WO2019232710A1 - Plate-forme de test de performances globales pour la tension axiale, le pliage, la tension et la vibration d'un matériau composite - Google Patents

Plate-forme de test de performances globales pour la tension axiale, le pliage, la tension et la vibration d'un matériau composite Download PDF

Info

Publication number
WO2019232710A1
WO2019232710A1 PCT/CN2018/090076 CN2018090076W WO2019232710A1 WO 2019232710 A1 WO2019232710 A1 WO 2019232710A1 CN 2018090076 W CN2018090076 W CN 2018090076W WO 2019232710 A1 WO2019232710 A1 WO 2019232710A1
Authority
WO
WIPO (PCT)
Prior art keywords
tension
bending
compression
fixed
torsion
Prior art date
Application number
PCT/CN2018/090076
Other languages
English (en)
Chinese (zh)
Inventor
李晖
邵震
罗忠
张瑞垚
罗忠卓
张文彬
蒋壮
韩清凯
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Priority to JP2019565524A priority Critical patent/JP6900068B2/ja
Publication of WO2019232710A1 publication Critical patent/WO2019232710A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/045Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/26Investigating twisting or coiling properties

Definitions

  • the invention relates to the field of testing technology, in particular to a comprehensive performance testing platform for shaft tension and compression, bending, torsion and vibration.
  • the life of the equipment depends not only on the unidirectional static or dynamic performance of the material's tension, compression, torsion, bending, and vibration, but also on the tension, compression, bending, and torsion. Interaction of vibration.
  • the static and dynamic material properties under complex working conditions are directly related to the safety of modern industrial equipment. Therefore, in order to ensure the stable and reliable use of materials, it is necessary to test the mechanical properties of materials, as well as tensile, compression, bending, and twisting of materials in product quality testing, quality control of production processes, material science research, and teaching experiments. Research under the interaction of vibration, fatigue and fatigue.
  • an object of the present invention is to provide a comprehensive performance testing platform for tensile, compression, bending, torsion and vibration of composite materials.
  • the specific technical solution is as follows:
  • a composite material shaft tensile-compression, bending, torsion, and vibration comprehensive performance testing platform is characterized in that it includes a tension-compression unit, a bending unit, a torsion unit, and a vibration unit; a fixed end 100 of a clamping device is fixed on a workbench 10; The movable end 200 of the clamping device is fixed on the torsion unit; the torsion unit is fixed to the tension-compression support base 13 of the movable end 200; the tension-compression unit includes a tension-compression support base 13, and a threaded hole is provided at the lower part of the tension-compression support base 13, so The threaded hole is matched with a first lead screw 21, the first lead screw 21 rotates coaxially with the worm gear 22, the worm gear 22 is engaged with a worm 23, and the worm 23 is fixed to the output end of the tension and compression motor 24;
  • the torsion unit includes a torsion motor 4, the output shaft of the torsion motor 4 is fixed to
  • a spoke tension pressure sensor 20 is arranged between the tension and compression support base 13 of the movable end 200 and the workpiece 9 to detect tension or pressure, and a laser displacement sensor 19 is also used to measure the axial length of the workpiece 9 during tension and compression Variations, the laser displacement sensor 19 is fixed on the support frame 8 and the support frame 8 is fixed on the workbench 10; the torque sensor 11 is provided on the fixed end 100 of the clamping device for detecting the torque generated by the torsion; the micro displacement The sensor 17 is provided on the bending chuck 5 for detecting bending deflection; the vibration is measured by a scanning laser Doppler vibrometer 18, and the scanning laser Doppler vibrometer 18 is provided on a support frame 8; A bearing 29 is provided in the tension and compression support base 13 of the fixed end 100 and the movable end 200 of the clamping device, and the tension and compression connection shafts 12 at both ends are fixed to the bearing 29. The other end of the tension and compression connection shaft 12 and the clamp Specific 14 fixed, industrial The piece 9 is fixed on
  • the manual worm gear 15 is engaged with a manual worm 25, and a handle 26 is provided at one end of the manual worm 25.
  • the bending chuck 5 is provided with four jaws, one of which is a driving jaw 503, and the driving jaw 503 can move in the radial direction of the bending chuck 5; the positioning jaw corresponding to the driving jaw 503 is The positioning surfaces of the claws 501, the driving claws 503, and the positioning claws 501 match the shape of the workpiece 9. The remaining two are the balance claws 502, and a movable balance block is provided on the balance claws 502 to offset the bending chuck 5.
  • a detachable expansion sleeve is arranged on the outside of the claw to maintain the deformation caused by bending.
  • An electromagnetic clutch 28 is provided on the tension-compression connection shaft 12 of the fixed end 100 of the clamping device, and the electromagnetic clutch 28 limits the rotation of the tension-compression connection shaft 12 when the electromagnetic clutch 28 is closed; a torque limiter is also provided on the tension-compression connection shaft 12 of the fixed end 100. 27.
  • One side of the torque limiter 27 is connected to the workpiece 9, and the other side is connected to a torque sensor 11.
  • the torque sensor 11 is connected to an electromagnetic clutch 28, and the electromagnetic clutch 28 is fixed to the table 10.
  • the tension-compression connection shaft 12 of the movable end 200 of the clamping device is composed of two parts, namely a bearing connection shaft 121 and a workpiece connection shaft 122.
  • the spoke tension pressure sensor 20 is disposed on the bearing connection shaft 121 and the workpiece connection shaft 122. In between, the slip ring 32 is fixed on the spoke tension pressure sensor 20, and the rotor output line of the slip ring 32 is connected to the lead of the spoke tension pressure sensor 20.
  • One end of the workpiece connection shaft 122 is provided with a thread, and the thread is matched with the rotation chuck 30; the rotation chuck 30 is rotatably connected with the clamp member 14; the clamp member 14 has a wedge block 31 inside, and the outside of the wedge block 31 It comes into contact with the inside of the clip 14.
  • the advantage of the invention is that it provides static testing that integrates three types of single load loading: tension, compression, bending, and torsion, and combined loading of multiple loads, and can realize rotary motion under any combination of tension, compression, bending, and torsion, thereby performing
  • the vibration test simulates different working conditions in actual production, and establishes a load-space coupling model of composite load loading. It provides an effective test platform for studying the influence of multiple loads on the material properties and the change law of other performance parameters, to a certain extent.
  • the research on the deformation and damage mechanism of materials under actual complex working conditions has been promoted, and the problems of complicated operation and poor compatibility of the current technology have been solved. It has simple operation, high integration, compact structure, diversified test modes, and can provide The test content is rich and so on.
  • FIG. 1 is a schematic structural diagram of the present invention
  • FIG. 2 is a schematic structural diagram of a bending unit
  • FIG. 3 is a schematic diagram of a chuck structure
  • FIG. 4 is a schematic structural diagram of a fixed end of a clamping device
  • FIG. 5 is a schematic structural diagram of a movable end of a clamping device
  • a composite material shaft tensile-compression, bending, torsion, and vibration comprehensive performance testing platform of the present invention includes a tension-compression unit, a bending unit, a torsion unit, and a vibration unit; a clamping device
  • the fixed end 100 is fixed on the workbench 10;
  • the movable end 200 of the clamping device is fixed on the torsion unit;
  • the torsion unit is fixed to the tension and compression support base 13 of the movable end 200;
  • the tension and compression unit includes the tension and compression support base 13,
  • a threaded hole is provided in the lower part of the pull-and-press support base 13, and the threaded hole is matched with the first screw 21, and the first screw 21 rotates coaxially with the worm gear 22, the worm gear 22 is engaged with the worm 23, and the worm 23 and
  • the output end of the tension and compression motor 24 is fixed.
  • the torsion unit includes a torsion motor 4, the output shaft of the torsion motor 4 is fixed to the driving wheel 3, the driving wheel 3 is engaged with the idler wheel 2, the idler wheel 2 is engaged with the driven wheel 1, and the driven wheel 1 and the clamping device move The end 200 is fixed.
  • the rotation of the driven wheel drives the chuck of the movable end to rotate, which in turn drives one end of the workpiece, and the chuck at the other end of the workpiece is restricted by the torque limiter 27 and the electromagnetic clutch 28;
  • the bending unit includes a bending A support 7 is provided with a threaded hole at the lower portion of the curved support 7 which cooperates with the second screw rod 16 which rotates coaxially with the manual worm wheel 15 so that the manual worm wheel can be rotated.
  • Drive the bending support 7 to move in the axial direction of the second lead screw, thereby adjusting the stress point of the workpiece;
  • a through hole is provided above the bending support 7, a bearing is arranged in the through hole, and the bending chuck 5 is fixed on the chuck base.
  • the chuck seat 6 is disposed in the bearing hole, and four bending claws are provided on the bending chuck 5, one of which is a driving claw 503.
  • Direction movement; the driving mode is manual, that is, manual Hand driven by a screw nut block axially movable on the drive pawl, the drive pawl is provided on the nut block, the structure is similar to the lathe chuck, but is merely a pawl driving movement;
  • the vibration of the vibration unit is caused by the eccentric rotation of the workpiece 9 caused by the bending unit described above.
  • a spoke tension pressure sensor 20 is provided between the tension and compression support 13 of the movable end 200 and the workpiece 9 to convert the amount of pressure into an electrical signal for detecting tension or pressure.
  • a laser displacement sensor 19 is also used to measure the tension and compression of the workpiece 9 When the axial length changes, the laser displacement sensor 19 is fixed on a support frame 8 which is fixed on the workbench 10; the torque sensor 11 is provided on the fixed end 100 of the clamping device and is used to detect the occurrence of torsion
  • the micro-displacement sensor 17 is provided on the bending chuck 5 for detecting bending deflection; the vibration is measured by a scanning laser Doppler vibrometer 18, which is arranged on a support
  • the bearing 8 is provided in the tension and compression support 13 of the fixed end 100 and the movable end 200 of the clamping device, and the tension and compression connection shafts 12 at both ends are fixed on the bearing 29.
  • the bearing 29 mainly bears axial tensile or compressive force and can realize rotary motion. Therefore, a thrust spherical roller bearing with better axial load capacity is selected to simulate the rotation shaft bearing the tensile and compressive load in actual working conditions. Force Condition; the other end of the tension and compression of the connecting shaft 14 is fixed to the clamp body, clamp the workpiece 9 is fixed at two specific 14 12.
  • the manual worm gear 15 meshes with the manual worm 25, and a handle 26 is provided at one end of the manual worm 25 to facilitate manual adjustment of the bending loading point and achieve loading at any axial position.
  • the bending chuck 5 is provided with four jaws, one of which is a driving jaw 503, and the driving jaw 503 can move in the radial direction of the bending chuck 5; the positioning jaw corresponding to the driving jaw 503 is The positioning surfaces of the claws 501, the driving claws 503, and the positioning claws 501 match the shape of the workpiece 9. The remaining two are the balance claws 502, and a movable balance block is provided on the balance claws 502 to offset the bending chuck 5.
  • the driving of the driving pawl 503 may also be the rotation of a square hole on the side of the bending chuck 5 by an electric wrench, and the bevel gear 505 and the bevel gear 505 inside the bending chuck 5 mesh with the lower part of the dish gear 504.
  • the upper part of the gear 504 is provided with a spiral-shaped tooth profile 506 which meshes with the rack 507 at the lower part of the driving claw, and the spiral gear-shaped tooth 506 above the dish-shaped gear 504 and the lower part of the driving claw
  • the self-locking effect of the rack 507 prevents the driving claw 503 from loosening after bending the workpiece 9.
  • the bending chuck 5 and the chuck base 6 are provided with through holes to pass through the workpiece 9, and the diameter of the through holes can meet Limit value of bending deformation of the workpiece 9.
  • the positioning claw 501 clamps the workpiece.
  • a detachable expansion sleeve is provided on the outside of the claw to maintain the deformation caused by bending. The diameter of the expansion sleeve Only determined by the size of the jaws and the workpiece 9.
  • An electromagnetic clutch 28 is provided on the tension-compression connection shaft 12 of the fixed end 100 of the clamping device, and the electromagnetic clutch 28 limits the rotation of the tension-compression connection shaft 12 when the electromagnetic clutch 28 is closed; a torque limiter is also provided on the tension-compression connection shaft 12 of the fixed end 100. 27.
  • One side of the torque limiter 27 is connected to the workpiece 9, and the other side is connected to a torque sensor 11.
  • the torque sensor 11 is connected to an electromagnetic clutch 28, and the electromagnetic clutch 28 is fixed to the table 10.
  • the electromagnetic clutch 28 When the static torsion test is performed, the electromagnetic clutch 28 is connected, the torque limiter 27 does not work, the rotary electric machine 4 is connected to the reducer, and the output shaft of the reducer implements torque loading to the workpiece 9 through the gear pair; when exploring the dynamic performance, based on the above actions
  • the torque threshold of the torque limiter 27 is adjusted. When the load exceeds the threshold, the torque of the workpiece 9 remains unchanged, and the rotational movement after torsion is realized.
  • the tension-compression connection shaft 12 of the movable end 200 of the clamping device is composed of two parts, namely a bearing connection shaft 121 and a workpiece connection shaft 122.
  • the spoke tension pressure sensor 20 is disposed on the bearing connection shaft 121 and the workpiece connection shaft 122.
  • a slip ring 32 device is used to solve this problem.
  • the slip ring 32 is fixed on the spoke tension pressure sensor 20, the rotor output line of the slip ring 32 is connected to the lead of the spoke tension pressure sensor 20, and the stator output line of the slip ring 32 is connected to a host computer.
  • One end of the workpiece connection shaft 122 is provided with a thread, and the thread is matched with the rotation chuck 30; the rotation chuck 30 is rotatably connected with the clamp member 14; the clamp member 14 has a wedge block 31 inside, and the outside of the wedge block 31 It is in contact with the inner side of the clamp 14; the rotation of the rotary chuck 30 drives the clamp 14 to move axially, and the workpiece connecting shaft 122 presses the wedge 31 to clamp the workpiece 9; due to the self-locking property of the wedge structure With the increase of the load during the stretching process, the clamping force is also increased, and the reliability of the clamping is guaranteed; a groove with a shape similar to the clamping portion of the workpiece 9 is processed on the inner side of the wedge block 31, and can be Under complicated working conditions such as rotary motion and bending and torsion loading, the coaxiality of the workpiece is better ensured.
  • Miniature displacement sensor —Shenzhen Siming Technology Co., Ltd., SKRC miniature displacement sensor (built-in spring type), model: SKRC-50mm
  • Torque sensor Hefei Broadcom Electronic Technology Co., Ltd., TH48031A-200N.m (500r / min) -K1-V2-B
  • Torque limiter Shanghai Haineng Transmission Machinery Co., Ltd., TL-CX torque limiter, TL700-2CX
  • Electromagnetic clutch Tianjin Machine Tool Electric Co., Ltd., DLM3 series wet multi-plate electromagnetic clutch

Abstract

L'invention concerne une plate-forme de test de performances globales pour la tension axiale, le pliage, la torsion et la vibration d'un matériau composite, comprenant une unité de tension, une unité de flexion, une unité de torsion et une unité de vibration. Une extrémité fixe (100) d'un dispositif de serrage est fixée sur un établi (10) ; une extrémité mobile (200) du dispositif de serrage est fixée sur l'unité de torsion ; le chargement de pliage d'un échantillon de test est réalisé par l'unité de pliage ; la vibration de l'unité de vibration est provoquée par la rotation excentrique d'une pièce à travailler provoquée par l'unité de pliage. La plate-forme de test de performances intègre des tests statiques de trois chargements à charge unique et de chargement composite à charges multiples de tension, pliage et torsion et peut réaliser un mouvement rotatif dans n'importe quelle combinaison de tension, de pliage et de torsion, fournit une plate-forme de test efficace pour rechercher l'influence de multiples charges sur les performances d'un matériau et une règle de changement d'autres paramètres de performance et résout les problèmes en l'état de la technique de fonctionnement complexe, de mauvaise compatibilité et analogues.
PCT/CN2018/090076 2018-06-05 2018-06-06 Plate-forme de test de performances globales pour la tension axiale, le pliage, la tension et la vibration d'un matériau composite WO2019232710A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019565524A JP6900068B2 (ja) 2018-06-05 2018-06-06 複合材料の軸引張・圧縮、曲げ、ねじり、振動の総合性能試験台

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810568936.2 2018-06-05
CN201810568936.2A CN108982212B (zh) 2018-06-05 2018-06-05 一种复合材料轴拉压、弯曲、扭转、振动综合性能测试平台

Publications (1)

Publication Number Publication Date
WO2019232710A1 true WO2019232710A1 (fr) 2019-12-12

Family

ID=64540607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090076 WO2019232710A1 (fr) 2018-06-05 2018-06-06 Plate-forme de test de performances globales pour la tension axiale, le pliage, la tension et la vibration d'un matériau composite

Country Status (3)

Country Link
JP (1) JP6900068B2 (fr)
CN (1) CN108982212B (fr)
WO (1) WO2019232710A1 (fr)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106370521A (zh) * 2016-11-18 2017-02-01 盐城工学院 一种原位拉压测试平台及观测系统
CN106932264A (zh) * 2017-04-26 2017-07-07 济南科汇试验设备有限公司 一种可实现拉压负荷过程中扭转的复合测试装置
CN111474321A (zh) * 2020-05-20 2020-07-31 山东理工职业学院 一种汽车轴检测装置及检测方法
CN112162117A (zh) * 2020-08-21 2021-01-01 西安环宇芯微电子有限公司 一种大功率、宽范围dc/dc测试用载放装置
CN113145502A (zh) * 2021-04-26 2021-07-23 河南工学院 一种锂电池内压测量系统
CN113237737A (zh) * 2021-06-16 2021-08-10 中国石油大学(华东) 一种柔性复合管道内压、拉伸、扭转、弯曲载荷综合测试装置
CN113465919A (zh) * 2021-06-21 2021-10-01 江苏行星重载齿轮箱有限公司 一种液压驱动行星架静态试验台
CN113639950A (zh) * 2021-09-10 2021-11-12 西北工业大学 一种单杆抽拉式表征离心力的振动台测试装置和测试方法
CN113866014A (zh) * 2021-09-28 2021-12-31 南京林业大学 一种自动换辊的弯曲试验机
CN114062140A (zh) * 2021-11-07 2022-02-18 中国兵器工业第五九研究所 一种针对压电薄膜的应力耦合试验装置
CN114088043A (zh) * 2021-11-02 2022-02-25 大连长丰实业总公司 一种轴承固定后摆动角度检查装置
CN114088530A (zh) * 2021-11-25 2022-02-25 中国兵器工业第五九研究所 一种自然环境-应力协同试验装置
CN114166668A (zh) * 2021-11-19 2022-03-11 广东石油化工学院 一种金属材料疲劳度测试工作台用快拆装载机
CN114646540A (zh) * 2022-05-19 2022-06-21 徐州宏武纳米科技有限公司 一种纳米材料拉扭强度测试装置及其使用方法
CN114749865A (zh) * 2022-06-15 2022-07-15 南通特美特工具有限公司 一种具有定位功能的电机转子焊接工装组件
CN115236071A (zh) * 2022-06-11 2022-10-25 东莞职业技术学院 一种低维光电材料的性能测试装置
CN115235984A (zh) * 2022-09-23 2022-10-25 航天晨光股份有限公司 一种金属软管输出端单自由度测试装置
CN115343153A (zh) * 2022-04-06 2022-11-15 深圳市雷诺表业有限公司 一种金属表带质量测试机及测试方法
CN116399724A (zh) * 2023-06-08 2023-07-07 成都理工大学 一种模拟断层走滑错动与扭转效应耦合的试验系统及方法
CN116499880A (zh) * 2023-06-27 2023-07-28 天津津贝尔建筑工程试验检测技术有限公司 一种建筑材料性能检测设备
CN116609391A (zh) * 2023-06-19 2023-08-18 哈尔滨学院 一种聚合物材料电学性能测试装置
CN117129072A (zh) * 2023-10-25 2023-11-28 创新精密(苏州)有限公司 一种转轴振动检测装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110333151A (zh) * 2019-06-19 2019-10-15 泉州市三兴机械工贸有限公司 一种扭力胶芯的测试方法
CN110303317A (zh) * 2019-07-19 2019-10-08 河南福尔盾消防科技有限公司 细水雾阀门安装装置
CN110487654A (zh) * 2019-08-20 2019-11-22 深圳市铠盛通光电科技有限公司 特种通信光缆扭转试验系统
CN110595913A (zh) * 2019-10-14 2019-12-20 桂林电子科技大学 一种电路板焊点弯振应力测量装置及方法
CN112903469B (zh) * 2019-11-19 2024-04-26 中国石油化工股份有限公司 一种用于井下工具的测试装置
CN111551333A (zh) * 2020-06-12 2020-08-18 苏州苏试试验集团股份有限公司 一种可加载拉力或压力及振动的复合式试验装置
CN112255126B (zh) * 2020-09-24 2023-12-12 重庆八达通交通设施有限公司 一种道路交通警示柱碾压弯折测试设备
CN112414868A (zh) * 2020-11-10 2021-02-26 亿嘉和科技股份有限公司 一种线束测试装置
CN112577825A (zh) * 2020-11-25 2021-03-30 哈尔滨工程大学 深海环境下柔顺性管缆的易操作式力学性能测试装置
CN113203651B (zh) * 2021-03-19 2022-05-31 国家海洋局南海调查技术中心(国家海洋局南海浮标中心) 一种浮标锚链磨损测试用试验台
CN113252449B (zh) * 2021-04-14 2022-06-14 杭州电子科技大学 一种焊线式db连接器焊锡接头失效测试方法及装置
CN113252444B (zh) * 2021-05-16 2024-02-06 湖南中环高新材料技术有限公司 一种建筑新材料检测装置
CN113295446A (zh) * 2021-05-24 2021-08-24 浏阳市银丰机械制造有限公司 一种具有稳定夹持机构的机械自动化测试设备及其使用方法
CN113267400A (zh) * 2021-05-26 2021-08-17 上海探能实业有限公司 一种水平式压力扭转测试装置和系统
CN114235362B (zh) * 2021-12-02 2024-04-26 三一重能股份有限公司 风电叶片部件的测试系统
CN114166516B (zh) * 2021-12-06 2022-12-27 北京化工大学 一种圆弧端齿连接的转子系统的应力试验装置和系统
CN114178878B (zh) * 2021-12-31 2023-01-24 天津市炬臻机械配件有限公司 一种工件外壁加工使用的内孔支撑结构
CN114309183B (zh) * 2022-01-12 2023-04-25 浙江大学 一种矩形管空间弯曲可变径成形装置
CN114563285A (zh) * 2022-02-10 2022-05-31 郑州旭飞光电科技有限公司 一种超薄玻璃柔韧性测试装置和方法
CN114509226B (zh) * 2022-04-06 2022-07-22 天津航天瑞莱科技有限公司 高低温环境下的金属橡胶轴承弯曲刚度试验装置
CN114659875B (zh) * 2022-05-23 2022-08-23 徐州安邦信汽车电机科技有限公司 一种基于离心运动电机主轴材料特性测验装置
CN115711809B (zh) * 2022-11-15 2023-08-18 山东科技大学 复合载荷下的全尺寸岩体锚杆锚固性能的试验系统及方法
CN115855685B (zh) * 2022-12-23 2024-02-20 宁波(北仑)中科海西产业技术创新中心 一种弹性体弯曲性能测试设备
CN116296904B (zh) * 2023-02-22 2023-10-31 廊坊市阳光建设工程质量检测有限公司 一种现场原位轴压检测混凝土抗压强度的装置及使用方法
CN116660011A (zh) * 2023-05-26 2023-08-29 烟台建正建设工程检测有限公司 一种建筑钢结构强度检测仪
CN117288595B (zh) * 2023-11-27 2024-02-02 天津军泰承顺机械制造有限公司 一种销轴强度检测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4719804A (en) * 1985-08-19 1988-01-19 Tokyo Institute Of Technology Apparatus for testing performance of clamp screw in elastic and plastic regions
CN101144764A (zh) * 2007-09-11 2008-03-19 中北大学 动静态力学综合试验台
CN103389243A (zh) * 2013-07-31 2013-11-13 吉林大学 拉伸-弯曲-扭转多载荷下的材料微观力学性能测试平台
CN103512803A (zh) * 2013-09-26 2014-01-15 吉林大学 多载荷多物理场耦合材料微观力学性能原位测试仪器
CN203643254U (zh) * 2013-08-28 2014-06-11 吉林大学 基于拉/压、弯曲、疲劳复合载荷材料性能原位测试平台
CN104075943A (zh) * 2014-06-30 2014-10-01 天地科技股份有限公司 一种用于测试锚杆综合力学性能的试验台及测试方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50142279A (fr) * 1974-05-02 1975-11-15
JPS51111376A (en) * 1975-03-26 1976-10-01 Nasu Eng Kk Apparatus for sychronous detection of clutch
JPS5612593Y2 (fr) * 1976-02-21 1981-03-24
JPS5917132A (ja) * 1982-07-21 1984-01-28 Sumitomo Metal Ind Ltd 鋼管の複合試験装置
JPH0726888B2 (ja) * 1984-10-19 1995-03-29 動力炉・核燃料開発事業団 管継手信頼性試験方法及び装置
JPH057539Y2 (fr) * 1987-01-28 1993-02-25
JP3785785B2 (ja) * 1998-02-04 2006-06-14 ソニー株式会社 材料物性測定装置
JP2010025573A (ja) * 2008-07-15 2010-02-04 Toshiba Corp 曲げ破壊試験方法及び装置
CN101957286B (zh) * 2010-04-16 2012-07-04 江苏大学 一种新型材料试验机
CN103499483B (zh) * 2013-09-26 2016-01-20 吉林大学 多载荷多物理场耦合材料微观性能原位测试试验机
CN103528887B (zh) * 2013-10-24 2016-08-17 吉林大学 原位拉/压-扭转复合载荷材料微观力学测试平台
KR101661691B1 (ko) * 2014-06-03 2016-10-04 주식회사 리모템 겔보 굴곡 시험기
CN107941624B (zh) * 2017-12-13 2023-12-22 吉林大学 高温高频材料力学性能原位测试装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4719804A (en) * 1985-08-19 1988-01-19 Tokyo Institute Of Technology Apparatus for testing performance of clamp screw in elastic and plastic regions
CN101144764A (zh) * 2007-09-11 2008-03-19 中北大学 动静态力学综合试验台
CN103389243A (zh) * 2013-07-31 2013-11-13 吉林大学 拉伸-弯曲-扭转多载荷下的材料微观力学性能测试平台
CN203643254U (zh) * 2013-08-28 2014-06-11 吉林大学 基于拉/压、弯曲、疲劳复合载荷材料性能原位测试平台
CN103512803A (zh) * 2013-09-26 2014-01-15 吉林大学 多载荷多物理场耦合材料微观力学性能原位测试仪器
CN104075943A (zh) * 2014-06-30 2014-10-01 天地科技股份有限公司 一种用于测试锚杆综合力学性能的试验台及测试方法

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106370521A (zh) * 2016-11-18 2017-02-01 盐城工学院 一种原位拉压测试平台及观测系统
CN106932264A (zh) * 2017-04-26 2017-07-07 济南科汇试验设备有限公司 一种可实现拉压负荷过程中扭转的复合测试装置
CN106932264B (zh) * 2017-04-26 2023-09-12 济南科汇试验设备有限公司 一种可实现拉压负荷过程中扭转的复合测试装置
CN111474321B (zh) * 2020-05-20 2022-06-28 山东理工职业学院 一种汽车轴检测装置及检测方法
CN111474321A (zh) * 2020-05-20 2020-07-31 山东理工职业学院 一种汽车轴检测装置及检测方法
CN112162117A (zh) * 2020-08-21 2021-01-01 西安环宇芯微电子有限公司 一种大功率、宽范围dc/dc测试用载放装置
CN112162117B (zh) * 2020-08-21 2024-03-08 西安环宇芯微电子有限公司 一种大功率、宽范围dc/dc测试用载放装置
CN113145502A (zh) * 2021-04-26 2021-07-23 河南工学院 一种锂电池内压测量系统
CN113145502B (zh) * 2021-04-26 2022-09-23 河南工学院 一种锂电池内压测量系统
CN113237737A (zh) * 2021-06-16 2021-08-10 中国石油大学(华东) 一种柔性复合管道内压、拉伸、扭转、弯曲载荷综合测试装置
CN113237737B (zh) * 2021-06-16 2022-11-29 中国石油大学(华东) 一种柔性复合管道内压、拉伸、扭转、弯曲载荷综合测试装置
CN113465919A (zh) * 2021-06-21 2021-10-01 江苏行星重载齿轮箱有限公司 一种液压驱动行星架静态试验台
CN113465919B (zh) * 2021-06-21 2023-09-22 江苏行星重载齿轮箱有限公司 一种液压驱动行星架静态试验台
CN113639950B (zh) * 2021-09-10 2023-11-28 西北工业大学 一种单杆抽拉式表征离心力的振动台测试装置和测试方法
CN113639950A (zh) * 2021-09-10 2021-11-12 西北工业大学 一种单杆抽拉式表征离心力的振动台测试装置和测试方法
CN113866014A (zh) * 2021-09-28 2021-12-31 南京林业大学 一种自动换辊的弯曲试验机
CN114088043A (zh) * 2021-11-02 2022-02-25 大连长丰实业总公司 一种轴承固定后摆动角度检查装置
CN114088043B (zh) * 2021-11-02 2023-12-19 大连长丰实业总公司 一种轴承固定后摆动角度检查装置
CN114062140B (zh) * 2021-11-07 2023-08-18 中国兵器工业第五九研究所 一种针对压电薄膜的应力耦合试验装置
CN114062140A (zh) * 2021-11-07 2022-02-18 中国兵器工业第五九研究所 一种针对压电薄膜的应力耦合试验装置
CN114166668A (zh) * 2021-11-19 2022-03-11 广东石油化工学院 一种金属材料疲劳度测试工作台用快拆装载机
CN114166668B (zh) * 2021-11-19 2023-08-01 广东石油化工学院 一种金属材料疲劳度测试工作台用快拆装载机
CN114088530B (zh) * 2021-11-25 2022-05-20 中国兵器工业第五九研究所 一种自然环境-应力协同试验装置
CN114088530A (zh) * 2021-11-25 2022-02-25 中国兵器工业第五九研究所 一种自然环境-应力协同试验装置
CN115343153A (zh) * 2022-04-06 2022-11-15 深圳市雷诺表业有限公司 一种金属表带质量测试机及测试方法
CN114646540A (zh) * 2022-05-19 2022-06-21 徐州宏武纳米科技有限公司 一种纳米材料拉扭强度测试装置及其使用方法
CN115236071B (zh) * 2022-06-11 2024-01-23 东莞职业技术学院 一种低维光电材料的性能测试装置
CN115236071A (zh) * 2022-06-11 2022-10-25 东莞职业技术学院 一种低维光电材料的性能测试装置
CN114749865B (zh) * 2022-06-15 2022-09-02 南通特美特工具有限公司 一种具有定位功能的电机转子焊接工装组件
CN114749865A (zh) * 2022-06-15 2022-07-15 南通特美特工具有限公司 一种具有定位功能的电机转子焊接工装组件
CN115235984A (zh) * 2022-09-23 2022-10-25 航天晨光股份有限公司 一种金属软管输出端单自由度测试装置
CN115235984B (zh) * 2022-09-23 2023-01-31 航天晨光股份有限公司 一种金属软管输出端单自由度测试装置
CN116399724B (zh) * 2023-06-08 2023-08-11 成都理工大学 一种模拟断层走滑错动与扭转效应耦合的试验系统及方法
CN116399724A (zh) * 2023-06-08 2023-07-07 成都理工大学 一种模拟断层走滑错动与扭转效应耦合的试验系统及方法
CN116609391A (zh) * 2023-06-19 2023-08-18 哈尔滨学院 一种聚合物材料电学性能测试装置
CN116609391B (zh) * 2023-06-19 2023-11-24 哈尔滨学院 一种聚合物材料电学性能测试装置
CN116499880B (zh) * 2023-06-27 2023-09-05 天津津贝尔建筑工程试验检测技术有限公司 一种建筑材料性能检测设备
CN116499880A (zh) * 2023-06-27 2023-07-28 天津津贝尔建筑工程试验检测技术有限公司 一种建筑材料性能检测设备
CN117129072A (zh) * 2023-10-25 2023-11-28 创新精密(苏州)有限公司 一种转轴振动检测装置
CN117129072B (zh) * 2023-10-25 2024-02-02 创新精密(苏州)有限公司 一种转轴振动检测装置

Also Published As

Publication number Publication date
CN108982212B (zh) 2020-07-31
CN108982212A (zh) 2018-12-11
JP6900068B2 (ja) 2021-07-07
JP2020528135A (ja) 2020-09-17

Similar Documents

Publication Publication Date Title
WO2019232710A1 (fr) Plate-forme de test de performances globales pour la tension axiale, le pliage, la tension et la vibration d'un matériau composite
CN108037017B (zh) 一种基于伺服电机的齿轮丝杠式板材变比例加载双拉试验系统
CN109142090B (zh) 一种拉压弯扭多轴加载疲劳试验装置
CN100586644C (zh) 汽车主减速器预紧装置及预紧方法
CN205483567U (zh) 一种曲沟球轴承性能试验装置
CN212932208U (zh) 一种拉扭组合加载试验机
CN103934723A (zh) 一种滚珠丝杠预紧力和预拉伸量可控调节和测量装置
CN106568559B (zh) 一种柔性轴承扭刚度测量装置
CN205808825U (zh) 一种电子拉压试验机
CN108918297A (zh) 双轴拉伸-扭转复合载荷力学性能测试装置
CN204008309U (zh) 一种拉压-扭转复合加载试验机
CN201449357U (zh) 数显式钢帘线拉力试验装置
CN108375450B (zh) 一种扭矩扳子检定装置
CN208847603U (zh) 双轴拉伸-扭转复合载荷力学性能测试装置
CN103792147A (zh) 液压式材料万能试验机
CN105729471A (zh) 手动变速器换档性能下线检测装置
CN109877861B (zh) 一种机器人手指机构
CN102435511B (zh) 秸秆测扭装置
CN106923353A (zh) 杏核挤压开口装置
RU176860U1 (ru) Установка для испытания на кручение
CN112964414A (zh) 工业机器人静态柔顺性测量的辅助加载装置
CN204758182U (zh) 一种集成扭矩检测的动力驱动装置
CN207976242U (zh) 一种压紧杆标定加载测试装置
CN204514609U (zh) 一种用于汽车零部件疲劳测试的试验装置
CN209400345U (zh) 适用于万能试验机的条状农产品物料测扭装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019565524

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921578

Country of ref document: EP

Kind code of ref document: A1