to or higher than the reference temperature ⁇ for heating.
  • the heating reference temperature ⁇ is determined by the cycle control device 60 .
  • the heating reference temperature ⁇ is set so that heating the air in the indoor condenser 12 is effective for heating the air-conditioned space.
  • step S160 When it is determined in step S160 that the target blowout temperature TAO is equal to or higher than the reference temperature ⁇ for heating, it is necessary to heat the air in the indoor condenser 12, and the process proceeds to step S170. If it is determined in step S160 that the target air temperature TAO is not equal to or higher than the reference temperature ⁇ for heating, it means that the indoor condenser 12 does not need to heat the air, and the process proceeds to step S240.
  • step S170 similarly to step S60, it is determined whether or not the battery 80 needs to be cooled.
  • step S170 If it is determined in step S170 that the battery 80 needs to be cooled, the process proceeds to step S180. When it is determined in step S170 that cooling of the battery 80 is not necessary, the process proceeds to step S230, and (4) heating mode is selected as the operation mode.
  • step S170 if it is determined in step S170 that the battery 80 needs to be cooled and the process proceeds to step S180, both the heating of the passenger compartment and the cooling of the battery 80 need to be performed. Therefore, in the refrigeration cycle device 10, it is necessary to appropriately adjust the amount of heat released by the refrigerant to the air in the indoor condenser 12 and the amount of heat absorbed by the refrigerant from the battery 80 in the cooling heat exchange section 52. be.
  • step S180 it is determined whether or not the target blowout temperature TAO is equal to or lower than the low temperature side cooling reference temperature ⁇ 2.
  • the low temperature side cooling reference temperature ⁇ 2 is determined by the cycle control device 60 .
  • the low temperature side cooling reference temperature ⁇ 2 is determined to be higher than the cooling reference temperature ⁇ 1 and lower than the dehumidifying reference temperature ⁇ 1.
  • step S180 When it is determined in step S180 that the target blowout temperature TAO is equal to or lower than the low-temperature side cooling reference temperature ⁇ 2, the process proceeds to step S190, and (8) heating/cooling mode is selected as the operation mode. If it is determined in step S180 that the target blowing temperature TAO is not equal to or lower than the low temperature side cooling reference temperature ⁇ 2, the process proceeds to step S200.
  • step S200 it is determined whether or not the target blowout temperature TAO is equal to or lower than the high temperature side cooling reference temperature ⁇ 2.
  • the high temperature side cooling reference temperature ⁇ 2 is determined by the cycle control device 60 .
  • the high temperature side cooling reference temperature ⁇ 2 is determined to be higher than the dehumidifying reference temperature ⁇ 1.
  • step S200 If it is determined in step S200 that the target blowout temperature TAO is equal to or lower than the high temperature side cooling reference temperature ⁇ 2, the process proceeds to step S210, and (9) heating serial cooling mode is selected as the operation mode.
  • step S220 When it is determined in step S200 that the target blowout temperature TAO is not equal to or lower than the high temperature side cooling reference temperature ⁇ 2, the process proceeds to step S220, and (10) heating parallel cooling mode is selected as the operation mode.
  • step S240 similarly to step S60, it is determined whether or not battery 80 needs to be cooled.
  • step S240 If it is determined in step S240 that cooling of the battery 80 is necessary, the process proceeds to step S250, and (11) cooling mode is selected as the operation mode. If it is determined in step S200 that the battery 80 does not need to be cooled, the process proceeds to step S260, the ventilation mode is selected as the operation mode, and the process returns to step S10.
  • the blower mode is an operation mode in which the compressor 11 is stopped and the blower 32 is operated according to the setting signal set by the air volume setting switch. Note that if it is determined in step S240 that battery 80 does not need to be cooled, it is not necessary to operate refrigeration cycle device 10 for air-conditioning the vehicle interior and cooling the battery.
  • the operation mode of the refrigeration cycle device 10 is switched as described above.
  • the cycle control device 60 executes the control flow for each operation mode.
  • the first step is to determine the target evaporator temperature TEO.
  • the target evaporator temperature TEO is determined with reference to a control map stored in the cycle control device 60 based on the target outlet temperature TAO.
  • the target evaporator temperature TEO is determined to rise as the target blowing temperature TAO rises.
  • the increase/decrease amount ⁇ IVO of the rotation speed of the compressor 11 is determined.
  • the increase/decrease amount ⁇ IVO is based on the deviation between the target evaporator temperature TEO and the evaporator temperature Tefin detected by the evaporator temperature sensor 64f so that the evaporator temperature Tefin approaches the target evaporator temperature TEO by a feedback control method. It is determined.
  • the target subcooling degree SCO1 of the refrigerant flowing out of the outdoor heat exchanger 16 is determined.
  • the target supercooling degree SCO1 is determined, for example, based on the outside air temperature Tam with reference to a control map. In the control map of the present embodiment, the target supercooling degree SCO1 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value.
  • COP coefficient of performance
  • the increase/decrease amount ⁇ EVC of the throttle opening of the cooling expansion valve 14b is determined.
  • the amount of increase or decrease ⁇ EVC is based on the deviation between the target degree of supercooling SCO1 and the degree of subcooling SC1 of the refrigerant on the outlet side of the outdoor heat exchanger 16, and the degree of supercooling of the refrigerant on the outlet side of the outdoor heat exchanger 16 by a feedback control method.
  • SC1 is determined so as to approach the target supercooling degree SCO1.
  • the degree of supercooling SC1 of the refrigerant on the outlet side of the outdoor heat exchanger 16 is calculated based on the temperature T3 detected by the third refrigerant temperature sensor 64c and the pressure P1 detected by the first refrigerant pressure sensor 65a.
  • the opening degree SW of the air mix door 34 is calculated using the following formula F2.
  • SW ⁇ TAO+(Tefin+C2) ⁇ / ⁇ TAV+(Tefin+C2) ⁇ (F2)
  • TAV is the air temperature detected by the air conditioning air temperature sensor 68 .
  • C2 is a constant for control.
  • the heating expansion valve 14a is fully opened, the cooling expansion valve 14b is throttled to reduce the pressure of the refrigerant, and the cooling expansion valve 14c is fully closed, the dehumidifying on-off valve 15a is closed, and the heating on-off valve 15b is closed. Further, a control signal or control voltage is output to each device to be controlled so as to obtain the control state determined in the above steps, and the process returns to the first step.
  • a vapor compression refrigeration cycle is configured in which the refrigerant circulates through the regulating valve 20, the accumulator 21, and the compressor 11 in this order.
  • the indoor condenser 12 and the outdoor heat exchanger 16 function as radiators (in other words, heat radiating units) that dissipate heat from the refrigerant discharged from the compressor 11, and the cooling expansion valve
  • a vapor compression refrigeration cycle is configured in which 14b functions as a decompression section that decompresses the refrigerant, and the indoor evaporator 18 functions as an evaporator.
  • the indoor evaporator 18 can cool the air, and the indoor condenser 12 can heat the air.
  • the vehicle air conditioner 1 in the cooling mode by adjusting the opening degree of the air mix door 34, part of the air cooled by the indoor evaporator 18 is reheated by the indoor condenser 12, and the target outlet temperature TAO
  • the vehicle interior can be cooled by blowing out into the vehicle interior the air whose temperature has been adjusted to approach .
  • the first step is to determine the target evaporator temperature TEO as in the cooling mode.
  • the increase/decrease amount ⁇ IVO of the rotation speed of the compressor 11 is determined.
  • the target temperature TAVO (hereinafter referred to as the target air heating temperature) of the air heated by the indoor condenser 12 is determined so that the indoor condenser 12 can heat the air.
  • the target air heating temperature TAVO is determined based on the target outlet temperature TAO and the efficiency of the indoor condenser 12 with reference to a control map. In the control map of the present embodiment, the target air heating temperature TAVO is determined to rise as the target blowing temperature TAO rises.
  • the opening degree pattern KPN1 is a parameter for determining the combination of the throttle opening degree of the heating expansion valve 14a and the throttle opening degree of the cooling expansion valve 14b.
  • the opening degree pattern KPN1 increases as the target blowout temperature TAO increases.
  • the throttle opening degree of the heating expansion valve 14a decreases and the throttle opening degree of the cooling expansion valve 14b increases.
  • the opening degree SW of the air mix door 34 is calculated in the same way as in the cooling mode.
  • the target blowout temperature TAO is higher than in the cooling mode, so the opening degree SW of the air mix door 34 approaches 100%. Therefore, in the serial dehumidifying and heating mode, the opening degree of the air mix door 34 is determined so that substantially the entire flow rate of the air after passing through the indoor evaporator 18 passes through the indoor condenser 12 .
  • the heating expansion valve 14a is throttled, the cooling expansion valve 14b is throttled, and the cooling expansion valve 14c is fully closed. state, the dehumidifying on-off valve 15a is closed, and the heating on-off valve 15b is closed. Further, a control signal or control voltage is output to each device to be controlled so as to obtain the control state determined in the above steps, and the process returns to the first step.
  • a vapor compression refrigeration cycle is configured in which the refrigerant circulates through the evaporation pressure control valve 20, the accumulator 21, and the compressor 11 in this order.
  • the indoor condenser 12 functions as a radiator (in other words, a heat radiating section) that radiates heat from the refrigerant discharged from the compressor 11, and the heating expansion valve 14a and the cooling
  • a vapor compression refrigeration cycle is configured in which the expansion valve 14b functions as a pressure reducing unit and the indoor evaporator 18 functions as an evaporator.
  • a cycle is configured in which the outdoor heat exchanger 16 functions as a radiator (in other words, a heat radiating section).
  • a cycle is formed in which the outdoor heat exchanger 16 functions as an evaporator.
  • the indoor evaporator 18 can cool the air, and the indoor condenser 12 can heat the air. Therefore, in the vehicle air conditioner 1 in the series dehumidification heating mode, the air cooled and dehumidified by the indoor evaporator 18 is reheated by the indoor condenser 12 and blown out into the vehicle interior, thereby dehumidifying the vehicle interior. Heating can be done.
  • the target air heating temperature TAVO is determined as in the series dehumidification and heating mode so that the indoor condenser 12 can heat the air.
  • the increase/decrease amount ⁇ IVO of the rotation speed of the compressor 11 is determined.
  • the increase/decrease amount ⁇ IVO is determined based on the deviation between the target air heating temperature TAVO and the air temperature TAV by a feedback control method so that the air temperature TAV approaches the target air heating temperature TAVO.
  • the target degree of superheat SHEO of the refrigerant on the outlet side of the indoor evaporator 18 is determined.
  • a predetermined constant (5° C. in this embodiment) can be used as the target degree of superheat SHEO.
  • the variation ⁇ KPN1 of the opening pattern KPN1 is determined.
  • the degree of superheat SHE is determined by a feedback control method so as to approach the target degree of superheat SHEO. .
  • the degree of superheat SHE of the refrigerant on the outlet side of the indoor evaporator 18 is calculated based on the temperature T4 detected by the fourth refrigerant temperature sensor 64d and the evaporator temperature Tefin.
  • the throttle opening degree of the heating expansion valve 14a decreases and the throttle opening degree of the cooling expansion valve 14b increases. Therefore, when the opening degree pattern KPN1 increases, the flow rate of refrigerant flowing into the indoor evaporator 18 increases, and the degree of superheat SHE of the refrigerant on the outlet side of the indoor evaporator 18 decreases.
  • the opening degree SW of the air mix door 34 is calculated in the same way as in the cooling mode.
  • the target outlet temperature TAO is higher than in the cooling mode, so the opening degree SW of the air mix door 34 approaches 100% as in the serial dehumidifying and heating mode. Therefore, in the parallel dehumidifying and heating mode, the opening degree of the air mix door 34 is determined so that substantially the entire flow rate of the air after passing through the indoor evaporator 18 passes through the indoor condenser 12 .
  • the heating expansion valve 14a is throttled, the cooling expansion valve 14b is throttled, and the cooling expansion valve 14c is fully closed. state, the dehumidifying on-off valve 15a is opened, and the heating on-off valve 15b is opened. Further, a control signal or control voltage is output to each device to be controlled so as to obtain the control state determined in the above steps, and the process returns to the first step.
  • the refrigerant circulates through the compressor 11, the indoor condenser 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the heating passage 22b, the accumulator 21, and the compressor 11 in this order.
  • Vapor compression refrigeration in which the refrigerant circulates through the compressor 11, the indoor condenser 12, the bypass passage 22a, the cooling expansion valve 14b, the indoor evaporator 18, the evaporation pressure control valve 20, the accumulator 21, and the compressor 11 in this order.
  • a cycle is constructed.
  • the indoor condenser 12 functions as a radiator (in other words, a heat radiating section) that radiates heat from the refrigerant discharged from the compressor 11, and the heating expansion valve 14a is a pressure reducing section.
  • the outdoor heat exchanger 16 functions as an evaporator
  • the heating expansion valve 14a and the cooling expansion valve 14b connected in parallel to the outdoor heat exchanger 16 function as a pressure reducing unit
  • a refrigeration cycle is configured in which the evaporator 18 functions as an evaporator.
  • the indoor evaporator 18 can cool the air, and the indoor condenser 12 can heat the air. Therefore, in the vehicle air conditioner 1 in the parallel dehumidification heating mode, the air cooled and dehumidified by the indoor evaporator 18 is reheated by the indoor condenser 12 and blown out into the vehicle interior, thereby dehumidifying the vehicle interior. Heating can be done.
  • the target air heating temperature TAVO is determined as in the parallel dehumidifying heating mode.
  • the increase/decrease amount ⁇ IVO of the rotation speed of the compressor 11 is determined.
  • the target subcooling degree SCO2 of the refrigerant flowing out of the indoor condenser 12 is determined.
  • the target supercooling degree SCO2 is determined based on the intake temperature of the air flowing into the indoor evaporator 18 or the outside air temperature Tam with reference to a control map.
  • the target supercooling degree SCO2 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value.
  • the increase/decrease amount ⁇ EVH of the throttle opening of the heating expansion valve 14a is determined.
  • the amount of increase or decrease ⁇ EVH is determined by a feedback control method based on the deviation between the target degree of supercooling SCO2 and the degree of supercooling SC2 of the refrigerant flowing out of the indoor condenser 12. It is determined so as to approach the target supercooling degree SCO2.
  • the degree of subcooling SC2 of the refrigerant flowing out of the indoor condenser 12 is calculated based on the temperature T2 detected by the second refrigerant temperature sensor 64b and the pressure P1 detected by the first refrigerant pressure sensor 65a.
  • the opening degree SW of the air mix door 34 is calculated in the same way as in the cooling mode.
  • the target blowout temperature TAO is higher than in the cooling mode, so the opening degree SW of the air mix door 34 approaches 100%. Therefore, in the heating mode, the opening degree of the air mix door 34 is determined so that substantially all the flow of air after passing through the indoor evaporator 18 passes through the indoor condenser 12 .
  • the heating expansion valve 14a is throttled, the cooling expansion valve 14b is fully closed, and the cooling expansion valve 14c is fully closed. Then, the dehumidifying on-off valve 15a is closed and the heating on-off valve 15b is opened. Further, a control signal or control voltage is output to each device to be controlled so as to obtain the control state determined in the above steps, and the process returns to the first step.
  • the refrigerant circulates through the compressor 11, the indoor condenser 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the heating passage 22b, the accumulator 21, and the compressor 11 in this order.
  • a compression-type refrigeration cycle is configured.
  • the indoor condenser 12 functions as a radiator (in other words, a heat radiating section) that dissipates the refrigerant discharged from the compressor 11, and the heating expansion valve 14a functions as a pressure reducing section.
  • a refrigeration cycle is configured in which the outdoor heat exchanger 16 functions as an evaporator.
  • the indoor condenser 12 can heat the air. Therefore, in the vehicle air conditioner 1 in the heating mode, the vehicle interior can be heated by blowing out the air heated by the indoor condenser 12 into the vehicle interior.
  • Air-cooling mode In the air-cooling mode, the cooling expansion valve 14c is in a throttled state to exert a refrigerant depressurization action in contrast to the above-described cooling mode.
  • the compressor 11, the indoor condenser 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, the cooling expansion valve 14b, the indoor evaporator 18, the evaporation Refrigerant circulates through the pressure regulating valve 20, the accumulator 21, and the compressor 11 in this order, and the compressor 11, the indoor condenser 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, and the cooling expansion valve 14c.
  • the indoor condenser 12 and the outdoor heat exchanger 16 function as radiators (in other words, heat radiating units) that dissipate heat from the refrigerant discharged from the compressor 11.
  • the valve 14b functions as a pressure reducing unit
  • the indoor evaporator 18 functions as an evaporator
  • the cooling expansion valve 14b and the cooling expansion valve 14c connected in parallel to the indoor evaporator 18 function as a pressure reducing unit.
  • a refrigerating cycle is configured in which the cooling heat exchange section 52 functions as an evaporator.
  • the indoor evaporator 18 can cool the air, and the indoor condenser 12 can heat the air. Furthermore, the low-pressure side heat medium can be cooled in the cooling heat exchange section 52 .
  • the vehicle air conditioner 1 in the cooling cooling mode, by adjusting the opening degree of the air mix door 34, part of the air cooled by the indoor evaporator 18 is reheated by the indoor condenser 12, and the target blowout temperature is The vehicle interior can be cooled by blowing out into the vehicle interior the air whose temperature has been adjusted so as to approach the TAO. Furthermore, the battery 80 can be cooled by the cooling heat exchange section 52 .
  • a vapor compression refrigeration cycle is configured in which the refrigerant circulates through the heat exchange section 52, the evaporating pressure regulating valve 20, the accumulator 21, and the compressor 11 in this order.
  • the indoor condenser 12 functions as a radiator (in other words, a heat radiating section) that radiates heat from the refrigerant discharged from the compressor 11, and the heating expansion valve 14a decompresses.
  • the cooling expansion valve 14b functions as a decompression unit
  • the indoor evaporator 18 functions as an evaporator, and is connected in parallel to the cooling expansion valve 14b and the indoor evaporator 18.
  • a refrigeration cycle is configured in which the cooling expansion valve 14c functions as a decompression unit and the cooling heat exchange unit 52 functions as an evaporator.
  • a cycle is configured in which the outdoor heat exchanger 16 functions as a radiator (in other words, a heat radiating section).
  • a cycle is formed in which the outdoor heat exchanger 16 functions as an evaporator.
  • the indoor evaporator 18 can cool the air, and the indoor condenser 12 can heat the air. Furthermore, the battery 80 can be cooled by the cooling heat exchange portion 52 .
  • the air cooled and dehumidified by the indoor evaporator 18 is reheated by the indoor condenser 12 and blown into the vehicle interior, thereby dehumidifying the vehicle interior. Heating can be done.
  • the opening degree pattern KPN1 it is possible to improve the air heating capacity of the indoor condenser 12, as in the serial dehumidifying and heating mode.
  • the battery 80 can be cooled by the cooling heat exchange section 52 .
  • the refrigerant flows in the order of the compressor 11, the indoor condenser 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the heating passage 22b, the accumulator 21, and the compressor 11. While circulating, the refrigerant circulates in the order of the compressor 11, the indoor condenser 12, the bypass passage 22a, the cooling expansion valve 14b, the indoor evaporator 18, the evaporation pressure regulating valve 20, the accumulator 21, and the compressor 11.
  • a vapor compression refrigeration cycle in which the refrigerant circulates in the order of the compressor 11, the indoor condenser 12, the bypass passage 22a, the cooling expansion valve 14c, the cooling heat exchange section 52, the evaporating pressure regulating valve 20, the accumulator 21, and the compressor 11. Configured.
  • the indoor condenser 12 functions as a radiator (in other words, a heat radiating section) that radiates heat from the refrigerant discharged from the compressor 11, and the heating expansion valve 14a decompresses.
  • the outdoor heat exchanger 16 functions as an evaporator
  • the heating expansion valve 14a and the cooling expansion valve 14b connected in parallel to the outdoor heat exchanger 16 function as a pressure reducing unit
  • the indoor evaporator 18 functions as an evaporator
  • the cooling expansion valve 14c connected in parallel to the heating expansion valve 14a and the outdoor heat exchanger 16 functions as a decompression unit.
  • a refrigeration cycle is constructed in which 52 functions as an evaporator.
  • the indoor evaporator 18 can cool the air, and the indoor condenser 12 can heat the air. Furthermore, the battery 80 can be cooled by the cooling heat exchange portion 52 .
  • the air cooled and dehumidified by the indoor evaporator 18 is reheated by the indoor condenser 12 and blown out into the vehicle interior, Dehumidification heating can be performed.
  • Dehumidification heating can be performed.
  • the air can be reheated with a higher heating capacity than in the series dehumidification, heating, and cooling mode.
  • the battery 80 can be cooled by the cooling heat exchange section 52 .
  • Heating/cooling mode In the heating/cooling mode, the heating expansion valve 14a is fully opened, the cooling expansion valve 14b is fully closed, the cooling expansion valve 14c is throttled, and the dehumidification opening/closing valve 15a is closed. The heating on-off valve 15b is closed.
  • the compressor 11 the indoor condenser 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, the cooling expansion valve 14c, and the cooling heat exchange section 52 , the evaporating pressure regulating valve 20, the accumulator 21, and the compressor 11, in which the refrigerant circulates in this order, forming a vapor compression refrigeration cycle.
  • the indoor condenser 12 and the outdoor heat exchanger 16 function as radiators (in other words, heat radiating units) that radiate the refrigerant discharged from the compressor 11, and expand for cooling.
  • a vapor compression refrigeration cycle is configured in which the valve 14c functions as a decompression section that decompresses the refrigerant, and the cooling heat exchange section 52 functions as an evaporator.
  • the air can be heated by the indoor condenser 12 and the battery 80 can be cooled by the cooling heat exchange section 52 .
  • the vehicle interior can be heated by blowing out the air heated by the indoor condenser 12 into the vehicle interior. Furthermore, the battery 80 can be cooled by the cooling heat exchange section 52 .
  • Heating series cooling mode In the heating series cooling mode, the heating expansion valve 14a is throttled, the cooling expansion valve 14b is fully closed, the cooling expansion valve 14c is throttled, and the dehumidifying on-off valve 15a is closed. Closes the heating on-off valve 15b.
  • the compressor 11, the indoor condenser 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, the cooling expansion valve 14c, the cooling heat exchange portion 52, the evaporating pressure regulating valve 20, the accumulator 21, and the compressor 11 constitute a vapor compression refrigeration cycle in which the refrigerant circulates in this order.
  • the indoor condenser 12 functions as a radiator (in other words, a heat radiating section) that radiates heat from the refrigerant discharged from the compressor 11, and the heating expansion valve 14a and the cooling
  • a vapor compression refrigeration cycle is configured in which the expansion valve 14c functions as a decompression unit and the cooling heat exchange unit 52 functions as an evaporator.
  • a cycle is configured in which the outdoor heat exchanger 16 functions as a radiator (in other words, a heat radiating section).
  • a cycle is formed in which the outdoor heat exchanger 16 functions as an evaporator.
  • the air can be heated by the indoor condenser 12 and the battery 80 can be cooled by the cooling heat exchange section 52 .
  • the air heated by the indoor condenser 12 is blown out into the vehicle interior, thereby heating the vehicle interior. Furthermore, the battery 80 can be cooled by the cooling heat exchange section 52 .
  • heating parallel cooling mode In the heating parallel cooling mode, the heating expansion valve 14a is throttled, the cooling expansion valve 14b is fully closed, the cooling expansion valve 14c is throttled, and the dehumidifying on-off valve 15a is closed. open, and open the on-off valve 15b for heating.
  • a control signal or control voltage is output to each device to be controlled, and the process returns to the first step.
  • the refrigerant circulates through the compressor 11, the indoor condenser 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the heating passage 22b, the accumulator 21, and the compressor 11 in this order.
  • a vapor compression type in which the refrigerant circulates in the order of the compressor 11, the indoor condenser 12, the bypass passage 22a, the cooling expansion valve 14c, the cooling heat exchange section 52, the evaporating pressure regulating valve 20, the accumulator 21, and the compressor 11. refrigeration cycle is configured.
  • the indoor condenser 12 functions as a radiator (in other words, a heat radiating section) that radiates heat from the refrigerant discharged from the compressor 11, and the heating expansion valve 14a is a pressure reducing section.
  • the outdoor heat exchanger 16 functions as an evaporator
  • the cooling expansion valve 14c connected in parallel to the heating expansion valve 14a and the outdoor heat exchanger 16 functions as a pressure reducing unit
  • cooling A refrigeration cycle is configured in which the heat exchange unit 52 functions as an evaporator.
  • the air can be heated by the indoor condenser 12 and the battery 80 can be cooled by the cooling heat exchange section 52 .
  • the vehicle interior can be heated by blowing out the air heated by the indoor condenser 12 into the vehicle interior. Furthermore, the battery 80 can be cooled by the cooling heat exchange section 52 .
  • Cooling Mode In the cooling mode, the heating expansion valve 14a is fully opened, the cooling expansion valve 14b is fully closed, the cooling expansion valve 14c is throttled, the dehumidifying on-off valve 15a is closed, and the heating expansion valve 14b is fully closed. The on-off valve 15b is closed.
  • a vapor compression refrigeration cycle is configured in which the refrigerant circulates through the evaporation pressure control valve 20, the accumulator 21, and the compressor 11 in this order.
  • the outdoor heat exchanger 16 functions as a radiator (in other words, a heat radiating section) that dissipates heat from the refrigerant discharged from the compressor 11, and the cooling expansion valve 14c functions as a pressure reducing section. function, and a vapor compression refrigeration cycle is configured in which the cooling heat exchange section 52 functions as an evaporator. According to this, the battery 80 can be cooled by the cooling heat exchange section 52 .
  • the refrigeration cycle apparatus 10 of this embodiment can switch between various operation modes.
  • the vehicle air conditioner 1 can appropriately adjust the temperature of the battery 80 and achieve comfortable air conditioning in the vehicle compartment.
  • the liquid refrigerant may accumulate in the compressor 11 while the refrigeration cycle device 10 is stopped. 11 is activated), vibration and abnormal noise are generated due to discharge pulsation of the compressor 11 .
  • the cycle control device 60 executes a control program for discharging the liquid refrigerant accumulated in the compressor 11 when the refrigeration cycle device 10 is started.
  • a control program for discharging the liquid refrigerant from the compressor 11 will be described with reference to FIG. Each control step shown in the flow chart of FIG.
  • the control program is executed when the vehicle's ignition switch (that is, the vehicle system activation switch) is turned from off to on.
  • step S300 of FIG. 5 it is determined whether or not it is necessary to discharge the liquid refrigerant from the compressor 11 .
  • step S300 If it is determined in step S300 that there is no need to discharge the liquid refrigerant, the process proceeds to step S370 and normal control is performed. That is, liquid discharge control is not performed.
  • the initial opening K0 of the heating expansion valve 14a in normal control is set to about twice the opening at the final balance point.
  • step S300 If it is determined that it is necessary to discharge the liquid refrigerant in step S300, the process proceeds to S310, and whether the current operation mode is heating mode, heating cooling mode, heating series cooling mode or heating parallel cooling mode, or series dehumidification It is determined whether it is in heating mode or parallel dehumidifying heating mode, cooling mode, cooling cooling mode or cooling mode.
  • step S310 If it is determined in step S310 that the current operation mode is the heating mode, the heating cooling mode, the heating serial cooling mode, or the heating parallel cooling mode, the process proceeds to step S320, and the opening degree of the heating expansion valve 14a is set to liquid discharge open.
  • the degree of opening is set to K ⁇ , which is greater than the initial degree of opening during normal control.
  • the liquid discharge opening K ⁇ of the heating expansion valve 14a is two to four times the initial opening K0 during normal control.
  • step S330 it is determined whether or not the integrated time of the operation with the expanded opening of the heating expansion valve 14a (hereinafter referred to as the operation with increased opening of the heating expansion valve 14a) is equal to or longer than the first integrated time t1. is determined.
  • the process returns to step S310. If it is determined that the accumulated time of the operation for increasing the degree of opening of the heating expansion valve 14a is equal to or longer than the first accumulated time t1, the process proceeds to step S340.
  • step S340 the opening degree of the heating expansion valve 14a is gradually changed (that is, the opening degree of the heating expansion valve 14a is gradually reduced) and returned to the initial opening degree K0. Transition. For example, as shown in FIG. 7, the degree of opening of the heating expansion valve 14a is decreased by a predetermined amount ⁇ K at a gradual change time tc.
  • step S310 If it is determined in step S310 that the current operation mode is the series dehumidification heating mode or the parallel dehumidification heating mode, the process proceeds to step S350 to switch to the cooling mode.
  • step S360 it is determined whether or not the accumulated time in the current operation mode (that is, the cooling mode) is equal to or longer than the second accumulated time t2. If it is determined in step S360 that the accumulated time in the current operation mode (that is, the cooling mode) is not longer than the second accumulated time t2, the process returns to step S310.
  • step S360 When it is determined in step S360 that the accumulated time in the current operation mode (that is, the cooling mode) is equal to or longer than the second accumulated time t2, the process proceeds to step S370 and shifts to normal control.
  • step S310 If it is determined in step S310 that the current operation mode is cooling mode, cooling cooling mode, or cooling mode, the process proceeds to step S360. When it is determined in step S360 that the accumulated time in the current operation mode is not longer than the second accumulated time t2, the process returns to step S310.
  • step S360 When it is determined in step S360 that the accumulated time in the current operation mode is equal to or longer than the second accumulated time t2, the process proceeds to step S370 and shifts to normal control.
  • FIG. 6 is a graph explaining the opening degree of the heating expansion valve 14a in liquid discharge control in the heating mode, heating cooling mode, heating series cooling mode, or heating parallel cooling mode.
  • the initial opening degree K0 of the heating expansion valve 14a is set to about twice the equivalent diameter at the final balance point in consideration of convergence time and cycle stability, on the premise that the compressor 11 discharges gas refrigerant. ing.
  • the liquid discharge opening K ⁇ which is the opening of the heating expansion valve 14a during liquid discharge control, is set to 2 to 4 times the equivalent diameter at the final balance point.
  • the amount of liquid refrigerant discharged from the heating expansion valve 14a can be increased to prevent the high-pressure volume from being filled with liquid, and a short period of time (specifically, within the first cumulative time t1) that does not make the occupant feel a performance conflict. ) to complete liquid discharge control.
  • FIG. 7 is a time chart showing an example of changes in the degree of opening of the heating expansion valve 14a during the liquid discharge control in the heating mode, showing an example in which the liquid discharge control is executed when the compressor 11 is activated.
  • the opening degree of the heating expansion valve 14a is set to the liquid discharge opening degree K ⁇ , which is larger than the initial opening degree K0 during normal control.
  • the expansion operation of the heating expansion valve 14a is performed for the first integrated time t1.
  • the liquid refrigerant discharged from the compressor 11 can be received by the high-capacity outdoor heat exchanger 16, so that the high-pressure circuit of the cycle (that is, the refrigerant circuit from the compressor 11 to the heating expansion valve 14a) ) is discharged at once.
  • the phenomenon of filling the high voltage circuit of the cycle with liquid is avoided.
  • the optimum point for the gradual change speed of the opening degree of the heating expansion valve 14a is determined from the refrigerant flow rate characteristic determined by the refrigerant flow rate characteristic of the compressor 11 during liquid suction and the equivalent diameter of the heating expansion valve 14a.
  • the gradual change speed of the opening degree of the heating expansion valve 14a is set at ⁇ K/tc.
  • the compressor 11 when the compressor 11 is started in the heating mode, the heating cooling mode, the heating series cooling mode, or the heating parallel cooling mode, the refrigerant amount distribution in the cycle is adjusted while avoiding the high-pressure side circuit from being filled with liquid. It can gradually approach normal operation.
  • the liquid discharge control in parallel dehumidification and heating mode or serial dehumidification and heating mode will be explained.
  • the heating expansion valve 14a is throttled, and in the series dehumidifying and heating mode, the heating expansion valve 14a and the cooling expansion valve 14b are throttled. Liquid refrigerant discharge control is performed to prevent this. Specifically, by switching to the cooling mode and holding it for a predetermined time, the heating expansion valve 14a is fully opened, so that the liquid refrigerant discharged from the high-pressure circuit can be received by the high-capacity outdoor heat exchanger 16. , it is possible to ensure both dehumidification performance and suppression of ejection pulsation.
  • the cycle control device 60 determines that the liquid refrigerant is accumulated in the compressor 11 when the compressor 11 is started, the liquid refrigerant accumulates from the compressor 11 to the heating expansion valve 14a. Liquid discharge control is performed to promote the discharge of the liquid refrigerant.
  • the liquid discharge control is a control to set the opening degree of the heating expansion valve 14a to the liquid discharge opening degree K ⁇ that is larger than the initial opening degree K0 of the normal opening degree. This makes it easier for the liquid refrigerant to pass through the heating expansion valve 14a when the compressor 11 is started, so that the liquid refrigerant accumulated between the compressor 11 and the heating expansion valve 14a can be reliably discharged. .
  • the liquid discharge opening K ⁇ is preferably two to four times the initial opening K0.
  • the liquid refrigerant can easily pass through the heating expansion valve 14a, so the discharge of the liquid refrigerant accumulated between the compressor 11 and the heating expansion valve 14a can be promoted.
  • the cycle control device 60 gradually returns the opening of the heating expansion valve 14a to the normal opening when ending the liquid discharge control. As a result, it is possible to prevent the refrigerant circuit from the compressor 11 to the heating expansion valve 14a from being filled with liquid refrigerant when the liquid discharge control is terminated. can be suppressed.
  • the liquid discharge control when the compressor 11 is started in the parallel dehumidification/heating mode or the series dehumidification/heating mode is control to switch from the parallel dehumidification/heating mode or the series dehumidification/heating mode to the cooling mode.
  • the parallel dehumidifying/heating mode or the series dehumidifying/heating mode is the first operation mode
  • the parallel dehumidifying/heating mode or the series dehumidifying/heating mode is the second operation mode.
  • the cycle control device 60 ends the liquid discharge control after a predetermined time has elapsed after starting the liquid discharge control.
  • the liquid discharge control can be properly terminated with a simple configuration.
  • the opening degree of the heating expansion valve 14a is increased during the liquid discharge control, but in the present embodiment, the liquid discharge on-off valve 15c shown in FIG. 8 is opened during the liquid discharge control.
  • the liquid discharge opening/closing valve 15c is a liquid discharge opening/closing portion that opens and closes the refrigerant passage of the liquid discharge passage portion 22c.
  • the liquid discharge opening/closing valve 15c is an electromagnetic valve having the same basic configuration as the dehumidification opening/closing valve 15a.
  • the operation of the liquid discharge opening/closing valve 15c is controlled by a control voltage output from the cycle control device 60. FIG.
  • the liquid discharge passage portion 22c forms a refrigerant passage through which the refrigerant bypasses the heating expansion valve 14a.
  • One end of the liquid discharge passage portion 22c is connected to the refrigerant passage between the first three-way joint 13a and the heating expansion valve 14a via the seventh three-way joint 13g.
  • the other end of the liquid discharge passage portion 22c is connected to the refrigerant passage between the heating expansion valve 14a and the outdoor heat exchanger 16 via the eighth three-way joint 13h.
  • the cycle control device 60 closes the liquid discharge opening/closing valve 15c during normal control, and opens the liquid discharge opening/closing valve 15c during liquid discharge control. As a result, during normal control, the refrigerant flows through the heating expansion valve 14a, but does not flow through the liquid discharge passage portion 22c.
  • the refrigerant flows through the liquid discharge passage portion 22c with low flow resistance, and hardly flows through the heating expansion valve 14a with high flow resistance.
  • the amount of liquid refrigerant discharged from the compressor 11 and the indoor condenser 12 can be increased to prevent the high-pressure volume from being filled with liquid.
  • the cycle control device 60 determines that the liquid refrigerant is accumulated in the compressor 11 when the compressor 11 is started, the liquid discharge opening/closing valve 15c is opened so as to open the liquid discharge passage portion 22c. Control. According to this, the liquid refrigerant passes through the liquid discharge passage portion 22c when the compressor 11 is started, so that the liquid refrigerant accumulated in the compressor 11 can be reliably discharged.
  • step S300 of the above embodiment if the elapsed time since the compressor 11 was stopped last time is one hour or longer, it is determined that the liquid refrigerant needs to be discharged from the compressor 11.
  • the method for determining whether or not it is necessary to discharge liquid refrigerant from is not limited to this.
  • a liquid level sensor that detects the height of the liquid level of the liquid refrigerant is arranged inside the compressor 11, and when the height of the liquid level detected by the liquid level sensor is equal to or higher than a predetermined value, the compressor It may be determined that there is a need to drain the liquid refrigerant from 11 .
  • step S340 of the first embodiment overflow from the accumulator 21 is suppressed by gradually changing the opening degree of the heating expansion valve 14a at the end of liquid discharge control. If so, there is no need to gradually change the opening of the heating expansion valve 14a.
  • the liquid It is possible to reliably prevent the area from the compressor 11 to the decompression unit from being filled with the liquid-phase refrigerant when the discharge control ends.
  • step S310 of the first embodiment when it is determined that the current operation mode is the dehumidifying and heating mode (parallel dehumidifying and heating mode or series dehumidifying and heating mode), the dehumidifying performance is higher than the heating performance by switching to the cooling mode. is discharged from the compressor 11 while giving priority to .
  • the opening of the heating expansion valve 14a is set to the normal opening as in the heating mode.
  • the liquid refrigerant may be discharged from the compressor 11 while giving priority to the heating performance over the dehumidification performance by increasing the air pressure.
  • a fixed throttle made up of an orifice, a capillary tube, or the like may be arranged.
  • the refrigeration cycle device 10 that can be switched to a plurality of operation modes has been described, but the switching of the operation mode of the refrigeration cycle device 10 is not limited to this.
  • Detailed control of each operation mode is not limited to that disclosed in the above-described embodiments.
  • the blowing mode described in step S260 may be changed to a stop mode in which not only the compressor 11 but also the blower 32 are stopped.
  • the components of the refrigeration cycle device are not limited to those disclosed in the above embodiments.
  • a plurality of cycle-constituting devices may be integrated or the like so that the above effects can be exhibited.
  • a four-way joint structure in which the second three-way joint 13b and the fifth three-way joint 13e are integrated may be adopted.
  • an electric expansion valve that does not have a fully closed function and an on-off valve that are directly connected may be employed.
  • R1234yf is used as the refrigerant
  • the refrigerant is not limited to this.
  • R134a, R600a, R410A, R404A, R32, R407C, etc. may be employed.
  • a mixed refrigerant or the like in which a plurality of types of these refrigerants are mixed may be adopted.
  • a supercritical refrigerating cycle may be constructed in which carbon dioxide is employed as the refrigerant and the pressure of the refrigerant on the high pressure side is equal to or higher than the critical pressure of the refrigerant.
  • the air is heated by exchanging heat between the refrigerant and the air in the indoor condenser 12, but the air may be heated by the refrigerant via a heat medium.
  • a refrigerant heat medium heat exchanger is a heat exchanger for heating that heat-exchanges the high-temperature, high-pressure refrigerant discharged from the compressor 11 with the heat medium to condense the refrigerant and heat the heat medium.
  • the high temperature heat medium circuit is a heat medium circulation circuit that circulates the side heat medium heated by the refrigerant heat medium heat exchanger.
  • the heat medium ethylene glycol, dimethylpolysiloxane, a solution containing a nanofluid or the like, an antifreeze liquid, or the like can be used.
  • the heater core is a heat exchanger that heats the air by exchanging heat between the heat medium heated by the refrigerant heat medium heat exchanger and the air that has passed through the indoor evaporator 18 .
  • the battery 80 is directly cooled by the cooling heat exchange section 52, but the battery 80 may be cooled by a refrigerant via a heat medium.
  • a chiller instead of the cooling heat exchange section 52, a chiller, a low-temperature heat medium circuit, and a battery cooler may be arranged.
  • the chiller is a cooling heat exchanger that exchanges heat between the low-pressure refrigerant depressurized by the cooling expansion valve 14c and the heat medium to evaporate the refrigerant and cool the heat medium.
  • the low-temperature heat medium circuit is a heat medium circulation circuit that circulates the heat medium cooled by the chiller.
  • the heat medium ethylene glycol, dimethylpolysiloxane, a solution containing a nanofluid or the like, an antifreeze liquid, or the like can be used.
  • the battery cooler is a cooler that cools the battery 80 with a heat medium cooled by a chiller.
  • an example in which the object to be cooled that is different from air in the refrigeration cycle device 10 is the battery 80 has been described, but the object to be cooled is not limited to this.
  • An inverter that converts between a direct current and an alternating current, a charger that charges the battery 80 with power, and a motor generator that outputs driving force for running when supplied with power and generates regenerative power during deceleration, etc. It may be an electrical device that generates heat during operation, such as
  • the refrigeration cycle device 10 is applied to the vehicle air conditioner 1 in each of the above-described embodiments, application of the refrigeration cycle device 10 is not limited to this.
  • it may be applied to an air conditioner with a battery cooling function that air-conditions a room while appropriately adjusting the temperature of a stationary battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

圧縮機の吐出脈動による振動および異音の発生を抑制する。冷媒を吸入して圧縮し吐出する圧縮機(11)と、圧縮機から吐出された冷媒を放熱させる放熱器(12)と、放熱器で放熱された冷媒を減圧させる減圧部(14a)と、減圧部の開度を通常開度に制御する制御部(60)とを備え、制御部は、圧縮機が起動される際に圧縮機に液相の冷媒が溜まっていると判定した場合、圧縮機から減圧部までに溜まった液相の冷媒の排出を促進する液排出制御を行う。

Description

冷凍サイクル装置 関連出願の相互参照
 本出願は、2021年9月29日に出願された日本特許出願2021-159346号に基づくもので、ここにその記載内容を援用する。
 本開示は、冷媒を吸入して圧縮し吐出する圧縮機を備える冷凍サイクル装置に関する。
 従来、特許文献1には、暖房運転の開始時に膨張弁の開度を暖房運転時の通常の開度よりも大きくして圧縮機を始動し、設定時間の経過後に膨張弁の開度を通常の開度に戻すように制御する車両用空調装置が記載されている。
 これによると、暖房運転の開始時に暖房用冷媒回路内の冷媒の流通抵抗が小さくなり、圧縮機の吸入部に冷媒が早期に帰還し易くなる。そのため、圧縮機の内圧が早期に高まり、圧縮機の駆動部の作動が安定するので、暖房運転の開始時における圧縮機の振動や騒音の発生が抑制される。
特開2017-74832号公報
 停止時の冷凍サイクル中の冷媒量分布は、停止前の運転状態に加え、気温変動等の環境の影響で部品間に温度差ができることで成り行きで変化する。例えば、冬場の深夜から早朝にかけて気温が上昇するような状況で放置された場合、周囲部品に比べて熱容量が大きい圧縮機が最も低温の部品となり、圧縮機が最も低圧となって圧縮機への冷媒の移動が発生し圧縮機に液冷媒が溜まるという現象が発生する。圧縮機に液冷媒が溜まった状態で冷凍サイクルが起動されると(すなわち圧縮機が起動されると)、圧縮機に溜まった液冷媒が一気に吐出されることで、圧縮機から膨張弁までの高圧側の冷媒通路が液冷媒で満たされてしまうことがある。この状態では圧縮機の吐出脈動が減衰せずに冷媒配管を強烈に振動させることで異音が発生してしまう。
 特に、冷媒容積の小さい室内熱交換器が凝縮器として機能するヒートポンプサイクルでは、圧縮機から膨張弁までの高圧側の冷媒通路が液冷媒で満たされやすくなる。
 この対策として、サイクルに充填される冷媒の量を減らしたり、圧縮機から膨張弁までの冷媒容積を増加させたりすることが考えられる。
 しかしながら、サイクルに充填される冷媒の量を減らす対策は、性能の経年保証の観点から採用が困難である。圧縮機から膨張弁までの冷媒容積を増加させる対策は、コストや搭載性の観点から採用が困難である。
 本開示は、上記点に鑑みて、圧縮機の吐出脈動による振動および異音の発生を抑制することを目的とする。
 本開示の第1の態様による冷凍サイクル装置は、圧縮機と、放熱器と、減圧部と、制御部とを備える。圧縮機は、冷媒を吸入して圧縮し吐出する。放熱器は、圧縮機から吐出された冷媒を放熱させる。減圧部は、放熱器で放熱された冷媒を減圧させる。制御部は、減圧部の開度を通常開度に制御する。
 制御部は、圧縮機が起動される際に圧縮機に液相の冷媒が溜まっていると判定した場合、圧縮機から減圧部までに溜まった液相の冷媒の排出を促進する液排出制御を行う。
 これによると、圧縮機が起動される際に圧縮機から減圧部までに溜まった液相の冷媒の排出が促進されるので、圧縮機の吐出脈動を抑制できる。そのため、圧縮機の吐出脈動による振動および異音の発生を抑制できる。
 本開示の第2の態様による冷凍サイクル装置は、圧縮機と、放熱器と、減圧部と、液排出通路部と、液排出開閉部と、制御部とを備える。圧縮機は、冷媒を吸入して圧縮し吐出する。放熱器は、圧縮機から吐出された冷媒を放熱させる。減圧部は、放熱器で放熱された冷媒を減圧させる。
 液排出通路部は、放熱器から流出した冷媒が減圧部をバイパスして流れる冷媒通路を形成する。液排出開閉部は、液排出通路部を開閉する。制御部は、圧縮機が起動される際に圧縮機に液相の冷媒が溜まっていると判定した場合、液排出通路部を開くように液排出開閉部を制御する液排出制御を行う。
 これによると、圧縮機が起動されたときに液冷媒が液排出通路部を通過するので、圧縮機に溜まった液冷媒の排出が促進される。そのため、圧縮機の吐出脈動を抑制できるので、圧縮機の吐出脈動による振動および異音の発生を抑制できる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確となる。
第1実施形態の冷凍サイクル装置を示す全体構成図である。 第1実施形態の冷凍サイクル装置の電気制御部を示すブロック図である。 第1実施形態の制御プログラムの制御処理の一部を示すフローチャートである。 第1実施形態の制御プログラムの制御処理の別の一部を示すフローチャートである。 第1実施形態の液排出制御の処理を示すフローチャートである。 第1実施形態の液排出制御における暖房用膨張弁の開度を説明する図である。 第1実施形態の液排出制御における作動例を示すタイムチャートである。 第2実施形態の冷凍サイクル装置を示す全体構成図である。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合わせることも可能である。
 (第1実施形態)
 図1~図7を用いて第1実施形態を説明する。本実施形態では冷凍サイクル装置10を、電動モータから走行用の駆動力を得る電気自動車に搭載された車両用空調装置1に適用している。車両用空調装置1は、空調対象空間である車室内の空調を行うだけでなく、バッテリ80の温度を調整する機能を有している。このため、車両用空調装置1は、バッテリ温度調整機能付きの空調装置と呼ぶこともできる。
 バッテリ80は、電動モータ等の車載機器へ供給される電力を蓄える二次電池である。本実施形態のバッテリ80は、リチウムイオン電池である。バッテリ80は、複数の電池セル81を積層配置し、これらの電池セル81を電気的に直列あるいは並列に接続することによって形成された、いわゆる組電池である。
 この種のバッテリは、低温になると出力が低下しやすく、高温になると劣化が進行しやすい。このため、バッテリの温度は、バッテリの充放電容量を充分に活用することができる適切な温度範囲内(本実施形態では、15℃以上、かつ、55℃以下)に維持されている必要がある。
 そこで、車両用空調装置1では、冷凍サイクル装置10によって生成された冷熱によってバッテリ80を冷却することができるようになっている。従って、本実施形態の冷凍サイクル装置10における空気とは異なる冷却対象物は、バッテリ80である。
 車両用空調装置1は、図1の全体構成図に示すように、冷凍サイクル装置10、室内空調ユニット30等を備えている。
 冷凍サイクル装置10は、車室内の空調を行うために、車室内へ送風される空気および加熱する。さらに、冷凍サイクル装置10は、バッテリ80を冷却する。
 冷凍サイクル装置10は、車室内の空調を行うために、様々な運転モード用の冷媒回路を切替可能に構成されている。例えば、冷房モードの冷媒回路、除湿暖房モードの冷媒回路、暖房モードの冷媒回路等を切替可能に構成されている。さらに、冷凍サイクル装置10は、空調用の各運転モードにおいて、バッテリ80を冷却する運転モードとバッテリ80の冷却を行わない運転モードとを切り替えることができる。
 冷凍サイクル装置10では、冷媒としてHFO系冷媒(具体的には、R1234yf)が採用されている。冷凍サイクル装置10は、圧縮機11から吐出された吐出冷媒の圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。冷媒には圧縮機11を潤滑するための冷凍機油が混入されている。冷凍機油の一部は、冷媒とともにサイクルを循環している。
 冷凍サイクル装置10の構成機器のうち、圧縮機11は、冷凍サイクル装置10において冷媒を吸入し、圧縮して吐出する。圧縮機11は、車室の前方に配置されて電動モータ等が収容される駆動装置室内に配置されている。圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて回転駆動する電動圧縮機である。圧縮機11は、図2に示すサイクル制御装置60から出力される制御信号によって、回転数(すなわち、冷媒吐出能力)が制御される。
 図1に示すように、圧縮機11の吐出口には、室内凝縮器12の入口側が接続されている。室内凝縮器12は、圧縮機11から吐出された高温高圧冷媒と空気とを熱交換させて、冷媒を凝縮させるとともに空気を加熱する加熱用の熱交換器である。室内凝縮器12は、室内空調ユニット30の空調ケース31内に配置されている。
 室内凝縮器12の出口には、互いに連通する3つの流入出口を有する第1三方継手13aの流入口側が接続されている。このような三方継手としては、複数の配管を接合して形成されたものや、金属ブロックや樹脂ブロックに複数の冷媒通路を設けることによって形成されたものを採用することができる。
 冷凍サイクル装置10は、第2~第6三方継手13b~13fを備えている。第2~第6三方継手13b~13fの基本的構成は、第1三方継手13aと同様である。
 第1三方継手13aの一方の流出口には、暖房用膨張弁14aの入口側が接続されている。第1三方継手13aの他方の流出口には、バイパス通路22aを介して、第2三方継手13bの一方の流入口側が接続されている。バイパス通路22aには、除湿用開閉弁15aが配置されている。
 除湿用開閉弁15aは、第1三方継手13aの他方の流出口側と第2三方継手13bの一方の流入口側とを接続する冷媒通路を開閉する電磁弁である。さらに、冷凍サイクル装置10は、暖房用開閉弁15bを備えている。暖房用開閉弁15bの基本的構成は、除湿用開閉弁15aと同様である。
 除湿用開閉弁15aおよび暖房用開閉弁15bは、冷媒通路を開閉することで、各運転モードの冷媒回路を切り替えることができる。除湿用開閉弁15aおよび暖房用開閉弁15bは、サイクルの冷媒回路を切り替える冷媒回路切替部である。除湿用開閉弁15aおよび暖房用開閉弁15bの作動は、サイクル制御装置60から出力される制御電圧によって制御される。
 暖房用膨張弁14aは、少なくとも車室内の暖房を行う運転モード時に、室内凝縮器12から流出した高圧冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量(質量流量)を調整する暖房用減圧部である。暖房用膨張弁14aは、絞り開度を変更可能に構成された弁体と、弁体の開度を変化させる電動アクチュエータとを有して構成される電気式の可変絞り機構である。
 冷凍サイクル装置10は、冷房用膨張弁14bおよび冷却用膨張弁14cを備えている。冷房用膨張弁14bおよび冷却用膨張弁14cの基本的構成は、暖房用膨張弁14aと同様である。
 暖房用膨張弁14a、冷房用膨張弁14bおよび冷却用膨張弁14cは、弁開度を全開にすることで流量調整作用および冷媒減圧作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能、および弁開度を全閉にすることで冷媒通路を閉塞する全閉機能を有している。
 全開機能および全閉機能によって、暖房用膨張弁14a、冷房用膨張弁14bおよび冷却用膨張弁14cは、各運転モードの冷媒回路を切り替えることができる。
 従って、本実施形態の暖房用膨張弁14a、冷房用膨張弁14bおよび冷却用膨張弁14cは、冷媒回路切替部としての機能も兼ね備えている。暖房用膨張弁14a、冷房用膨張弁14bおよび冷却用膨張弁14cの作動は、サイクル制御装置60から出力される制御信号(制御パルス)によって制御される。
 暖房用膨張弁14aの出口には、室外熱交換器16の冷媒入口側が接続されている。室外熱交換器16は、暖房用膨張弁14aから流出した冷媒と、図示しない冷却ファンにより送風された外気とを熱交換させる熱交換器である。室外熱交換器16は、駆動装置室内の前方側に配置されている。このため、車両走行時には、室外熱交換器16に走行風を当てることができる。室外熱交換器16の冷媒容積は、室内凝縮器12の冷媒容積と比べて顕著に大きくなっている。室外熱交換器16は、室内凝縮器12よりも大きい冷媒容積を有する高容積熱交換器である。
 室外熱交換器16の冷媒出口には、第3三方継手13cの流入口側が接続されている。第3三方継手13cの一方の流出口には、暖房用通路22bを介して、第4三方継手13dの一方の流入口側が接続されている。暖房用通路22bには、冷媒通路を開閉する暖房用開閉弁15bが配置されている。
 第3三方継手13cの他方の流出口には、第2三方継手13bの他方の流入口側が接続されている。第3三方継手13cの他方の流出口側と第2三方継手13bの他方の流入口側とを接続する冷媒通路には、逆止弁17が配置されている。逆止弁17は、第3三方継手13c側から第2三方継手13b側へ冷媒が流れることを許容し、第2三方継手13b側から第3三方継手13c側へ冷媒が流れることを禁止する。
 第2三方継手13bの流出口には、第5三方継手13eの流入口側が接続されている。第5三方継手13eの一方の流出口には、冷房用膨張弁14bの入口側が接続されている。第5三方継手13eの他方の流出口には、冷却用膨張弁14cの入口側が接続されている。
 冷房用膨張弁14bは、少なくとも車室内の冷房を行う運転モード時に、室外熱交換器16から流出した冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する冷房用減圧部(換言すれば空調用減圧部)である。
 冷房用膨張弁14bの出口には、室内蒸発器18の冷媒入口側が接続されている。室内蒸発器18は、室内空調ユニット30の空調ケース31内に配置されている。室内蒸発器18は、冷房用膨張弁14bにて減圧された低圧冷媒と送風機32から送風された空気とを熱交換させて低圧冷媒を蒸発させ、低圧冷媒に吸熱作用を発揮させることによって空気を冷却する冷却用熱交換器(換言すれば空気用蒸発部)である。室内蒸発器18の冷媒出口には、第6三方継手13fの一方の流入口側が接続されている。
 冷却用膨張弁14cは、少なくともバッテリ80の冷却を行う運転モード時に、室外熱交換器16から流出した冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する冷却用減圧部である。
 冷却用膨張弁14cの出口には、冷却用熱交換部52の入口側が接続されている。冷却用熱交換部52は、冷却用膨張弁14cにて減圧された低圧冷媒を蒸発させて吸熱作用を発揮させることによってバッテリ80を冷却する、いわゆる直冷式の冷却器である。
 冷却用熱交換部52では、バッテリ80の全域を均等に冷却できるように、互いに並列的に接続された複数の冷媒流路を有するものが採用されていることが望ましい。冷却用熱交換部52の出口には、第6三方継手13fの他方の流入口側が接続されている。
 第6三方継手13fの流出口には、蒸発圧力調整弁20の入口側が接続されている。蒸発圧力調整弁20は、室内蒸発器18の着霜を抑制するために、室内蒸発器18における冷媒蒸発圧力を、予め定めた基準圧力以上に維持する。蒸発圧力調整弁20は、室内蒸発器18の出口側冷媒の圧力の上昇に伴って、弁開度を増加させる機械式の可変絞り機構で構成されている。
 これにより、蒸発圧力調整弁20は、室内蒸発器18における冷媒蒸発温度を、室内蒸発器18の着霜を抑制可能な着霜抑制温度(本実施形態では、1℃)以上に維持している。本実施形態の蒸発圧力調整弁20は、合流部である第6三方継手13fよりも冷媒流れ下流側に配置されている。このため、蒸発圧力調整弁20は、冷却用熱交換部52における冷媒蒸発温度についても、着霜抑制温度以上に維持している。
 蒸発圧力調整弁20の出口には、第4三方継手13dの他方の流入口側が接続されている。第4三方継手13dの流出口には、アキュムレータ21の入口側が接続されている。アキュムレータ21は、内部に流入した冷媒の気液を分離する気液分離器である。アキュムレータ21は、サイクル内の余剰液相冷媒を蓄える貯液部でもある。アキュムレータ21の気相冷媒出口には、圧縮機11の吸入口側が接続されている。
 次に、室内空調ユニット30について説明する。室内空調ユニット30は、冷凍サイクル装置10によって温度調整された空気を車室内へ吹き出すためのものである。室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されている。
 室内空調ユニット30は、図1に示すように、外殻を形成する空調ケース31内に形成された空気通路内に送風機32、室内蒸発器18、室内凝縮器12等を収容したものである。
 空調ケース31は、車室内に送風される空気の空気通路を形成している。空調ケース31は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。
 空調ケース31の空気流れ最上流側には、内外気切替装置33が配置されている。内外気切替装置33は、空調ケース31内へ内気(車室内空気)と外気(車室外空気)とを切替導入する。
 内外気切替装置33は、空調ケース31内へ内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の導入風量と外気の導入風量との導入割合を変化させるものである。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動される。電動アクチュエータの作動は、サイクル制御装置60から出力される制御信号によって制御される。
 内外気切替装置33の空気流れ下流側には、送風機32が配置されている。送風機32は、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する。送風機32は、遠心多翼ファンを電動モータにて駆動する電動送風機である。送風機32は、サイクル制御装置60から出力される制御電圧によって、回転数(すなわち、送風能力)が制御される。
 送風機32の空気流れ下流側には、室内蒸発器18、室内凝縮器12が、空気流れに対して、この順に配置されている。つまり、室内蒸発器18は、室内凝縮器12よりも、空気流れ上流側に配置されている。
 空調ケース31内には、室内蒸発器18通過後の空気を、室内凝縮器12を迂回して流す冷風バイパス通路35が設けられている。空調ケース31内の室内蒸発器18の空気流れ下流側であって、かつ、室内凝縮器12の空気流れ上流側には、エアミックスドア34が配置されている。
 エアミックスドア34は、室内蒸発器18通過後の空気のうち、室内凝縮器12側を通過する空気の風量と冷風バイパス通路35を通過させる空気の風量との風量割合を調整する風量割合調整部である。エアミックスドア34は、エアミックスドア用の電動アクチュエータによって駆動される。電動アクチュエータの作動は、サイクル制御装置60から出力される制御信号によって制御される。
 空調ケース31内の室内凝縮器12および冷風バイパス通路35の空気流れ下流側には、混合空間が配置されている。混合空間は、室内凝縮器12にて加熱された空気と冷風バイパス通路35を通過して加熱されていない空気とを混合させる空間である。
 空調ケース31の空気流れ下流部には、混合空間にて混合された空気(すなわち、空調風)を、空調対象空間である車室内へ吹き出すための開口穴が配置されている。
 空調ケース31の開口穴としては、フェイス開口穴、フット開口穴、およびデフロスタ開口穴(いずれも図示せず)が設けられている。フェイス開口穴は、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴は、乗員の足元に向けて空調風を吹き出すための開口穴である。デフロスタ開口穴は、車両前面窓ガラス内側面に向けて空調風を吹き出すための開口穴である。
 フェイス開口穴、フット開口穴、およびデフロスタ開口穴は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)に接続されている。
 従って、エアミックスドア34が、室内凝縮器12を通過させる風量と冷風バイパス通路35を通過させる風量との風量割合を調整することによって、混合空間にて混合される空調風の温度が調整される。そして、各吹出口から車室内へ吹き出される空気(空調風)の温度が調整される。
 フェイス開口穴、フット開口穴、およびデフロスタ開口穴の空気流れ上流側には、それぞれ、フェイスドア、フットドア、およびデフロスタドア(いずれも図示せず)が配置されている。フェイスドアは、フェイス開口穴の開口面積を調整する。フットドアは、フット開口穴の開口面積を調整する。デフロスタドアは、デフロスタ開口穴の開口面積を調整する。
 フェイスドア、フットドア、デフロスタドアは、吹出口モードを切り替える吹出口モード切替装置を構成する。これらのドアは、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。電動アクチュエータの作動も、サイクル制御装置60から出力される制御信号によって制御される。
 吹出口モード切替装置によって切り替えられる吹出口モードとしては、具体的に、フェイスモード、バイレベルモード、フットモード等がある。
 フェイスモードは、フェイス吹出口を全開としてフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出す吹出口モードである。バイレベルモードは、フェイス吹出口とフット吹出口の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出す吹出口モードである。フットモードは、フット吹出口を全開とするとともにデフロスタ吹出口を小開度だけ開口して、フット吹出口から主に空気を吹き出す吹出口モードである。
 乗員が操作パネル70に設けられた吹出モード切替スイッチをマニュアル操作することによって、デフロスタモードに切り替えることもできる。デフロスタモードは、デフロスタ吹出口を全開としてデフロスタ吹出口からフロント窓ガラス内面に空気を吹き出す吹出口モードである。
 次に、本実施形態の電気制御部の概要について説明する。サイクル制御装置60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータと周辺回路から構成されている。そして、ROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器11、14a~14c、15a、15b、32等の作動を制御する。
 サイクル制御装置60の入力側には、図2のブロック図に示すように、内気温センサ61、外気温センサ62、日射センサ63、第1~第5冷媒温度センサ64a~64e、蒸発器温度センサ64f、冷却用熱交換部入口温度センサ64g、第1、第2冷媒圧力センサ65a、65b、空調風温度センサ68、バッテリ制御装置69等が接続されている。サイクル制御装置60には、これらのセンサ群の検出信号が入力される。
 内気温センサ61は、車室内温度(内気温)Trを検出する内気温検出部である。外気温センサ62は、車室外温度(外気温)Tamを検出する外気温検出部である。日射センサ63は、車室内へ照射される日射量Tsを検出する日射量検出部である。
 第1冷媒温度センサ64aは、圧縮機11から吐出された冷媒の温度T1を検出する吐出冷媒温度検出部である。第2冷媒温度センサ64bは、室内凝縮器12から流出した冷媒の温度T2を検出する第2冷媒温度検出部である。第3冷媒温度センサ64cは、室外熱交換器16から流出した冷媒の温度T3を検出する第3冷媒温度検出部である。
 第4冷媒温度センサ64dは、室内蒸発器18から流出した冷媒の温度T4を検出する第4冷媒温度検出部である。第5冷媒温度センサ64eは、冷却用熱交換部52から流出した冷媒の温度T5を検出する第5冷媒温度検出部である。
 蒸発器温度センサ64fは、室内蒸発器18における冷媒蒸発温度(蒸発器温度)Tefinを検出する蒸発器温度検出部である。本実施形態の蒸発器温度センサ64fでは、具体的に、室内蒸発器18の熱交換フィン温度を検出している。
 冷却用熱交換部入口温度センサ64gは、冷却用熱交換部52の冷媒通路へ流入する冷媒の温度を検出する冷却用熱交換部入口温度検出部である。
 第1冷媒圧力センサ65aは、室内凝縮器12から流出した冷媒の圧力P1を検出する第1冷媒圧力検出部である。第2冷媒圧力センサ65bは、冷却用熱交換部52の冷媒通路から流出した冷媒の圧力P2を検出する第2冷媒圧力検出部である。
 空調風温度センサ68は、室内凝縮器12で加熱された空気温度TAVを検出する空調風温度検出部である。
 バッテリ制御装置69は、バッテリ80の入出力を制御するバッテリ制御部である。バッテリ制御装置69には、バッテリ温度センサ69aからの検出信号が入力される。
 バッテリ温度センサ69aは、バッテリ温度TB(すなわち、バッテリ80の温度)を検出するバッテリ温度検出部である。本実施形態のバッテリ温度センサ69aは、複数の温度センサを有し、バッテリ80の複数の箇所の温度を検出している。このため、サイクル制御装置60では、バッテリ80の各部の温度差を検出することもできる。さらに、バッテリ温度TBとしては、複数の温度センサの検出値の平均値を採用している。
 サイクル制御装置60には、バッテリ制御装置69から、バッテリ80の急速充電を開始する時刻や、バッテリ温度TB等の情報が入力される。
 サイクル制御装置60の入力側には、図2に示すように、車室内前部の計器盤付近に配置された操作パネル70が接続され、操作パネル70に設けられた各種操作スイッチからの操作信号が入力される。
 操作パネル70に設けられた各種操作スイッチとしては、具体的に、車両用空調装置の自動制御運転を設定あるいは解除するオートスイッチ、室内蒸発器18で空気の冷却を行うことを要求するエアコンスイッチ、送風機32の風量をマニュアル設定する風量設定スイッチ、車室内の目標温度Tsetを設定する温度設定スイッチ、吹出モードをマニュアル設定する吹出モード切替スイッチ等がある。
 本実施形態のサイクル制御装置60は、出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものであるが、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。
 例えば、サイクル制御装置60のうち、圧縮機11の冷媒吐出能力(具体的には、圧縮機11の回転数)を制御する構成は、圧縮機制御部60aを構成している。暖房用膨張弁14a、冷房用膨張弁14bおよび冷却用膨張弁14cの作動を制御する構成は、膨張弁制御部60bを構成している。除湿用開閉弁15aおよび暖房用開閉弁15bの作動を制御する構成は、冷媒回路切替制御部60cを構成している。
 次に、上記構成における本実施形態の作動について説明する。前述の如く、本実施形態の車両用空調装置1は、車室内の空調を行うだけでなく、バッテリ80の温度を調整する機能を有している。このため、冷凍サイクル装置10では、冷媒回路を切り替えて、以下の11種類の運転モードでの運転を行うことができる。
 (1)冷房モード:冷房モードは、バッテリ80の冷却を行うことなく、空気を冷却して車室内へ吹き出すことによって車室内の冷房を行う運転モードである。
 (2)直列除湿暖房モード:直列除湿暖房モードは、バッテリ80の冷却を行うことなく、冷却されて除湿された空気を再加熱して車室内へ吹き出すことによって車室内の除湿暖房を行う運転モードである。
 (3)並列除湿暖房モード:並列除湿暖房モードは、バッテリ80の冷却を行うことなく、冷却されて除湿された空気を直列除湿暖房モードよりも高い加熱能力で再加熱して車室内へ吹き出すことによって車室内の除湿暖房を行う運転モードである。
 (4)暖房モード:暖房モードは、バッテリ80の冷却を行うことなく、空気を加熱して車室内へ吹き出すことによって車室内の暖房を行う運転モードである。
 (5)冷房冷却モード:冷房冷却モードは、バッテリ80の冷却を行うとともに、空気を冷却して車室内へ吹き出すことによって車室内の冷房を行う運転モードである。
 (6)直列除湿暖房冷却モード:直列除湿暖房冷却モードは、バッテリ80の冷却を行うとともに、冷却されて除湿された空気を再加熱して車室内へ吹き出すことによって車室内の除湿暖房を行う運転モードである。
 (7)並列除湿暖房冷却モード:並列除湿暖房冷却モードは、バッテリ80の冷却を行うとともに、冷却されて除湿された空気を直列除湿暖房冷却モードよりも高い加熱能力で再加熱して車室内へ吹き出すことによって車室内の除湿暖房を行う運転モードである。
 (8)暖房冷却モード:暖房冷却モードは、バッテリ80の冷却を行うとともに、空気を加熱して車室内へ吹き出すことによって車室内の暖房を行う運転モードである。
 (9)暖房直列冷却モード:暖房直列冷却モードは、バッテリ80の冷却を行うとともに、空気を暖房冷却モードよりも高い加熱能力で加熱して車室内へ吹き出すことによって車室内の暖房を行う運転モードである。
 (10)暖房並列冷却モード:暖房並列冷却モードは、バッテリ80の冷却を行うとともに、空気を暖房直列冷却モードよりも高い加熱能力で加熱して車室内へ吹き出すことによって車室内の暖房を行う運転モードである。
 (11)冷却モード:車室内の空調を行うことなく、バッテリ80の冷却を行う運転モードである。
 これらの運転モードの切り替えは、制御プログラムが実行されることによって行われる。制御プログラムは、乗員の操作によって操作パネル70のオートスイッチが投入(ON)されて、車室内の自動制御が設定された際に実行される。図3~図5を用いて、制御プログラムについて説明する。また、図3等のフローチャートに示す各制御ステップは、サイクル制御装置60が有する機能実現部である。
 まず、図3のステップS10では、上述したセンサ群の検出信号、および操作パネル70の操作信号を読み込む。続くステップS20では、ステップS10にて読み込んだ検出信号および操作信号に基づいて、車室内へ送風される空気の目標温度である目標吹出温度TAOを決定する。従って、ステップS20は、目標吹出温度決定部である。
 具体的には、目標吹出温度TAOは、以下数式F1によって算出される。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×Ts+C…(F1)
 なお、Tsetは温度設定スイッチによって設定された車室内設定温度である。Trは内気センサによって検出された車室内温度である。Tamは外気センサによって検出された車室外温度である。Tsは日射センサによって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
 次に、ステップS30では、エアコンスイッチがON(投入)されているか否かが判定される。エアコンスイッチがONされていることは、乗員が車室内の冷房あるいは除湿を要求していることを意味している。換言すると、エアコンスイッチがONされていることは、室内蒸発器18にて空気を冷却することが要求されていることを意味している。
 ステップS30にて、エアコンスイッチがONされていると判定された場合は、ステップS40へ進む。ステップS30にて、エアコンスイッチがONされていないと判定された場合は、ステップS160へ進む。
 ステップS40では、外気温Tamが予め定めた基準外気温KA(本実施形態では、0℃)以上であるか否かが判定される。基準外気温KAは、室内蒸発器18にて空気を冷却することが、空調対象空間の冷房あるいは除湿を行うために有効となるように設定されている。
 より詳細には、本実施形態では、室内蒸発器18の着霜を抑制するために、蒸発圧力調整弁20によって室内蒸発器18における冷媒蒸発温度を着霜抑制温度(本実施形態では、1℃)以上に維持している。このため、室内蒸発器18では、空気を着霜抑制温度より低い温度に冷却することができない。
 つまり、室内蒸発器18へ流入する空気の温度が着霜抑制温度の温度よりも低くなっている際には、室内蒸発器18にて空気を冷却することは有効ではない。そこで、基準外気温KAを着霜抑制温度より低い値に設定し、外気温Tamが基準外気温KAより低くなっている際には、室内蒸発器18にて空気を冷却しないようにしている。
 ステップS40にて、外気温Tamが基準外気温KA以上であると判定された場合は、ステップS50へ進む。ステップS40にて、外気温Tamが基準外気温KA以上ではないと判定された場合は、ステップS160へ進む。
 ステップS50では、目標吹出温度TAOが冷房用基準温度α1以下であるか否かが判定される。冷房用基準温度α1は、サイクル制御装置60によって決定される。
 ステップS50にて、目標吹出温度TAOが冷房用基準温度α1以下であると判定された場合は、ステップS60へ進む。ステップS50にて、目標吹出温度TAOが冷房用基準温度α1以下ではないと判定された場合は、ステップS90へ進む。
 ステップS60では、バッテリ80の冷却が必要であるか否かが判定される。具体的には、本実施形態では、バッテリ温度センサ69aによって検出されたバッテリ温度TBが予め定めた基準冷却温度KTB(本実施形態では、35℃)以上となっている際に、バッテリ80の冷却が必要であると判定する。また、バッテリ温度TBが基準冷却温度KTBより低くなっている際に、バッテリ80の冷却は必要でないと判定する。
 ステップS60にて、バッテリ80の冷却が必要であると判定された場合は、ステップS70へ進み、運転モードとして(5)冷房冷却モードが選択される。ステップS60にて、バッテリ80の冷却が必要でないと判定された場合は、ステップS80へ進み、運転モードとして(1)冷房モードが選択される。
 ステップS90では、目標吹出温度TAOが除湿用基準温度β1以下であるか否かが判定される。除湿用基準温度β1は、サイクル制御装置60によって決定される。除湿用基準温度β1は、冷房用基準温度α1よりも高い値に決定される。
 ステップS90にて、目標吹出温度TAOが除湿用基準温度β1以下であると判定された場合は、ステップS100へ進む。ステップS90にて、目標吹出温度TAOが除湿用基準温度β1以下ではないと判定された場合は、ステップS130へ進む。
 ステップS100では、ステップS60と同様に、バッテリ80の冷却が必要であるか否かが判定される。
 ステップS100にて、バッテリ80の冷却が必要であると判定された場合は、ステップS110へ進み、冷凍サイクル装置10の運転モードとして(6)直列除湿暖房冷却モードが選択される。ステップS100にて、バッテリ80の冷却が必要でないと判定された場合は、ステップS120へ進み、運転モードとして(2)直列除湿暖房モードが選択される。
 ステップS130では、ステップS60と同様に、バッテリ80の冷却が必要であるか否かが判定される。
 ステップS130にて、バッテリ80の冷却が必要であると判定された場合は、ステップS140へ進み、冷凍サイクル装置10の運転モードとして(7)並列除湿暖房冷却モードが選択される。ステップS100にて、バッテリ80の冷却が必要でないと判定された場合は、ステップS150へ進み、運転モードとして(3)並列除湿暖房モードが選択される。
 続いて、ステップS30あるいはステップS40からステップS160へ進んだ場合について説明する。ステップS30あるいはステップS40からステップS160へ進んだ場合は、室内蒸発器18にて空気を冷却することが有効ではないと判定された場合である。ステップS160では、図4に示すように、目標吹出温度TAOが暖房用基準温度γ以上であるか否かが判定される。
 暖房用基準温度γは、サイクル制御装置60によって決定される。暖房用基準温度γは、室内凝縮器12にて空気を加熱することが、空調対象空間の暖房を行うために有効となるように設定されている。
 ステップS160にて、目標吹出温度TAOが暖房用基準温度γ以上であると判定された場合は、室内凝縮器12にて空気を加熱する必要がある場合であり、ステップS170へ進む。ステップS160にて、目標吹出温度TAOが暖房用基準温度γ以上ではないと判定された場合は、室内凝縮器12にて空気を加熱する必要がない場合であり、ステップS240へ進む。
 ステップS170では、ステップS60と同様に、バッテリ80の冷却が必要であるか否かが判定される。
 ステップS170にて、バッテリ80の冷却が必要であると判定された場合は、ステップS180へ進む。ステップS170にて、バッテリ80の冷却が必要でないと判定された場合は、ステップS230へ進み、運転モードとして(4)暖房モードが選択される。
 ここで、ステップS170にて、バッテリ80の冷却が必要であると判定されてステップS180へ進んだ場合は、車室内の暖房とバッテリ80の冷却との双方を行う必要がある。このため、冷凍サイクル装置10では、室内凝縮器12にて冷媒が空気へ放熱する放熱量と、冷却用熱交換部52にて冷媒がバッテリ80から吸熱する吸熱量とを適切に調整する必要がある。
 そこで、本実施形態の冷凍サイクル装置10では、車室内の暖房とバッテリ80の冷却との双方を行う必要がある場合には、図4のステップS180~S220に示すように、(8)暖房冷却モード、(9)暖房直列冷却モード、(10)暖房並列冷却モードの3つの運転モードを切り替える。
 まず、ステップS180では、目標吹出温度TAOが低温側冷却基準温度α2以下であるか否かが判定される。低温側冷却基準温度α2は、サイクル制御装置60によって決定される。低温側冷却基準温度α2は、冷房用基準温度α1よりも高く、かつ除湿用基準温度β1よりも低い値に決定される。
 ステップS180にて、目標吹出温度TAOが低温側冷却基準温度α2以下であると判定された場合は、ステップS190へ進み、運転モードとして(8)暖房冷却モードが選択される。ステップS180にて、目標吹出温度TAOが低温側冷却基準温度α2以下ではないと判定された場合は、ステップS200へ進む。
 ステップS200では、目標吹出温度TAOが高温側冷却基準温度β2以下であるか否かが判定される。高温側冷却基準温度β2は、サイクル制御装置60によって決定される。高温側冷却基準温度β2は、除湿用基準温度β1よりも高い値に決定される。
 ステップS200にて、目標吹出温度TAOが高温側冷却基準温度β2以下であると判定された場合は、ステップS210へ進み、運転モードとして(9)暖房直列冷却モードが選択される。ステップS200にて、目標吹出温度TAOが高温側冷却基準温度β2以下ではないと判定された場合は、ステップS220へ進み、運転モードとして(10)暖房並列冷却モードが選択される。
 続いて、ステップS160からステップS240へ進んだ場合について説明する。ステップS160からステップS240へ進んだ場合は、室内凝縮器12にて空気を加熱する必要がない場合である。そこで、ステップS240では、ステップS60と同様に、バッテリ80の冷却が必要であるか否かが判定される。
 ステップS240にて、バッテリ80の冷却が必要であると判定された場合は、ステップS250へ進み、運転モードとして(11)冷却モードが選択される。ステップS200にて、バッテリ80の冷却が必要でないと判定された場合は、ステップS260へ進み、運転モードとして送風モードが選択されて、ステップS10へ戻る。
 送風モードは、圧縮機11を停止させて、風量設定スイッチによって設定された設定信号に応じて送風機32を作動させる運転モードである。なお、ステップS240にて、バッテリ80の冷却が必要でないと判定された場合は、車室内の空調および電池の冷却のための冷凍サイクル装置10を作動させる必要がない場合である。
 本実施形態の制御プログラムでは、以上の如く、冷凍サイクル装置10の運転モードの切り替えを行う。
 以下に、各運転モードにおける車両用空調装置1の詳細作動について説明する。各運転モードでは、サイクル制御装置60が、各運転モードの制御フローを実行する。
 (1)冷房モード
 冷房モードの制御フローでは、最初のステップで目標蒸発器温度TEOを決定する。目標蒸発器温度TEOは、目標吹出温度TAOに基づいて、サイクル制御装置60に記憶された制御マップを参照して決定される。本実施形態の制御マップでは、目標吹出温度TAOの上昇に伴って、目標蒸発器温度TEOが上昇するように決定される。
 次のステップでは、圧縮機11の回転数の増減量ΔIVOを決定する。増減量ΔIVOは、目標蒸発器温度TEOと蒸発器温度センサ64fによって検出された蒸発器温度Tefinとの偏差に基づいて、フィードバック制御手法により、蒸発器温度Tefinが目標蒸発器温度TEOに近づくように決定される。
 次のステップでは、室外熱交換器16から流出した冷媒の目標過冷却度SCO1を決定する。目標過冷却度SCO1は、例えば、外気温Tamに基づいて、制御マップを参照して決定される。本実施形態の制御マップでは、サイクルの成績係数(COP)が極大値に近づくように、目標過冷却度SCO1を決定する。
 次のステップでは、冷房用膨張弁14bの絞り開度の増減量ΔEVCを決定する。増減量ΔEVCは、目標過冷却度SCO1と室外熱交換器16の出口側冷媒の過冷却度SC1との偏差に基づいて、フィードバック制御手法により、室外熱交換器16の出口側冷媒の過冷却度SC1が目標過冷却度SCO1に近づくように決定される。
 室外熱交換器16の出口側冷媒の過冷却度SC1は、第3冷媒温度センサ64cによって検出された温度T3および第1冷媒圧力センサ65aによって検出された圧力P1に基づいて算出される。
 次のステップでは、以下数式F2を用いて、エアミックスドア34の開度SWを算定する。
SW={TAO+(Tefin+C2)}/{TAV+(Tefin+C2)}…(F2)
 なお、TAVは、空調風温度センサ68によって検出された空気温度である。C2は制御用の定数である。
 次のステップでは、冷凍サイクル装置10を冷房モードの冷媒回路に切り替えるために、暖房用膨張弁14aを全開状態とし、冷房用膨張弁14bを冷媒減圧作用を発揮する絞り状態とし、冷却用膨張弁14cを全閉状態とし、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを閉じる。さらに、上述のステップで決定された制御状態が得られるように、各制御対象機器に対して制御信号あるいは制御電圧を出力して、最初のステップへ戻る。
 従って、冷房モードの冷凍サイクル装置10では、圧縮機11、室内凝縮器12、暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷房用膨張弁14b、室内蒸発器18、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
 つまり、冷房モードの冷凍サイクル装置10では、室内凝縮器12および室外熱交換器16が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、冷房用膨張弁14bが冷媒を減圧させる減圧部として機能し、室内蒸発器18が蒸発器として機能する蒸気圧縮式の冷凍サイクルが構成される。
 これによれば、室内蒸発器18にて空気を冷却することができるとともに、室内凝縮器12にて空気を加熱することができる。
 従って、冷房モードの車両用空調装置1では、エアミックスドア34の開度調整によって、室内蒸発器18にて冷却された空気の一部を室内凝縮器12にて再加熱し、目標吹出温度TAOに近づくように温度調整された空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。
 (2)直列除湿暖房モード
 直列除湿暖房モードの制御フローでは、最初のステップで、冷房モードと同様に、目標蒸発器温度TEOを決定する。次のステップでは、冷房モードと同様に、圧縮機11の回転数の増減量ΔIVOを決定する。
 次のステップでは、室内凝縮器12にて空気を加熱できるように、室内凝縮器12で加熱された空気の目標温度TAVO(以下、目標空気加熱温度と言う。)を決定する。目標空気加熱温度TAVOは、目標吹出温度TAOおよび室内凝縮器12の効率に基づいて、制御マップを参照して決定される。本実施形態の制御マップでは、目標吹出温度TAOの上昇に伴って、目標空気加熱温度TAVOが上昇するように決定される。
 次のステップでは、開度パターンKPN1の変化量ΔKPN1を決定する。開度パターンKPN1は、暖房用膨張弁14aの絞り開度および冷房用膨張弁14bの絞り開度の組合せを決定するためのパラメータである。
 具体的には、直列除湿暖房モードでは、目標吹出温度TAOが上昇するに伴って、開度パターンKPN1が大きくなる。そして、開度パターンKPN1が大きくなるに伴って、暖房用膨張弁14aの絞り開度が小さくなり、冷房用膨張弁14bの絞り開度が大きくなる。
 次のステップでは、冷房モードと同様に、エアミックスドア34の開度SWを算定する。ここで、直列除湿暖房モードでは、冷房モードよりも目標吹出温度TAOが高くなるので、エアミックスドア34の開度SWが100%に近づく。このため、直列除湿暖房モードでは、室内蒸発器18通過後の空気のほぼ全流量が室内凝縮器12を通過するように、エアミックスドア34の開度が決定される。
 次のステップでは、冷凍サイクル装置10を直列除湿暖房モードの冷媒回路に切り替えるために、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを絞り状態とし、冷却用膨張弁14cを全閉状態とし、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを閉じる。さらに、上述のステップで決定された制御状態が得られるように、各制御対象機器に対して制御信号あるいは制御電圧を出力して、最初のステップへ戻る。
 従って、直列除湿暖房モードの冷凍サイクル装置10では、圧縮機11、室内凝縮器12、暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷房用膨張弁14b、室内蒸発器18、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
 つまり、直列除湿暖房モードの冷凍サイクル装置10では、室内凝縮器12が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、暖房用膨張弁14aおよび冷房用膨張弁14bが減圧部として機能し、室内蒸発器18が蒸発器として機能する蒸気圧縮式の冷凍サイクルが構成される。
 さらに、室外熱交換器16における冷媒の飽和温度が、外気温Tamよりも高くなっている際には、室外熱交換器16が放熱器(換言すれば放熱部)として機能するサイクルが構成される。室外熱交換器16における冷媒の飽和温度が、外気温Tamよりも低くなっている際には、室外熱交換器16が蒸発器として機能するサイクルが構成される。
 これによれば、室内蒸発器18にて空気を冷却することができるとともに、室内凝縮器12にて空気を加熱することができる。従って、直列除湿暖房モードの車両用空調装置1では、室内蒸発器18にて冷却されて除湿された空気を、室内凝縮器12にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。
 (3)並列除湿暖房モード
 並列除湿暖房モードの制御フローの最初のステップでは、室内凝縮器12にて空気を加熱できるように、直列除湿暖房モードと同様に目標空気加熱温度TAVOが決定される。
 次のステップでは、圧縮機11の回転数の増減量ΔIVOを決定する。並列除湿暖房モードでは、増減量ΔIVOは、目標空気加熱温度TAVOと空気温度TAVとの偏差に基づいて、フィードバック制御手法により、空気温度TAVが目標空気加熱温度TAVOに近づくように決定される。
 次のステップでは、室内蒸発器18の出口側冷媒の目標過熱度SHEOを決定する。目標過熱度SHEOとしては、予め定めた定数(本実施形態では、5℃)を採用することができる。
 次のステップでは、開度パターンKPN1の変化量ΔKPN1を決定する。並列除湿暖房モードでは、目標過熱度SHEOと室内蒸発器18の出口側冷媒の過熱度SHEとの偏差に基づいて、フィードバック制御手法により、過熱度SHEが目標過熱度SHEOに近づくように決定される。
 室内蒸発器18の出口側冷媒の過熱度SHEは、第4冷媒温度センサ64dによって検出された温度T4および蒸発器温度Tefinに基づいて算出される。
 また、並列除湿暖房モードでは、開度パターンKPN1が大きくなるに伴って、暖房用膨張弁14aの絞り開度が小さくなり、冷房用膨張弁14bの絞り開度が大きくなる。従って、開度パターンKPN1が大きくなると、室内蒸発器18へ流入する冷媒流量が増加し、室内蒸発器18の出口側冷媒の過熱度SHEが低下する。
 次のステップでは、冷房モードと同様に、エアミックスドア34の開度SWを算定する。ここで、並列除湿暖房モードでは、冷房モードよりも目標吹出温度TAOが高くなるので、直列除湿暖房モードと同様に、エアミックスドア34の開度SWが100%に近づく。このため、並列除湿暖房モードでは、室内蒸発器18通過後の空気のほぼ全流量が室内凝縮器12を通過するように、エアミックスドア34の開度が決定される。
 次のステップでは、冷凍サイクル装置10を並列除湿暖房モードの冷媒回路に切り替えるために、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを絞り状態とし、冷却用膨張弁14cを全閉状態とし、除湿用開閉弁15aを開き、暖房用開閉弁15bを開く。さらに、上述のステップで決定された制御状態が得られるように、各制御対象機器に対して制御信号あるいは制御電圧を出力して、最初のステップへ戻る。
 従って、並列除湿暖房モードの冷凍サイクル装置10では、圧縮機11、室内凝縮器12、暖房用膨張弁14a、室外熱交換器16、暖房用通路22b、アキュムレータ21、圧縮機11の順に冷媒が循環するとともに、圧縮機11、室内凝縮器12、バイパス通路22a、冷房用膨張弁14b、室内蒸発器18、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
 つまり、並列除湿暖房モードの冷凍サイクル装置10では、室内凝縮器12が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、暖房用膨張弁14aが減圧部として機能し、室外熱交換器16が蒸発器として機能するとともに、暖房用膨張弁14aおよび室外熱交換器16に対して並列的に接続された冷房用膨張弁14bが減圧部として機能し、室内蒸発器18が蒸発器として機能する冷凍サイクルが構成される。
 これによれば、室内蒸発器18にて空気を冷却することができるとともに、室内凝縮器12にて空気を加熱することができる。従って、並列除湿暖房モードの車両用空調装置1では、室内蒸発器18にて冷却されて除湿された空気を、室内凝縮器12にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。
 (4)暖房モード
 暖房モードの制御フローの最初のステップでは、並列除湿暖房モードと同様に目標空気加熱温度TAVOが決定される。次のステップでは、並列除湿暖房モードと同様に、圧縮機11の回転数の増減量ΔIVOを決定する。
 次のステップでは、室内凝縮器12から流出した冷媒の目標過冷却度SCO2を決定する。目標過冷却度SCO2は、室内蒸発器18へ流入する空気の吸込温度あるいは外気温Tamに基づいて、制御マップを参照して決定される。本実施形態の制御マップでは、サイクルの成績係数(COP)が極大値に近づくように、目標過冷却度SCO2を決定する。
 次のステップでは、暖房用膨張弁14aの絞り開度の増減量ΔEVHを決定する。増減量ΔEVHは、目標過冷却度SCO2と室内凝縮器12から流出した冷媒の過冷却度SC2との偏差に基づいて、フィードバック制御手法により、室内凝縮器12から流出した冷媒の過冷却度SC2が目標過冷却度SCO2に近づくように決定される。
 室内凝縮器12から流出した冷媒の過冷却度SC2は、第2冷媒温度センサ64bによって検出された温度T2および第1冷媒圧力センサ65aによって検出された圧力P1に基づいて算出される。
 次のステップでは、冷房モードと同様に、エアミックスドア34の開度SWを算定する。ここで、暖房モードでは、冷房モードよりも目標吹出温度TAOが高くなるので、エアミックスドア34の開度SWが100%に近づく。このため、暖房モードでは、室内蒸発器18通過後の空気のほぼ全流量が室内凝縮器12を通過するように、エアミックスドア34の開度が決定される。
 次のステップでは、冷凍サイクル装置10を暖房モードの冷媒回路に切り替えるために、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを全閉状態とし、冷却用膨張弁14cを全閉状態とし、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを開く。さらに、上述のステップで決定された制御状態が得られるように、各制御対象機器に対して制御信号あるいは制御電圧を出力して、最初のステップへ戻る。
 従って、暖房モードの冷凍サイクル装置10では、圧縮機11、室内凝縮器12、暖房用膨張弁14a、室外熱交換器16、暖房用通路22b、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
 つまり、暖房モードの冷凍サイクル装置10では、室内凝縮器12が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、暖房用膨張弁14aが減圧部として機能し、室外熱交換器16が蒸発器として機能する冷凍サイクルが構成される。
 これによれば、室内凝縮器12にて空気を加熱することができる。従って、暖房モードの車両用空調装置1では、室内凝縮器12にて加熱された空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。
 (5)冷房冷却モード
 冷房冷却モードでは、上述の冷房モードに対して、冷却用膨張弁14cを冷媒減圧作用を発揮する絞り状態とする。
 従って、冷房冷却モードの冷凍サイクル装置10では、圧縮機11、室内凝縮器12、暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷房用膨張弁14b、室内蒸発器18、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環するとともに、圧縮機11、室内凝縮器12、暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷却用膨張弁14c、冷却用熱交換部52、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
 つまり、冷房冷却モードの冷凍サイクル装置10では、室内凝縮器12および室外熱交換器16が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、冷房用膨張弁14bが減圧部として機能し、室内蒸発器18が蒸発器として機能するとともに、冷房用膨張弁14bおよび室内蒸発器18に対して並列的に接続された冷却用膨張弁14cが減圧部として機能し、冷却用熱交換部52が蒸発器として機能する冷凍サイクルが構成される。
 これによれば、室内蒸発器18にて空気を冷却することができるとともに、室内凝縮器12にて空気を加熱することができる。さらに、冷却用熱交換部52にて低圧側熱媒体を冷却することができる。
 従って、冷房冷却モードの車両用空調装置1では、エアミックスドア34の開度調整によって、室内蒸発器18にて冷却された空気の一部を室内凝縮器12にて再加熱し、目標吹出温度TAOに近づくように温度調整された空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。さらに、冷却用熱交換部52にてバッテリ80の冷却を行うことができる。
 (6)直列除湿暖房冷却モード
 直列除湿暖房冷却モードでは、上述の直列除湿暖房モードに対して、冷却用膨張弁14cを冷媒減圧作用を発揮する絞り状態とする。
 従って、直列除湿暖房冷却モードでは、圧縮機11、室内凝縮器12、暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷房用膨張弁14b、室内蒸発器18、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環するとともに、圧縮機11、室内凝縮器12、暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷却用膨張弁14c、冷却用熱交換部52、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
 つまり、直列除湿暖房冷却モードの冷凍サイクル装置10では、室内凝縮器12が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、暖房用膨張弁14aが減圧部として機能し、さらに、冷房用膨張弁14bが減圧部として機能し、室内蒸発器18が蒸発器として機能するとともに、冷房用膨張弁14bおよび室内蒸発器18に対して並列的に接続された冷却用膨張弁14cが減圧部として機能し、冷却用熱交換部52が蒸発器として機能する冷凍サイクルが構成される。
 さらに、室外熱交換器16における冷媒の飽和温度が、外気温Tamよりも高くなっている際には、室外熱交換器16が放熱器(換言すれば放熱部)として機能するサイクルが構成される。室外熱交換器16における冷媒の飽和温度が、外気温Tamよりも低くなっている際には、室外熱交換器16が蒸発器として機能するサイクルが構成される。
 これによれば、室内蒸発器18にて空気を冷却することができるとともに、室内凝縮器12にて空気を加熱することができる。さらに、冷却用熱交換部52にてバッテリ80を冷却することができる。
 従って、直列除湿暖房冷却モードの冷凍サイクル装置10では、室内蒸発器18にて冷却されて除湿された空気を、室内凝縮器12にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。この際、開度パターンKPN1を大きくすることにより、直列除湿暖房モードと同様に、室内凝縮器12における空気の加熱能力を向上させることができる。さらに、冷却用熱交換部52にてバッテリ80の冷却を行うことができる。
 (7)並列除湿暖房冷却モード
 並列除湿暖房冷却モードでは、上述の並列除湿暖房モードに対して、冷却用膨張弁14cを冷媒減圧作用を発揮する絞り状態とする。
 従って、並列除湿暖房冷却モードの冷凍サイクル装置10では、圧縮機11、室内凝縮器12、暖房用膨張弁14a、室外熱交換器16、暖房用通路22b、アキュムレータ21、圧縮機11の順に冷媒が循環するとともに、圧縮機11、室内凝縮器12、バイパス通路22a、冷房用膨張弁14b、室内蒸発器18、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環し、さらに、圧縮機11、室内凝縮器12、バイパス通路22a、冷却用膨張弁14c、冷却用熱交換部52、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
 つまり、並列除湿暖房冷却モードの冷凍サイクル装置10では、室内凝縮器12が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、暖房用膨張弁14aが減圧部として機能し、室外熱交換器16が蒸発器として機能するとともに、暖房用膨張弁14aおよび室外熱交換器16に対して並列的に接続された冷房用膨張弁14bが減圧部として機能し、室内蒸発器18が蒸発器として機能し、さらに、暖房用膨張弁14aおよび室外熱交換器16に対して並列的に接続された冷却用膨張弁14cが減圧部として機能し、冷却用熱交換部52が蒸発器として機能する冷凍サイクルが構成される。
 これによれば、室内蒸発器18にて空気を冷却することができるとともに、室内凝縮器12にて空気を加熱することができる。さらに、冷却用熱交換部52にてバッテリ80を冷却することができる。
 従って、並列除湿暖房冷却モードの車両用空調装置1では、室内蒸発器18にて冷却されて除湿された空気を、室内凝縮器12にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。この際、室外熱交換器16における冷媒蒸発温度を室内蒸発器18における冷媒蒸発温度よりも低下させることで、直列除湿暖房冷却モードよりも高い加熱能力で空気を再加熱することができる。
 さらに、冷却用熱交換部52によってバッテリ80の冷却を行うことができる。
 (8)暖房冷却モード
 暖房冷却モードでは、暖房用膨張弁14aを全開状態とし、冷房用膨張弁14bを全閉状態とし、冷却用膨張弁14cを絞り状態とし、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを閉じる。
 従って、暖房冷却モードの冷凍サイクル装置10では、圧縮機11、室内凝縮器12、暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷却用膨張弁14c、冷却用熱交換部52、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
 つまり、暖房冷却モードの冷凍サイクル装置10では、室内凝縮器12および室外熱交換器16が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、冷却用膨張弁14cが冷媒を減圧させる減圧部として機能し、冷却用熱交換部52が蒸発器として機能する蒸気圧縮式の冷凍サイクルが構成される。
 これによれば、室内凝縮器12にて空気を加熱することができるとともに、冷却用熱交換部52にてバッテリ80を冷却することができる。
 従って、暖房冷却モードの車両用空調装置1では、室内凝縮器12にて加熱された空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。さらに、冷却用熱交換部52によってバッテリ80の冷却を行うことができる。
 (9)暖房直列冷却モード
 暖房直列冷却モードでは、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを全閉状態とし、冷却用膨張弁14cを絞り状態とし、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを閉じる。
 従って、暖房直列冷却モードの冷凍サイクル装置10では、圧縮機11、室内凝縮器12、暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷却用膨張弁14c、冷却用熱交換部52、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
 つまり、暖房直列冷却モードの冷凍サイクル装置10では、室内凝縮器12が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、暖房用膨張弁14aおよび冷却用膨張弁14cが減圧部として機能し、冷却用熱交換部52が蒸発器として機能する蒸気圧縮式の冷凍サイクルが構成される。
 さらに、室外熱交換器16における冷媒の飽和温度が、外気温Tamよりも高くなっている際には、室外熱交換器16が放熱器(換言すれば放熱部)として機能するサイクルが構成される。室外熱交換器16における冷媒の飽和温度が、外気温Tamよりも低くなっている際には、室外熱交換器16が蒸発器として機能するサイクルが構成される。
 これによれば、室内凝縮器12にて空気を加熱することができるとともに、冷却用熱交換部52にてバッテリ80を冷却することができる。
 従って、暖房直列冷却モードの車両用空調装置1では、室内凝縮器12にて加熱された空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。さらに、冷却用熱交換部52によってバッテリ80の冷却を行うことができる。
 (10)暖房並列冷却モード
 暖房並列冷却モードでは、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを全閉状態とし、冷却用膨張弁14cを絞り状態とし、除湿用開閉弁15aを開き、暖房用開閉弁15bを開く。
 さらに、上述のステップで決定された制御状態が得られるように、各制御対象機器に対して制御信号あるいは制御電圧を出力して、最初のステップへ戻る。
 従って、暖房並列冷却モードの冷凍サイクル装置10では、圧縮機11、室内凝縮器12、暖房用膨張弁14a、室外熱交換器16、暖房用通路22b、アキュムレータ21、圧縮機11の順に冷媒が循環するとともに、圧縮機11、室内凝縮器12、バイパス通路22a、冷却用膨張弁14c、冷却用熱交換部52、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
 つまり、暖房並列冷却モードの冷凍サイクル装置10では、室内凝縮器12が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、暖房用膨張弁14aが減圧部として機能し、室外熱交換器16が蒸発器として機能するとともに、暖房用膨張弁14aおよび室外熱交換器16に対して並列的に接続された冷却用膨張弁14cが減圧部として機能し、冷却用熱交換部52が蒸発器として機能する冷凍サイクルが構成される。
 これによれば、室内凝縮器12にて空気を加熱することができるとともに、冷却用熱交換部52にてバッテリ80を冷却することができる。
 従って、暖房並列冷却モードの車両用空調装置1では、室内凝縮器12にて加熱された空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。さらに、冷却用熱交換部52にてバッテリ80の冷却を行うことができる。
 (11)冷却モード
 冷却モードでは、暖房用膨張弁14aを全開状態とし、冷房用膨張弁14bを全閉状態とし、冷却用膨張弁14cを絞り状態とし、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを閉じる。
 従って、冷却モードの冷凍サイクル装置10では、圧縮機11、室内凝縮器12、暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷却用膨張弁14c、冷却用熱交換部52、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。
 つまり、冷却モードの冷凍サイクル装置10では、室外熱交換器16が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、冷却用膨張弁14cが減圧部として機能し、冷却用熱交換部52が蒸発器として機能する蒸気圧縮式の冷凍サイクルが構成される。これによれば、冷却用熱交換部52によって、バッテリ80の冷却を行うことができる。
 以上の如く、本実施形態の冷凍サイクル装置10では、各種運転モードを切り替えることができる。これにより、車両用空調装置1では、バッテリ80の温度を適切に調整しつつ、車室内の快適な空調を実現することができる。
 上述のように冷凍サイクル装置10の停止中に圧縮機11に液冷媒が溜まることがあり、ので、圧縮機11に液冷媒が溜まった状態で冷凍サイクル装置10が起動されると(すなわち圧縮機11が起動されると)、圧縮機11の吐出脈動による振動および異音が発生してしまう。
 この点に鑑みて、サイクル制御装置60は、冷凍サイクル装置10の起動時に、圧縮機11に溜まった液冷媒を排出するための制御プログラムを実行する。図5を用いて、圧縮機11から液冷媒を排出するための制御プログラムについて説明する。図5のフローチャートに示す各制御ステップは、サイクル制御装置60が有する機能実現部である。
 制御プログラムは、車両のイグニッションスイッチ(すなわち、車両システムの起動スイッチ)がオフからオンに操作されたときに実行される。
 まず、図5のステップS300では、圧縮機11から液冷媒を排出する必要性があるか否かが判断される。本例では、前回圧縮機11を停止してからの経過時間が1時間以上である場合、圧縮機11から液冷媒を排出する必要性があると判定される。
 ステップS300にて液冷媒を排出する必要性がないと判定された場合、ステップS370へ進み、通常制御を行う。つまり、液排出制御を行わない。通常制御における暖房用膨張弁14aの初期開度K0は、最終バランス点の開度の2倍程度に設定される。
 ステップS300にて液冷媒を排出する必要性があると判定された場合、S310へ進み、現在の運転モードが暖房モード、暖房冷却モード、暖房直列冷却モードまたは暖房並列冷却モードであるか、直列除湿暖房モードまたは並列除湿暖房モードであるか、冷房モード、冷房冷却モードまたは冷却モードであるかが判定される。
 ステップS310にて現在の運転モードが暖房モード、暖房冷却モード、暖房直列冷却モードまたは暖房並列冷却モードであると判定された場合、ステップS320へ進み、暖房用膨張弁14aの開度を液排出開度Kαにして通常制御時の初期開度よりも拡大する。例えば図6に示すように、暖房用膨張弁14aの液排出開度Kαは通常制御時の初期開度K0の2~4倍である。
 続くステップS330では、暖房用膨張弁14aの開度が拡大された運転(以下、暖房用膨張弁14aの開度拡大運転と言う。)の積算時間が第1積算時間t1以上であるか否かが判定される。暖房用膨張弁14aの開度拡大運転の積算時間が第1積算時間t1以上でないと判定された場合、ステップS310へ戻る。暖房用膨張弁14aの開度拡大運転の積算時間が第1積算時間t1以上であると判定された場合、ステップS340へ進む。
 ステップS340では、暖房用膨張弁14aの開度を徐変させながら(すなわち、暖房用膨張弁14aの開度を徐々に絞りながら)初期開度K0に戻した後、ステップS370へ進み通常制御に移行する。例えば図7に示すように、暖房用膨張弁14aの開度を徐変時間tcで所定量ΔKだけ減少させる。
 ステップS310にて現在の運転モードが直列除湿暖房モードまたは並列除湿暖房モードであると判定された場合、ステップS350へ進み、冷房モードに切り替える。
 続くステップS360では、現在の運転モード(すなわち、冷房モード)での積算時間が第2積算時間t2以上であるか否かが判定される。ステップS360にて現在の運転モード(すなわち、冷房モード)での積算時間が第2積算時間t2以上でないと判定された場合、ステップS310へ戻る。
 ステップS360にて現在の運転モード(すなわち、冷房モード)での積算時間が第2積算時間t2以上であると判定された場合、ステップS370へ進み通常制御に移行する。
 ステップS310にて現在の運転モードが冷房モード、冷房冷却モードまたは冷却モードであると判定された場合、ステップS360へ進む。ステップS360にて現在の運転モードでの積算時間が第2積算時間t2以上でないと判定された場合、ステップS310へ戻る。
 ステップS360にて現在の運転モードでの積算時間が第2積算時間t2以上であると判定された場合、ステップS370へ進み通常制御に移行する。
 図6は、暖房モード、暖房冷却モード、暖房直列冷却モードまたは暖房並列冷却モードでの液排出制御における暖房用膨張弁14aの開度について説明するグラフである。一般的には、暖房用膨張弁14aの初期開度K0は、圧縮機11がガス冷媒を吐出する前提で、収束時間とサイクル安定性を鑑み最終バランス点の相当直径の約2倍に設定されている。
 液排出制御時の暖房用膨張弁14aの開度である液排出開度Kαは、最終バランス点の相当直径の2~4倍に設定されている。これにより、暖房用膨張弁14aからの液冷媒の排出量を増加させて高圧容積の液満化を防止できるとともに、性能背反を乗員に感じさせない短時間(具体的には第1積算時間t1以内)で液排出制御を完了できる。
 図7は、暖房モード時の液排出制御における暖房用膨張弁14aの開度の推移の一例を示すタイムチャートであり、圧縮機11の起動とともに液排出制御が実行された場合の例を示している。
 圧縮機11の起動直後では暖房用膨張弁14aの開度が液排出開度Kαにされて、通常制御時の初期開度K0よりも拡大される。暖房用膨張弁14aの開度拡大運転は第1積算時間t1、実行される。これにより、圧縮機11から排出された液冷媒を高容積の室外熱交換器16で受けることができるので、起動時にサイクルの高圧回路(すなわち、圧縮機11から暖房用膨張弁14aまでの冷媒回路)に溜まっていた液冷媒が一気に吐出される。その結果、サイクルの高圧回路内が液満となる現象が回避される。
 この時、サイクル中の冷媒量が十分に多い場合は、高圧回路から短時間で排出された冷媒がアキュムレータ21に集まり、オーバーフローしてしまい、圧縮機11が液冷媒を吸入することで急激に吐出冷媒量が増加する現象が発生する。
 ここで、暖房用膨張弁14aの開度拡大運転が終了して暖房用膨張弁14aの開度を直ちに絞ると、吐出冷媒を排出しきれず、高圧回路内の冷媒量が増加していき再度液満化することで、圧縮機11の吐出脈動による配管異常振動や異音が発生してしまう。
 この点に鑑みて、暖房用膨張弁14aの開度拡大運転の終了時に暖房用膨張弁14aの開度を徐変させることにより、徐々に高圧側に冷媒をホールドさせながらアキュムレータ21からのオーバーフローを抑制し、最終的な暖房時の冷媒分布に近づけることができる。
 暖房用膨張弁14aの開度の徐変スピードは、液吸入時の圧縮機11の冷媒流量特性と暖房用膨張弁14aの相当直径とから決まる冷媒流量特性から最適点が決まる。本例では、暖房用膨張弁14aの開度の徐変スピードはΔK/tcで設定されている。
 以上のことから、暖房モード、暖房冷却モード、暖房直列冷却モードまたは暖房並列冷却モードで圧縮機11を起動する際に、高圧側回路の液満化を回避しながら、サイクル中の冷媒量分布を徐々に通常運転時に近づけることができる。
 次に、並列除湿暖房モードまたは直列除湿暖房モードでの液排出制御について説明する。並列除湿暖房モードでは暖房用膨張弁14aが絞られ、直列除湿暖房モードでは暖房用膨張弁14aおよび冷房用膨張弁14bが絞られるため、暖房モードと同様に高圧回路が液満になり異音発生することを防止するために液冷媒排出制御が行われる。具体的には、冷房モードに切り替えて所定時間保持することによって暖房用膨張弁14aが全開されるので、高圧回路から排出された液冷媒を高容積の室外熱交換器16で受けることができるので、除湿性能の確保と吐出脈動の抑制とを両立できる。
 以上説明した本実施形態では、サイクル制御装置60は、圧縮機11が起動される際に圧縮機11に液冷媒が溜まっていると判定した場合、圧縮機11から暖房用膨張弁14aまでに溜まった液冷媒の排出を促進する液排出制御を行う。
 これによると、圧縮機11が起動されたときに圧縮機11から暖房用膨張弁14aまでに溜まった液冷媒の排出が促進されるので、圧縮機11の吐出脈動を抑制できる。そのため、圧縮機11の吐出脈動による振動および異音の発生を抑制できる。
 制御によって圧縮機11の吐出脈動を抑制するので、コストの上昇や搭載性の悪化を招くことを回避できる。
 本実施形態では、液排出制御は、暖房用膨張弁14aの開度を通常開度の初期開度K0よりも拡大した液排出開度Kαにする制御である。これによると、圧縮機11が起動されたときに液冷媒が暖房用膨張弁14aを通過しやすくなるので、圧縮機11から暖房用膨張弁14aまでに溜まった液冷媒の排出を確実に促進できる。
 具体的には、液排出開度Kαは初期開度K0の2~4倍であるのが好ましい。圧縮機11が起動されたときに液冷媒が暖房用膨張弁14aを確実に通過しやすくなるので、圧縮機11から暖房用膨張弁14aまでに溜まった液冷媒の排出を確実に促進できる。
 本実施形態では、サイクル制御装置60は、液排出制御を終了する際に、暖房用膨張弁14aの開度を通常開度に徐々に戻す。これにより、液排出制御を終了する際に圧縮機11から暖房用膨張弁14aまでの冷媒回路が液冷媒で満たされることを抑制できるので、液排出制御を終了する際に圧縮機11の吐出脈動が発生することを抑制できる。
 本実施形態では、並列除湿暖房モードまたは直列除湿暖房モードで圧縮機11が起動される場合の液排出制御は、並列除湿暖房モードまたは直列除湿暖房モードから冷房モードに切り替える制御である。
 これによると、圧縮機11が起動されたときに液冷媒が、冷媒容積の大きい室外熱交換器16に流入しやすくなるので、圧縮機11から暖房用膨張弁14aまでに溜まった液冷媒の排出を確実に促進できる。なお、並列除湿暖房モードまたは直列除湿暖房モードは第1運転モードであり、並列除湿暖房モードまたは直列除湿暖房モードは第2運転モードである。
 本実施形態では、サイクル制御装置60は、液排出制御を開始した後、所定時間が経過したら液排出制御を終了する。これにより、簡素な構成にて液排出制御を適切に終了できる。
 (第2実施形態)
 上記実施形態では、液排出制御時に暖房用膨張弁14aの開度を通常開度よりも拡大させるが、本実施形態では、図8に示す液排出開閉弁15cを液排出制御時に開弁させる。
 液排出開閉弁15cは、液排出通路部22cの冷媒通路を開閉する液排出開閉部である。液排出開閉弁15cは、除湿用開閉弁15aと同様の基本的構成を有する電磁弁である。液排出開閉弁15cの作動は、サイクル制御装置60から出力される制御電圧によって制御される。
 液排出通路部22cは、冷媒が暖房用膨張弁14aをバイパスして流れる冷媒通路を形成している。液排出通路部22cの一端は、第7三方継手13gを介して、第1三方継手13aと暖房用膨張弁14aとの間の冷媒通路に接続されている。液排出通路部22cの他端は、第8三方継手13hを介して、暖房用膨張弁14aと室外熱交換器16との間の冷媒通路に接続されている。
 サイクル制御装置60は、通常制御時に液排出開閉弁15cを閉弁させ、液排出制御時に液排出開閉弁15cを開弁させる。これにより、通常制御時は、暖房用膨張弁14aに冷媒が流れるが液排出通路部22cに冷媒が流れない。
 一方、液排出制御時は、流路抵抗の小さい液排出通路部22cに冷媒が流れ、流路抵抗の大きい暖房用膨張弁14aに冷媒がほとんど流れない。これにより、圧縮機11および室内凝縮器12からの液冷媒の排出量を増加させて高圧容積の液満化を防止できる。
 本実施形態では、サイクル制御装置60は、圧縮機11が起動される際に圧縮機11に液冷媒が溜まっていると判定した場合、液排出通路部22cを開くように液排出開閉弁15cを制御する。これによると、圧縮機11が起動されたときに液冷媒が液排出通路部22cを通過するので、圧縮機11に溜まった液冷媒の排出を確実に促進できる。
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
 上記実施形態のステップS300では、前回圧縮機11を停止してからの経過時間が1時間以上である場合、圧縮機11から液冷媒を排出する必要性があると判定されるが、圧縮機11から液冷媒を排出する必要性があるか否かの判定方法はこれに限定されない。
 例えば、圧縮機11の内部に、液冷媒の液面の高さを検知する液面センサが配置されていて、液面センサが検出した液面の高さが所定値以上である場合、圧縮機11から液冷媒を排出する必要性があると判定されてもよい。
 例えば、圧縮機11が停止している間の外気温の変化の様子に基づいて、圧縮機11から液冷媒を排出する必要性があるか否かが判定されてもよい。具体的には、冬場の深夜から早朝にかけて外気温が上昇するような外気温の変化があった場合、圧縮機11から液冷媒を排出する必要性があると判定されればよい。
 上記第1実施形態のステップS340では、液排出制御の終了時に暖房用膨張弁14aの開度を徐変させることによってアキュムレータ21からのオーバーフローを抑制するが、アキュムレータ21の冷媒容積が十分に大きくなっていれば暖房用膨張弁14aの開度を徐変させる必要はない。
 液排出制御の終了時に暖房用膨張弁14aの開度を直ちに通常開度に絞っても戻しても、全ての液冷媒を受けられるほどアキュムレータ21の冷媒容積が大きくなっていればアキュムレータ21からのオーバーフローを抑制できる。
 すなわち、アキュムレータ21の冷媒容積と圧縮機11から暖房用膨張弁14aまでの冷媒容積との合計が、圧縮機11が起動されたときの全ての液冷媒の体積よりも大きくなっていれば、液排出制御を終了する際に圧縮機11から減圧部までが液相の冷媒で満たされることを確実に抑制できる。
 上記第1実施形態のステップS310は、現在の運転モードが除湿暖房モード(並列除湿暖房モードまたは直列除湿暖房モード)であると判定された場合、冷房モードに切り替えることによって、暖房性能よりも除湿性能を優先しつつ圧縮機11から液冷媒を排出する。
 これに対して、現在の運転モードが除湿暖房モード(並列除湿暖房モードまたは直列除湿暖房モード)であると判定された場合、暖房モード時と同様に暖房用膨張弁14aの開度を通常開度よりも拡大することによって、除湿性能よりも暖房性能を優先しつつ圧縮機11から液冷媒を排出してもい。
 上記第2実施形態において、暖房用膨張弁14aの代わりに、オリフィス、キャピラリチューブ等からなる固定絞りが配置されていてもよい。
 上述の実施形態では、複数の運転モードに切り替え可能な冷凍サイクル装置10について説明したが、冷凍サイクル装置10の運転モードの切り替えはこれに限定されない。各運転モードの詳細制御は、上述の実施形態に開示されたものに限定されない。例えば、ステップS260で説明した送風モードを、圧縮機11のみならず送風機32を停止させる停止モードとしてもよい。
 冷凍サイクル装置の構成機器は、上述の実施形態に開示されたものに限定されない。上述した効果を発揮できるように、複数のサイクル構成機器を一体化等を行ってもよい。例えば、第2三方継手13bと第5三方継手13eとを一体化させた四方継手構造のものを採用してもよい。また、冷房用膨張弁14bおよび冷却用膨張弁14cとして、全閉機能を有しない電気式膨張弁と開閉弁とを直接的に接続したものを採用してもよい。
 上述の実施形態では、冷媒としてR1234yfを採用した例を説明したが、冷媒はこれに限定されない。例えば、R134a、R600a、R410A、R404A、R32、R407C、等を採用してもよい。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。さらに、冷媒として二酸化炭素を採用して、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成してもよい。
 上述の実施形態では、室内凝縮器12で冷媒と空気とを熱交換させて空気を加熱するが、熱媒体を介して冷媒で空気を加熱してもよい。
 具体的には、室内凝縮器12の代わりに、冷媒熱媒体熱交換器、高温熱媒体回路およびヒータコアが配置されていればよい。冷媒熱媒体熱交換器は、圧縮機11から吐出された高温高圧冷媒と熱媒体とを熱交換させて、冷媒を凝縮させるとともに熱媒体を加熱する加熱用の熱交換器である。高温熱媒体回路は、冷媒熱媒体熱交換器で加熱された側熱媒体を循環させる熱媒体循環回路である。熱媒体としては、エチレングリコール、ジメチルポリシロキサン、あるいはナノ流体等を含む溶液、不凍液等を採用することができる。ヒータコアは、冷媒熱媒体熱交換器にて加熱された熱媒体と室内蒸発器18を通過した空気とを熱交換させて、空気を加熱する熱交換器である。
 上述の実施形態では、冷却用熱交換部52でバッテリ80を直接冷却するが、熱媒体を介して冷媒でバッテリ80を冷却してもよい。
 具体的には、冷却用熱交換部52の代わりに、チラー、低温熱媒体回路およびバッテリ冷却器が配置されていればよい。チラーは、冷却用膨張弁14cにて減圧された低圧冷媒と熱媒体とを熱交換させて、冷媒を蒸発させるとともに熱媒体を冷却する冷却用の熱交換器である。低温熱媒体回路は、チラーで冷却された熱媒体を循環させる熱媒体循環回路である。熱媒体としては、エチレングリコール、ジメチルポリシロキサン、あるいはナノ流体等を含む溶液、不凍液等を採用することができる。バッテリ冷却器は、チラーにて冷却された熱媒体でバッテリ80を冷却する冷却器である。
 上述の各実施形態では、冷凍サイクル装置10における空気とは異なる冷却対象物はバッテリ80である例を説明したが、冷却対象物はこれに限定されない。直流電流と交流電流とを変換するインバータ、バッテリ80に電力を充電する充電器、電力を供給されることによって走行用の駆動力を出力するとともに、減速時等には回生電力を発生させるモータジェネレータのように作動時に発熱を伴う電気機器であってもよい。
 上述の各実施形態では、冷凍サイクル装置10を車両用空調装置1に適用したが、冷凍サイクル装置10の適用はこれに限定されない。例えば、据置型バッテリの温度を適切に調整しつつ、室内の空調を行うバッテリ冷却機能付きの空調装置等に適用してもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (8)

  1.  冷媒を吸入して圧縮し吐出する圧縮機(11)と、
     前記圧縮機から吐出された前記冷媒を放熱させる放熱器(12)と、
     前記放熱器で放熱された前記冷媒を減圧させる減圧部(14a)と、
     前記減圧部の開度を通常開度に制御する制御部(60)とを備え、
     前記制御部は、前記圧縮機が起動される際に前記圧縮機に液相の前記冷媒が溜まっていると判定した場合、前記圧縮機から前記減圧部までに溜まった液相の前記冷媒の排出を促進する液排出制御を行う冷凍サイクル装置。
  2.  前記液排出制御は、前記減圧部の開度を前記通常開度の初期開度(K0)よりも拡大した液排出開度(Kα)にする制御である請求項1に記載の冷凍サイクル装置。
  3.  前記液排出開度は、前記初期開度の2~4倍である請求項2に記載の冷凍サイクル装置。
  4.  前記制御部は、前記液排出制御を終了する際に、前記減圧部の開度を前記通常開度に徐々に戻す請求項2または3に記載の冷凍サイクル装置。
  5.  前記圧縮機に吸入される前記冷媒の気液を分離するとともに分離された液相の前記冷媒を貯える貯液部(21)を備え、
     前記貯液部の冷媒容積と前記圧縮機から前記減圧部までの冷媒容積との合計は、前記圧縮機が起動されたときの全ての液相の前記冷媒の体積よりも大きくなっている請求項2または3に記載の冷凍サイクル装置。
  6.  前記冷媒を熱交換させ、前記放熱器よりも大きい冷媒容積を有する高容積熱交換器(16)を備え、
     前記制御部は、第1運転モードでは前記高容積熱交換器で前記冷媒に吸熱させるように前記減圧部を制御し、第2運転モードでは前記高容積熱交換器で前記冷媒から放熱させるように前記減圧部を制御し、
     前記第1運転モードで前記圧縮機が起動される場合の前記液排出制御は、前記第1運転モードから前記第2運転モードに切り替える制御である請求項1に記載の冷凍サイクル装置。
  7.  冷媒を吸入して圧縮し吐出する圧縮機(11)と、
     前記圧縮機から吐出された前記冷媒を放熱させる放熱器(12)と、
     前記放熱器で放熱された前記冷媒を減圧させる減圧部(14a)と、
     前記放熱器から流出した前記冷媒が前記減圧部をバイパスして流れる冷媒通路を形成する液排出通路部(22c)と、
     前記液排出通路部を開閉する液排出開閉部(15c)と、
     前記圧縮機が起動される際に前記圧縮機に液相の前記冷媒が溜まっていると判定した場合、前記液排出通路部を開くように前記液排出開閉部を制御する液排出制御を行う制御部(60)とを備える冷凍サイクル装置。
  8.  前記制御部は、前記液排出制御を開始した後、所定時間が経過したら前記液排出制御を終了する請求項1ないし7のいずれか1つに記載の冷凍サイクル装置。
PCT/JP2022/030742 2021-09-29 2022-08-12 冷凍サイクル装置 WO2023053746A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023550435A JPWO2023053746A1 (ja) 2021-09-29 2022-08-12
CN202280055243.8A CN117795267A (zh) 2021-09-29 2022-08-12 制冷循环装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021159346 2021-09-29
JP2021-159346 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023053746A1 true WO2023053746A1 (ja) 2023-04-06

Family

ID=85782330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030742 WO2023053746A1 (ja) 2021-09-29 2022-08-12 冷凍サイクル装置

Country Status (3)

Country Link
JP (1) JPWO2023053746A1 (ja)
CN (1) CN117795267A (ja)
WO (1) WO2023053746A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141789A (ja) * 1996-11-12 1998-05-29 Toshiba Corp 二相流体ループ式熱制御システム
JP2005282885A (ja) * 2004-03-29 2005-10-13 Mitsubishi Heavy Ind Ltd 空気調和装置
JP2016102598A (ja) * 2014-11-27 2016-06-02 ダイキン工業株式会社 給湯空調システム
JP2017074832A (ja) * 2015-10-14 2017-04-20 本田技研工業株式会社 車両用空調装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141789A (ja) * 1996-11-12 1998-05-29 Toshiba Corp 二相流体ループ式熱制御システム
JP2005282885A (ja) * 2004-03-29 2005-10-13 Mitsubishi Heavy Ind Ltd 空気調和装置
JP2016102598A (ja) * 2014-11-27 2016-06-02 ダイキン工業株式会社 給湯空調システム
JP2017074832A (ja) * 2015-10-14 2017-04-20 本田技研工業株式会社 車両用空調装置

Also Published As

Publication number Publication date
JPWO2023053746A1 (ja) 2023-04-06
CN117795267A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
US20190111756A1 (en) Refrigeration cycle device
US11718156B2 (en) Refrigeration cycle device
WO2019235414A1 (ja) 車両用冷凍サイクル装置
US20220234416A1 (en) Refrigeration cycle device
US11506404B2 (en) Refrigeration cycle device
WO2020166270A1 (ja) 冷凍サイクル装置
CN112739562B (zh) 制冷循环装置
US20210190389A1 (en) Refrigeration cycle device
WO2022004159A1 (ja) 冷凍サイクル装置
US20210101451A1 (en) Refrigeration cycle device
WO2020050039A1 (ja) 冷凍サイクル装置
JP7294075B2 (ja) 冷凍サイクル装置
WO2022181110A1 (ja) 空調装置
WO2022009713A1 (ja) 冷凍サイクル装置
JP7487562B2 (ja) 冷凍サイクル装置
JP2022019560A (ja) 冷凍サイクル装置
WO2023053746A1 (ja) 冷凍サイクル装置
WO2022014309A1 (ja) 冷凍サイクル装置
WO2021215167A1 (ja) 冷凍サイクル装置
WO2023248868A1 (ja) ヒートポンプサイクル装置
WO2023166951A1 (ja) 冷凍サイクル装置
WO2021215072A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875621

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023550435

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280055243.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE