WO2019230688A1 - 異形断面繊維とその製造方法ならびに異形断面繊維を含む不織布及び吸遮音材 - Google Patents

異形断面繊維とその製造方法ならびに異形断面繊維を含む不織布及び吸遮音材 Download PDF

Info

Publication number
WO2019230688A1
WO2019230688A1 PCT/JP2019/021009 JP2019021009W WO2019230688A1 WO 2019230688 A1 WO2019230688 A1 WO 2019230688A1 JP 2019021009 W JP2019021009 W JP 2019021009W WO 2019230688 A1 WO2019230688 A1 WO 2019230688A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
cross
section
sound absorption
mass
Prior art date
Application number
PCT/JP2019/021009
Other languages
English (en)
French (fr)
Inventor
達彦 稲垣
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN201980035303.8A priority Critical patent/CN112218977A/zh
Priority to JP2019531489A priority patent/JPWO2019230688A1/ja
Publication of WO2019230688A1 publication Critical patent/WO2019230688A1/ja
Priority to US17/104,280 priority patent/US20210079559A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/018Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the shape
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/253Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43912Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres fibres with noncircular cross-sections
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/016Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/8409Sound-absorbing elements sheet-shaped
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters

Definitions

  • the present invention relates to a modified cross-section fiber, a method for producing a modified cross-section fiber, a nonwoven fabric including a modified cross-section fiber, and a sound absorbing and insulating material.
  • Ultrafine fibers having a single fiber diameter of several micrometers are widely used as wiping cloths and suede-like fabrics because they have a delicate and soft texture when used as fabrics. On the other hand, it is used for industrial applications such as filters and sound-absorbing materials because of its collection effect and high acoustic resistance due to its large specific surface area.
  • a technique for producing the microfiber there is a method of selectively removing the sea component of the sea-island type composite fiber containing the hardly soluble island component in the sea component composed of the easily soluble polymer (Patent Document 1).
  • Patent Document 2 a modified cross-section fiber may be used for the purpose of improving the rigidity of the nonwoven fabric.
  • Patent Document 2 since it aims at improving the sound absorption and insulation performance by maintaining the thickness in the rigidity improvement of a nonwoven fabric, the irregular cross-section fiber of a large fineness is used.
  • the nonwoven fabric using irregular cross-section fibers having a large fineness in Patent Document 2 is not necessarily sufficient in sound absorption and insulation performance.
  • the method described in Patent Document 1 requires a step of removing sea components with a solubilizer after the production of a sea-island composite fiber, and there is a limit to the products that can be applied.
  • the influence of foreign matter in the spinning dope and resistance of the spinning guide is large, and yarn breakage is likely to occur, resulting in stable production.
  • the influence of yarn breakage becomes large, and the production of a small-diameter irregular spinneret becomes a problem.
  • An object of the present invention is to provide a modified cross-section fiber having a small fineness, a nonwoven fabric using the same, and a sound absorbing and insulating material.
  • the gist of the present invention is as follows.
  • the single fiber fineness is 0.01 to 1.0 dtex, and the profile ( ⁇ ) calculated by the following formula (1) in the fiber cross section perpendicular to the fiber axis is 1.5 to 4.0.
  • P / (4 ⁇ A) 1/2 (1)
  • P is the peripheral length (unit: ⁇ m) in the fiber cross section
  • A is the area (unit: ⁇ m 2 ) of the fiber cross section.
  • the fiber raw material is discharged from discharge holes having a discharge hole area of 100 to 3000 ⁇ m 2 and a degree of deformation ( ⁇ ′) calculated by the following formula (2) of the discharge hole shape of 1.5 to 4.0.
  • ⁇ ′ P ′ / (4 ⁇ A ′) 1/2 (2)
  • P ′ is the perimeter of the discharge hole shape (unit: ⁇ m)
  • a ′ is the discharge hole area (unit: ⁇ m 2 ).
  • the nonwoven fabric according to [9] having a basis weight of 100 to 500 g / m 2 and a thickness of 3 to 30 mm.
  • a sound absorbing and insulating material comprising 10% by mass or more of the modified cross-section fiber according to any one of [1] to [7].
  • the modified cross-section fiber of the present invention is suitable as a nonwoven fabric material excellent in sound absorption performance and sound insulation performance (sound insulation performance).
  • the method for producing a modified cross-section fiber of the present invention can produce a modified cross-section fiber having a small fineness by direct spinning.
  • the nonwoven fabric of the present invention is excellent in sound absorption and insulation performance.
  • the sound absorbing and insulating material of the present invention is excellent in sound absorbing and insulating performance.
  • transmission loss means “normal incidence transmission loss”.
  • the normal incident transmission loss is measured by a method according to ASTM E2611.
  • “Transmission loss at a frequency of 400 to 5000 Hz” means “average value of normal incidence transmission loss at 400 to 5000 Hz”. The same applies to transmission loss in other frequency bands.
  • “sound absorption rate” means “normal incidence sound absorption rate”.
  • the normal incident sound absorption coefficient is measured by a method according to JIS A 1405-2. A sound absorption rate of 1 indicates that all sounds are absorbed, and a value of 0 indicates that all sounds are reflected.
  • “Sound absorption coefficient at a frequency of 400 to 1250 Hz” means “average value of sound absorption coefficient at 400 to 1250 Hz”. The same applies to the sound absorption coefficient in other frequency bands.
  • the irregular cross-section fiber of this embodiment has a single fiber fineness of 0.01 to 1.0 dtex. If the single fiber fineness is 0.01 dtex or more, the handleability of the fibers is good, the spinnability is good, and the production cost is not too high. If it is 1.0 dtex or less, the sound absorption and insulation performance is excellent. From these viewpoints, the single fiber fineness is more preferably 0.05 to 0.8 dtex, and further preferably 0.1 to 0.6 dtex.
  • the deformed cross-section fiber of this embodiment has a deformity ⁇ of 1.5 to 4.0.
  • the irregularity ⁇ is preferably 1.7 to 3.7, more preferably 1.9 to 3.5.
  • the modified cross-section fiber of this embodiment preferably has a fiber cross-sectional area (hereinafter also referred to as “cross-sectional area”) of 0.5 to 100 ⁇ m 2 . If the cross-sectional area is 0.5 ⁇ m 2 or more, the handleability of the fibers is good, the spinnability is good, and the production cost is not too high. When the cross-sectional area is 100 ⁇ m 2 or less, the sound absorbing and insulating performance is excellent. From these viewpoints, the cross-sectional area is more preferably 1.5 to 75 ⁇ m 2 , and further preferably 5 to 50 ⁇ m 2 .
  • the modified cross-section fiber of this embodiment preferably has a perimeter of the fiber cross section of 5 to 250 ⁇ m.
  • the perimeter is 5 ⁇ m or more, the handleability of the fiber is good, the spinnability is good, and the production cost is not too high. If the perimeter is 250 ⁇ m or less, the sound absorbing and insulating performance is excellent. From these viewpoints, the perimeter is more preferably 8 to 200 ⁇ m, and further preferably 30 to 150 ⁇ m.
  • the cross-sectional shape of the irregular cross-section fiber of this embodiment is not particularly limited as long as the irregularity ⁇ is in the range of 1.5 to 4.0, but it is preferably a multi-leaf type.
  • the multileaf type means a shape having convex portions at intervals in the circumferential direction. For example, a Y-shape having three convex portions, a cross shape having four convex portions, a six-leaf shape having six convex portions, an eight-leaf shape having eight convex portions, or 3 to 8 curved convex portions.
  • the individual wind turbine type is preferable in that the perimeter length P / the cross-sectional area A is likely to be large and good spinnability is easily obtained.
  • the material of the modified cross-section fiber of this embodiment is not particularly limited, but synthetic fiber such as polyester fiber, polypropylene fiber, nylon fiber, aramid fiber, acrylic fiber, semi-synthetic fiber such as acetate, promix, rayon, cupra, etc. Fibers can be suitably used.
  • polyester fiber, polypropylene fiber, nylon fiber, aramid fiber, acrylic fiber, or rayon fiber is preferable.
  • acrylic fibers, nylon fibers or polypropylene fibers having a small specific gravity are suitable from the viewpoint of weight reduction, and acrylic fibers are more suitable from the viewpoint of sound absorption and productivity of fine fiber.
  • the modified cross-section fiber of this embodiment has a sound absorption coefficient (hereinafter also referred to as “sound absorption coefficient (I)”) of 0.40 or more at a frequency of 400 to 1250 Hz, as measured by the following sound absorption and insulation performance test (I). It is preferable.
  • sound absorption coefficient (I) is 0.40 or more, it becomes easy to prevent engine noise and road noise.
  • the wavelength of engine sound and road noise is around 1000 Hz.
  • the sound absorption coefficient (I) is preferably 0.42 to 1, and more preferably 0.45 to 1.
  • the modified cross-section fiber of this embodiment has a sound absorption coefficient (hereinafter also referred to as “sound absorption coefficient (II)”) of 0.17 or more at a frequency of 400 to 1250 Hz, as measured by the following sound absorption and insulation performance test (II). It is preferable.
  • sound absorption coefficient (II) is 0.17 or more, it becomes easy to prevent engine noise and road noise.
  • the wavelength of engine sound and road noise is around 1000 Hz.
  • the sound absorption coefficient (II) is preferably 0.18 to 1, and more preferably 0.19 to 1.
  • the irregular cross-section fiber of the present embodiment has a transmission loss (hereinafter also referred to as “transmission loss (III)”) of 5.1 dB or more at a frequency of 400 to 5000 Hz, as measured by the following sound absorption and insulation performance test (III). Preferably there is. If the transmission loss (III) is 5.1 dB or more, the sound blocking effect is excellent.
  • the upper limit of the transmission loss (III) is not particularly limited and is preferably as high as possible. However, if it is 20 dB, the sound absorbing and insulating effect is sufficient.
  • the transmission loss (III) is more preferably 5.3 dB or more, further preferably 5.5 dB or more, and particularly preferably 5.7 dB or more.
  • the transmission loss (III) is preferably 5.1 to 20 dB, more preferably 5.3 to 20 dB, further preferably 5.5 to 20 dB, and particularly preferably 5.7 to 20 dB.
  • the transmission loss (III) may be 5.1 to 15 dB, 5.3 to 15 dB, 5.5 to 15 dB, or 5.7 to 15 dB.
  • the transmission loss (III) may be 5.1 to 10 dB, 5.3 to 10 dB, 5.5 to 10 dB, or 5.7 to 10 dB.
  • a modified cross-section fiber to be tested is prepared by cutting so that the fiber length is 40 mm. Separately, a polyester fused fiber having a single fiber fineness of 2.2 dtex, a fiber length of 51 mm, and a melting point of 110 ° C. is prepared.
  • a non-woven fabric for test having a thickness of 10 mm and a basis weight of 480 g / m 2 is mixed with 70% by mass of a modified cross-section fiber having a fiber length of 40 mm and 30% by mass of the polyester fused fiber, heated at 170 ° C. for 20 minutes, and then cooled. Is made. The transmission loss and sound absorption coefficient at a frequency of 400 to 5000 Hz of the obtained nonwoven fabric for test are measured, and the average value is obtained.
  • the sound absorption rate at a frequency of 400 to 5000 Hz which is measured in the sound absorption and insulation performance test (III), is preferably 0.2 to 1 and is preferably 0.3 to 1 from the viewpoint of the sound absorption effect and the shape of the sound absorbing material. More preferably.
  • the irregular cross-section fiber of the first embodiment can be produced by a method in which a fiber material is obtained by discharging a fiber raw material from a discharge hole, and the single fiber fineness of the fiber is 0.01 to 1.0 dtex. Specifically, the fibrous material is obtained by discharging the fiber raw material from the discharge hole of the spinning nozzle into the coagulation bath, and the single fiber fineness of the fibrous material is adjusted as necessary. The single fiber fineness of the fibrous material can be adjusted by a method of stretching the fibrous material.
  • the discharge hole it is preferable to design the discharge hole so that the cross-sectional shape of the fibrous material is the same as or larger than the cross-sectional shape of the deformed cross-sectional fiber to be obtained.
  • the discharge hole area (opening area) is 100 to 3000 ⁇ m 2
  • the degree of deformation ⁇ ′ calculated by the following equation (2) of the discharge hole shape is 1.5 to 4.0.
  • ⁇ ′ P ′ / (4 ⁇ A ′) 1/2 (2)
  • P ′ is the perimeter of the discharge hole shape (unit: ⁇ m)
  • a ′ is the area of the discharge hole (unit: ⁇ m 2 ).
  • the discharge hole area is 100 ⁇ m 2 or more, a modified cross-section fiber having a single fiber fineness of 0.01 dtex or more is easily obtained. If the discharge hole area is 3000 ⁇ m 2 or less, a modified cross-section fiber having a single fiber fineness of 1.0 dtex or less is easily obtained. From these viewpoints, the discharge hole area is preferably 200 ⁇ 2500 [mu] m 2, and more preferably 250 ⁇ 2000 ⁇ m 2. If the irregularity degree ⁇ ′ of the discharge hole shape is 1.5 or more, it is easy to obtain a modified cross-section fiber having an irregularity degree ⁇ of 1.5 or more. If the irregularity degree ⁇ ′ of the discharge hole shape is 4.0 or less, it is easy to obtain a modified cross-section fiber having an irregularity degree ⁇ of 4.0 or less.
  • the discharge hole shape is preferably a multi-leaf type.
  • the multi-leaf type is preferably a Y-shape, a cross shape, a six-leaf type, an eight-leaf type, or a windmill type.
  • 1 and 2 are examples of a multi-leaf type discharge hole shape.
  • FIG. 1 shows an example of a six-leaf type having six convex portions at equal intervals in the circumferential direction, and the degree of variation ⁇ is 2.07.
  • FIG. 2 is an example of a windmill type having three curved convex portions at equal intervals in the circumferential direction, and the degree of variation ⁇ is 2.27.
  • the fiber raw material is preferably a spinning stock solution in which a polymer constituting the fiber is dissolved in a solvent.
  • the solid concentration of the spinning dope is preferably 10 to 30% by mass, more preferably 13 to 28% by mass, and further preferably 15 to 25% by mass.
  • solvent replacement in the coagulation bath is performed quickly, and yarn breakage is unlikely to occur. If it is less than the upper limit, the viscosity of the spinning solution does not become too high.
  • the acrylic fiber means a fiber composed of a copolymer (acrylonitrile-based polymer) of acrylonitrile and an unsaturated monomer polymerizable therewith.
  • unsaturated monomer include acrylic acid, methacrylic acid, or alkyl esters thereof, vinyl acetate, acrylamide, vinyl chloride, vinylidene chloride, and depending on the purpose, sodium vinylbenzene sulfonate, sodium methallyl sulfonate, and allyl sulfone.
  • Ionic unsaturated monomers such as acid soda, acrylamidomethylpropane sulfonic acid soda, and sodium parasulfophenyl methallyl ether can be used. These unsaturated monomers may be used alone or in combination of two or more.
  • the content of acrylonitrile units is preferably 80% by mass or more, and more preferably 85% by mass or more, based on all monomer units constituting the polymer.
  • the upper limit is preferably 99% by mass or less.
  • the content of the acrylonitrile unit is preferably 80 to 99% by mass, and more preferably 85 to 99% by mass.
  • the acrylonitrile-based polymer constituting the acrylic fiber may be one kind or a mixture of two or more kinds having different acrylonitrile unit contents.
  • the polymerization method of the acrylonitrile-based polymer is not particularly limited, and examples thereof include suspension polymerization and solution polymerization.
  • the molecular weight of the acrylonitrile-based polymer is not particularly limited as long as it is within the range usually used for the production of acrylic fibers. For example, a reduced viscosity at 25 ° C. of a dimethylformamide solution having a polymer concentration of 0.5% by weight (hereinafter also referred to as “reduced viscosity of a diluted solution (0.5%)”) is 1.5 to 3.0.
  • the molecular weight of the acrylonitrile polymer is too low, the spinnability tends to deteriorate and the yarn quality of the raw yarn tends to deteriorate.
  • the molecular weight is too high, the polymer concentration that gives the optimum viscosity to the spinning dope becomes low, and the productivity tends to decrease.
  • the molecular weight of the acrylonitrile polymer is preferably selected according to the spinning conditions so that these disadvantages do not occur.
  • the spinning dope is prepared by dissolving an acrylonitrile polymer in a solvent.
  • the content (polymer concentration) of the acrylonitrile-based polymer with respect to the total mass of the spinning dope is 10-30% by mass.
  • the polymer concentration is 10% by mass or more, the difference between the shape of the discharge hole and the shape of the cross-section of the fibrous material after solidification is not large, and the cross-sectional shape of the irregular cross-section fiber can be easily controlled.
  • the polymer concentration is 30% by mass or less, the spinning stock solution is excellent in stability over time and the spinning stability is excellent.
  • the solvent examples include organic solvents such as dimethylformamide, dimethylacetamide, and dimethyl sulfoxide; inorganic solvents such as nitric acid, rhodate aqueous solution, and zinc chloride aqueous solution.
  • organic solvent is preferable in that the cross-sectional shape of the irregular cross-section fiber can be easily controlled by the shape of the discharge hole.
  • concentration of the aqueous solvent solution used as the coagulation bath is preferably 25 to 50% by mass.
  • the temperature of the coagulation bath is preferably 20 to 60 ° C.
  • the spinning draft defined by the ratio between the take-up speed of the fibrous material after coagulation and the discharge linear speed of the spinning dope is 0.7 to 3.0, it is easy to maintain a good spinning state.
  • the spinning draft is 0.7 or more, there is little difference between the shape of the discharge hole and the cross-sectional shape of the fibrous material after solidification. For this reason, it is easy to obtain a target cross-sectional shape and to easily suppress cross-sectional unevenness.
  • the spinning draft is 3.0 or less, yarn breakage in the coagulation bath is easily suppressed, and the production stability is excellent.
  • the obtained fibrous material is stretched by a known method as necessary to adjust the single fiber fineness to 0.01 to 1.0 dtex.
  • FIG. 3 is a photomicrograph showing an example of a modified cross-section fiber having a six-leaf fiber cross section.
  • FIG. 4 is a photomicrograph showing an example of a modified cross-section fiber whose cross section is a windmill type.
  • the nonwoven fabric of this embodiment contains 10 mass% or more of the modified cross-section fiber of 1st Embodiment.
  • the single fiber fineness of the modified cross-section fiber is 0.01 dtex or more, the nonwoven fabric is excellent in strength, and if it is 1.0 dtex or less, the sound absorption and insulation performance is excellent. From these viewpoints, the single fiber fineness is more preferably 0.05 to 0.8 dtex, and further preferably 0.1 to 0.6 dtex. If the irregularity ⁇ of the irregular cross-section fiber is 1.5 or more, the specific surface area becomes large and the nonwoven fabric has excellent sound absorption and insulation performance. If it is 4.0 or less, it will be excellent in the process passage property at the time of processing to a nonwoven fabric.
  • the content of the irregular cross-section fiber in the nonwoven fabric is 10% by mass or more, the effect of improving the sound absorption and insulation performance by including the irregular cross-section fiber can be sufficiently obtained.
  • the content of the irregular cross-section fiber is high, and may be 100% by mass.
  • the content of the irregular cross-section fiber in the nonwoven fabric is preferably 30 to 100% by mass, more preferably 50 to 100% by mass, and most preferably 60 to 100% by mass.
  • the nonwoven fabric may contain other fibers as long as desired sound absorbing and insulating performance is obtained from the viewpoint of formability.
  • the content of the irregular cross-section fibers in the nonwoven fabric may be 10 to 90% by mass or 10 to 70% by mass.
  • the content of the irregular cross-section fiber in the nonwoven fabric may be 30 to 90% by mass, 30 to 70% by mass, 50 to 90% by mass, 50 to 70% by mass, or 60 to 90% by mass. It may be 60 to 70% by mass.
  • a fusion fiber may be contained.
  • the fused fiber is a fiber having a lower melting point than that of the irregular cross-section fiber.
  • a polyester fiber having a melting point of 100 to 130 ° C. is preferably used.
  • a non-woven fabric can be produced by a method in which a mixture of a modified cross-section fiber and a fusion fiber is heated at a temperature at which the fusion fiber is thermally fused and then cooled.
  • the content of the fusion fiber in the nonwoven fabric is preferably 10 to 40% by mass, and more preferably 20 to 35% by mass.
  • the nonwoven fabric of this embodiment contains, for example, 10 to 90% by mass of irregular cross-section fibers and 10 to 40% by mass of fusion fibers, and the total of the irregular cross-section fibers and fusion fibers is 20 to 100% by mass. preferable. Further, it is preferable that 30 to 80% by mass of the modified cross-section fiber, 20 to 35% by mass of the fused fiber, and the total of the modified cross-section fiber and the fused fiber is 50 to 100% by mass.
  • the nonwoven fabric of this embodiment preferably has a basis weight of 100 to 600 g / m 2 . If the nonwoven fabric has a basis weight of 100 g / m 2 or more, the sound absorbing and insulating performance is likely to be high, and if it is 600 g / m 2 or less, the moldability is good and the cost can be reduced. From these viewpoints, the basis weight of the nonwoven fabric is more preferably 200 to 550 g / m 2 , and further preferably 300 to 500 g / m 2 .
  • the nonwoven fabric of this embodiment preferably has a thickness of 3 to 30 mm.
  • the thickness of the nonwoven fabric is 3 mm or more, the sound absorption and insulation performance is likely to be high, and if it is 30 mm or less, the nonwoven fabric is highly versatile and can be used for small gaps. From these viewpoints, the thickness of the nonwoven fabric is more preferably 5 to 25 mm, further preferably 8 to 20 mm.
  • the nonwoven fabric of this embodiment preferably has a transmission loss of 5.1 dB or more at a frequency of 400 to 5000 Hz. If the average value of the transmission loss is 5.1 dB or more, it is easy to obtain an excellent effect as sound absorbing and insulating performance. From this viewpoint, the average value of the transmission loss is more preferably 5.3 dB or more, further preferably 5.5 dB or more, and particularly preferably 5.7 dB or more. If the upper limit of the average value of the transmission loss is 20 dB, the sound absorbing and insulating effect is sufficient, and the effect is good even at 15 dB or less, and the effect is also effective at 10 dB or less.
  • the transmission loss is preferably 5.1 to 20 dB, more preferably 5.3 to 20 dB, further preferably 5.5 to 20 dB, and particularly preferably 5.7 to 20 dB.
  • the transmission loss may be 5.1 to 15 dB, 5.3 to 15 dB, 5.5 to 15 dB, or 5.7 to 15 dB.
  • the transmission loss may be 5.1 to 10 dB, 5.3 to 10 dB, 5.5 to 10 dB, or 5.7 to 10 dB.
  • the average value of the transmission loss tends to increase as the thickness of the nonwoven fabric increases. Moreover, there exists a tendency for it to become so high that the fabric weight of a nonwoven fabric is large.
  • the sound absorbing and insulating material of the present embodiment includes 10% by mass or more of the modified cross-section fiber of the first embodiment.
  • fibers or members other than the irregular cross-section fibers may be included.
  • a nonwoven fabric or a laminate of nonwoven fabrics may be mentioned. If the content of the irregular cross-section fiber is 10% by mass or more with respect to the total mass of the sound absorption and insulation material, the effect of improving the sound absorption and insulation performance by including the irregular cross-section fiber can be sufficiently obtained.
  • the content is preferably higher, and may be 100% by mass.
  • the content of the irregular cross-section fiber in the sound absorbing and insulating material is preferably 10 to 100% by mass, more preferably 20 to 100% by mass, and further preferably 30 to 100% by mass.
  • the content of the irregular cross-section fiber in the sound absorbing and insulating material may be 10 to 90% by mass or 1 to 70% by mass.
  • the content of the irregular cross-section fiber in the sound absorbing and insulating material may be 30 to 90% by mass or 30 to 70% by mass.
  • the content of the irregular cross-section fiber in the sound absorbing and insulating material may be 50 to 90% by mass or 50 to 70% by mass.
  • the form of the composite_body complex which combined the sound-absorbing / insulating material of this embodiment, and members other than a nonwoven fabric.
  • Members other than the nonwoven fabric may or may not have sound absorbing and insulating performance.
  • a film, a sheet, a resin layer, or the like may be laminated on the sound absorbing and insulating material of the present embodiment as long as desired sound absorbing and insulating performance is obtained.
  • the sound absorbing and insulating material of this embodiment includes 50% by mass or more of the nonwoven fabric of the second embodiment.
  • members other than the nonwoven fabric of the second embodiment may be included.
  • the content of the nonwoven fabric of the second embodiment is 50% by mass or more with respect to the total mass of the sound absorbing and insulating material, the effect of improving the sound absorbing and insulating performance by including the nonwoven fabric of the second embodiment is sufficiently obtained. It is done. From the viewpoint of sound absorption and insulation performance, the content is preferably higher, and may be 100% by mass. Members other than the nonwoven fabric may or may not have sound absorbing and insulating performance. For example, a film, a sheet, a resin layer, or the like may be laminated on the nonwoven fabric of the second embodiment as long as desired sound absorption and insulation performance is obtained.
  • the measuring method of each item in an Example is as follows.
  • Measurement method of single fiber fineness The single fiber fineness was measured under the conditions of a temperature of 25 ° C. and a humidity of 65% using a motorcycle bro fineness measuring device (DenialComputer DC-11, manufactured by Search Control Electric Co., Ltd.). Measurement was performed 25 times, and the average value was taken as the measured value of the single fiber fineness.
  • Example 1 A copolymer composed of 93% by mass of acrylonitrile units and 7% by mass of vinyl acetate units was obtained by aqueous suspension polymerization. The reduced viscosity of the diluted solution (0.5%) of this copolymer was 2.0. The obtained copolymer was dissolved in dimethylacetamide to obtain a spinning dope having a copolymer concentration of 24% by mass. The obtained spinning dope was discharged from a spinning nozzle into a coagulation bath to obtain a fibrous material. The coagulation bath was an aqueous solution having a temperature of 40 ° C. and a dimethylacetamide concentration of 50%. The shape of the discharge hole of the spinning nozzle was a six-leaf type as shown in FIG.
  • the area (opening area) A ′ of the discharge holes was 1500 ⁇ m 2 and the irregularity ⁇ ′ was 2.25.
  • the value of the spinning draft was 1.5.
  • the obtained fibrous material was further stretched 5 times in 95 ° C. hot water, washed, dried with a drying roll, and subjected to heat relaxation treatment in a pressurized steam atmosphere. Subsequently, dry heat drawing was performed twice using a 220 ° C. dry heat roller, and mechanical crimping was further applied to obtain a fiber A having a single fiber fineness of 0.4 dtex.
  • the cross-sectional area, perimeter length, diameter and degree of irregularity of the fiber A were measured by the above methods. The results are shown in Table 1 (hereinafter the same).
  • Example 2 A fiber B was obtained in the same manner as in Example 1 except that the draw ratio was changed so that the single fiber fineness was 0.6 dtex.
  • Example 3 A fiber C was obtained in the same manner as in Example 1 except that the shape of the discharge hole was changed to the windmill type shown in FIG. 2 and was drawn so that the single fiber fineness was 0.4 dtex.
  • Example 4 A fiber D was obtained in the same manner as in Example 1 except that the shape of the discharge hole was changed to the windmill type shown in FIG. 2 and stretched so that the single fiber fineness was 0.6 dtex.
  • Example 5 A fiber E was obtained in the same manner as in Example 1 except that the shape of the discharge hole was changed to the windmill type shown in FIG. 2 and stretched so that the single fiber fineness was 0.2 dtex.
  • Example 1 A fiber F was obtained in the same manner as in Example 1, except that the shape of the discharge hole of the spinning nozzle was changed to a circle (circle having a diameter of 35 ⁇ m) and the single fiber fineness was drawn to 0.4 dtex.
  • Example 2 A fiber G was obtained in the same manner as in Example 1 except that the shape of the discharge hole of the spinning nozzle was changed to a circle (circle having a diameter of 35 ⁇ m) and the fiber was stretched to have a single fiber fineness of 0.6 dtex.
  • Example 6 For the fibers A to D, the sound absorption rate was measured by the same method as in the sound absorption and insulation performance test (I). However, the measurement frequency was 315 to 4000 Hz, and the sound absorption coefficient at 315 to 2000 Hz, the sound absorption coefficient at 400 to 1250 Hz, and the sound absorption coefficient at 1600 to 4000 Hz were obtained. The results are shown in Table 2. The value shown in the table is the average of the measured values of the sound absorption rate of the three samples.
  • the fibers AD of the examples have higher sound absorption rates at 315 to 2000 Hz and 400 to 1250 Hz than the fibers F of the comparative example, and the sound absorption rates at 1600 to 4000 Hz are the same. That was all.
  • Example 10 to 13 For the fibers A to D, the sound absorption rate was measured by the same method as in the sound absorption and insulation performance test (II). However, the measurement frequency was 315 to 4000 Hz, and the sound absorption coefficient at 315 to 2000 Hz, the sound absorption coefficient at 400 to 1250 Hz, and the sound absorption coefficient at 1600 to 4000 Hz were obtained. The results are shown in Table 3. The values shown in the table are the average of the sound absorption rates of the three samples.
  • the fibers A to D of the examples had higher sound absorption rates at 315 to 2000 Hz, 400 to 1250 Hz, and 1600 to 4000 Hz than the fibers F of the comparative example.
  • Example 14 A mixed raw material obtained by mixing 70% by mass of fiber A cut to 40 mm and 30% by mass of polyester fused fiber (single fiber fineness: 2.2 dtex, fiber length 51 mm, melting point: 110 ° C.) was heated at 170 ° C. for 20 minutes. Then, it was cooled to produce a test nonwoven fabric having a thickness of 20 mm and a basis weight of 200 g / m 2 . Specifically, 28.8 g of the mixed raw material was put into a container having a length of 200 mm, a width of 300 mm, and a height of 50 mm, and compressed to a height of 20 mm, followed by heat forming to obtain the nonwoven fabric.
  • the transmission loss and the sound absorption rate were measured by the same method as the said sound-absorbing-insulation performance test (III).
  • the measurement frequency was 400 to 5000 Hz
  • the transmission loss and sound absorption rate at 400 to 5000 Hz the transmission loss and sound absorption rate at 400 to 1250 Hz
  • the transmission loss and sound absorption rate at 1600 to 4000 Hz respectively.
  • the results are shown in Table 4.
  • the values shown in the table are the average of transmission loss or sound absorption rate of the three samples.
  • Example 15 A test nonwoven fabric was produced in the same manner as in Example 14 except that the fiber A was changed to the fibers C and D, and the transmission loss and the sound absorption coefficient were measured. The results are shown in Table 4.
  • Example 17 A test nonwoven fabric was produced in the same manner as in Example 14 except that the fiber A was changed to the fiber F, and the transmission loss and the sound absorption coefficient were measured. The results are shown in Table 4.
  • the fibers A, C, and D of the examples had higher transmission loss at 400 to 5000 Hz and 400 to 1250 Hz than the fibers F of the comparative example.
  • the fibers A, C, and D of the examples had higher sound absorption rates at 400 to 5000 Hz and 400 to 1250 Hz than the fibers F of the comparative example, and the sound absorption rates at 1600 to 4000 Hz were equal or higher.
  • the modified cross-section fiber of the present invention is suitable as a nonwoven fabric material excellent in sound absorption performance and sound insulation performance (sound insulation performance).
  • the method for producing a modified cross-section fiber of the present invention can produce a modified cross-section fiber having a small fineness by direct spinning.
  • the nonwoven fabric of the present invention is excellent in sound absorption and insulation performance.
  • the sound absorbing and insulating material of the present invention is excellent in sound absorbing and insulating performance.

Abstract

単繊維繊度が0.01~1.0dtex、繊維軸に垂直方向の繊維断面における異形度(α、α=P/(4πA)1/2、Pは繊維断面における周囲長(μm)、Aは繊維断面の面積(μm))が1.5~4.0である、異形断面繊維。

Description

異形断面繊維とその製造方法ならびに異形断面繊維を含む不織布及び吸遮音材
 本発明は、異形断面繊維、異形断面繊維の製造方法、異形断面繊維を含む不織布及び吸遮音材に関する。
 本願は、2018年5月29日に、日本に出願された特願2018-102509号に基づき優先権を主張し、その内容をここに援用する。
 単繊維の直径が数マイクロメートルの極細繊維(マイクロファイバー)は、布帛とした際に繊細かつソフト感のある風合いを呈するため、ワイピングクロスやスエード調布帛として広く用いられている。一方、その大きな比表面積による捕集効果や高い音響抵抗を示すことによってフィルターや吸音材料など産業用途にも用いられている。
 マイクロファイバーを製造する手法としては、易溶解性ポリマーからなる海成分中に難溶解性の島成分を含有する海島型複合繊維の海成分を選択的に除去する方法がある(特許文献1)。
 吸音材において、主に熱成形圧縮フェルト不織布を使用する際に、不織布の剛性を向上する目的で異形断面繊維を使用することがある(特許文献2)。特許文献2では、不織布の剛性向上における厚さの維持によって吸遮音性能を向上させることを目的としているため、太繊度の異形断面繊維を使用している。
特開2004-293008号公報 特開2017-197894号公報
 特許文献2の、太繊度の異形断面繊維を使用した不織布は、必ずしも吸遮音性能が充分とは言えない。
 しかし、極細の異形断面繊維は、従来法では製造が難しい。例えば特許文献1に記載されている方法は、一旦、海島型複合繊維を製造した後に溶解剤によって海成分を除去する工程が必要であり、適応できる製品には限界がある。また、紡糸原液を紡糸ノズルから吐出する紡糸方法(直接紡糸)による極細繊維の製造では、紡糸原液中の異物や紡糸ガイドの抵抗などの影響が大きく糸切れが起きやすいため、安定して生産するには細さに限界がある。特に異形断面繊維では糸切れの影響が大きくなることや、小口径の異形紡糸口金の製造が課題となる。
 本発明の目的は、繊度が小さい異形断面繊維と、それを用いた不織布及び吸遮音材を提供することにある。
 本発明の要旨は以下の通りである。
 [1] 単繊維繊度が0.01~1.0dtexであり、かつ繊維軸に垂直方向の繊維断面における下記式(1)で算出される異形度(α)が1.5~4.0である、異形断面繊維。
  α=P/(4πA)1/2 ・・・(1)
 式中、Pは繊維断面における周囲長(単位:μm)、Aは繊維断面の面積(単位:μm)である。
 [2] 前記繊維断面の面積(A)が0.5~100μmであり、前記繊維断面における周囲長(P)が5~250μmである、[1]の異形断面繊維。
 [3] 前記繊維断面の形状がY字型、十字型、6葉型、8葉型、又は風車型である、[1]又は[2]の異形断面繊維。
 [4] ポリエステル繊維、ポリプロピレン繊維、ナイロン繊維、アラミド繊維、アクリル繊維又はレーヨン繊維である、[1]~[3]のいずれかの異形断面繊維。
 [5] 下記吸遮音性能試験(I)で測定される、周波数400~1250Hzにおける吸音率が0.40以上である、[1]~[4]のいずれかの異形断面繊維。
(吸遮音性能試験(I))
 40mmに切断した繊維0.81gを、直径41.5mm、厚さ30mmの円筒状のホルダに入れ、周波数400~1250Hzにおける垂直入射吸音率を測定し、その平均値を求める。
 [6] 下記吸遮音性能試験(II)で測定される、周波数400~1250Hzにおける吸音率が0.17以上である、[1]~[4]のいずれか一項に記載の異形断面繊維。
(吸遮音性能試験(II))
 40mmに切断した繊維0.27gを、直径41.5mm、厚さ20mmの円筒状のホルダに入れ、周波数400~1250Hzにおける垂直入射吸音率を測定し、その平均値を求める。
 [7] 下記吸遮音性能試験(III)で測定される、周波数400~5000Hzにおける透過損失が5.1dB以上である、[1]~[6]のいずれかの異形断面繊維。
(吸遮音性能試験(III))
 繊維長が40mmの前記異形断面繊維70質量%と、単繊維繊度が2.2dtex、繊維長が51mm、融点が110℃のポリエステル融着繊維30質量%とを混合し、170℃で20分加熱し、その後冷却して厚さ10mm、目付480g/mの試験用不織布を得、得られた試験用不織布の、周波数400~5000Hzにおける垂直入射透過損失を測定し、その平均値を求める。
 [8] 吐出孔面積が100~3000μm、吐出孔形状の下記式(2)で算出される異形度(α’)が1.5~4.0である吐出孔から繊維原料を吐出して繊維状物を得、前記繊維状物の単繊維繊度を0.01~1.0dtexとする、異形断面繊維の製造方法。
  α’=P’/(4πA’)1/2・・・(2)
 式中、P’は吐出孔形状の周囲長(単位:μm)、A’は吐出孔面積(単位:μm)である。
 [9] 前記[1]~[7]のいずれかの異形断面繊維を、10質量%以上含む、不織布。
 [10] 目付が100~500g/m、厚さが3~30mmである、[9]の不織布。
 [11] 周波数400~5000Hzにおける垂直入射透過損失の平均値が5.1dB以上である、[9]又は[10]の不織布。
 [12] 前記異形断面繊維を10~90質量%、融着繊維を10~40質量%含有し、前記前記異形断面繊維と前記融着繊維の合計が20~100質量%である、[9]~[11]のいずれかの不織布。
 [13] 前記[1]~[7]のいずれかの異形断面繊維を、10質量%以上含む、吸遮音材。
 [14] 前記[9]~[12]のいずれかの不織布を50質量%以上含む、吸遮音材。
 本発明の異形断面繊維は、吸音性能及び遮音性能(吸遮音性能)に優れた不織布の材料として好適である。
 本発明の異形断面繊維の製造方法は、直接紡糸により繊度が小さい異形断面繊維を製造できる。
 本発明の不織布は、吸遮音性能に優れる。
 本発明の吸遮音材は、吸遮音性能に優れる。
本発明の異形断面繊維の製造方法にかかる、6葉型の吐出孔形状の一例を示す図である。 本発明の異形断面繊維の製造方法にかかる、風車型の吐出孔形状の一例を示す図である。 本発明にかかる、繊維断面が6葉型である異形断面繊維の一例を示す顕微鏡写真である。 本発明にかかる、繊維断面が風車型である異形断面繊維の一例を示す顕微鏡写真である。
 本明細書において、「透過損失」は「垂直入射透過損失」を意味する。垂直入射透過損失はASTM E2611に準拠する方法で測定する。「周波数400~5000Hzにおける透過損失」は「垂直入射透過損失の400~5000Hzにおける平均値」を意味する。他の周波数帯域の透過損失についても同様である。
 本明細書において、「吸音率」は「垂直入射吸音率」を意味する。垂直入射吸音率はJIS A 1405-2に準拠する方法で測定する。吸音率が1であれば、すべての音を吸音しており、0であればすべての音を反射していることを示す。「周波数400~1250Hzにおける吸音率」は「吸音率の400~1250Hzにおける平均値」を意味する。他の周波数帯域の吸音率についても同様である。
以下、本発明の実施形態を説明する。
 <第1の実施形態:異形断面繊維>
 本実施形態の異形断面繊維は、単繊維繊度が0.01~1.0dtexである。
 単繊維繊度が0.01dtex以上であれば、繊維の取り扱い性が良好であり、紡糸性もよく製造コストも高くなり過ぎない。1.0dtex以下であれば、吸遮音性能に優れる。これらの観点から、前記単繊維繊度は0.05~0.8dtexであることがより好ましく、0.1~0.6dtexであることがさらに好ましい。
 本実施形態の異形断面繊維は、異形度αが1.5~4.0である。異形度αは、繊維軸に垂直方向の繊維断面における周囲長をP(単位:μm)、繊維断面の面積をA(単位:μm)とするとき、下記式(1)で算出される。
 α=P/(4πA)1/2 ・・・(1)
 異形度αが1.5以上であれば繊維断面の面積に対する繊維断面の周囲長が大きくなり、比表面積が大きくなり、吸遮音性能に優れる。異形度αが4.0以下であれば大きな比表面積に起因するガイド抵抗などが少なく、紡糸性に優れる。
 異形度αは1.7~3.7であることが好ましく、1.9~3.5であることがより好ましい。
 本実施形態の異形断面繊維は、繊維断面の面積(以下、「断面積」ともいう。)が0.5~100μmであることが好ましい。
 前記断面積が0.5μm以上であれば繊維の取り扱い性が良好であり、紡糸性も良く製造コストも高くなり過ぎない。前記断面積が100μm以下であれば、吸遮音性能に優れる。これらの観点から、前記断面積は1.5~75μmであることがより好ましく、5~50μmであることがさらに好ましい。
 本実施形態の異形断面繊維は、繊維断面における周囲長が5~250μmであることが好ましい。
 前記周囲長が5μm以上であれば繊維の取り扱い性が良好であり、紡糸性も良く製造コストも高くなり過ぎない。前記周囲長が250μm以下であれば、吸遮音性能に優れる。これらの観点から、前記周囲長は8~200μmであることがより好ましく、30~150μmであることがさらに好ましい。
 本実施形態の異形断面繊維の断面形状は、異形度αが1.5~4.0の範囲であれば特に限定されないが、多葉型であることが好ましい。多葉型は、周方向に間隔をおいて凸部を有する形状を意味する。例えば、凸部を3個有するY字型、凸部を4個有する十字型、凸部を6個有する6葉型、凸部を8個有する8葉型、又は湾曲した凸部を3~8個有する風車型が、周囲長P/断面積Aが大きくなりやすく、かつ良好な紡糸性が得られやすい点で好ましい。
 本実施形態の異形断面繊維の素材は特に限定されないが、ポリエステル繊維、ポリプロピレン繊維、ナイロン繊維、アラミド繊維、アクリル繊維等の合成繊維、アセテート、プロミックス等の半合成繊維、レーヨン、キュプラ等の再生繊維を好適に用いることができる。
 これらのうちでも、ポリエステル繊維、ポリプロピレン繊維、ナイロン繊維、アラミド繊維、アクリル繊維又はレーヨン繊維が好ましい。
 特に軽量化の観点からは、比重の小さいアクリル繊維、ナイロン繊維又はポリプロピレン繊維が好適であり、さらに吸音性や細繊度繊維の生産性の観点から、アクリル繊維がより好適である。
 本実施形態の異形断面繊維は、下記吸遮音性能試験(I)で測定される、周波数400~1250Hzにおける吸音率(以下、「吸音率(I)」ともいう。)が0.40以上であることが好ましい。前記吸音率(I)が0.40以上であると、エンジン音やロードノイズを防ぎやすくなる。エンジン音やロードノイズの波長は1000Hz付近である。前記吸音率(I)は0.42~1が好ましく、0.45~1がより好ましい。
(吸遮音性能試験(I))
 40mmに切断した繊維0.81gを、直径41.5mm、厚さ30mmの円筒状のホルダに入れ、周波数400~1250Hzにおける吸音率を測定し、その平均値を求める。
 本実施形態の異形断面繊維は、下記吸遮音性能試験(II)で測定される、周波数400~1250Hzにおける吸音率(以下、「吸音率(II)」ともいう。)が0.17以上であることが好ましい。前記吸音率(II)が0.17以上であると、エンジン音やロードノイズを防ぎやすくなる。エンジン音やロードノイズの波長は1000Hz付近である。前記吸音率(II)は0.18~1が好ましく、0.19~1がより好ましい。
(吸遮音性能試験(II))
 40mmに切断した繊維0.27gを、直径41.5mm、厚さ20mmの円筒状のホルダに入れ、周波数400~1250Hzにおける吸音率を測定し、その平均値を求める。
 本実施形態の異形断面繊維は、下記の吸遮音性能試験(III)で測定される、周波数400~5000Hzにおける透過損失(以下、「透過損失(III)」ともいう。)が5.1dB以上であることが好ましい。前記透過損失(III)が5.1dB以上であれば、音を遮る効果に優れる。前記透過損失(III)の上限は特に限定されず、高いほど好ましいが、20dBあれば吸遮音効果は十分である。
 前記透過損失(III)は、5.3dB以上がより好ましく、5.5dB以上がさらに好ましく、5.7dB以上が特に好ましい。上限は、15dB以下でも効果は良く、10dB以下でも効果はある。
 これらの観点から、前記透過損失(III)は、5.1~20dBが好ましく、5.3~20dBがより好ましく、5.5~20dBがさらに好ましく、5.7~20dBが特に好ましい。
 前記透過損失(III)は、5.1~15dBでもよく、5.3~15dBでもよく、5.5~15dBでもよく、5.7~15dBでもよい。
 前記透過損失(III)は、5.1~10dBでもよく、5.3~10dBでもよく、5.5~10dBでもよく、5.7~10dBでもよい。
(吸遮音性能試験(III))
 試験対象の異形断面繊維を、繊維長が40mmとなるように切断したものを用意する。これとは別に、単繊維繊度が2.2dtex、繊維長が51mm、融点が110℃のポリエステル融着繊維を用意する。
 繊維長40mmの異形断面繊維70質量%と、前記ポリエステル融着繊維30質量%とを混合し、170℃で20分加熱し、その後冷却して厚さ10mm、目付480g/mの試験用不織布を作製する。得られた試験用不織布の、周波数400~5000Hzにおける透過損失および吸音率を測定し、その平均値を求める。
 前記吸遮音性能試験(III)で測定される、周波数400~5000Hzにおける吸音率は、吸音効果と吸音材の形状の観点から、0.2~1であることが好ましく、0.3~1であることがより好ましい。
 <異形断面繊維の製造方法>
 第1の実施形態の異形断面繊維は、吐出孔から繊維原料を吐出して繊維状物を得、前記繊維状物の単繊維繊度を0.01~1.0dtexとする方法で製造できる。具体的には、繊維原料を紡糸ノズルの吐出孔から凝固浴中に吐出することにより繊維状物を得、必要に応じて繊維状物の単繊維繊度を調整する。繊維状物の単繊維繊度は、繊維状物を延伸する方法で調整できる。
 繊維状物の断面形状が、得ようとする異形断面繊維の断面形状と同一、又はそれより大きくなるように吐出孔を設計することが好ましい。
 具体的に、吐出孔の面積(開孔面積)が100~3000μmであり、吐出孔形状の下記式(2)で算出される異形度α’が1.5~4.0であることが好ましい。
 α’=P’/(4πA’)1/2・・・(2)
 式中、P’は吐出孔形状の周囲長(単位:μm)、A’は吐出孔の面積(単位:μm)である。
 吐出孔面積が100μm以上であれば、単繊維繊度が0.01dtex以上の異形断面繊維が得られやすい。吐出孔面積が3000μm以下であれば、単繊維繊度が1.0dtex以下の異形断面繊維が得られやすい。これらの観点から、前記吐出孔面積は、200~2500μmであることが好ましく、250~2000μmであることがより好ましい。
 吐出孔形状の異形度α’が1.5以上であれば、異形度αが1.5以上である異形断面繊維を得やすい。吐出孔形状の異形度α’が4.0以下であれば、異形度αが4.0以下である異形断面繊維を得やすい。
 前記繊維状物の断面形状が、得ようとする異形断面繊維の断面形状より大きい相似形となるように吐出孔形状を設計することが好ましい。
 吐出孔形状は、多葉型であることが好ましい。多葉型としては、Y字型、十字型、6葉型、8葉型又は風車型が好ましい。図1、2は、多葉型の吐出孔形状の例である。図1は6個の凸部を周方向に等間隔で有する6葉型の例であり、その異型度αは2.07である。図2は3個の湾曲した凸部を周方向に等間隔で有する風車型の例であり、その異型度αは2.27である。
 前記繊維原料は、繊維を構成するポリマーを溶媒に溶解した紡糸原液が好ましい。
 紡糸原液の固形分濃度は10~30質量%が好ましく、13~28質量%がより好ましく、15~25質量%がさらに好ましい。前記固形分濃度が前記範囲の下限値以上であると凝固浴での溶剤置換が速やかに行われ、糸切れが起こりにくい。上限値以下であると紡糸溶液の粘度が高くなりすぎない。
 以下、アクリル繊維を例に挙げて、異形断面繊維の製造方法の詳細を説明する。本明細書においてアクリル繊維とは、アクリロニトリル及びこれと重合可能な不飽和単量体の共重合体(アクリロニトリル系ポリマー)からなる繊維を意味する。
 前記不飽和単量体として、アクリル酸、メタクリル酸、又はこれらのアルキルエステル類、酢酸ビニル、アクリルアミド、塩化ビニル、塩化ビニリデン、さらに目的によってはビニルベンゼンスルホン酸ソーダ、メタリルスルホン酸ソーダ、アリルスルホン酸ソーダ、アクリルアミドメチルプロパンスルホン酸ソーダ、ソディウムパラスルホフェニールメタリルエ-テル等のイオン性不飽和単量体を用いることができる。これらの不飽和単量体は、1種でもよく2種以上組み合わせてもよい。
 ポリマーを構成する全単量体単位に対して、アクリロニトリル単位の含有量は80質量%以上が好ましく、85質量%以上がより好ましい。上限は99質量%以下が好ましい。
 例えば、前記アクリロニトリル単位の含有量は80~99質量%が好ましく、85~99質量%がより好ましい。
 アクリル繊維を構成するアクリロニトリル系ポリマーは、1種でもよく、アクリロニトリル単位の含有量が異なる2種以上の混合物でもよい。
 アクリロニトリル系ポリマーの重合方法は、特に限定されず、懸濁重合、溶液重合等が例示できる。アクリロニトリル系ポリマーの分子量は通常アクリル繊維の製造に用いられる範囲の分子量であればよく、特に限定しない。例えば、ポリマー濃度が0.5重量%であるジメチルホルムアミド溶液の、25℃における還元粘度(以下、「希釈溶液(0.5%)の還元粘度」ともいう。)が1.5~3.0であることが好ましい。アクリロニトリル系ポリマーの分子量が低すぎると、紡糸性が低下すると同時に原糸の糸質も悪化する傾向にある。分子量が高すぎると、紡糸原液に最適粘度を与えるポリマー濃度が低くなり、生産性が低下する傾向にある。アクリロニトリル系ポリマーの分子量は、これらの不都合が生じないように、紡糸条件に応じて選択することが好ましい。
 紡糸原液は、アクリロニトリル系ポリマーを溶剤に溶解して調製する。このとき、紡糸原液の総質量に対する前記アクリロニトリル系ポリマーの含有量(ポリマー濃度)を10~30質量%とする。ポリマー濃度が10質量%以上であると、吐出孔の形状と、凝固後の繊維状物の断面の形状との差が大きくなく、異形断面繊維の断面形状を制御しやすい。ポリマー濃度が30質量%以下であると、紡糸原液の経時安定性に優れ、紡糸安定性に優れる。
 溶剤としてはジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド等の有機溶剤;硝酸、ロダン酸塩水溶液、塩化亜鉛水溶液等の無機溶剤;を用いることができる。異形断面繊維の断面形状を、吐出孔の形状により制御しやすい点で、有機溶剤が好ましい。
 凝固浴として用いる溶剤水溶液の濃度は25~50質量%が好ましい。凝固浴の温度は20~60℃が好ましい。
 凝固後の繊維状物の引き取り速度と紡糸原液の吐出線速度の比で定義される紡糸ドラフトを0.7~3.0とすると良好な紡糸状態を維持しやすい。紡糸ドラフトが0.7以上であると、吐出孔の形状と凝固後の繊維状物の断面形状との差が少ない。このため目的の断面形状を得やすく、また、断面ムラも抑制しやすい。紡糸ドラフトが3.0以下であると凝固浴中での糸切れを抑制しやすく、製造安定性に優れる。
 得られた繊維状物は、必要に応じて、公知の方法で延伸して単繊維繊度を0.01~1.0dtexに調整する。また、必要に応じて、繊維状物の洗浄、乾燥、又は緩和処理等を行う。得られた繊維は用途に応じて所定の長さにカットして原綿とすることができる。
 図3は、繊維断面が6葉型である異形断面繊維の例を示す顕微鏡写真である。図4は、繊維断面が風車型である異形断面繊維の例を示す顕微鏡写真である。
<第2の実施形態:不織布>
 本実施形態の不織布は、第1の実施形態の異形断面繊維を10質量%以上含む。
 異形断面繊維の単繊維繊度が0.01dtex以上であれば、不織布の強度に優れ、1.0dtex以下であれば、吸遮音性能に優れる。これらの観点から、前記単繊維繊度は0.05~0.8dtexであることがより好ましく、0.1~0.6dtexであることがさらに好ましい。
 異形断面繊維の異形度αが1.5以上であれば、比表面積が大きくなり、不織布の吸遮音性能に優れる。4.0以下であれば、不織布への加工時の工程通過性に優れる。
 不織布における異形断面繊維の含有率が10質量%以上であれば、異形断面繊維を含むことによる吸遮音性能の向上効果が充分に得られる。吸遮音性能の点からは、異形断面繊維の含有率は高い方が好ましく、100質量%でもよい。
 これらの観点から、不織布における異形断面繊維の含有率は、30~100質量%が好ましく、50~100質量%がより好ましく、60~100質量%が最も好ましい。
 不織布は、成形性の点から、所望の吸遮音性能が得られる範囲で、そのほかの繊維を含有してもよい。
 例えば、不織布における異形断面繊維の含有率は、10~90質量%でもよく、10~70質量%でもよい。
 また、不織布における異形断面繊維の含有率は、30~90質量%でもよく、30~70質量%でもよく、50~90質量%でもよく、50~70質量%でもよく、60~90質量%でもよく、60~70質量%でもよい。
 そのほかの繊維として、融着繊維を含有してもよい。融着繊維は、異形断面繊維よりも低融点の繊維であり、例えば融点が100~130℃のポリエステル繊維等が好適に用いられる。
 異形断面繊維と融着繊維の混合物を、融着繊維が熱融着する温度で加熱処理した後、冷却する方法で、不織布を製造できる。
 不織布における融着繊維の含有率は10~40質量%が好ましく、20~35質量%がより好ましい。前記範囲の下限値以上であると不織布を任意の形態に加工しやすく、上限値以下であると融着繊維を含むことによる吸遮音性能の低下を抑制しやすい。
 本実施形態の不織布は、例えば異形断面繊維を10~90質量%、融着繊維を10~40質量%含有し、かつ異形断面繊維と融着繊維の合計が20~100質量%であることが好ましい。また、異形断面繊維を30~80質量%、融着繊維を20~35質量%含有し、かつ異形断面繊維と融着繊維の合計が50~100質量%であることが好ましい。
 本実施形態の不織布は、目付が100~600g/m、であることが好ましい。 不織布の目付が100g/m以上であれば、吸遮音性能が高くなりやすく、600g/m以下であれば、成形性が良くコストも抑えられる。これらの観点から、不織布の目付は200~550g/mであることがより好ましく、300~500g/mであることがさらに好ましい。
 本実施形態の不織布は、厚さが3~30mmであることが好ましい。不織布の厚さが、3mm以上であれば、吸遮音性能が高くなりやすく、30mm以下であれば、小さな隙間にも利用できる汎用性の高い不織布となる。これらの観点から、不織布の厚さは5~25mmであることがより好ましく、8~20mmであることがさらに好ましい。
 本実施形態の不織布は、周波数400~5000Hzにおける透過損失が5.1dB以上であることが好ましい。
 前記透過損失の平均値が5.1dB以上であれば、吸遮音性能として優れた効果が得られやすい。この観点から、前記透過損失の平均値は5.3dB以上がより好ましく、5.5dB以上がさらに好ましく、5.7dB以上が特に好ましい。前記透過損失の平均値の上限は、20dBあれば吸遮音効果は十分であり、15dB以下でも効果は良く、10dB以下でも効果はある。
 これらの観点から、前記透過損失は、5.1~20dBが好ましく、5.3~20dBがより好ましく、5.5~20dBがさらに好ましく、5.7~20dBが特に好ましい。
 前記透過損失は、5.1~15dBでもよく、5.3~15dBでもよく、5.5~15dBでもよく、5.7~15dBでもよい。
 前記透過損失は、5.1~10dBでもよく、5.3~10dBでもよく、5.5~10dBでもよく、5.7~10dBでもよい。
 前記透過損失の平均値は、例えば、不織布の厚さが大きいほど高くなる傾向がある。また不織布の目付が大きいほど高くなる傾向がある。
<第3の実施形態:吸遮音材>
 本実施形態の吸遮音材は、第1の実施形態の異形断面繊維を10質量%以上含む。吸遮音材に各種性能を付与するために、異形断面繊維以外の繊維又は部材を含有させてもよい。
 本実施形態の吸遮音材の形態としては、不織布、又は不織布の積層体が挙げられる。
 吸遮音材の総質量に対して、前記異形断面繊維の含有率が10質量%以上であれば、前記異形断面繊維を含むことによる吸遮音性能の向上効果が充分に得られる。吸遮音性能の点からは、前記含有率は高い方が好ましく、100質量%でもよい。吸遮音材における異形断面繊維の含有率は、10~100質量%であることが好ましく、20~100質量%であることがより好ましく、30~100質量%であることがさらに好ましい。
 吸遮音材における異形断面繊維の含有率は、10~90質量%でもよく、1~70質量%でもよい。
 吸遮音材における異形断面繊維の含有率は、30~90質量%でもよく、30~70質量%でもよい。
 吸遮音材における異形断面繊維の含有率は、50~90質量%でもよく、50~70質量%でもよい。
 また、本実施形態の吸遮音材と、不織布以外の部材とを組み合わせた複合体の形態で使用してもよい。不織布以外の部材は、吸遮音性能を有するものでもよく、有さないものでもよい。例えば所望の吸遮音性能が得られる範囲で、フィルム、シート、又は樹脂層等を、本実施形態の吸遮音材に積層してもよい。
<第4の実施形態:吸遮音材>
 本実施形態の吸遮音材は、第2の実施形態の不織布を50質量%以上含む。吸遮音材に各種性能を付与するために、第2の実施形態の不織布以外の部材を含有させてもよい。
 本実施形態の吸遮音材の形態としては、第2の実施形態の不織布、第2の実施形態の不織布とそれ以外の不織布の積層体、又は第2の実施形態の不織布と不織布以外の部材との複合体が挙げられる。
 吸遮音材の総質量に対して、第2の実施形態の不織布の含有率が50質量%以上であれば、第2の実施形態の不織布を含むことによる吸遮音性能の向上効果が充分に得られる。吸遮音性能の点からは、前記含有率は高い方が好ましく、100質量%でもよい。
 不織布以外の部材は、吸遮音性能を有するものでもよく、有さないものでもよい。例えば所望の吸遮音性能が得られる範囲で、フィルム、シート、又は樹脂層等を、第2の実施形態の不織布に積層してもよい。
 以下、本発明を実施例により具体的に説明する。尚、実施例における各項目の測定方法は以下の通りである。
(単繊維繊度の測定方法)
 オートバイブロ式繊度測定器(サーチ制御電気社製、DeniorComputerDC-11)を使用し、温度25℃、湿度65%の条件下で単繊維繊度を測定した。25回測定して、平均値を単繊維繊度の測定値とした。
(繊維の異形度α等の測定方法)
 繊維軸に対して垂直方向に繊維断面を切り出し、イオンコーター(エイコー・エンジニアリング社製、IB-3型)でAu蒸着した繊維断面を、走査電子顕微鏡(日立製作所社製、S-3500N)を使用し、倍率2000倍にて撮影した。得られた画像を面積測定プログラム(Quick Grain)で処理して、断面積A、周囲長Pを測定した。断面積Aから円相当直径を算出して繊維の「直径」とした。A、Pの値を用い前記式(1)により異形度を算出した。10サンプルについて異形度を求め、その平均値を異形度αの測定値とした。
(透過損失及び吸音率の測定方法)
 ASTM E2611に準拠して、所定の周波数の範囲における透過損失を測定した。JIS A 1405-2に準拠して、所定の周波数の範囲における吸音率を測定した。測定装置は、日本音響エンジニアリング社製、型番WinZacを使用した。
(実施例1)
 93質量%のアクリロニトリル単位、及び7質量%の酢酸ビニル単位からなる共重合体を水系懸濁重合により得た。この共重合体の希釈溶液(0.5%)の還元粘度は2.0であった。
 得られた共重合体をジメチルアセトアミドに溶解して共重合体濃度24質量%の紡糸原液を得た。
 得られた紡糸原液を、紡糸ノズルより、凝固浴中に吐出して繊維状物を得た。凝固浴は、温度が40℃、ジメチルアセトアミド濃度が50%の水溶液とした。紡糸ノズルの吐出孔の形状は、図1に示すような6葉型とした。吐出孔の面積(開孔面積)A’は1500μm、異形度α’は2.25とした。紡糸ドラフトの値は1.5とした。得られた繊維状物を、さらに95℃の熱水中で5倍に延伸し、洗浄し、乾燥ロールによる乾燥を行い、加圧水蒸気雰囲気下で熱緩和処理した。続いて、220℃の乾熱ローラーを用いて2倍に乾熱延伸し、更に機械捲縮を付与し、単繊維繊度0.4dtexの繊維Aを得た。
 繊維Aの断面積、周囲長、直径及び異形度を上記の方法で測定した。その結果を表1に示す(以下、同様)。
(実施例2)
 単繊維繊度が0.6dtexとなるように延伸倍率を変更した以外は実施例1と同様にして繊維Bを得た。
(実施例3)
 吐出孔の形状を図2に示す風車型にし、単繊維繊度が0.4dtexとなるように延伸した以外は実施例1と同様にして繊維Cを得た。
(実施例4)
 吐出孔の形状を図2に示す風車型にし、単繊維繊度が0.6dtexとなるように延伸した以外は実施例1と同様にして繊維Dを得た。
(実施例5)
 吐出孔の形状を図2に示す風車型にし、単繊維繊度が0.2dtexとなるように延伸した以外は実施例1と同様にして繊維Eを得た。
(比較例1)
 紡糸ノズルの吐出孔の形状を丸(直径35μmの円形)に変更し、単繊維繊度が0.4dtexとなるように延伸した以外は実施例1と同様にして繊維Fを得た。
(比較例2)
 紡糸ノズルの吐出孔の形状を丸(直径35μmの円形)に変更し、単繊維繊度が0.6dtexとなるように延伸した以外は実施例1と同様にして繊維Gを得た。
Figure JPOXMLDOC01-appb-T000001
 (実施例6~9)
 前記繊維A~Dについて、前記吸遮音性能試験(I)と同じ方法で吸音率を測定した。ただし、測定周波数は315~4000Hzとし、315~2000Hzにおける吸音率、400~1250Hzにおける吸音率、1600~4000Hzにおける吸音率をそれぞれ求めた。
 結果を表2に示す。表に示す値は、3つのサンプルの吸音率の測定値の平均である。
 (比較例3)
 繊維Aを繊維Fに変更した以外は、実施例6と同様にして吸音率を測定した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果に示されるように、実施例の繊維A~Dは、比較例の繊維Fに比べて、315~2000Hz及び400~1250Hzにおける吸音率は高く、1600~4000Hzにおける吸音率は、同等以上であった。
 (実施例10~13)
 前記繊維A~Dについて、前記吸遮音性能試験(II)と同じ方法で吸音率を測定した。ただし、測定周波数は315~4000Hzとし、315~2000Hzにおける吸音率、400~1250Hzにおける吸音率、1600~4000Hzにおける吸音率をそれぞれ求めた。
 結果を表3に示す。表に示す値は、3つのサンプルの吸音率の平均である。
 (比較例4)
 繊維Aを繊維Fに変更した以外は、実施例10と同様にして吸音率を測定した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3の結果に示されるように、実施例の繊維A~Dは、比較例の繊維Fに比べて、315~2000Hz、400~1250Hz、及び1600~4000Hzにおける吸音率が、いずれも高かった。
 (実施例14)
 40mmに切断した繊維A70質量%と、ポリエステル融着繊維(単繊維繊度:2.2dtex、繊維長51mm、融点:110℃)30質量%とを混合した混合原料を、170℃で20分間加熱し、その後冷却して厚さ20mm、目付200g/mの試験用不織布を製造した。
 具体的には、前記混合原料の28.8gを縦200mm横300mm高さが50mmの容器に入れ、高さ20mmまで圧縮した後に、加熱成形を行って、前記不織布を得た。
 得られた不織布について前記吸遮音性能試験(III)と同じ方法で透過損失及び吸音率を測定した。測定周波数は400~5000Hzとし、400~5000Hzにおける透過損失及び吸音率、400~1250Hzにおける透過損失及び吸音率、1600~4000Hzにおける透過損失及び吸音率をそれぞれ求めた。その結果を表4に示す。表に示す値は、3つのサンプルの透過損失又は吸音率の平均である。
 (実施例15、16)
 繊維Aを繊維C、Dに変更した以外は、実施例14と同様にして試験用不織布を製造し、透過損失及び吸音率を測定した。その結果を表4に示す。
 (比較例17)
 繊維Aを繊維Fに変更した以外は、実施例14と同様にして試験用不織布を製造し、透過損失及び吸音率を測定した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4の結果に示されるように、実施例の繊維A、C、Dは、比較例の繊維Fに比べて、400~5000Hz、400~1250Hzにおける透過損失が高かった。
 また、実施例の繊維A、C、Dは、比較例の繊維Fに比べて、400~5000Hz、400~1250Hzにおける吸音率が高く、1600~4000Hzにおける吸音率は同等以上であった。
 本発明の異形断面繊維は、吸音性能及び遮音性能(吸遮音性能)に優れた不織布の材料として好適である。
 本発明の異形断面繊維の製造方法は、直接紡糸により繊度が小さい異形断面繊維を製造できる。
 本発明の不織布は、吸遮音性能に優れる。
 本発明の吸遮音材は、吸遮音性能に優れる。

Claims (14)

  1.  単繊維繊度が0.01~1.0dtexであり、かつ繊維軸に垂直方向の繊維断面における下記式(1)で算出される異形度(α)が1.5~4.0である、異形断面繊維。
      α=P/(4πA)1/2 ・・・(1)
     式中、Pは繊維断面における周囲長(単位:μm)、Aは繊維断面の面積(単位:μm)である。
  2.  前記繊維断面の面積(A)が0.5~100μmであり、前記繊維断面における周囲長(P)が5~250μmである、請求項1に記載の異形断面繊維。
  3.  前記繊維断面の形状がY字型、十字型、6葉型、8葉型、又は風車型である、請求項1又は2に記載の異形断面繊維。
  4.  ポリエステル繊維、ポリプロピレン繊維、ナイロン繊維、アラミド繊維、アクリル繊維又はレーヨン繊維である、請求項1~3のいずれか一項に記載の異形断面繊維。
  5.  下記吸遮音性能試験(I)で測定される、周波数400~1250Hzにおける吸音率が0.40以上である、請求項1~4のいずれか一項に記載の異形断面繊維。
    (吸遮音性能試験(I))
     40mmに切断した繊維0.81gを、直径41.5mm、厚さ30mmの円筒状のホルダに入れ、周波数400~1250Hzにおける垂直入射吸音率を測定し、その平均値を求める。
  6.  下記吸遮音性能試験(II)で測定される、周波数400~1250Hzにおける吸音率が0.17以上である、請求項1~4のいずれか一項に記載の異形断面繊維。
    (吸遮音性能試験(II))
     40mmに切断した繊維0.27gを、直径41.5mm、厚さ20mmの円筒状のホルダに入れ、周波数400~1250Hzにおける垂直入射吸音率を測定し、その平均値を求める。
  7.  下記吸遮音性能試験(III)で測定される、周波数400~5000Hzにおける透過損失が5.1dB以上である、請求項1~6のいずれか一項に記載の異形断面繊維。
    (吸遮音性能試験(III))
     繊維長が40mmの前記異形断面繊維70質量%と、単繊維繊度が2.2dtex、繊維長が51mm、融点が110℃のポリエステル融着繊維30質量%とを混合し、170℃で20分加熱し、その後冷却して厚さ10mm、目付480g/mの試験用不織布を得、得られた試験用不織布の、周波数400~5000Hzにおける垂直入射透過損失を測定し、その平均値を求める。
  8.  吐出孔面積が100~3000μm、吐出孔形状の下記式(2)で算出される異形度(α’)が1.5~4.0である吐出孔から繊維原料を吐出して繊維状物を得、前記繊維状物の単繊維繊度を0.01~1.0dtexとする、異形断面繊維の製造方法。
      α’=P’/(4πA’)1/2・・・(2)
     式中、P’は吐出孔形状の周囲長(単位:μm)、A’は吐出孔面積(単位:μm)である。
  9.  請求項1~7のいずれか一項に記載の異形断面繊維を、10質量%以上含む、不織布。
  10.  目付が100~500g/m、厚さが3~30mmである、請求項9に記載の不織布。
  11.  周波数400~5000Hzにおける垂直入射透過損失の平均値が5.1dB以上である、請求項9又は10記載の不織布。
  12.  前記異形断面繊維を10~90質量%、融着繊維を10~40質量%含有し、前記前記異形断面繊維と前記融着繊維の合計が20~100質量%である、請求項9~11のいずれか一項に記載の不織布。
  13.  請求項1~7のいずれか一項に記載の異形断面繊維を、10質量%以上含む、吸遮音材。
  14.  請求項9~12のいずれか一項に記載の不織布を50質量%以上含む、吸遮音材。
PCT/JP2019/021009 2018-05-29 2019-05-28 異形断面繊維とその製造方法ならびに異形断面繊維を含む不織布及び吸遮音材 WO2019230688A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980035303.8A CN112218977A (zh) 2018-05-29 2019-05-28 异形截面纤维及其制造方法以及含有异形截面纤维的无纺布和吸音隔音材料
JP2019531489A JPWO2019230688A1 (ja) 2018-05-29 2019-05-28 異形断面繊維とその製造方法ならびに異形断面繊維を含む不織布及び吸遮音材
US17/104,280 US20210079559A1 (en) 2018-05-29 2020-11-25 Modified cross-section fiber and method for manufacturing same and nonwoven fabric and noise-absorbing and -insulating material comprising modified cross-section fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-102509 2018-05-29
JP2018102509 2018-05-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/104,280 Continuation US20210079559A1 (en) 2018-05-29 2020-11-25 Modified cross-section fiber and method for manufacturing same and nonwoven fabric and noise-absorbing and -insulating material comprising modified cross-section fiber

Publications (1)

Publication Number Publication Date
WO2019230688A1 true WO2019230688A1 (ja) 2019-12-05

Family

ID=68698122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021009 WO2019230688A1 (ja) 2018-05-29 2019-05-28 異形断面繊維とその製造方法ならびに異形断面繊維を含む不織布及び吸遮音材

Country Status (4)

Country Link
US (1) US20210079559A1 (ja)
JP (2) JPWO2019230688A1 (ja)
CN (1) CN112218977A (ja)
WO (1) WO2019230688A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220290585A1 (en) * 2021-03-12 2022-09-15 Toyota Jidosha Kabushiki Kaisha Crank sprocket and mounting structure therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233368A (ja) * 1988-07-22 1990-02-02 Toyobo Co Ltd 極細不織布の製造方法及びメルトブローノズル
JPH05181486A (ja) * 1991-12-27 1993-07-23 Nissan Motor Co Ltd 新規な吸音材
JP2005139584A (ja) * 2003-11-07 2005-06-02 Nan Ya Plast Corp 高密度湿度透過防水繊維及びその製法
JP2016500831A (ja) * 2012-09-28 2016-01-14 現代自動車株式会社Hyundaimotor Company 吸音性能が優れた吸音材及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560904A (zh) * 2012-03-07 2012-07-11 厦门延江工贸有限公司 一种异形长纤无纺布及其制造工艺
CN103866405B (zh) * 2012-12-18 2017-04-05 中国纺织科学研究院 一种高孔密度异形长丝及其制备方法
KR101836623B1 (ko) * 2016-04-26 2018-03-08 현대자동차주식회사 자동차 외장용 부직포 보드 및 이의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233368A (ja) * 1988-07-22 1990-02-02 Toyobo Co Ltd 極細不織布の製造方法及びメルトブローノズル
JPH05181486A (ja) * 1991-12-27 1993-07-23 Nissan Motor Co Ltd 新規な吸音材
JP2005139584A (ja) * 2003-11-07 2005-06-02 Nan Ya Plast Corp 高密度湿度透過防水繊維及びその製法
JP2016500831A (ja) * 2012-09-28 2016-01-14 現代自動車株式会社Hyundaimotor Company 吸音性能が優れた吸音材及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220290585A1 (en) * 2021-03-12 2022-09-15 Toyota Jidosha Kabushiki Kaisha Crank sprocket and mounting structure therefor

Also Published As

Publication number Publication date
CN112218977A (zh) 2021-01-12
JP2021101053A (ja) 2021-07-08
JPWO2019230688A1 (ja) 2020-06-11
US20210079559A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
JP4945684B2 (ja) 炭素繊維用アクリロニトリル膨潤糸、前駆体繊維束、耐炎化繊維束、炭素繊維束及びそれらの製造方法
KR20160123280A (ko) 해도 복합 섬유, 복합 극세 섬유 및 섬유 제품
JP2007070792A (ja) 繊維分散体からなるスポンジ状構造体およびその製造方法
JP5233053B2 (ja) エアレイド不織布製造用複合繊維及び高密度エアレイド不織布の製造方法
WO2015050105A1 (ja) 熱交換素子及び熱交換器
US11976396B2 (en) Method for producing nonwoven fabric with improved filtration performance
WO2020179753A1 (ja) 吸音材用不織布、吸音材、および吸音材用不織布の製造方法
CN1218072C (zh) 超吸湿纤维的非织造织物及其制造方法
WO2019230688A1 (ja) 異形断面繊維とその製造方法ならびに異形断面繊維を含む不織布及び吸遮音材
JP2015058411A (ja) 半透膜支持体
JP2651094B2 (ja) スピーカコーン及びその製造方法
JP2012250223A (ja) 半透膜支持体
JP5172295B2 (ja) ポリプロピレン繊維製のシート状繊維構造体
JP2015058409A (ja) 半透膜支持体
JP6417767B2 (ja) 割繊性複合繊維及びその製造方法並びに不織布及びその製造方法
JP6042762B2 (ja) ポリプロピレン繊維及びその製造方法
US20210235848A1 (en) Non-woven fiber aggregates and mask pack sheet using the same
JPH02216295A (ja) 高強力ポリエステル繊維紙の製造方法
JP2019210567A (ja) 湿式不織布
JPH0491230A (ja) プレカーサーの製造方法
JP6068868B2 (ja) 湿式不織布用ショートカット繊維
JP2011021302A (ja) 炭素繊維用アクリロニトリル系前駆体繊維束およびその製造方法、ならびに炭素繊維束
US20220389631A1 (en) Fiber molded body for sound absorbing/sound insulation materials
JPH05321150A (ja) フッ素系樹脂加工不織布
JP2022011493A (ja) 繊維、不織布、吸音材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019531489

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810568

Country of ref document: EP

Kind code of ref document: A1