WO2019234871A1 - 熱交換換気装置 - Google Patents

熱交換換気装置 Download PDF

Info

Publication number
WO2019234871A1
WO2019234871A1 PCT/JP2018/021783 JP2018021783W WO2019234871A1 WO 2019234871 A1 WO2019234871 A1 WO 2019234871A1 JP 2018021783 W JP2018021783 W JP 2018021783W WO 2019234871 A1 WO2019234871 A1 WO 2019234871A1
Authority
WO
WIPO (PCT)
Prior art keywords
drain
housing
water
heat exchange
heat exchanger
Prior art date
Application number
PCT/JP2018/021783
Other languages
English (en)
French (fr)
Inventor
幸男 渡邉
嘉範 藤井
晃治 岩田
裕樹 青木
祐樹 宮崎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020523921A priority Critical patent/JP6890725B2/ja
Priority to PCT/JP2018/021783 priority patent/WO2019234871A1/ja
Publication of WO2019234871A1 publication Critical patent/WO2019234871A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems

Definitions

  • the present invention relates to a heat exchange ventilator that performs ventilation while exchanging heat between an air supply flow and an exhaust flow.
  • the heat exchange ventilator in order to prevent leakage of drain water caused by condensation of moisture contained in the air taken into the housing of the heat exchange ventilator, the heat exchange ventilator is provided with a drain receiver that holds the drain water. Sometimes. The drain water is stored in the drain receiver and then discharged out of the casing.
  • Patent Document 1 discloses a heat exchange ventilator including a drain receiver provided below a heat exchanger in a housing.
  • the drain receiver is provided with a communication hole that communicates the inside of the housing with the outside of the housing, and drain water is discharged through the communication hole.
  • a heat exchange ventilator installed on a ceiling of a house or the like is a horizontal installation in which an air supply blower, a heat exchanger, and an exhaust blower are arranged in a horizontal direction in order to suppress the vertical dimension.
  • the heat exchange ventilator when the heat exchange ventilator is installed on a wall surface in a room, the supply air blower, the heat exchanger, and the exhaust blower may be vertically installed in the vertical direction.
  • the heat exchange ventilator can select the horizontal installation and the vertical installation, thereby increasing the degree of freedom of the installation mode.
  • Patent Document 1 The drain receiver and the communication hole disclosed in Patent Document 1 are capable of discharging drain water when the heat exchange ventilator is installed horizontally, while draining when the heat exchange ventilator is installed vertically. Water discharge is not possible. For this reason, in the technique of patent document 1, even if it is possible to install the heat exchange ventilator by selecting the horizontal installation and the vertical installation, the drain water cannot be discharged when the vertical installation is selected. There was a problem.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a heat exchange ventilator that can drain water regardless of whether horizontal installation or vertical installation is selected.
  • a heat exchange ventilator includes a heat exchanger that performs heat exchange between a supply air flow and an exhaust flow, a heat exchanger, and a supply air suction
  • a first plate portion provided with an opening and an exhaust outlet, a second plate portion provided with an air supply outlet and an exhaust suction port, and between the first plate portion and the heat exchanger.
  • a housing having a third air passage, a second air passage between the second air passage and the heat exchanger, and a drain receiver housed in the air housing.
  • the drain receiver is disposed between the heat exchanger and the first plate portion of the third plate portion, and the housing is in the first posture with the third plate portion directed downward.
  • a first water receiving portion that is a portion capable of holding drain water, and a drain disposed when the posture of the housing is a second posture with the first plate portion facing downward.
  • a second water receiving portion that is a portion capable of holding water.
  • the heat exchange ventilator according to the present invention has an effect that drain water can be discharged when either horizontal installation or vertical installation is selected.
  • FIG. 1st top view which shows the heat exchange ventilation apparatus shown in FIG. 2nd top view which shows the heat exchange ventilation apparatus shown in FIG.
  • the perspective view which shows the 1st example of the heat exchanger which the heat exchange ventilation apparatus shown in FIG. 1 has.
  • FIG. 1 is a diagram showing a configuration of a heat exchange ventilator 100 according to the first embodiment of the present invention.
  • FIG. 2 is a first plan view showing the heat exchange ventilator 100 shown in FIG.
  • FIG. 3 is a second plan view showing the heat exchange ventilator 100 shown in FIG.
  • the heat exchange ventilator 100 is a device that can perform ventilation while exchanging heat between the exhaust flow and the supply airflow.
  • FIG. 1 shows a perspective view of the heat exchange ventilator 100 in a disassembled state.
  • the heat exchange ventilator 100 can be installed both horizontally and vertically by rotating 90 degrees from the horizontal installation. When the heat exchanging ventilator 100 is installed on the ceiling, it is installed horizontally. The heat exchange ventilator 100 is vertically installed when it is installed on a wall surface.
  • FIG. 2 the structure at the time of seeing the heat exchange ventilation apparatus 100 made into horizontal installation from the downward direction is shown.
  • FIG. 3 the structure at the time of seeing the heat exchange ventilation apparatus 100 made into horizontal installation from the front is shown.
  • the heat exchange ventilator 100 maintains a comfortable air environment in the room by ventilating the room by supplying air from outside the room and exhausting air from the room to the outside. Moreover, the heat exchange ventilator 100 reduces the temperature difference between the air taken into the room and the air in the room by heat exchange between the supply airflow and the exhaust stream, thereby reducing the air conditioning burden in the room.
  • the heat exchange ventilator 100 includes an air supply blower 2 that generates a supply airflow, an exhaust blower 3 that generates an exhaust flow, a heat exchanger 4 that performs heat exchange between the supply airflow and the exhaust flow, and an air supply blower 2.
  • a housing 1 in which an exhaust blower 3 and a heat exchanger 4 are housed is provided.
  • the air supply blower 2 takes outdoor air into the housing 1 and sends the air taken into the housing 1 into the room.
  • the exhaust blower 3 takes indoor air into the housing 1 and sends the air taken into the housing 1 to the outside.
  • the housing 1 is provided with a supply air passage through which a supply air flow passes and an exhaust air passage through which an exhaust flow passes.
  • the attitude of the casing 1 when the heat exchange ventilator 100 is installed in a horizontal installation is the first attitude
  • the attitude of the casing 1 when the heat exchange ventilator 100 is installed in a vertical installation is the second posture.
  • the housing 1 is a box having a rectangular parallelepiped shape, and includes six plate portions 1a, 1b, 1c, 1d, 1e, and 1f.
  • the plate portion 1a When the housing 1 is in the first posture, the plate portion 1a is a portion that becomes a top surface directed upward.
  • the plate portion 1b When the housing 1 is in the first posture, the plate portion 1b is a portion that becomes a bottom surface directed downward.
  • the plate portion 1c, which is the first plate portion is a portion where the air supply inlet 5 and the exhaust outlet 8 are provided.
  • the plate portion 1d which is the second plate portion, is provided with an air supply outlet 6 and an exhaust suction port 7.
  • the plate portion 1a and the plate portion 1b which is the third plate portion are portions between the plate portion 1c and the plate portion 1d, and an air path and a plate between the plate portion 1c and the heat exchanger 4
  • the air path between the part 1d and the heat exchanger 4 is configured.
  • board part 1c, 1d is a part used as the side surface turned sideways.
  • the plate portion 1c forms one end in the longitudinal direction of the rectangular parallelepiped shape that the housing 1 exhibits.
  • the plate portion 1d forms the other end in the longitudinal direction of the rectangular parallelepiped shape that the housing 1 exhibits.
  • the plate portions 1e and 1f are portions between the plate portion 1c and the plate portion 1d.
  • the plate portion 1e is a front portion that is directed forward.
  • the plate portion 1f is a portion serving as a back surface directed rearward.
  • the control part 9 which controls the whole heat exchange ventilation apparatus 100 is provided in the board part 1e.
  • the control device 9 controls the ventilation air volume of the heat exchange ventilator 100 by controlling the driving of the air supply blower 2 and the driving of the exhaust blower 3.
  • An opening 10 is formed in the plate portion 1b.
  • the opening 10 is formed below the heat exchanger 4 when the housing 1 is in the first posture.
  • the ceiling is provided with an inspection port 11 for work to the opening 10 and the control device 9 from below the ceiling. 1 and 2, the range of the inspection port 11 is indicated by a broken line.
  • the components housed in the housing 1 are detachable through the opening 10.
  • the plate portion 1c When the housing 1 is in the second posture, the plate portion 1c is the bottom surface, the plate portion 1d is the top surface, the plate portion 1b is the front surface, the plate portion 1a is the back surface, and the plate portions 1e and 1f are the side surfaces.
  • the heat exchange ventilator 100 As a case where the heat exchange ventilator 100 is vertically installed, it may be installed by being embedded in a wall of a living room, or it may be installed by being hung on a wall surface in a room such as a machine room or a storage room other than a living room of a building. obtain.
  • the heat exchange ventilator 100 is hung with the opening 10 facing the front, so that the work on the opening 10 and the control device 9 can be performed from the front without going through the inspection port 11.
  • the case 1 is in the second posture, so that the work without the inspection port 11 is possible, and the workability during maintenance may be improved.
  • the heat exchanging ventilator 100 is installed in a wall, it may be possible to work on the opening 10 and the control device 9 through the inspection port 11 formed on the wall surface.
  • the drain pan 12 that is the first drain receiver is disposed below the heat exchanger 4 when the housing 1 is in the first posture.
  • the drain pan 12 accumulates drain water generated in the heat exchanger 4 when the housing 1 is in the first posture.
  • the drain pan 12 closes the opening 10 by being attached to the plate portion 1b.
  • the air supply filter 13 is disposed inside the housing 1 on the plate portion 1c side of the heat exchanger 4.
  • the air supply filter 13 collects dust contained in the air flowing from the outside through the air supply inlet 5 into the air supply air passage.
  • the exhaust filter 14 is disposed on the plate portion 1 d side of the heat exchanger 4 inside the housing 1.
  • the exhaust filter 14 collects dust contained in the air flowing into the exhaust air passage from the room through the exhaust air inlet 7.
  • the heat exchange ventilator 100 collects dust with the air supply filter 13 and the exhaust filter 14, thereby preventing the heat exchanger 4 from being clogged due to the adhesion of dust.
  • FIG. 4 is a diagram for explaining the air path of the heat exchange ventilator 100 shown in FIG. FIG. 4 shows the internal configuration of the housing 1 as viewed from below when the housing 1 is in the first posture.
  • the heat exchange ventilator 100 has a damper 20 that switches between heat exchange ventilation and normal ventilation.
  • the heat exchange ventilation is ventilation with heat exchange between the supply air flow 17 and the exhaust flow 18.
  • the heat exchange ventilator 100 sends a supply air flow 17 that has undergone heat exchange with the exhaust flow 18 by the heat exchanger 4 to the room.
  • the heat exchange ventilator 100 reduces the air conditioning burden by bringing the outdoor air temperature closer to the indoor air temperature by heat exchange ventilation when the indoor temperature is more comfortable than the outdoor temperature.
  • Normal ventilation is ventilation that does not involve heat exchange between the supply air flow 17 and the exhaust flow 18.
  • the heat exchange ventilator 100 sends a supply air flow 17 to the room without heat exchange with the exhaust flow 18 by the heat exchanger 4.
  • the heat exchanging ventilator 100 sends the air having a comfortable temperature from the outside to the room by the normal ventilation, thereby reducing the air-conditioning load while making the room comfortable. .
  • the power consumption of the heat exchange ventilator 100 can be reduced.
  • an exhaust flow 18 is an exhaust flow in the case of heat exchange ventilation.
  • the bypass air flow 19 is an exhaust flow in the case of normal ventilation.
  • the housing 1 is provided with a supply air passage 15 through which the supply air flow 17 passes and an exhaust air passage 16 through which the exhaust flow 18 and the bypass air flow 19 pass.
  • the supply air passage 15 includes an upstream air passage 15 a between the supply air inlet 5 and the inlet of the supply air flow 17 in the heat exchanger 4, and an outlet and supply air outlet of the supply air flow 17 in the heat exchanger 4. 6 and the downstream side air passage 15b between the two.
  • the air supply air 17 sucked into the air supply inlet 5 from the outside passes through the upstream air passage 15a, passes through the air supply filter 13, and then flows into the heat exchanger 4.
  • the supply airflow 17 flowing out from the heat exchanger 4 passes through the downstream air passage 15b and is blown out from the supply air outlet 6 into the room.
  • the exhaust air passage 16 includes an upstream air passage 16 a between the exhaust suction port 7 and the inlet of the exhaust flow 18 in the heat exchanger 4, an outlet of the exhaust flow 18 in the heat exchanger 4, and an exhaust outlet 8. And a downstream air passage 16b therebetween.
  • the exhaust stream 18 sucked into the exhaust suction port 7 from the room passes through the upstream air passage 16a, passes through the exhaust filter 14, and then flows into the heat exchanger 4.
  • the exhaust stream 18 flowing out from the heat exchanger 4 passes through the downstream air passage 16b and is blown out from the exhaust outlet 8 to the outside of the room.
  • the bypass air passage 21 is an air passage provided outside the heat exchanger 4.
  • the upstream side air passage 16 a is provided with a heat exchange side opening 22 through which the exhaust flow 18 toward the heat exchanger 4 passes and a bypass side opening 23 through which the bypass airflow 19 toward the bypass air passage 21 passes.
  • the damper 20 is rotatably supported between the heat exchange side opening 22 and the bypass side opening 23.
  • the damper 20 serving as a switching unit switches between the flow of the exhaust flow 18 from the exhaust suction port 7 to the heat exchanger 4 and the flow of the bypass air flow 19 from the exhaust suction port 7 to the bypass air passage 21.
  • the control device 9 controls switching between heat exchange ventilation and normal ventilation by controlling the operation of the damper 20.
  • the damper 20 closes the bypass side opening 23.
  • the exhaust stream 18 passes from the upstream side air passage 16 a through the heat exchange side opening 22 and proceeds to the heat exchanger 4.
  • the damper 20 closes the heat exchange side opening 22.
  • the bypass air flow 19 passes from the upstream air passage 16 a through the bypass opening 23 and proceeds to the bypass air passage 21.
  • the exhaust flow 18 that has passed through the heat exchanger 4 and the bypass airflow 19 that has passed through the bypass air passage 21 pass through the downstream air passage 16b and proceed to the exhaust outlet 8.
  • Each air passage formed in the housing 1 is provided with a heat insulating part 27 shown in FIG.
  • FIG. 5 is a diagram for explaining the arrangement of the heat exchanger 4 included in the heat exchanging ventilator 100 shown in FIG.
  • FIG. 5 shows a perspective view of the heat exchange ventilator 100 with the drain pan 12, the air supply filter 13, and the exhaust filter 14 removed.
  • the heat exchanger 4 is disposed between the plate portion 1 a and the drain pan 12.
  • the heat exchanger 4 is located in the center in the longitudinal direction of the housing 1 in the housing 1.
  • the drain pan 12 is removed from the opening 10, and the air supply filter 13 and the exhaust filter 14 are removed from the inside of the housing 1 through the opening 10. Further, the heat exchanger 4, the air supply blower 2, and the exhaust blower 3 are removed from the inside of the housing 1 through the opening 10. Immediately below the heat exchanger 4 when the housing 1 is in the first posture, a plurality of pressing plates 24 for preventing the heat exchanger 4 from falling during maintenance are provided. Since the drain pan 12 can be removed from the opening 10, the heat exchanger 4, the supply blower 2, and the exhaust blower 3 can be taken out from the housing 1 through the opening 10.
  • FIG. 6 is a perspective view showing a first example of the heat exchanger 4 included in the heat exchange ventilator 100 shown in FIG.
  • the heat exchanger 4 according to the first example has a quadrangular prism shape.
  • the heat exchanger 4 according to the first example is an orthogonal heat exchanger in which the direction of the supply air flow 17 and the direction of the exhaust flow 18 are perpendicular to each other.
  • the heat exchanger 4 is provided between the supply air passage 15 and the exhaust air passage 16.
  • the heat exchanger 4 performs total heat exchange between the supply air flow 17 and the exhaust flow 18.
  • the heat exchanger 4 includes a plurality of partition members 30 arranged with a space between each other, and a spacing member 31 that holds the spacing between the plurality of partition members 30.
  • the heat exchanger 4 is a laminated body configured by laminating a partition member 30 and a spacing member 31.
  • the partition member 30 is a flat sheet material.
  • the spacing member 31 is a sheet material with corrugated irregularities. The partition member 30 and the spacing member 31 are joined to each other.
  • the heat exchanger 4 is arranged with the stacking direction, which is the direction in which the partition member 30 and the spacing member 31 are stacked, parallel to the plate portion 1e and the plate portion 1f.
  • the heat exchanger 4 may be disposed with the stacking direction parallel to the plate portion 1c and the plate portion 1d.
  • the spacing members 31 whose directions are different so that the direction of the folds of the corrugations are perpendicular to each other are alternately laminated via the partitioning material 30.
  • the heat exchanger 4 is provided with primary passages 32 through which the exhaust flow 18 passes and secondary passages 33 through which the supply airflow 17 passes alternately in the stacking direction.
  • the partition member 30 sensible heat exchange and latent heat exchange between the exhaust air flow 18 passing through the primary passage 32 and the air supply air 17 passing through the secondary passage 33 without mixing the air supply air 17 and the exhaust air flow 18. Is done.
  • the heat exchanger 4 may perform only one of sensible heat exchange and latent heat exchange.
  • Paper is used for the partition member 30 and the spacing member 31.
  • the heat exchanger 4 can suppress the manufacturing cost by using paper for the partition member 30 and the spacing member 31. Since the primary passage 32 and the secondary passage 33 are made of paper, the dew condensation water generated by heat exchange can be held by the primary passage 32 and the secondary passage 33. In addition, blockage of the air passage due to the formation of condensed water that has entered the air passage can be reduced.
  • FIG. 7 is a perspective view showing a second example of the heat exchanger 4 included in the heat exchange ventilator 100 shown in FIG.
  • the heat exchanger 4 according to the second example has a hexagonal prism shape.
  • the heat exchanger 4 according to the second example is a counter flow type heat exchanger in which the direction of the exhaust flow 18 passing through the primary passage 32 and the direction of the air supply flow 17 passing through the secondary passage 33 are different by 180 degrees. is there. Either the heat exchanger 4 according to the first example or the heat exchanger 4 according to the second example may be applied to the heat exchange ventilator 100.
  • the shape of the heat exchanger 4 may be a polygonal column shape, and may be a shape other than a hexagonal column shape and a quadrangular column shape.
  • FIG. 1 shows the heat exchanger 4 according to the second example.
  • the heat exchange ventilator 100 can perform heat conversion with high heat exchange efficiency.
  • FIG. 8 is a cross-sectional view of the heat exchange ventilator 100 taken along the line VIII-VIII shown in FIG.
  • FIG. 8 shows the heat exchange ventilator 100 installed in a horizontal installation.
  • the plate portion 1b shown in FIG. 2 is directed downward.
  • the drain pan 35 that is the second drain receiver, the drain pan 36 that is the third drain receiver, and the drain pan 37 that is the fourth drain receiver are provided on the inner surface of the casing 1 of the plate portion 1b. It is accommodated in the body 1.
  • the drain pan 35 has a lower side when the housing 1 is in the first posture and the housing 1 is the second of the upstream air passage 15 a of the supply air passage 15 and the downstream air passage 16 b of the exhaust air passage 16. It is arrange
  • the drain pan 35 holds drain water in the upstream air passage 15a and the downstream air passage 16b. As will be described later, the drain pan 35 is bent vertically and has an L shape.
  • the drain pan 36 is disposed on the lower side of the upstream air passage 16a of the exhaust air passage 16 and the downstream air passage 15b of the supply air passage 15 when the casing 1 is in the first posture.
  • the drain pan 36 holds drain water in the upstream air passage 16a and the downstream air passage 15b.
  • the drain pan 37 is disposed on the lower side of the bypass air passage 21 when the casing 1 is in the first posture.
  • the drain pan 37 holds drain water in the bypass air passage 21.
  • the heat exchange ventilator 100 can hold drain water by the four drain pans 12, 35, 36, and 37.
  • the four drain pans 12, 35, 36, and 37 are connected to each other so that a path for discharging drain water to the outside of the housing 1 can be configured.
  • the first drain port 25 is located at the lower part of the housing 1 when the housing 1 is in the first posture.
  • the first drain port 25 allows the drain water held in the housing 1 to flow out of the housing 1.
  • the first drain port 25 is erected from the end 12 a of the drain pan 12 on the air supply filter 13 side in a direction perpendicular to the longitudinal direction of the housing 1.
  • the first drain port 25 stands upright with respect to the plate portion 1e. If the first drain port 25 is oriented parallel to the longitudinal direction of the housing 1, the first drain port 25 may interfere with the attachment / detachment of the air supply filter 13 or the exhaust filter 14. Since the first drain port 25 is perpendicular to the longitudinal direction of the housing 1, the first drain port 25 can be arranged in a manner that does not hinder the attachment / detachment of the air supply filter 13 or the exhaust filter 14.
  • the height position of the first drain port 25 is equivalent to the height position of the plate portion 1b.
  • a drainage path portion 38 a that constitutes a drainage path is provided at the boundary between the drainpan 36 and the drainpan 37.
  • the drainage path portion 38 a is a portion that connects the drain pan 36 and the drain pan 37 and is formed so that the drain pan 36 is positioned higher than the drain pan 37 when the housing 1 is in the first posture.
  • the drain water stored in the drain pan 36 flows to the drain pan 37 through the drainage path portion 38a.
  • a drainage path portion 38c constituting a drainage path is provided at the boundary between the drain pan 37 and the end 12a of the drain pan 12.
  • the drainage path portion 38c connects the drain pan 37 and the end portion 12a, and is a portion formed so that the drain pan 37 is positioned higher than the end portion 12a when the housing 1 is in the first posture. .
  • the drain water stored in the drain pan 37 flows to the end portion 12a through the drainage passage portion 38c.
  • the drain water that has flowed to the end 12 a is discharged from the first drain port 25 to the outside of the housing 1.
  • a drainage path portion 38b constituting a drainage path is provided at a boundary between a first water receiving portion described later and the end 12a of the drain pan 12.
  • the drainage path portion 38b is provided between the air supply filter 13 and the plate portion 1e.
  • the drainage path portion 38b connects the first water receiving portion and the end portion 12a, and when the housing 1 is in the first posture, the first water receiving portion is positioned higher than the end portion 12a. It is the part formed so.
  • the drain water stored in the first water receiving part flows through the drainage path part 38b to the end part 12a.
  • the drain water that has flowed to the end 12 a is discharged from the first drain port 25 to the outside of the housing 1.
  • FIG. 9 is a view showing a state in which the heat exchange ventilator 100 shown in FIG. 8 is arranged in a vertical installation.
  • FIG. 9 shows the same cross section as that shown in FIG.
  • the second drain port 26 is located at the lower part of the housing 1 when the housing 1 is in the second posture.
  • the second drain 26 allows the drain water held in the housing 1 to flow out of the housing 1.
  • the second drain port 26 is provided in a second water receiving portion to be described later in the drain pan 35.
  • the second drain port 26 is erected from the second water receiving portion in a direction parallel to the longitudinal direction of the housing 1.
  • the direction in which the first drain port 25 stands from the housing 1 and the direction in which the second drain port 26 stands from the housing 1 are perpendicular to each other.
  • FIG. 10 is a perspective view showing the drain pans 12, 35, 36, and 37 in the heat exchange ventilator 100 shown in FIG.
  • FIG. 11 is a perspective view showing the drain pans 12, 35, 36, and 37 in the heat exchange ventilator 100 shown in FIG.
  • FIG. 10 shows the drain pans 12, 35, 36, and 37 when the housing 1 is in the first posture.
  • FIG. 11 shows the drain pans 12, 35, 36, and 37 when the casing 1 is in the second posture.
  • a drain pan 35 which is one of the drain receivers housed in the housing 1, is configured by integrating a first water receiving part 35a and a second water receiving part 35b that are perpendicular to each other.
  • the drain pan 35 has an L shape bent vertically at a boundary 35c between the first water receiving portion 35a and the second water receiving portion 35b.
  • the first water receiving portion 35a is disposed between the heat exchanger 4 and the plate portion 1c in the plate portion 1b.
  • the first water receiving portion 35a is a portion that holds drain water in the upstream side air passage 15a and the downstream side air passage 16b when the housing 1 is in the first posture.
  • the second water receiving portion 35b is disposed on the plate portion 1c.
  • the second water receiving portion 35b is a portion that holds drain water in the upstream side air passage 15a and the downstream side air passage 16b when the casing 1 is in the second posture.
  • the 2nd drain 26 is provided in the 2nd water receiving part 35b.
  • the second water receiving portion 35 b is provided with an opening 35 d formed in accordance with the air supply inlet 5 and an opening 35 e formed in accordance with the exhaust outlet 8.
  • FIG. 12 is a perspective view showing an L-shaped drain pan 35 which is one of the drain pans 12, 35, 36, and 37 shown in FIG.
  • FIG. 12 shows the drain pan 35 when the casing 1 is in the first posture.
  • the first water receiving portion 35a has a dish shape that can hold drain water when the housing 1 is in the first posture.
  • the bottom portion 41 that forms the bottom in the shape of a dish has an exhaust outlet in the bottom portion 41 in addition to the partition portion 39 that partitions the upstream air passage 15a and the downstream air passage 16b.
  • Two partition portions 42 a and 42 b disposed on the upstream side of 8 and a partition portion 42 c adjacent to the partition portion 39 are provided.
  • the two partition portions 42a and 42b are arranged at a certain distance from the end portion 41a on the plate portion 1f side of the bottom portion 41.
  • a gap 43a is provided between the partition portion 42a and the partition portion 42b.
  • a gap 43c is provided between the partition portion 39 and the partition portion 42c.
  • the distance between the gap 43a and the second water receiver 35b is shorter than the distance between the gap 43b and the second water receiver 35b.
  • the connection position 45 of the bottom 41 and the drainage path portion 38b coincides.
  • the bottom 41 is provided with a gradient such that the position on the straight line 44 is lower than the periphery of the straight line 44. Further, on the straight line 44, a gradient that decreases as it goes from the gap 43 a toward the connection position 45 is applied.
  • the bottom 41 is provided with a gradient that becomes lower as the casing 1 is moved to the drainage path portion 38b connected to the first drainage port 25 when the casing 1 is in the first posture.
  • the drain water accumulated in the first water receiving portion 35a flows in the direction of the arrow shown in FIG. 12 and travels toward the drainage passage portion 38b. Thereby, when the housing
  • the discharge of drain water from the first water receiving portion 35a is urged by the gradient applied to the bottom 41, so that the heat exchange ventilator 100 has the first position when the housing 1 is in the first posture.
  • the drain water remaining in the water receiver 35a can be reduced.
  • the heat exchange ventilator 100 can prompt the drain water to be drained without tilting the entire housing 1 for drain water drain.
  • FIG. 13 is a perspective view showing an L-shaped drain pan 35 which is one of the drain pans 12, 35, 36, and 37 shown in FIG.
  • FIG. 13 shows the drain pan 35 when the housing 1 is in the second posture.
  • the second water receiving portion 35b has a dish shape that can hold drain water when the housing 1 is in the second posture.
  • the 2nd drain 26 is provided in the bottom part 46 which makes
  • the second drainage port 26 is provided at a position near the boundary 35c in the region 48 between the end 46a on the plate portion 1f side of the bottom 46 and the end 46b on the bottom 46 side.
  • the second drain port 26 is formed integrally with the second water receiving portion 35b.
  • the second drain outlet 26 is erected downward from the surface of the bottom portion 46 on the plate portion 1c side in the second posture.
  • the second drainage port 26 penetrates the plate portion 1 c and protrudes out of the housing 1.
  • the drain water generated in each air passage is collected in the drain pans 12, 36, 37 and the first water receiving portion 35a for each air passage, and then the drainage passage. Discharged through.
  • drain water from all the air passages is collected in the second water receiving portion 35b and then discharged from the second drain port 26. Since a lot of drain water is collected in the second water receiving portion 35b, the second water receiving portion 35b and the second drain port 26 are required to have high reliability against drain water leakage.
  • the second drain 26 is integrated with the second water receiving portion 35b, so that the second drain 26 and the second water receiving portion 35b are welded or adhesive.
  • the drain water can be surely prevented from leaking as compared with the case of joining.
  • the heat exchange ventilator 100 can obtain the high reliability with respect to the leak of drain water when the housing
  • the heat exchange ventilator 100 can reduce the number of parts as compared with the case where the second drain port 26 is formed separately from the drain pan 35 because the second drain port 26 is integrated with the drain pan 35. .
  • the heat exchange ventilator 100 can reduce the manufacturing cost by reducing the number of parts.
  • the bottom portion 46 is provided with ribs 47a and 47b for blocking drain water.
  • the ribs 47a and 47b are erected upward from the bottom 46 in the second posture.
  • the rib 47a which is the first damming portion, surrounds the opening 35d and dams the entry of drain water into the opening 35d.
  • the rib 47b which is the second damming portion, surrounds the opening 35e and dams the entry of drain water into the opening 35e.
  • the second water receiving portion 35b is provided with the ribs 47a and 47b, so that the drain water can be prevented from flowing out from the bottom portion 46 to the air supply inlet 5 and the exhaust outlet 8.
  • a gradient that decreases toward the region 48 is applied between the end 46a and the region 48 of the bottom 46.
  • a gradient that decreases toward the region 48 is provided between the end 46 b and the region 48 in the bottom 46.
  • the region 48 is provided with a gradient that decreases from the bottom 46 toward the boundary 35 c from the end 46 c on the plate 1 a side.
  • the bottom 46 is provided with a gradient that decreases as the casing 1 moves toward the second drainage port 26 when the housing 1 is in the second posture.
  • the drain water accumulated in the second water receiving portion 35b flows in the direction of the arrow shown in FIG. Thereby, when the housing
  • the heat exchanging ventilator 100 When the drain applied to the second water receiving portion 35b is urged by the gradient applied to the bottom portion 46, the heat exchanging ventilator 100 has the second position when the housing 1 is in the second posture. The drain water remaining in the water receiver 35b can be reduced. The heat exchange ventilator 100 can prompt the drain water to be drained without tilting the entire housing 1 for drain water drain.
  • the 2nd drain 26 may discharge the drain water stored in the 1st water receiving part 35a, when the housing
  • the bottom 41 of the first water receiving portion 35a may be provided with a gradient that becomes lower as it goes to the second drain port 26, instead of the gradient described above.
  • the drain pan 36 When the casing 1 is in the first posture, when the indoor humid air enters the upstream air passage 16a from the exhaust air inlet 7, the water condensed in the upstream air passage 16a is held in the drain pan 36.
  • the drain water stored in the drain pan 36 flows to the drain pan 37 through the drainage path portion 38a.
  • the drain water that has flowed to the drain pan 37 flows to the end portion 12a through the drainage path portion 38c.
  • the drain water that has flowed to the end 12 a is discharged from the first drain port 25 to the outside of the housing 1.
  • the water condensed in the downstream air passage 16b after passing through the heat exchanger 4 is held in the first water receiver 35a.
  • the drain water stored in the first water receiving portion 35a passes through the drainage passage portion 38b and is discharged from the first drainage port 25 to the outside of the housing 1.
  • the heat exchange ventilator 100 may hold the water condensed in the upstream air passage 15a in the first water receiving portion 35a and evaporate the water by the ventilation operation.
  • Drain water generated by condensation inside the heat exchanger 4 is held in the drain pan 12.
  • the drain water stored in the drain pan 12 passes through the end portion 12a and is discharged out of the housing 1 from the first drain port 25.
  • the heat exchange ventilator 100 advances the drain water generated in each air passage and the heat exchanger 4 to the first drain port 25 and discharges the drain water to the outside of the housing 1.
  • a water stop component for stopping drain water from flowing out may be attached to the second drain port 26.
  • leakage of drain water from the 2nd drain 26 can be prevented.
  • the water stop component is not attached to the second drain port 26. May be. In this case, a water stop part for water stop of the second drainage port 26 becomes unnecessary.
  • the heat exchange ventilator 100 is provided with drain pans 35, 36, and 37 for each air path in addition to the drain pan 12 provided below the heat exchanger 4, so that humid air is supplied to the housing 1. Drain water generated by being taken in can be held in each air passage.
  • the heat exchanging ventilator 100 receives the drain water generated in each air passage and the heat exchanger 4 in the second water receiving portion 35b and then discharges it through the second drain port 26.
  • the heat exchange ventilator 100 allows the drain water to leak from other than the second drain port 26 when the housing 1 is in the second posture. Can be prevented.
  • a water stop component may be attached to the first drain port 25. Thereby, leakage of drain water from the first drain port 25 can be prevented.
  • FIG. 14 is a diagram illustrating a configuration of a drainage path unit included in the heat exchange ventilator 100 illustrated in FIG. 8.
  • FIG. 14 shows a cross section of the drainage path portion 38a among the drainage path portions 38a, 38b, and 38c shown in FIG.
  • the drain pan 36 and the drain pan 37 are two drain pans adjacent to each other.
  • the drain pan 36 which is one of the two drain pans, has a bottom 51 in which drain water is stored, and a protrusion 52 from the bottom 51.
  • the protrusion 52 is formed at the end of the drain pan 36 on the drain pan 37 side, and constitutes a boundary with the drain pan 37.
  • the drain pan 37 which is the other of the two drain pans, has a bottom 53 in which drain water is stored, and a protruding portion 54 that stands vertically from the bottom 53.
  • the protrusion 54 is formed at the end of the drain pan 37 on the drain pan 36 side, and constitutes a boundary with the drain pan 36.
  • the protruding portion 52 of the drain pan 36 is bent by winding the end portion of the drain pan 37 in which the protruding portion 54 is formed.
  • a water blocking material 55 is provided between the protruding portion 52 and the protruding portion 54.
  • the drainage path portion 38a can prevent the drain water from leaking because the protruding portion 54 and the water stop material 55 are fitted inside the protruding portion 52 being bent.
  • the drain pan 36 can store drain water from the bottom 51 to the end 52a of the protruding portion 52 opposite to the bottom 51.
  • the drain water that has exceeded the end 52 a in the drain pan 36 flows from the end 52 a to the drain pan 37.
  • the drainage path part 38b and the drainage path part 38c are configured in the same manner as the drainage path part 38a.
  • the first water receiving portion 35a has the same configuration as the drain pan 36 shown in FIG.
  • the drain pan 12 has the same configuration as the drain pan 37 shown in FIG.
  • the drain pan 37 has the same configuration as the drain pan 36 shown in FIG.
  • the drain pan 12 has the same configuration as the drain pan 37 shown in FIG.
  • the size of the drain pan 12 is suppressed to a size that can pass through the opening 10 and the inspection port 11 shown in FIG. For this reason, when the casing 1 is in the first posture, the drain pan 12 is enlarged in order to receive the water condensed in each air passage by the one drain pan 12 below the heat exchanger 4. Have difficulty.
  • the heat exchange ventilator 100 can hold the drain water in the housing 1 by the drain pan 12 and the drain pans 35, 36, and 37 for each air passage. Thereby, even when the heat exchange ventilator 100 is installed in a humid environment, the drain water can be retained in the housing 1.
  • the heat exchange ventilator 100 can promote drainage of drain water by configuring the drainage path together with the drain pan 12 by the drain pans 35, 36, and 37 for each air path.
  • the heat exchange ventilator 100 includes the drain pan 35 having the first water receiving part 35a and the second water receiving part 35b.
  • the heat exchange ventilator 100 holds the drain water generated in the upstream air passage 15a and the downstream air passage 16b in the first water receiver 35a.
  • the heat exchange ventilator 100 holds the drain water generated in each air passage and the heat exchanger 4 in the second water receiver 35b.
  • the heat exchange ventilator 100 can discharge the drain water stored in the housing 1 to the outside of the housing 1 regardless of whether horizontal installation or vertical installation is selected.
  • the heat exchange ventilator 100 can increase the degree of freedom of the installation mode by selecting horizontal installation or vertical installation. Thereby, the heat exchange ventilation apparatus 100 has an effect that drain water can be discharged when either horizontal installation or vertical installation is selected.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

熱交換換気装置は、給気流と排気流との熱交換を行う熱交換器と、熱交換器が収容され、給気吸込口と排気吹出口とが設けられた第1の板部と、給気吹出口と排気吸込口とが設けられた第2の板部と、第1の板部と熱交換器との間の風路と第2の板部と熱交換器との間の風路とを構成する第3の板部と、を有する筐体と、筐体に収容されたドレン受けであるドレンパン(35)と、を備える。ドレン受けは、第3の板部のうち熱交換器と第1の板部との間に配置され、筐体の姿勢が第3の板部を下方へ向けた第1の姿勢であるときにドレン水を保持可能な部分である第1の水受け部(35a)と、第1の板部に配置され、筐体の姿勢が第1の板部を下方へ向けた第2の姿勢であるときにドレン水を保持可能な部分である第2の水受け部(35b)と、を有する。

Description

熱交換換気装置
 本発明は、給気流と排気流との熱交換を行いながら換気を行う熱交換換気装置に関する。
 従来、熱交換換気装置の筐体内へ取り込まれた空気に含まれる水分が凝縮することによって生じるドレン水の漏れ出しを防ぐために、熱交換換気装置には、ドレン水を保持するドレン受けが設けられることがある。ドレン水は、ドレン受けに溜められてから、筐体の外へ排出される。
 特許文献1には、筐体内において熱交換器の下方に設けられたドレン受けを備える熱交換換気装置が開示されている。ドレン受けには、筐体の中と筐体の外とを連通する連通孔が設けられており、連通孔を通してドレン水が排出される。
特許第6150742号公報
 住宅などの天井に設置される熱交換換気装置は、一般に、鉛直方向の寸法を抑えるために、給気送風機と熱交換器と排気送風機が水平方向へ並んだ水平設置とされる。一方、熱交換換気装置は、室内の壁面に設置される場合には、給気送風機と熱交換器と排気送風機とが鉛直方向へ並んだ垂直設置とされることがある。垂直設置の場合、熱交換換気装置は、水平設置と垂直設置とが選択可能となることで、設置態様の自由度を高めることが可能となる。
 特許文献1に開示されるドレン受けと連通孔とは、熱交換換気装置が水平設置とされた場合におけるドレン水の排出が可能である一方、熱交換換気装置が垂直設置とされた場合におけるドレン水の排出は可能とされていない。このため、特許文献1の技術では、水平設置と垂直設置とを選択して熱交換換気装置を設置可能とされても、垂直設置が選択された場合にはドレン水を排出することができないという問題があった。
 本発明は、上記に鑑みてなされたものであって、水平設置と垂直設置とのどちらが選択された場合もドレン水の排出を可能とする熱交換換気装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる熱交換換気装置は、給気流と排気流との熱交換を行う熱交換器と、熱交換器が収容され、給気吸込口と排気吹出口とが設けられた第1の板部と、給気吹出口と排気吸込口とが設けられた第2の板部と、第1の板部と熱交換器との間の風路と第2の板部と熱交換器との間の風路とを構成する第3の板部と、を有する筐体と、筐体に収容されたドレン受けと、を備える。ドレン受けは、第3の板部のうち熱交換器と第1の板部との間に配置され、筐体の姿勢が第3の板部を下方へ向けた第1の姿勢であるときにドレン水を保持可能な部分である第1の水受け部と、第1の板部に配置され、筐体の姿勢が第1の板部を下方へ向けた第2の姿勢であるときにドレン水を保持可能な部分である第2の水受け部と、を有する。
 本発明にかかる熱交換換気装置は、水平設置と垂直設置とのどちらが選択された場合もドレン水を排出することができるという効果を奏する。
本発明の実施の形態1にかかる熱交換換気装置の構成を示す図 図1に示す熱交換換気装置を示す第1の平面図 図1に示す熱交換換気装置を示す第2の平面図 図1に示す熱交換換気装置が有する風路について説明する図 図1に示す熱交換換気装置が有する熱交換器の配置について説明する図 図1に示す熱交換換気装置が有する熱交換器の第1例を示す斜視図 図1に示す熱交換換気装置が有する熱交換器の第2例を示す斜視図 図3に示すVIII-VIII線における熱交換換気装置の断面図 図8に示す熱交換換気装置が垂直設置で配置された状態を示す図 図8に示す熱交換換気装置のうちドレンパンを示す断面図 図9に示す熱交換換気装置のうちドレンパンを示す断面図 図10に示すドレンパンの1つであるL型のドレンパンを示す斜視図 図11に示すドレンパンの1つであるL型のドレンパンを示す斜視図 図8に示す熱交換換気装置が有する排水経路部の構成を示す図
 以下に、本発明の実施の形態にかかる熱交換換気装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかる熱交換換気装置100の構成を示す図である。図2は、図1に示す熱交換換気装置100を示す第1の平面図である。図3は、図1に示す熱交換換気装置100を示す第2の平面図である。熱交換換気装置100は、排気流と給気流との熱交換を行いながら換気を行うことが可能な装置である。図1には、分解された状態における熱交換換気装置100の斜視図を示している。
 熱交換換気装置100は、水平設置と、水平設置から90度回転させた垂直設置とのどちらも可能とされている。熱交換換気装置100は、天井へ設置される場合、水平設置とされる。熱交換換気装置100は、壁面に掛けられて設置される壁掛けとされる場合、垂直設置とされる。図2には、水平設置とされた熱交換換気装置100を下方から見た場合の構成を示している。図3には、水平設置とされた熱交換換気装置100を前方から見た場合の構成を示している。
 熱交換換気装置100は、室外から室内への給気と室内から室外への排気とにより室内を換気することで、室内の快適な空気環境を維持する。また、熱交換換気装置100は、給気流と排気流との熱交換により、室内へ取り込まれる空気と室内の空気との温度差を小さくして、室内の空調負担を低減させる。
 熱交換換気装置100は、給気流を発生させる給気送風機2と、排気流を発生させる排気送風機3と、給気流と排気流との熱交換を行う熱交換器4と、給気送風機2と排気送風機3と熱交換器4とが収容された筐体1とを備える。給気送風機2は、室外の空気を筐体1内へ取り込み、筐体1内へ取り込まれた空気を室内へ送る。排気送風機3は、室内の空気を筐体1内へ取り込み、筐体1内へ取り込まれた空気を室外へ送る。筐体1には、給気流が通過する給気風路と排気流が通過する排気風路とが設けられている。
 熱交換換気装置100が水平設置で設置される場合、給気送風機2と熱交換器4と排気送風機3とは水平方向へ並ぶ。熱交換換気装置100が垂直設置で設置される場合、給気送風機2と熱交換器4と排気送風機3とは鉛直方向へ並ぶ。以下の説明では、熱交換換気装置100が水平設置で設置されるときの筐体1の姿勢を第1の姿勢、熱交換換気装置100が垂直設置で設置されるときの筐体1の姿勢を第2の姿勢、と称する。
 筐体1は、直方体形状を呈する箱体であって、6つの板部1a,1b,1c,1d,1e,1fから構成されている。筐体1が第1の姿勢であるとき、板部1aは、上方へ向けられる天面となる部分である。筐体1が第1の姿勢であるとき、板部1bは、下方へ向けられる底面となる部分である。第1の板部である板部1cは、給気吸込口5と排気吹出口8とが設けられた部分である。第2の板部である板部1dは、給気吹出口6と排気吸込口7とが設けられている。板部1aと、第3の板部である板部1bとは、板部1cと板部1dとの間の部分であって、板部1cと熱交換器4との間の風路と板部1dと熱交換器4との間の風路とを構成する。筐体1が第1の姿勢であるとき、板部1c,1dは、横へ向けられる側面となる部分である。板部1cは、筐体1が呈する直方体形状における長手方向のうちの一方の端をなす。板部1dは、筐体1が呈する直方体形状における長手方向のうちの他方の端をなす。
 板部1e,1fは、板部1cと板部1dとの間の部分である。筐体1が第1の姿勢であるときに、板部1eは、前方へ向けられる正面となる部分である。筐体1が第1の姿勢であるときに、板部1fは、後方へ向けられる背面となる部分である。
 板部1eには、熱交換換気装置100の全体を制御する制御装置9が設けられている。制御装置9は、給気送風機2の駆動と排気送風機3の駆動との制御により、熱交換換気装置100の換気風量を制御する。
 板部1bには、開口10が形成されている。開口10は、熱交換器4に対して、筐体1が第1の姿勢であるときの下方に形成されている。熱交換換気装置100が天井裏に水平設置される場合には、天井には、天井よりも下方からの開口10と制御装置9とへの作業のための点検口11が設けられる。図1および図2には、点検口11の範囲を破線によって示している。筐体1内に収容される構成要素は、開口10を通して着脱可能とされている。
 なお、筐体1が第2の姿勢とされた場合には、板部1cは底面、板部1dは天面、板部1bは正面、板部1aは背面、板部1e,1fは側面となる。熱交換換気装置100が垂直設置とされるケースとして、居室の壁に埋め込まれて設置される場合、あるいは建物の居室以外の機械室あるいは納戸といった室内の壁面に掛けられて設置される場合があり得る。熱交換換気装置100は、開口10を正面に向けた状態で掛けられることで、開口10と制御装置9とへの作業は、正面から点検口11を介さずに行うことができる。熱交換換気装置100は、筐体1が第2の姿勢とされることで、点検口11を介さない作業が可能となりメンテナンス時の作業性を向上できる場合がある。なお、熱交換換気装置100は、壁に埋め込まれて設置される場合には、壁面に形成された点検口11を介して開口10と制御装置9とへの作業が可能とされても良い。
 第1のドレン受けであるドレンパン12は、熱交換器4に対して、筐体1が第1の姿勢であるときの下方に配置されている。ドレンパン12は、筐体1が第1の姿勢であるときに熱交換器4で生じたドレン水を溜める。ドレンパン12は、板部1bに取り付けられることによって開口10を塞ぐ。
 給気フィルター13は、筐体1の内部において熱交換器4の板部1c側に配置される。給気フィルター13は、室外から給気吸込口5を通って給気風路へ流入する空気に含まれる塵埃を捕集する。排気フィルター14は、筐体1の内部において熱交換器4の板部1d側に配置される。排気フィルター14は、室内から排気吸込口7を通って排気風路へ流入する空気に含まれる塵埃を捕集する。熱交換換気装置100は、給気フィルター13および排気フィルター14にて塵埃を捕集することによって、塵埃の付着による熱交換器4の目詰まりを防ぐ。
 図4は、図1に示す熱交換換気装置100が有する風路について説明する図である。図4には、筐体1の内部の構成を、筐体1が第1の姿勢とされた場合における下方から見た状態を示している。
 熱交換換気装置100は、熱交換換気と普通換気とを切り換えるダンパー20を有する。熱交換換気は、給気流17と排気流18との間の熱交換を伴う換気である。熱交換換気装置100は、熱交換換気では、熱交換器4による排気流18との熱交換を経た給気流17を室内へ送る。熱交換換気装置100は、室外より室内のほうが快適な温度である場合に、熱交換換気により室外の空気の温度を室内の空気の温度に近づけることで、空調負担を低減させる。
 普通換気は、給気流17と排気流18との間の熱交換を伴わない換気である。熱交換換気装置100は、普通換気では、熱交換器4による排気流18との熱交換を経ない給気流17を室内へ送る。熱交換換気装置100は、室内より室外のほうが快適な温度である場合に、普通換気により快適な温度の空気を室外から室内へ送ることで、室内を快適な温度にするとともに空調負荷を低減させる。また、普通換気では、熱交換器4への排気流18の通過による圧力損失が抑えられることから、熱交換換気装置100の消費電力を低減することができる。なお、図4において、排気流18は、熱交換換気の場合における排気流とする。バイパス気流19は、普通換気の場合における排気流とする。筐体1には、給気流17が通過する給気風路15と、排気流18とバイパス気流19とが通過する排気風路16とが設けられている。
 給気風路15は、給気吸込口5と熱交換器4における給気流17の流入口との間の上流側風路15aと、熱交換器4における給気流17の流出口と給気吹出口6との間の下流側風路15bとを含む。室外から給気吸込口5へ吸い込まれた給気流17は、上流側風路15aを通り、給気フィルター13を通過してから熱交換器4へ流入する。熱交換器4から流出した給気流17は、下流側風路15bを通り、給気吹出口6から室内へ向けて吹き出される。
 排気風路16は、排気吸込口7と熱交換器4における排気流18の流入口との間の上流側風路16aと、熱交換器4における排気流18の流出口と排気吹出口8との間の下流側風路16bとを含む。室内から排気吸込口7へ吸い込まれた排気流18は、上流側風路16aを通り、排気フィルター14を通過してから熱交換器4へ流入する。熱交換器4から流出した排気流18は、下流側風路16bを通り、排気吹出口8から室外へ向けて吹き出される。
 バイパス風路21は、熱交換器4の外に設けられた風路である。上流側風路16aには、熱交換器4へ向かう排気流18が通過する熱交換側開口部22と、バイパス風路21へ向かうバイパス気流19が通過するバイパス側開口部23とが設けられている。ダンパー20は、熱交換側開口部22とバイパス側開口部23との間にて回動可能に支持されている。切り換え部であるダンパー20は、排気吸込口7から熱交換器4への排気流18の流動と排気吸込口7からバイパス風路21へのバイパス気流19の流動とを切り換える。制御装置9は、ダンパー20の動作の制御により、熱交換換気と普通換気との切り換えを制御する。
 熱交換換気において、ダンパー20は、バイパス側開口部23を塞ぐ。排気流18は、上流側風路16aから熱交換側開口部22を通過して、熱交換器4へ進行する。一方、普通換気において、ダンパー20は、熱交換側開口部22を塞ぐ。バイパス気流19は、上流側風路16aからバイパス側開口部23を通過して、バイパス風路21へ進行する。熱交換器4を通過した排気流18とバイパス風路21を通過したバイパス気流19とは、下流側風路16bを通過して排気吹出口8へ進行する。筐体1内に形成された各風路には、結露を生じにくくさせるために、図1に示す断熱部品27が設けられている。
 図5は、図1に示す熱交換換気装置100が有する熱交換器4の配置について説明する図である。図5には、熱交換換気装置100からドレンパン12と給気フィルター13と排気フィルター14とが外された状態の斜視図を示している。熱交換器4は、板部1aとドレンパン12との間に配置される。熱交換器4は、筐体1内において、筐体1の長手方向における中央に位置する。
 熱交換換気装置100のメンテナンスの際に、ドレンパン12が開口10から外されて、給気フィルター13と排気フィルター14とが筐体1内から開口10を通して外される。さらに、熱交換器4と給気送風機2と排気送風機3とが筐体1内から開口10を通して外される。筐体1が第1の姿勢であるときにおける熱交換器4の直下には、メンテナンスの際における熱交換器4の落下を防ぐための複数の押さえ板24が設けられている。開口10からドレンパン12を取り外し可能としたことで、開口10を通して熱交換器4と給気送風機2と排気送風機3とを筐体1内から取り出すことができる。
 図6は、図1に示す熱交換換気装置100が有する熱交換器4の第1例を示す斜視図である。第1例にかかる熱交換器4は、四角柱形状をなす。第1例にかかる熱交換器4は、給気流17の向きと排気流18の向きとが互いに垂直である直交型の熱交換器である。
 熱交換器4は、給気風路15と排気風路16との間に設けられている。熱交換器4は、給気流17と排気流18との間の全熱交換を行う。熱交換器4は、互いに間隔が設けられて配置された複数の仕切材30と、複数の仕切材30の間隔を保持する間隔保持材31とを備える。熱交換器4は、仕切材30と間隔保持材31とを積層させて構成された積層体である。仕切材30は、平坦に加工されたシート材である。間隔保持材31は、波形の凹凸が施されたシート材である。仕切材30と間隔保持材31とは、互いに接合されている。
 熱交換器4は、仕切材30と間隔保持材31とを積層させた方向である積層方向を板部1eと板部1fとに平行にして配置されている。熱交換器4は、積層方向を板部1cと板部1dとに平行にして配置されても良い。
 積層体において、波形の折り目の方向が互いに垂直となるように向きを異ならせた間隔保持材31が、仕切材30を介して交互に積層されている。これにより、熱交換器4には、排気流18が通過する一次通路32と給気流17が通過する二次通路33とが積層方向において交互に設けられている。仕切材30では、給気流17と排気流18とを混合させずに、一次通路32を通過する排気流18と二次通路33を通過する給気流17との間の顕熱交換と潜熱交換とが行われる。なお、熱交換器4は、顕熱交換と潜熱交換との一方のみを行うものであっても良い。
 仕切材30と間隔保持材31とには、紙が使用されている。熱交換器4は、仕切材30と間隔保持材31とに紙が使用されることによって、製造コストを抑えることができる。紙によって一次通路32と二次通路33が構成されていることで、熱交換によって発生した結露水を一次通路32と二次通路33とによって保持することができる。また、風路へ進入した結露水が結氷することによる風路の閉塞を低減できる。
 図7は、図1に示す熱交換換気装置100が有する熱交換器4の第2例を示す斜視図である。第2例にかかる熱交換器4は、六角柱形状をなす。第2例にかかる熱交換器4は、一次通路32を通過する排気流18の向きと二次通路33を通過する給気流17の向きとを180度異ならせた対向流型の熱交換器である。熱交換換気装置100には、第1例にかかる熱交換器4と第2例にかかる熱交換器4とのどちらが適用されても良い。熱交換器4の形状は、多角柱形状であれば良く、六角柱形状および四角柱形状以外の形状であっても良い。なお、図1には、第2例にかかる熱交換器4を示している。対向流型の熱交換器4が設けられることにより、熱交換換気装置100は、高い熱交換効率での熱変換を行うことができる。
 次に、熱交換換気装置100におけるドレン水の排出のための構成について説明する。図8は、図3に示すVIII-VIII線における熱交換換気装置100の断面図である。図8には、水平設置で設置された熱交換換気装置100を示している。筐体1が第1の姿勢であるとき、図2に示す板部1bが下方へ向けられている。第2のドレン受けであるドレンパン35と第3のドレン受けであるドレンパン36と第4のドレン受けであるドレンパン37とは、板部1bのうち筐体1内側の面に設けられており、筐体1に収容されている。
 ドレンパン35は、給気風路15の上流側風路15aと排気風路16の下流側風路16bとのうち、筐体1が第1の姿勢であるときの下方側と筐体1が第2の姿勢であるときの下方側とに配置されている。ドレンパン35は、上流側風路15aと下流側風路16bとにおいてドレン水を保持する。ドレンパン35は、後述するように、垂直に折り曲げられており、L型を呈している。
 ドレンパン36は、排気風路16の上流側風路16aと給気風路15の下流側風路15bとのうち、筐体1が第1の姿勢であるときの下方側に配置されている。ドレンパン36は、上流側風路16aと下流側風路15bとにおいてドレン水を保持する。
 ドレンパン37は、バイパス風路21のうち筐体1が第1の姿勢であるときの下方側に配置されている。ドレンパン37は、バイパス風路21においてドレン水を保持する。熱交換換気装置100は、4つのドレンパン12,35,36,37によってドレン水を保持可能とする。4つのドレンパン12,35,36,37は、筐体1の外へドレン水を排出させる経路を構成可能に、互いに連結されている。
 第1の排水口25は、筐体1が第1の姿勢であるときの筐体1の下部に位置している。第1の排水口25は、筐体1内に保持されたドレン水を筐体1の外へ流出させる。第1の排水口25は、ドレンパン12のうち給気フィルター13側の端部12aから、筐体1の長手方向に垂直な向きに立てられている。第1の排水口25は、板部1eに対して垂直に立てられている。仮に、第1の排水口25が筐体1の長手方向に平行な向きとされた場合、第1の排水口25が給気フィルター13または排気フィルター14の着脱の妨げとなることがあり得る。第1の排水口25が筐体1の長手方向に垂直とされたことで、給気フィルター13または排気フィルター14の着脱の妨げとならない態様で第1の排水口25を配置することができる。
 筐体1が第1の姿勢であるときにおいて、第1の排水口25の高さ位置は、板部1bの高さ位置と同等とされている。筐体1が第1の姿勢であるときにおけるできるだけ低い位置に第1の排水口25が設けられていることで、熱交換換気装置100は、第1の排水口25からの排水を促すことができる。
 ドレンパン36とドレンパン37との境界には、排水経路を構成する排水経路部38aが設けられている。排水経路部38aは、ドレンパン36とドレンパン37とをつなぐとともに、筐体1が第1の姿勢であるときにドレンパン36のほうがドレンパン37よりも高い位置となるように形成された部分である。ドレンパン36に溜められたドレン水は、排水経路部38aを通ってドレンパン37へ流れる。
 ドレンパン37と、ドレンパン12の端部12aとの境界には、排水経路を構成する排水経路部38cが設けられている。排水経路部38cは、ドレンパン37と端部12aとをつなぐとともに、筐体1が第1の姿勢であるときにドレンパン37のほうが端部12aよりも高い位置となるように形成された部分である。ドレンパン37に溜められたドレン水は、排水経路部38cを通って端部12aへ流れる。端部12aへ流れたドレン水は、第1の排水口25から筐体1の外へ排出される。
 ドレンパン35のうち後述する第1の水受け部と、ドレンパン12の端部12aとの境界には、排水経路を構成する排水経路部38bが設けられている。排水経路部38bは、給気フィルター13と板部1eとの間に設けられている。排水経路部38bは、第1の水受け部と端部12aとをつなぐとともに、筐体1が第1の姿勢であるときに第1の水受け部のほうが端部12aよりも高い位置となるように形成された部分である。第1の水受け部に溜められたドレン水は、排水経路部38bを通って端部12aへ流れる。端部12aへ流れたドレン水は、第1の排水口25から筐体1の外へ排出される。
 図9は、図8に示す熱交換換気装置100が垂直設置で配置された状態を示す図である。図9には、図8に示す断面と同じ断面を示している。筐体1が第2の姿勢であるときに、板部1cが下方へ向けられている。第2の排水口26は、筐体1が第2の姿勢であるときにおける筐体1の下部に位置している。第2の排水口26は、筐体1内に保持されたドレン水を筐体1の外へ流出させる。第2の排水口26は、ドレンパン35のうち後述する第2の水受け部に設けられている。第2の排水口26は、第2の水受け部から、筐体1の長手方向に平行な向きに立てられている。第1の排水口25が筐体1から立てられている方向と、第2の排水口26が筐体1から立てられている方向とは、互いに垂直である。
 図10は、図8に示す熱交換換気装置100のうちドレンパン12,35,36,37を示す斜視図である。図11は、図9に示す熱交換換気装置100のうちドレンパン12,35,36,37を示す斜視図である。図10には、筐体1が第1の姿勢である場合におけるドレンパン12,35,36,37を示している。図11には、筐体1が第2の姿勢である場合におけるドレンパン12,35,36,37を示している。
 筐体1に収容されたドレン受けの1つであるドレンパン35は、互いに垂直な第1の水受け部35aと第2の水受け部35bとが一体とされて構成されている。ドレンパン35は、第1の水受け部35aと第2の水受け部35bとの境界35cにて垂直に折り曲げられたL型をなしている。
 第1の水受け部35aは、板部1bのうち熱交換器4と板部1cとの間に配置されている。第1の水受け部35aは、筐体1が第1の姿勢であるときに上流側風路15aと下流側風路16bとにおいてドレン水を保持する部分である。
 第2の水受け部35bは、板部1cに配置されている。第2の水受け部35bは、筐体1が第2の姿勢であるときに上流側風路15aと下流側風路16bとにおいてドレン水を保持する部分である。第2の排水口26は、第2の水受け部35bに設けられている。第2の水受け部35bには、給気吸込口5に合わせて形成された開口35dと、排気吹出口8に合わせて形成された開口35eとが設けられている。
 次に、L型のドレンパン35の構成について説明する。図12は、図10に示すドレンパン12,35,36,37の1つであるL型のドレンパン35を示す斜視図である。図12には、筐体1が第1の姿勢である場合におけるドレンパン35を示している。
 第1の水受け部35aは、筐体1が第1の姿勢であるときにドレン水を保持可能な皿形状をなしている。第1の水受け部35aのうち皿形状における底をなす底部41には、上流側風路15aと下流側風路16bとの間を仕切る仕切り部39のほかに、底部41のうち排気吹出口8の上流側に配置された2つの仕切り部42a,42bと、仕切り部39と隣り合う仕切り部42cとが設けられている。2つの仕切り部42a,42bは、底部41のうち板部1f側の端部41aと一定の間隔をなして配置されている。仕切り部42aと仕切り部42bとの間には、隙間43aが設けられている。仕切り部39と仕切り部42cとの間には、隙間43cが設けられている。
 隙間43aと第2の水受け部35bとの間の距離は、隙間43bと第2の水受け部35bとの間の距離よりも短い。隙間43aから隙間43bへ向かう直線44の延長上に、底部41と排水経路部38bとの連結位置45が一致する。底部41には、直線44上の位置が直線44の周囲よりも低くなる勾配が施されている。また、直線44上には、隙間43aから連結位置45へ向かうにしたがい低くなる勾配が施されている。このように、底部41には、筐体1が第1の姿勢であるときに、第1の排水口25につながる排水経路部38bのほうへ進行するにしたがって低くなる勾配が施されている。
 底部41に施された勾配によって、第1の水受け部35aに溜められたドレン水は、図12に示す矢印の方向へ流動して、排水経路部38bへ向かう。これにより、筐体1が第1の姿勢であるときに、第1の水受け部35aに溜められたドレン水の排水経路部38bへの流動が促される。
 底部41に施された勾配によって第1の水受け部35aからのドレン水の排出が促されることで、熱交換換気装置100は、筐体1が第1の姿勢であるときにおいて、第1の水受け部35aに残存するドレン水を低減できる。熱交換換気装置100は、ドレン水の排出のために筐体1全体を傾けなくても、ドレン水の排出を促すことができる。
 図13は、図11に示すドレンパン12,35,36,37の1つであるL型のドレンパン35を示す斜視図である。図13には、筐体1が第2の姿勢である場合におけるドレンパン35を示している。
 第2の水受け部35bは、筐体1が第2の姿勢であるときにドレン水を保持可能な皿形状をなしている。第2の排水口26は、第2の水受け部35bのうち皿形状における底をなす底部46に設けられている。第2の排水口26は、底部46の板部1f側の端部46aと底部46側の端部46bとの間の領域48のうち、境界35c寄りの位置に設けられている。第2の排水口26は、第2の水受け部35bと一体に成形されている。第2の排水口26は、底部46のうち板部1c側の面から、第2の姿勢における下方へ立てられている。第2の排水口26は、板部1cを貫通して、筐体1の外へ突き出ている。
 筐体1が第1の姿勢であるときは、各風路で生じたドレン水は、風路ごとのドレンパン12,36,37と第1の水受け部35aとに溜められてから排水経路を通って排出される。筐体1が第2の姿勢であるときは、すべての風路からのドレン水が第2の水受け部35bに溜められてから第2の排水口26にて排出される。第2の水受け部35bには多くのドレン水が集められることから、第2の水受け部35bと第2の排水口26とは、ドレン水の漏れに対する高い信頼性が求められる。
 熱交換換気装置100は、第2の排水口26が第2の水受け部35bと一体とされていることで、第2の排水口26と第2の水受け部35bとが溶着あるいは接着剤によって接合される場合よりもドレン水の漏れを確実に防ぐことができる。これにより、熱交換換気装置100は、筐体1が第2の姿勢であるときにおけるドレン水の漏れに対する高い信頼性を得ることができる。
 熱交換換気装置100は、第2の排水口26がドレンパン35と一体とされたことで、ドレンパン35とは別に第2の排水口26が形成される場合よりも部品点数を少なくすることができる。熱交換換気装置100は、部品点数の減少により製造コストを低減できる。
 底部46には、ドレン水を堰き止めるためのリブ47a,47bが設けられている。リブ47a,47bは、底部46から第2の姿勢における上方へ立てられている。第1の堰止め部であるリブ47aは、開口35dを囲い、開口35dへのドレン水の進入を堰き止める。第2の堰止め部であるリブ47bは、開口35eを囲い、開口35eへのドレン水の進入を堰き止める。第2の水受け部35bは、リブ47a,47bが設けられていることにより、底部46から給気吸込口5と排気吹出口8とへのドレン水の流出を抑制可能とする。
 底部46のうち端部46aと領域48との間には、領域48へ向かうにしたがい低くなる勾配が施されている。また、底部46のうち端部46bと領域48との間には、領域48へ向かうにしたがい低くなる勾配が施されている。領域48には、底部46のうち板部1a側の端部46cから境界35cへ向かうにしたがい低くなる勾配が施されている。このように、底部46には、筐体1が第2の姿勢であるときに、第2の排水口26のほうへ進行するにしたがって低くなる勾配が施されている。
 底部46に施された勾配によって、第2の水受け部35bに溜められたドレン水は、図13に示す矢印の方向へ流動して、第2の排水口26へ向かう。これにより、筐体1が第2の姿勢であるときに、第2の水受け部35bに溜められたドレン水の第2の排水口26への流動が促される。
 底部46に施された勾配によって第2の水受け部35bからのドレン水の排出が促されることで、熱交換換気装置100は、筐体1が第2の姿勢であるときにおいて、第2の水受け部35bに残存するドレン水を低減できる。熱交換換気装置100は、ドレン水の排出のために筐体1全体を傾けなくても、ドレン水の排出を促すことができる。
 なお、第2の排水口26は、筐体1が第1の姿勢であるときに第1の水受け部35aに溜められたドレン水を排出しても良い。第1の水受け部35aの底部41には、上記の勾配に代えて、第2の排水口26へ向かうにしたがい低くなるような勾配が施されても良い。
 次に、室内空気によって生じたドレン水と室外空気によって生じたドレン水との排出について、筐体1が図8に示す第1の姿勢であるときと図9に示す第2の姿勢であるときとに分けて説明する。
 筐体1が第1の姿勢であるときにおいて、室内の多湿な空気が排気吸込口7から上流側風路16aへ進入した場合に、上流側風路16aで凝縮した水がドレンパン36に保持される。ドレンパン36に溜められたドレン水は、排水経路部38aを通ってドレンパン37へ流れる。ドレンパン37へ流れたドレン水は、排水経路部38cを通って端部12aへ流れる。端部12aへ流れたドレン水は、第1の排水口25から筐体1の外へ排出される。熱交換器4を通過してから下流側風路16bで凝縮した水は、第1の水受け部35aにて保持される。第1の水受け部35aに溜められたドレン水は、排水経路部38bを通り、第1の排水口25から筐体1の外へ排出される。
 筐体1が第1の姿勢であるときにおいて、室外の多湿な空気が給気吸込口5から上流側風路15aへ進入した場合に、上流側風路15aで凝縮した水が第1の水受け部35aに保持される。第1の水受け部35aには、上流側風路15aと下流側風路16bとの間を仕切る仕切り部39が形成されている。下流側風路16bで凝縮した水は、仕切り部39が設けられていることで、上流側風路15aで凝縮した水と混在せずに排水経路部38bへ進行する。室外の空気が多湿である場合、霧などによって室外が一時的に多湿状態になったことが想定される。熱交換換気装置100は、上流側風路15aで凝縮した水を第1の水受け部35aに保持しておき、換気運転によって水を蒸発させても良い。
 熱交換換気装置100が第1の姿勢であるときにおいて、室外の多湿な空気がバイパス風路21へ進入した場合に、バイパス風路21で凝縮した水がドレンパン37に保持される。ドレンパン37に溜められたドレン水は、排水経路部38cと端部12aとを通り、第1の排水口25から筐体1の外へ排出される。
 熱交換器4の内部での凝縮によって生じたドレン水は、ドレンパン12に保持される。ドレンパン12に溜められたドレン水は、端部12aを通り、第1の排水口25から筐体1の外へ排出される。
 このようにして、熱交換換気装置100は、各風路と熱交換器4とにおいて生じたドレン水を第1の排水口25へ進行させて、筐体1の外へドレン水を排出させる。筐体1が第1の姿勢であるときには、ドレン水の流出を止めるための止水部品が第2の排水口26に取り付けられても良い。これにより、第2の排水口26からのドレン水の漏れ出しを防ぐことができる。なお、上述するように、第1の水受け部35aに溜められたドレン水を第2の排水口26から排出可能とする場合には、第2の排水口26に止水部品が取り付けられなくても良い。この場合、第2の排水口26の止水のための止水部品が不要となる。
 熱交換換気装置100は、熱交換器4の下方にドレンパン12が設けられている以外に、風路ごとのドレンパン35,36,37が設けられていることにより、多湿な空気が筐体1へ取り込まれたことによって生じるドレン水を風路ごとにおいて保持することができる。
 筐体1が第2の姿勢であるときにおいて、室内の多湿な空気が排気吸込口7から上流側風路16aへ進入した場合に、上流側風路16aで凝縮した水は、上流側風路16aよりも下方の各風路を構成する壁部あるいは各ドレンパン12,36,37を伝って下方へ流れるか落下して、第2の水受け部35bに到達する。第2の水受け部35bに到達したドレン水は、第2の排水口26から筐体1の外へ排出される。
 筐体1が第2の姿勢であるときにおいて、室外の多湿な空気が給気吸込口5から上流側風路15aへ進入した場合において生じたドレン水と、バイパス風路21において生じたドレン水と、熱交換器4の内部で生じたドレン水とは、下方へ流れるか落下して、第2の水受け部35bに到達する。第2の水受け部35bに到達したドレン水は、第2の排水口26から筐体1の外へ排出される。
 このようにして、熱交換換気装置100は、各風路と熱交換器4とにおいて生じたドレン水を第2の水受け部35bにおいて受けてから、第2の排水口26にて排出させる。第2の水受け部35bが設けられていることにより、熱交換換気装置100は、筐体1が第2の姿勢であるときに、第2の排水口26以外からのドレン水の漏れ出しを防ぐことができる。筐体1が第2の姿勢であるときには、第1の排水口25に止水部品が取り付けられても良い。これにより、第1の排水口25からのドレン水の漏れ出しを防ぐことができる。
 図14は、図8に示す熱交換換気装置100が有する排水経路部の構成を示す図である。図14には、図8に示す排水経路部38a,38b,38cのうち、排水経路部38aの断面を示している。ドレンパン36とドレンパン37とは、互いに隣り合う2つのドレンパンである。2つのドレンパンのうちの一方であるドレンパン36は、ドレン水が溜められる底部51と、底部51から突出部52とを有する。突出部52は、ドレンパン36のうちドレンパン37側の端部に形成されており、ドレンパン37との境界を構成する。2つのドレンパンのうちの他方であるドレンパン37は、ドレン水が溜められる底部53と、底部53から垂直に立てられた突出部54とを有する。突出部54は、ドレンパン37のうちドレンパン36側の端部に形成されており、ドレンパン36との境界を構成する。
 ドレンパン36の突出部52は、突出部54が形成されたドレンパン37の端部を巻き込んで折り曲げられている。突出部52と突出部54との間には、止水材55が設けられている。排水経路部38aは、突出部52が折り曲げられた内側に突出部54と止水材55とが嵌め込まれていることで、ドレン水の漏れを防止可能とされている。
 筐体1が第1の姿勢であるとき、ドレンパン36では、底部51から、突出部52のうち底部51とは逆側の端52aまでドレン水を溜めることができる。ドレンパン36において端52aを超えたドレン水は、端52aからドレンパン37へ流れる。
 排水経路部38bおよび排水経路部38cは、排水経路部38aと同様に構成されている。ドレンパン12と第1の水受け部35aとの境界に設けられた排水経路部38bでは、第1の水受け部35aは、図14に示すドレンパン36と同様の構成を有する。排水経路部38bでは、ドレンパン12は、図14に示すドレンパン37と同様の構成を有する。ドレンパン37とドレンパン12との境界に設けられた排水経路部38cでは、ドレンパン37は、図14に示すドレンパン36と同様の構成を有する。排水経路部38cでは、ドレンパン12は、図14に示すドレンパン37と同様の構成を有する。これにより、各排水経路部38a,38b,38cでのドレン水の漏れを防止することができる。
 ドレンパン12のサイズは、図1に示す開口10と点検口11とを通過可能なサイズに抑えられる。このため、筐体1が第1の姿勢であるときに、各風路にて凝縮した水を熱交換器4の下方にある1つのドレンパン12によって受けるために、ドレンパン12を大型化することは困難である。実施の形態1では、熱交換換気装置100は、ドレンパン12と、風路ごとのドレンパン35,36,37とによって筐体1内のドレン水を保持することができる。これにより、熱交換換気装置100は、多湿な環境に設置される場合でも、筐体1内にてドレン水を保持することができる。熱交換換気装置100は、風路ごとのドレンパン35,36,37によって、ドレンパン12とともに排水経路を構成したことで、ドレン水の排出を促すことができる。
 実施の形態1によると、熱交換換気装置100は、第1の水受け部35aと第2の水受け部35bとを有するドレンパン35を備える。熱交換換気装置100は、筐体1が第1の姿勢であるときは上流側風路15aと下流側風路16bとにおいて生じたドレン水を第1の水受け部35aにて保持する。熱交換換気装置100は、筐体1が第2の姿勢であるときは各風路と熱交換器4とにおいて生じたドレン水を第2の水受け部35bにて保持する。熱交換換気装置100は、水平設置および垂直設置のどちらが選択される場合も、筐体1に溜められたドレン水を筐体1の外に排出することができる。熱交換換気装置100は、水平設置と垂直設置とが選択可能となることで、設置態様の自由度を高めることが可能となる。これにより、熱交換換気装置100は、水平設置と垂直設置とのどちらが選択された場合もドレン水を排出することができるという効果を奏する。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 筐体、1a,1b,1c,1d,1e,1f 板部、2 給気送風機、3 排気送風機、4 熱交換器、5 給気吸込口、6 給気吹出口、7 排気吸込口、8 排気吹出口、9 制御装置、10 開口、11 点検口、12,35,36,37 ドレンパン、12a,41a,46a,46b,46c 端部、13 給気フィルター、14 排気フィルター、15 給気風路、15a,16a 上流側風路、15b,16b 下流側風路、16 排気風路、17 給気流、18 排気流、19 バイパス気流、20 ダンパー、21 バイパス風路、22 熱交換側開口部、23 バイパス側開口部、24 押さえ板、25 第1の排水口、26 第2の排水口、27 断熱部品、30 仕切材、31 間隔保持材、32 一次通路、33 二次通路、35a 第1の水受け部、35b 第2の水受け部、35c 境界、35d,35e 開口、38a,38b,38c 排水経路部、39 仕切り部、41,46,51,53 底部、42a,42b,42c 仕切り部、43a,43b 隙間、44 直線、45 連結位置、47a,47b リブ、48 領域、52,54 突出部、52a 端、55 止水材、100 熱交換換気装置。

Claims (5)

  1.  給気流と排気流との熱交換を行う熱交換器と、
     前記熱交換器が収容され、給気吸込口と排気吹出口とが設けられた第1の板部と、給気吹出口と排気吸込口とが設けられた第2の板部と、前記第1の板部と前記熱交換器との間の風路と前記第2の板部と前記熱交換器との間の風路とを構成する第3の板部と、を有する筐体と、
     前記筐体に収容されたドレン受けと、
     を備え、
     前記ドレン受けは、
     前記第3の板部のうち前記熱交換器と前記第1の板部との間に配置され、前記筐体の姿勢が前記第3の板部を下方へ向けた第1の姿勢であるときにドレン水を保持可能な部分である第1の水受け部と、
     前記第1の板部に配置され、前記筐体の姿勢が前記第1の板部を下方へ向けた第2の姿勢であるときにドレン水を保持可能な部分である第2の水受け部と、
     を有することを特徴とする熱交換換気装置。
  2.  前記第1の水受け部に保持されたドレン水を前記筐体の外へ流出させる第1の排水口と、
     前記第2の水受け部に保持されたドレン水を前記筐体の外へ流出させる第2の排水口と、
     を備え、
     前記第2の排水口は、前記第2の水受け部と一体に成形されていることを特徴とする請求項1に記載の熱交換換気装置。
  3.  前記第2の水受け部は、
     前記給気吸込口に合わせて形成された第1の開口と、
     前記排気吹出口に合わせて形成された第2の開口と、
     前記第1の開口を囲み、前記第1の開口へのドレン水の進入を堰き止める第1の堰止め部と、
     前記第2の開口を囲み、前記第2の開口へのドレン水の進入を堰き止める第2の堰止め部と、
     を有することを特徴とする請求項1または2に記載の熱交換換気装置。
  4.  前記第1の水受け部には、前記筐体が前記第1の姿勢であるときに、前記第1の排水口のほうへ進行するにしたがって低くなる勾配が施されていることを特徴とする請求項2に記載の熱交換換気装置。
  5.  前記第2の水受け部には、前記筐体が前記第2の姿勢であるときに、前記第2の排水口のほうへ進行するにしたがって低くなる勾配が施されていることを特徴とする請求項2に記載の熱交換換気装置。
PCT/JP2018/021783 2018-06-06 2018-06-06 熱交換換気装置 WO2019234871A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020523921A JP6890725B2 (ja) 2018-06-06 2018-06-06 熱交換換気装置
PCT/JP2018/021783 WO2019234871A1 (ja) 2018-06-06 2018-06-06 熱交換換気装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/021783 WO2019234871A1 (ja) 2018-06-06 2018-06-06 熱交換換気装置

Publications (1)

Publication Number Publication Date
WO2019234871A1 true WO2019234871A1 (ja) 2019-12-12

Family

ID=68769819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021783 WO2019234871A1 (ja) 2018-06-06 2018-06-06 熱交換換気装置

Country Status (2)

Country Link
JP (1) JP6890725B2 (ja)
WO (1) WO2019234871A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7482849B2 (ja) 2021-12-21 2024-05-14 三菱電機株式会社 熱交換型換気装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004092924A (ja) * 2002-08-29 2004-03-25 Matsushita Ecology Systems Co Ltd 熱交換形換気装置
JP2005003345A (ja) * 2003-05-21 2005-01-06 Showa Denko Kk 換気兼熱交換装置および空調システム
JP2006064316A (ja) * 2004-08-27 2006-03-09 Max Co Ltd 換気装置および建物
WO2010125632A1 (ja) * 2009-04-27 2010-11-04 三菱電機株式会社 熱交換換気装置
JP2012241979A (ja) * 2011-05-19 2012-12-10 Mitsubishi Electric Corp ダクト接続口および換気装置
WO2016194257A1 (ja) * 2015-05-29 2016-12-08 三菱電機株式会社 熱交換型換気装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140524A (ja) * 1988-11-21 1990-05-30 Matsushita Electric Ind Co Ltd 空気調和機
JP3106728B2 (ja) * 1992-09-29 2000-11-06 三菱電機株式会社 空調換気扇
JP5001630B2 (ja) * 2006-11-17 2012-08-15 三菱重工業株式会社 ドレンパンおよびこれを用いた空調ユニットならびに空気調和装置
CN207778628U (zh) * 2016-08-03 2018-08-28 三菱电机株式会社 集水盘以及制冷循环装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004092924A (ja) * 2002-08-29 2004-03-25 Matsushita Ecology Systems Co Ltd 熱交換形換気装置
JP2005003345A (ja) * 2003-05-21 2005-01-06 Showa Denko Kk 換気兼熱交換装置および空調システム
JP2006064316A (ja) * 2004-08-27 2006-03-09 Max Co Ltd 換気装置および建物
WO2010125632A1 (ja) * 2009-04-27 2010-11-04 三菱電機株式会社 熱交換換気装置
JP2012241979A (ja) * 2011-05-19 2012-12-10 Mitsubishi Electric Corp ダクト接続口および換気装置
WO2016194257A1 (ja) * 2015-05-29 2016-12-08 三菱電機株式会社 熱交換型換気装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7482849B2 (ja) 2021-12-21 2024-05-14 三菱電機株式会社 熱交換型換気装置

Also Published As

Publication number Publication date
JP6890725B2 (ja) 2021-06-18
JPWO2019234871A1 (ja) 2020-12-17

Similar Documents

Publication Publication Date Title
JP5401563B2 (ja) チリングユニット
KR20100128815A (ko) 환기장치
JP3042329B2 (ja) 空気調和装置の排水構造
WO2019234870A1 (ja) 熱交換換気装置
TWI588419B (zh) 分離式模組之空調設備組合
WO2019146116A1 (ja) 熱交換型換気装置
WO2019234871A1 (ja) 熱交換換気装置
JP6150742B2 (ja) 熱交換換気装置
WO2019234873A1 (ja) 熱交換換気装置
WO2019234872A1 (ja) 熱交換換気装置
JP2007024358A (ja) 空調システムおよびこの空調システムを備えた建物
WO2019234874A1 (ja) 熱交換換気装置
JP2000065376A (ja) 天井カセット形空気調和機
KR100748138B1 (ko) 모듈형 공기조화시스템
JP5495804B2 (ja) 熱交換換気装置及び建造物
JPH0540722U (ja) 空気調和機におけるドレンパン
JP5247560B2 (ja) 熱交換換気装置および熱交換換気システム
CN220582665U (zh) 一种湿度控制装置
KR102577118B1 (ko) 냉난방기능이 구비된 전열교환기
JPH10232036A (ja) 加湿ユニット
JP6037855B2 (ja) 換気装置
JP2009257702A (ja) 空調装置及びキャビネット
JP2022075246A (ja) 換気装置
CN117490159A (zh) 通风装置
CN117490160A (zh) 通风装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921695

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020523921

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921695

Country of ref document: EP

Kind code of ref document: A1