WO2019230564A1 - 基板処理方法および基板処理装置 - Google Patents

基板処理方法および基板処理装置 Download PDF

Info

Publication number
WO2019230564A1
WO2019230564A1 PCT/JP2019/020516 JP2019020516W WO2019230564A1 WO 2019230564 A1 WO2019230564 A1 WO 2019230564A1 JP 2019020516 W JP2019020516 W JP 2019020516W WO 2019230564 A1 WO2019230564 A1 WO 2019230564A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
clamping
unit
holding
sandwiching
Prior art date
Application number
PCT/JP2019/020516
Other languages
English (en)
French (fr)
Inventor
亨 遠藤
昌之 林
柴山 宣之
雄二 菅原
克栄 東
誠士 阿野
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2019230564A1 publication Critical patent/WO2019230564A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a substrate processing method and a substrate processing apparatus.
  • substrates to be processed include semiconductor wafers, liquid crystal display substrates, plasma display substrates, FED (Field (Emission Display) substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, and photomasks.
  • substrate semiconductor wafers, liquid crystal display substrates, plasma display substrates, FED (Field (Emission Display) substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, and photomasks.
  • substrate ceramic substrate, solar cell substrate and the like.
  • a single-wafer type substrate processing apparatus that processes substrates one by one includes, for example, a spin chuck that horizontally holds and rotates a substrate, and a main substrate that is held by the spin chuck. And a processing liquid supply unit for supplying the processing liquid to the surface.
  • a spin chuck there is a case where a holding chuck that holds a substrate horizontally by bringing a plurality of holding pins into contact with a peripheral portion of the substrate and holding the substrate in a horizontal direction may be adopted.
  • the plurality of clamping pins are provided at appropriate intervals on the circumference corresponding to the outer peripheral shape of the substrate.
  • a chemical process is performed in which a chemical liquid as a processing liquid is supplied to a substrate held by a spin chuck.
  • the chemical liquid supplied to the substrate receives a centrifugal force due to the rotation of the substrate and is discharged from the peripheral portion.
  • a rinsing process is performed in which a rinsing liquid as a processing liquid is supplied to the substrate.
  • the rinsing liquid supplied to the substrate receives a centrifugal force due to the rotation of the substrate and is discharged from the peripheral portion.
  • a spin dry process for removing the rinse liquid adhering to the main surface of the substrate is performed. In the spin dry process, when the substrate is rotated at a high speed, the rinse liquid adhering to the substrate is shaken off and removed (dried).
  • a common rinse solution is deionized water.
  • the rinsing liquid remains between the pinching portion of the pin and the peripheral portion of the substrate.
  • the remaining rinse liquid (the rinse liquid remaining between the sandwiching portion and the peripheral portion of the substrate) may contain a chemical solution.
  • the chemical liquid contained in the rinse liquid may be dried, and particles may be generated at the peripheral edge of the main surface of the substrate. That is, it has been demanded to suppress or prevent the occurrence of particle contamination due to the spin dry process being performed while the liquid remains between the sandwiching portion and the peripheral portion of the substrate.
  • one of the objects of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of suppressing or preventing the generation of particles at the peripheral edge of the substrate.
  • the present invention has at least three first clamping portions that can contact the peripheral edge of the substrate, and the at least three first clamping portions contact the peripheral edge of the substrate to hold the substrate.
  • One clamping unit and the first clamping unit are provided separately and have at least three second clamping parts that can contact the peripheral edge of the substrate, and the at least three second clamping parts are A substrate that is executed in a substrate processing apparatus including a substrate holding and rotating device that includes a second holding unit that holds the substrate by contacting a peripheral edge of the substrate, and for performing a process using a chemical solution on the substrate.
  • the substrate held by the substrate holding / rotating device is rotated to rotate around the rotation axis passing through the central portion of the substrate, and the rinsing liquid is supplied to the main surface of the substrate.
  • a spin drying step of rotating the substrate around the rotation axis at a swinging speed at which the rinse liquid can be shaken off from the main surface of the substrate without supplying a rinse liquid to the main surface of the substrate.
  • the at least three first sandwiching portions are formed on the substrate while the at least three second sandwiching portions are separated from the peripheral portion of the substrate.
  • the first clamping unit By bringing the substrate into contact with the peripheral edge, the first clamping unit realizes a first clamping state in which the substrate is sandwiched by the first clamping unit and the substrate is not sandwiched by the second clamping unit.
  • the at least three first clamping parts are connected to the base in parallel with the spin drying step.
  • the at least three second holding portions are brought into contact with the peripheral portion of the substrate while being separated from the peripheral portion of the substrate, whereby the substrate is held by the second holding unit, and the substrate is held by the first holding unit.
  • a substrate processing method including a second clamping step that realizes a second clamping state that is not clamped and maintains the second clamping state for a predetermined second period.
  • the first sandwiching state in which the substrate is sandwiched by the first sandwiching unit and the substrate is not sandwiched by the second sandwiching unit is maintained ( First clamping step).
  • First clamping step In the first clamping state, each second clamping part is separated from the peripheral edge part of the substrate.
  • each second clamping part rotates around the rotation axis while being separated from the peripheral edge of the substrate. Therefore, even if the liquid is attached to the second holding part before the start of the first holding process, centrifugal force acts on the liquid attached to the second holding part as the substrate rotates. Thus, the liquid is shaken off from the second clamping unit. Therefore, at the end of the first clamping step, the liquid is removed from the second clamping unit.
  • a second clamping state is maintained in which the substrate is sandwiched by the second sandwiching unit and the substrate is not sandwiched by the first sandwiching unit (the second sandwiching state). Clamping process).
  • each first clamping part is separated from the peripheral part of the substrate, and the second clamping part is in contact with the peripheral part of the substrate.
  • the substrate can be sandwiched by the second sandwiching unit without causing a liquid containing a chemical solution to exist between the second sandwiching portion and the peripheral portion of the substrate.
  • the first clamping parts rotate around the rotation axis while the first clamping parts are separated from the peripheral edge of the substrate. Therefore, even if the liquid is attached to the first holding part before the start of the second holding process, a large centrifugal force acts on the liquid attached to the first holding part as the substrate rotates, Thereby, the liquid is shaken off from the first clamping unit. Therefore, the liquid is removed from the first clamping unit after the second clamping process is completed.
  • the substrate is sandwiched by the second sandwiching unit, the already-dried first sandwiching portion comes into contact with the peripheral portion of the substrate. At this time, there is no liquid between the first clamping part and the peripheral part of the substrate. That is, in the step subsequent to the second clamping step, the substrate can be clamped by the first clamping unit without causing the liquid containing the chemical liquid to exist between the first clamping portion and the peripheral edge portion of the substrate.
  • the spin dry process can be executed while suppressing or preventing the liquid containing the chemical liquid from remaining between the first and second sandwiching portions and the peripheral portion of the substrate. Therefore, the generation of particles at the peripheral edge of the substrate can be suppressed or prevented.
  • the substrate processing method is provided on the main surface of the substrate while rotating the substrate held by the substrate holding and rotating device around the rotation axis before the rinsing step. It further includes a chemical liquid process for supplying the chemical liquid.
  • the chemical solution process is executed prior to the rinsing process.
  • the chemical solution may permeate into the sandwiching portion in the chemical solution process.
  • the soaked chemical solution oozes out into the rinsing liquid remaining between the first sandwiching portion and the peripheral edge portion of the substrate or between the second sandwiching portion and the peripheral edge portion of the substrate.
  • the chemical solution may be contained in the rinsing liquid remaining between the first sandwiching portion and the peripheral portion of the substrate or between the second sandwiching portion and the peripheral portion of the substrate. If the spin dry process is performed in this state, particles may be generated at the peripheral edge of the substrate.
  • the spin dry process can be performed while suppressing or preventing the liquid containing the chemical liquid from remaining between the first and second sandwiching portions and the peripheral portion of the substrate. Therefore, the occurrence of particle contamination can be suppressed or prevented.
  • the chemical solution may contain a sulfuric acid-containing solution.
  • the sulfuric acid-containing liquid is generally used for substrate processing with a very high liquid temperature. In this case, depending on the material of the pin, the sulfuric acid-containing liquid may penetrate into the pin. When the sulfuric acid-containing liquid oozes out in the rinse liquid remaining between the sandwiching portion and the peripheral portion of the substrate during the spin drying process, particles may be generated at the peripheral portion of the substrate.
  • the spin dry process can be executed while suppressing or preventing the liquid containing the sulfuric acid-containing liquid from remaining between the first and second sandwiching portions and the peripheral edge portion of the substrate. Therefore, even when a sulfuric acid-containing liquid is used as the chemical liquid, the generation of particles at the peripheral edge of the substrate can be suppressed or prevented.
  • the first period is a period during which the rinsing liquid can be shaken off from the at least three first holding portions
  • the second period is the at least three second This is a period during which the rinsing liquid can be shaken off from the nipping portion.
  • the second clamping unit can be dried at the end of the first clamping process. Further, the first clamping unit can be dried at the end of the second clamping process. Thereby, the remaining of the liquid containing the chemical solution between the first and second sandwiching portions and the peripheral portion of the substrate during the spin dry process can be more effectively suppressed.
  • the at least three second clamping parts that are separated from the peripheral part of the substrate are brought into contact with the peripheral part of the substrate.
  • the first clamping state since the first clamping state is transited from the first clamping state to the second clamping state once, the first clamping state is changed to the second clamping state without stopping the rotation of the substrate. Transition can be made.
  • the substrate is sandwiched by the first sandwiching unit and the second sandwiching unit in parallel with the spin dry step.
  • achieves the both clamping state to perform is further included.
  • the spin dry step is capable of shaking off the rinse liquid from the main surface of the substrate in parallel with the first clamping step and the second clamping step.
  • the rinse liquid can be shaken off from the main surface of the substrate, and the first And a second spin drying step of rotating around the rotation axis at a second drying speed higher than the drying speed.
  • the substrate can be rotated at a higher second drying speed in the spin dry process, the substrate can be satisfactorily shaken and dried.
  • the first clamping step is executed in parallel with the spin dry step.
  • the rinse liquid from the substrate may fall on the second clamping part that is separated from the peripheral part of the substrate. Further, since the rotation speed of the substrate is slow, there is a possibility that the centrifugal force acting on each second clamping part rotating while being separated from the peripheral part in the first clamping process is not increased.
  • the rinsing liquid from the substrate is applied to the second clamping portion that is separated from the peripheral portion of the substrate. There is no risk of falling. Further, since the rotation speed of the substrate is high enough to shake off the rinsing liquid, the centrifugal force acting on each of the second holding portions rotating while being separated from the peripheral portion in the first holding step is large. Thereby, in a 1st clamping process, a 2nd clamping part can be dried more favorably.
  • the first clamping process and the second clamping process are performed again in parallel with the spin dry process.
  • the first clamping step and the second clamping step are executed a plurality of times. Therefore, the spin dry process can be executed while more effectively suppressing the remaining of the liquid containing the chemical liquid between the first and second sandwiching portions and the peripheral portion of the substrate. Therefore, the generation of particles at the peripheral edge of the substrate can be more effectively suppressed.
  • the present invention is a substrate processing apparatus for performing a process using a chemical solution on a substrate, and includes at least three first holding portions that can contact a peripheral portion of the substrate, and the at least three first A first clamping unit capable of clamping the substrate by one clamping unit; and at least three second clamping units provided separately from the first clamping unit and capable of contacting the peripheral edge of the substrate A second sandwiching unit capable of sandwiching the substrate by the at least three second sandwiching portions, and the first sandwiching unit and the second sandwiching unit at a central portion of the substrate.
  • a substrate holding / rotating device including a rotating unit that rotates around a rotation axis passing through the first holding unit and a holding driving unit that drives the first holding unit and the second holding unit, and the substrate holding rotation.
  • a rinsing liquid supply unit for supplying a rinsing liquid to the main surface of the substrate held by the apparatus, and a control device for controlling the rotating unit, the clamping drive unit, and the rinsing liquid supply unit, While the control device rotates the substrate held by the substrate holding and rotating device around the rotation axis passing through the central portion of the substrate by the rotation unit, the rinse liquid supply unit causes the main surface of the substrate to be rotated.
  • At least one of a spin dry process that rotates about the rotation axis, the rinse process, and the spin dry process In parallel, in order to shake off the rinsing liquid from the at least three second clamping parts, the at least three second clamping parts are separated from the peripheral edge of the substrate by the clamping drive unit.
  • a first clamping step for maintaining the first clamping state for a predetermined first period, and after the first clamping step, in parallel with the spin dry process, from the at least three first clamping parts In order to shake off the rinsing liquid, the at least three second holding units are separated from the peripheral portion of the substrate by the holding driving unit. Is brought into contact with the peripheral portion of the substrate, thereby realizing a second clamping state in which the substrate is sandwiched by the second sandwiching unit and the substrate is not sandwiched by the first sandwiching unit.
  • a substrate processing apparatus is provided that executes a second clamping step of maintaining the two clamping states for a predetermined second period.
  • the first sandwiching state in which the substrate is sandwiched by the first sandwiching unit and the substrate is not sandwiched by the second sandwiching unit is maintained ( First clamping step).
  • First clamping step In the first clamping state, each second clamping part is separated from the peripheral edge part of the substrate.
  • each second clamping part rotates around the rotation axis while being separated from the peripheral edge of the substrate. Therefore, even if the liquid is attached to the second holding part before the start of the first holding process, centrifugal force acts on the liquid attached to the second holding part as the substrate rotates. Thus, the liquid is shaken off from the second clamping unit. Therefore, at the end of the first clamping step, the liquid is removed from the second clamping unit.
  • a second clamping state is maintained in which the substrate is sandwiched by the second sandwiching unit and the substrate is not sandwiched by the first sandwiching unit (the second sandwiching state). Clamping process).
  • each first clamping part is separated from the peripheral part of the substrate, and the second clamping part is in contact with the peripheral part of the substrate.
  • the substrate can be sandwiched by the second sandwiching unit without causing a liquid containing a chemical solution to exist between the second sandwiching portion and the peripheral portion of the substrate.
  • the first clamping parts rotate around the rotation axis while the first clamping parts are separated from the peripheral edge of the substrate. Therefore, even if the liquid is attached to the first holding part before the start of the second holding process, a large centrifugal force acts on the liquid attached to the first holding part as the substrate rotates, Thereby, the liquid is shaken off from the first clamping unit. Therefore, the liquid is removed from the first clamping unit after the second clamping process is completed.
  • the substrate is sandwiched by the second sandwiching unit, the already-dried first sandwiching portion comes into contact with the peripheral portion of the substrate. At this time, there is no liquid between the first clamping part and the peripheral part of the substrate. That is, in the step subsequent to the second clamping step, the substrate can be clamped by the first clamping unit without causing the liquid containing the chemical liquid to exist between the first clamping portion and the peripheral edge portion of the substrate.
  • the spin dry process can be executed while suppressing or preventing the liquid containing the chemical liquid from remaining between the first and second sandwiching portions and the peripheral portion of the substrate. Therefore, the generation of particles at the peripheral edge of the substrate can be suppressed or prevented.
  • the controller controls the chemical liquid on the main surface of the base while rotating the substrate held by the substrate holding circuit device around the rotation axis before the rinsing step.
  • the chemical liquid process is executed prior to the rinsing process.
  • the chemical solution may permeate into the sandwiching portion in the chemical solution process.
  • the soaked chemical solution oozes out into the rinsing liquid remaining between the first sandwiching portion and the peripheral edge portion of the substrate or between the second sandwiching portion and the peripheral edge portion of the substrate.
  • the chemical solution may be contained in the rinsing liquid remaining between the first sandwiching portion and the peripheral portion of the substrate or between the second sandwiching portion and the peripheral portion of the substrate. If the spin dry process is performed in this state, particles may be generated at the peripheral edge of the substrate.
  • the spin dry process can be performed while suppressing or preventing the liquid containing the chemical liquid from remaining between the first and second sandwiching portions and the peripheral portion of the substrate. Therefore, the occurrence of particle contamination can be suppressed or prevented.
  • the chemical solution may contain a sulfuric acid-containing solution.
  • the sulfuric acid-containing liquid is generally used for substrate processing with a very high liquid temperature. In this case, depending on the material of the pin, the sulfuric acid-containing liquid may penetrate into the pin. When the sulfuric acid-containing liquid oozes out in the rinse liquid remaining between the sandwiching portion and the peripheral portion of the substrate during the spin drying process, particles may be generated at the peripheral portion of the substrate.
  • the spin dry process can be executed while suppressing or preventing the liquid containing the sulfuric acid-containing liquid from remaining between the first and second sandwiching portions and the peripheral edge portion of the substrate. Therefore, even when a sulfuric acid-containing liquid is used as the chemical liquid, the generation of particles at the peripheral edge of the substrate can be suppressed or prevented.
  • the first period is a period during which the rinsing liquid can be shaken off from the at least three first holding portions
  • the second period is the at least three second This is a period during which the rinsing liquid can be shaken off from the nipping portion.
  • the second clamping unit can be dried at the end of the first clamping process. Further, the first clamping unit can be dried at the end of the second clamping process. Thereby, the remaining of the liquid containing the chemical solution between the first and second sandwiching portions and the peripheral portion of the substrate during the spin dry process can be more effectively suppressed.
  • control device causes the at least three second holding portions spaced from the peripheral portion of the substrate to contact the peripheral portion of the substrate in the first holding state.
  • a first transition step of transitioning from the first sandwiched state to a sandwiched state in which the substrate is sandwiched by the first sandwiching unit and the second sandwiching unit, and in the both sandwiched state, the substrate A second transition step in which the at least three first sandwiching portions in contact with the peripheral portion of the substrate are separated from the peripheral portion of the substrate to transition from the both sandwiched states to the second sandwiched state.
  • the first clamping state since the first clamping state is transited from the first clamping state to the second clamping state once, the first clamping state is changed to the second clamping state without stopping the rotation of the substrate. Transition can be made.
  • control apparatus clamps the substrate by the first clamping unit and the second clamping unit in parallel with the spin dry process after the second clamping process. Both clamping processes for realizing both clamping states are further executed.
  • the control device in the spin dry process, removes the substrate from the main surface of the substrate in parallel with the first clamping process and the second clamping process.
  • the rinse liquid in parallel with the first spin-drying step of rotating around the rotation axis at a first drying speed that can be shaken off, and the both clamping steps, the rinse liquid can be shaken off from the main surface of the substrate.
  • the substrate can be rotated at a faster second drying speed in the spin dry process, the substrate can be satisfactorily shaken and dried.
  • control device executes the first clamping process in parallel with the spin dry process.
  • the rinse liquid from the substrate may fall on the second clamping part that is separated from the peripheral part of the substrate. Further, since the rotation speed of the substrate is slow, there is a possibility that the centrifugal force acting on each second clamping part rotating while being separated from the peripheral part in the first clamping process is not increased.
  • the rinse liquid from the substrate is applied to the second clamping part that is separated from the peripheral part of the substrate. There is no risk of falling. Further, since the rotation speed of the substrate is high enough to shake off the rinsing liquid, the centrifugal force acting on each of the second holding portions rotating while being separated from the peripheral portion in the first holding step is large. Thereby, in a 1st clamping process, a 2nd clamping part can be dried more favorably.
  • control device executes the first clamping step and the second clamping step again in parallel with the spin dry step.
  • the first clamping step and the second clamping step are executed a plurality of times. Therefore, the spin dry process can be executed while more effectively suppressing the remaining of the liquid containing the chemical liquid between the first and second sandwiching portions and the peripheral portion of the substrate. Therefore, the generation of particles at the peripheral edge of the substrate can be more effectively suppressed.
  • the first clamping portion and the second clamping portion include a resin member.
  • the processing using the chemical solution is performed while the substrate is clamped by the first clamping unit and the second clamping unit.
  • the chemical solution may permeate into the first sandwiching portion and the second sandwiching portion.
  • the rinsing liquid may remain between the first sandwiching portion and the peripheral portion of the substrate or between the second sandwiching portion and the peripheral portion of the substrate. If the spin dry process is performed in a state where the chemical liquid soaked in the chemical liquid process is oozed out into the rinse liquid, particle contamination may occur on the main surface of the substrate.
  • the spin dry process can be executed while suppressing or preventing the liquid containing the chemical liquid from remaining between the first and second sandwiching portions and the peripheral portion of the substrate. Therefore, even when the first sandwiching portion and the second sandwiching portion include a resin member, the generation of particles at the peripheral portion of the substrate can be suppressed or prevented.
  • the resin member contains carbon
  • the carbon falls out of the resin member due to deterioration over time. And it is possible that a fine space
  • the spin dry process can be executed while suppressing or preventing the liquid containing the chemical liquid from remaining between the first and second sandwiching portions and the peripheral portion of the substrate. Therefore, even when the first sandwiching portion and the second sandwiching portion include a resin member containing carbon, generation of particles at the peripheral portion of the substrate can be suppressed or prevented.
  • FIG. 1 is an illustrative plan view for explaining an internal layout of a substrate processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of the inside of the processing unit provided in the substrate processing apparatus as viewed in the horizontal direction.
  • FIG. 3 is a side view for explaining a more specific configuration of the spin chuck provided in the processing unit.
  • FIG. 4 is a plan view for explaining a more specific configuration of the spin chuck.
  • FIG. 5A is an enlarged cross-sectional view showing a configuration in the vicinity of the first clamping pin.
  • FIG. 5A shows a state where the first clamping unit is in the contact position.
  • FIG. 5B is an enlarged cross-sectional view showing a configuration in the vicinity of the first clamping pin.
  • FIG. 5A is an enlarged cross-sectional view showing a configuration in the vicinity of the first clamping pin.
  • FIG. 5B shows a state where the first clamping unit is in the separated position.
  • FIG. 6A is an enlarged cross-sectional view showing the configuration in the vicinity of the second clamping pin.
  • FIG. 6A shows a state where the second clamping unit is in the contact position.
  • FIG. 6B is an enlarged cross-sectional view showing the configuration in the vicinity of the second clamping pin.
  • FIG. 6B shows a state where the second sandwiching portion is in the separated position.
  • 7A and 7B are schematic diagrams illustrating states of the first clamping unit and the second clamping unit.
  • 8A and 8B are schematic diagrams illustrating states of the first clamping unit and the second clamping unit.
  • 9A and 9B are schematic views showing the states of the first clamping unit and the second clamping unit.
  • 10A and 10B are schematic diagrams illustrating states of the first clamping unit and the second clamping unit.
  • 11A and 11B are schematic views showing the states of the first clamping unit and the second clamping unit.
  • 12A and 12B are schematic diagrams illustrating states of the first clamping unit and the second clamping unit.
  • FIG. 13 is a block diagram for explaining an electrical configuration of a main part of the substrate processing apparatus.
  • FIG. 14 is a flowchart for explaining an example of substrate processing by the processing unit.
  • FIG. 15 is a timing chart for explaining the second rinsing step and the spin dry step.
  • 16A and 16B are schematic diagrams for explaining the SPM process and the first rinsing process.
  • 16C and 16D are schematic diagrams for explaining the SC1 step and the second rinsing step.
  • 16E to 16G are schematic views for explaining the spin dry process.
  • FIG. 17 is a timing chart for explaining a part of the first modification processing example by the processing unit.
  • FIG. 18 is a timing chart for explaining a part of the second modification processing example by the processing unit.
  • FIG. 19 is a timing chart for explaining a part of a third modification processing example by the processing unit.
  • FIG. 20 is a timing chart for explaining a part of the fourth modification processing example by the processing unit.
  • FIG. 1 is a schematic view of a substrate processing apparatus according to an embodiment of the present invention as viewed from above.
  • the substrate processing apparatus 1 is a single wafer processing apparatus that processes substrates W such as silicon wafers one by one.
  • the substrate W is a disk-shaped substrate.
  • the substrate processing apparatus 1 includes a plurality of processing units 2 that process a substrate W with a processing liquid and a rinsing liquid, and a load port on which a substrate container C that stores a plurality of substrates W processed by the processing unit 2 is placed.
  • LP an indexer robot IR and a substrate transfer robot CR that transfer the substrate W between the load port LP and the processing unit 2, and a control device 3 that controls the substrate processing apparatus 1.
  • the indexer robot IR transports the substrate W between the substrate container C and the substrate transport robot CR.
  • the substrate transport robot CR transports the substrate W between the indexer robot IR and the processing unit 2.
  • the plurality of processing units 2 have the same configuration, for example.
  • FIG. 2 is a schematic cross-sectional view for explaining a configuration example of the processing unit 2.
  • the processing unit 2 holds a box-shaped chamber 4 having an internal space, and a single substrate W in the chamber 4 in a horizontal posture, and places the substrate W around a vertical rotation axis A1 passing through the center of the substrate W.
  • a spin chuck (substrate holding and rotating device) 5 to be rotated and sulfuric acid for supplying a sulfuric acid-containing liquid as an example of a chemical solution to the surface (main surface, for example, a pattern forming surface) of the substrate W held by the spin chuck 5
  • the blocking member 8 facing the upper surface of the substrate W held by the substrate 5 and the inside of the blocking member 8 are inserted vertically, and the rinsing liquid is directed toward the center of the upper surface of the substrate W held by the spin chuck 5.
  • the chamber 4 includes a box-shaped partition wall 14 that accommodates the spin chuck 5, and an FFU (fan filter unit) as a blower unit that sends clean air (air filtered by a filter) into the partition wall 14 from above the partition wall 14. 15 and an exhaust duct 16 for discharging the gas in the chamber 4 from the lower part of the partition wall 14.
  • the FFU 15 is disposed above the partition wall 14 and attached to the ceiling of the partition wall 14.
  • the FFU 15 sends clean air of low humidity downward from the ceiling of the partition wall 14 into the chamber 4.
  • the exhaust duct 16 is connected to the bottom of the processing cup 11 and guides the gas in the chamber 4 toward an exhaust processing facility provided in a factory where the substrate processing apparatus 1 is installed. Therefore, a downflow (downflow) that flows downward in the chamber 4 is formed by the FFU 15 and the exhaust duct 16.
  • the processing of the substrate W is performed in a state where a down flow is formed in the chamber 4.
  • a clamping chuck that holds the substrate W horizontally with the substrate W held in the horizontal direction is employed.
  • a specific configuration of the spin chuck 5 will be described later.
  • the sulfuric acid-containing liquid supply unit 6 includes a sulfuric acid-containing liquid nozzle 18, a nozzle arm 19 having the sulfuric acid-containing liquid nozzle 18 attached to the tip thereof, and a nozzle that moves the sulfuric acid-containing liquid nozzle 18 by moving the nozzle arm 19.
  • Mobile unit 20 (see FIG. 13).
  • the sulfuric acid-containing liquid supplied from the sulfuric acid-containing liquid supply unit 6 is, for example, SPM (sulfuric acid / sulfuric acid / hydrogen sulfate mixed solution containing H 2 SO 4 (sulfuric acid) and H 2 O 2 (hydrogen peroxide water)). hydrogen peroxide mixture)).
  • the sulfuric acid-containing liquid nozzle 18 is, for example, a straight nozzle that discharges SPM as an example of the sulfuric acid-containing liquid in a continuous flow state.
  • the sulfuric acid-containing liquid nozzle 18 is attached to the nozzle arm 19 in a vertical posture that discharges SPM in a vertical direction, an inclined direction, or a horizontal direction toward the upper surface of the substrate W, for example.
  • the nozzle arm 19 extends in the horizontal direction.
  • the nozzle moving unit 20 horizontally moves the sulfuric acid-containing liquid nozzle 18 by horizontally moving the nozzle arm 19 around the swing axis.
  • the nozzle moving unit 20 includes a motor and the like.
  • the nozzle moving unit 20 includes a processing position where the SPM discharged from the sulfuric acid-containing liquid nozzle 18 is deposited on the upper surface of the substrate W, and a retreat position where the sulfuric acid-containing liquid nozzle 18 is set around the spin chuck 5 in plan view. In between, the sulfuric acid containing liquid nozzle 18 is moved horizontally.
  • the processing position is, for example, a central position at which the SPM discharged from the sulfuric acid-containing liquid nozzle 18 is deposited on the central portion of the upper surface of the substrate W.
  • the sulfuric acid-containing liquid supply unit 6 further includes a sulfuric acid supply unit 21 that supplies H 2 SO 4 to the sulfuric acid-containing liquid nozzle 18 and a hydrogen peroxide solution supply unit 22 that supplies H 2 O 2 to the sulfuric acid-containing liquid nozzle 18. Including.
  • the sulfuric acid supply unit 21 includes a sulfuric acid pipe 23 having one end connected to the sulfuric acid-containing liquid nozzle 18 and a sulfuric acid valve 24 for opening and closing the sulfuric acid pipe 23.
  • the sulfuric acid pipe 23 is supplied with H 2 SO 4 kept at a predetermined high temperature from a sulfuric acid supply source.
  • the sulfuric acid supply unit 21 may further include a sulfuric acid flow rate adjusting valve that adjusts the flow rate of H 2 SO 4 flowing through the sulfuric acid piping 23 by adjusting the opening degree of the sulfuric acid piping 23.
  • the sulfuric acid flow rate adjusting valve includes a valve body having a valve seat provided therein, a valve body that opens and closes the valve seat, and an actuator that moves the valve body between an open position and a closed position. The same applies to other flow rate adjusting valves.
  • the hydrogen peroxide solution supply unit 22 includes a hydrogen peroxide solution pipe 25 having one end connected to the sulfuric acid-containing liquid nozzle 18 and a hydrogen peroxide solution valve 26 for opening and closing the hydrogen peroxide solution pipe 25.
  • the hydrogen peroxide solution pipe 25 is supplied with H 2 O 2 at a normal temperature (about 23 ° C.) whose temperature is not adjusted from a hydrogen peroxide solution supply source.
  • the hydrogen peroxide solution supply unit 22 further includes a hydrogen peroxide solution adjustment valve that adjusts the flow rate of H 2 O 2 flowing through the hydrogen peroxide solution pipe 25 by adjusting the opening of the hydrogen peroxide solution pipe 25. It may be.
  • H 2 SO 4 from the sulfuric acid pipe 23 and H 2 O 2 from the hydrogen peroxide water pipe 25 are supplied into the casing of the sulfuric acid-containing liquid nozzle 18. And thoroughly mixed (stirred) in the casing. This mixture, H 2 SO 4 and H 2 O 2 and is mingled evenly, a mixed solution of H 2 SO 4 and H 2 O 2 by reaction of H 2 SO 4 and H 2 O 2 (SPM) is generated Is done.
  • SPM contains peroxomonosulfuric acid (H 2 SO 5 ), which has strong oxidizing power, and is heated to a temperature higher than the temperature of H 2 SO 4 before mixing (100 ° C. or higher, for example, 160 to 220 ° C.). It is done.
  • the generated high-temperature SPM is discharged from a discharge port opened in the casing of the sulfuric acid-containing liquid nozzle 18.
  • the SC1 supply unit 7 includes an SC1 nozzle 28, a nozzle arm 29 with the SC1 nozzle 28 attached to the tip thereof, and a nozzle moving unit 30 that moves the SC1 nozzle 28 by moving the nozzle arm 29 (see FIG. 13). Including.
  • the nozzle moving unit 30 moves the SC1 nozzle 28 horizontally by horizontally moving the nozzle arm 29 around the swing axis.
  • the nozzle moving unit 30 includes a motor and the like.
  • the nozzle moving unit 30 has a processing position where SC1 discharged from the SC1 nozzle 28 is deposited on the surface of the substrate W (a jet of SC1 droplets discharged from the SC1 nozzle 28 is sprayed on the surface of the substrate W); The SC1 nozzle 28 is moved horizontally between the SC1 nozzle 28 and the retracted position set around the spin chuck 5 in plan view. Further, the nozzle moving unit 30 has a liquid landing position of SC1 discharged from the SC1 nozzle 28 (a spraying position of a jet of droplets of SC1 discharged from the SC1 nozzle 28) at the center of the surface of the substrate W and the substrate W. The sulfuric acid-containing liquid nozzle 18 is moved horizontally so as to move between the peripheral portions of the surface.
  • the SC1 nozzle 28 discharges a jet of SC1 droplets onto the surface of the substrate W held on the spin chuck 5 (discharges SC1 in the form of a spray).
  • the SC1 nozzle 28 has the form of a known two-fluid nozzle (for example, see Japanese Patent Application Laid-Open No. 2017-005230) that ejects SC1 fine droplets.
  • the SC1 supply unit 7 switches the SC1 pipe 32 to supply the SC1 pipe 32 for supplying liquid SC1 from the SC1 supply source to the SC1 nozzle 28 and the supply and stop of supply of SC1 from the SC1 pipe 32 to the SC1 nozzle 28.
  • the gas pipe 34 is opened and closed in order to switch the supply and stop of gas supply from the gas pipe 34 to the SC1 nozzle 28, the SC1 valve 33 that opens and closes the gas, the gas pipe 34 that supplies the gas from the gas supply source to the SC1 nozzle 28, And a gas valve 35.
  • an inert gas such as nitrogen gas (N 2 ) can be exemplified, but other than that, for example, dry air or clean air can be employed.
  • the SC1 nozzle 28 may have a form of a straight nozzle that discharges SC1 in a continuous flow mode instead of a form of a two-fluid nozzle.
  • the gas By causing the gas to collide (mix), it is possible to generate the fine droplets of SC1, and the SC1 can be ejected in a spray form.
  • the blocking member 8 includes a blocking plate 41 and a rotary shaft 42 provided on the blocking plate 41 so as to be integrally rotatable.
  • the blocking plate 41 has a disk shape having a diameter substantially equal to or larger than that of the substrate W.
  • the blocking plate 41 has a substrate facing surface 41a formed of a circular horizontal flat surface facing the entire surface of the substrate W on the lower surface thereof.
  • the rotation shaft 42 is provided to be rotatable around a rotation axis A2 (an axis that coincides with the rotation axis A1 of the substrate W) extending vertically through the center of the blocking plate 41.
  • the rotating shaft 42 is cylindrical.
  • the rotating shaft 42 is supported by a support arm 43 extending horizontally above the blocking plate 41 so as to be relatively rotatable.
  • a cylindrical through hole 40 is formed in the central portion of the blocking plate 41 so as to vertically penetrate the blocking plate 41 and the rotating shaft 42.
  • the central axis nozzle 9 is inserted vertically into the through hole 40. That is, the center axis nozzle 9 penetrates the blocking plate 41 and the rotating shaft 42 vertically.
  • the central axis nozzle 9 is provided with a cylindrical casing that extends vertically inside the through hole 40. The lower end of the central axis nozzle 9 opens to the substrate facing surface 41a to form a discharge port 9a.
  • the center axis nozzle 9 is supported by the support arm 43 so as not to rotate with respect to the support arm 43.
  • the central shaft nozzle 9 moves up and down together with the blocking plate 41, the rotating shaft 42 and the support arm 43.
  • a rinse liquid supply unit 10 is connected to the upstream end of the central shaft nozzle 9.
  • the rinse liquid supply unit 10 includes a rinse liquid pipe 44 that guides the rinse liquid to the central shaft nozzle 9 and a rinse liquid valve 45 that opens and closes the rinse liquid pipe 44.
  • the rinse liquid is water, for example.
  • the water is any one of pure water (deionized water), carbonated water, electrolytic ion water, hydrogen water, ozone water, and ammonia water having a diluted concentration (for example, about 10 to 100 ppm).
  • the rinsing liquid valve 45 is opened, the rinsing liquid from the rinsing liquid supply source is supplied from the rinsing liquid pipe 44 to the central axis nozzle 9. Thereby, the rinse liquid is discharged downward from the discharge port 9a of the central axis nozzle 9.
  • An inert gas supply unit 46 is connected to the central axis nozzle 9.
  • the inert gas supply unit 46 includes an inert gas pipe 47 connected to the upstream end of the central shaft nozzle 9 and an inert gas valve 48 interposed in the middle of the inert gas pipe 47.
  • the inert gas is, for example, nitrogen gas (N 2 ).
  • N 2 nitrogen gas
  • the shield plate 41 is coupled to a shield plate rotating unit 49 having a configuration including an electric motor or the like.
  • the shielding plate rotating unit 49 rotates the shielding plate 41 and the rotation shaft 42 around the rotation axis A ⁇ b> 2 with respect to the support arm 43.
  • the support arm 43 is coupled with a blocking member lifting / lowering unit 50 including an electric motor, a ball screw, and the like.
  • the blocking member lifting / lowering unit 50 lifts and lowers the blocking member 8 (the blocking plate 41 and the rotating shaft 42) and the central axis nozzle 9 together with the support arm 43 in the vertical direction.
  • the blocking plate 41 is positioned at a blocking position where the substrate facing surface 41a is close to the upper surface of the substrate W held by the spin chuck 5 (shown by a broken line in FIG. 2, as shown in FIGS. 16E to 16G, etc.). Position) and a retracted position (shown by a solid line in FIG. 2) retracted upward from the blocking position.
  • the blocking member lifting / lowering unit 50 can hold the blocking plate 41 at the blocking position, the intermediate position (the position shown in FIGS. 16B and 16D), and the retracted position.
  • the space between the substrate facing surface 41a and the upper surface of the substrate W in the state where the blocking plate 41 is in the blocking position is not completely isolated from the surrounding space. There is no gas inflow from. That is, the space is substantially isolated from the surrounding space.
  • the processing cup 11 is disposed outward (in a direction away from the rotation axis A1) from the substrate W held by the spin chuck 5.
  • the processing cup 11 surrounds a spin base 51 described below.
  • a liquid such as a chemical solution, a rinse solution, or a protective solution
  • the liquid supplied to the substrate W is shaken off around the substrate W.
  • the upper end portion 11a of the processing cup 11 is disposed above the spin base 51 described below. Therefore, the liquid discharged around the substrate W is received by the processing cup 11. Then, the liquid received by the processing cup 11 is sent to a recovery device or a waste liquid device (not shown).
  • FIG. 3 is a side view for explaining a more specific configuration of the spin chuck 5.
  • FIG. 4 is a plan view for explaining a more specific configuration of the spin chuck 5.
  • 5A and 5B are enlarged cross-sectional views showing the configuration in the vicinity of the first clamping pin 52A.
  • 6A and 6B are enlarged cross-sectional views showing a configuration in the vicinity of the second holding pin 52B.
  • FIG. 3 is a view of FIG. 4 as viewed from the section line III-III.
  • the spin chuck 5 includes a spin base 51 that can rotate around a rotation axis A ⁇ b> 1 along the vertical direction, and a circumferential direction Y of the spin base 51 at the peripheral edge of the upper surface of the spin base 51.
  • a spin motor 54 that rotates around.
  • All of the holding pins provided in the spin chuck 5 are pins on which the support portions (the first holding unit 55 and the second holding unit 56) that come into contact with the peripheral portion of the substrate W are movable.
  • the six clamping pins and the spin base 51 rotate with the rotation of the rotation shaft 53.
  • the six clamping pins include one group (first clamping unit 55 or first clamping unit) in which three clamping pins 52A that are not adjacent to each other and three clamping pins 52B that are not adjacent to each other are opened and closed simultaneously. 2 sandwiching units 56).
  • the six sandwiching pins include three sandwiching pins 52A included in the first sandwiching unit 55 (hereinafter referred to as “first sandwiching pin 52A”) and three sandwiching pins included in the second sandwiching unit 56.
  • a pin 52B hereinafter referred to as “second pin 52B”).
  • the first clamping pins 52A and the second clamping pins 52B are alternately arranged in the circumferential direction Y.
  • the three first clamping pins 52A are arranged at equal intervals (120 ° intervals). If attention is paid to the second clamping unit 56, the three second clamping pins 52B are arranged at equal intervals (120 ° intervals).
  • each first holding pin 52 ⁇ / b> A includes a first shaft portion 61 and a first holding portion 62 formed integrally with the upper end of the first shaft portion 61.
  • the first shaft portion 61 and the first clamping portion 62 are each formed in a cylindrical shape.
  • the first clamping part 62 is provided eccentric from the central axis of the first shaft part 61.
  • the surface connecting the upper end of the first shaft portion 61 and the lower end of the first holding portion 62 is a first taper that descends from the first holding portion 62 toward the peripheral surface of the first shaft portion 61.
  • a surface 63 is formed.
  • each first clamping pin 52A is attached to the spin base 51 so that the first shaft portion 61 can rotate around the rotation axis A3 coaxial with the center axis. Yes. More specifically, a first support shaft 65 supported on the spin base 51 via a first bearing 64 is provided at the lower end portion of the first shaft portion 61.
  • the first holding pin 52 ⁇ / b> A includes a conductive member 70.
  • the conductive member 70 includes a first shaft portion 61 and a first clamping portion 62.
  • the conductive member 70 is grounded via the first support shaft 65.
  • the conductive member 70 is formed of a composite material having chemical resistance and conductivity.
  • a specific example of the composite material is a material containing a resin and carbon.
  • the conductive member 70 has a mode in which a carbon material is dispersed in a resin member formed of resin.
  • the carbon contained in the conductive member 70 is, for example, carbon fiber (carbon fiber).
  • the carbon contained in the conductive member 70 may be carbon powder or particles.
  • resin contained in the conductive member 70 are PFA (perfluoro-alkylvinyl-ether-tetrafluoro-ethlene- copolymer), PCTFE (Poly Chloro Tri Furuoro Ethylene), PTFE (polytetrafluoroethylene), and PEEK (polyether-ether ketone). It is.
  • the center axis of the first clamping unit 62 is deviated from the rotation axis A3. Therefore, by the rotation of the first shaft portion 61, the first holding portion 62 is moved away from the rotation axis A1 (the center axis) is away from the rotation axis A1 (the position shown in FIG. 5B), and the center axis is the rotation axis A1. It will be displaced between the approaching position (position shown in FIG. 5A) approaching. In a state where the first sandwiching pin 52 ⁇ / b> A is located at the separation position, a predetermined gap is formed between the peripheral end surface (peripheral end portion) of the substrate W and the first sandwiching portion 62.
  • the spin chuck 5 further includes a first opening / closing unit 57 for opening and closing the three first holding pins 52A at once.
  • the first opening / closing unit 57 includes a first drive magnet 66 provided in a one-to-one correspondence with each first holding pin 52A, and a first one provided in a one-to-one correspondence with each first holding pin 52A.
  • a lifting unit 69 is also provided to raise and lowering the plurality of first opening / closing magnets 68.
  • the first driving magnet 66 is fixed to the lower end of the first support shaft 65 of each first clamping pin 52A. As the first drive magnet 66 rotates about the rotation axis A3, the first holding pin 52A rotates about the rotation axis A3.
  • the first drive magnet 66 is a permanent magnet and extends in a longitudinal direction along the horizontal.
  • the magnetic pole directions of the three first driving magnets 66 corresponding to the plurality of (for example) three first clamping pins 52A are such that the substrate W rotates when no external force is applied to the first clamping pins 52A. Common in the radial direction.
  • the first urging magnet 67 is disposed adjacent to the corresponding first holding pin 52A and closer to the direction away from the rotation axis A1 than the center position of the first holding pin 52A. .
  • the first urging magnet 67 exerts a magnetic force on the corresponding first driving magnet 66.
  • the first opening / closing magnet 68 has an arc shape centered on the rotation axis A1.
  • the three first opening / closing magnets 68 are at a common height position.
  • the three first opening / closing magnets 68 are arranged at equal intervals in the circumferential direction Y on a circumference coaxial with the rotation axis A1.
  • 1st magnet raising / lowering unit 69 is the structure containing the cylinder provided so that expansion-contraction was possible for the up-down direction, for example, and is supported by the said cylinder. Moreover, the 1st magnet raising / lowering unit 69 may be comprised using the electric motor.
  • the first magnet lifting unit 69 may include a plurality (for example, three) of individual lifting units that individually lift and lower the first opening / closing magnet 68.
  • each second clamping pin 52 ⁇ / b> B includes a second shaft portion 71 and a second clamping portion 72 formed integrally with the upper end of the second shaft portion 71.
  • the second shaft portion 71 and the second holding portion 72 are each formed in a cylindrical shape.
  • the second clamping portion 72 is provided eccentric from the central axis of the second shaft portion 71.
  • the surface connecting the upper end of the second shaft portion 71 and the lower end of the second holding portion 72 is a second taper that descends from the second holding portion 72 toward the peripheral surface of the second shaft portion 71.
  • a surface 73 is formed.
  • each second clamping pin 52B is attached to the spin base 51 so that the second shaft portion 71 can rotate around a rotation axis A4 coaxial with the center axis.
  • a second support shaft 75 supported by a spin base 51 via a second bearing 74 is provided at the lower end portion of the second shaft portion 71.
  • the second holding pin 52B includes a conductive member 80.
  • the conductive member 80 includes a second shaft portion 71 and a second clamping portion 72.
  • the conductive member 80 is grounded via the second support shaft 75.
  • the conductive member 80 is formed of a composite material having chemical resistance and conductivity.
  • a specific example of the composite material is a material containing a resin and carbon.
  • the conductive member 80 has a mode in which a carbon material is dispersed in a resin member formed of resin.
  • the carbon contained in the conductive member 80 is, for example, carbon fiber (carbon fiber).
  • the carbon contained in the conductive member 80 may be carbon powder or particles.
  • the resin contained in the conductive member 80 include PFA (perfluoro-alkylvinyl-ether-tetrafluoro-ethlene- copolymer), PCTFE (Poly Chloro Tri Furuoro Ethylene), PTFE (polytetrafluoroethylene), and PEEK (polyether-ether ketone). It is.
  • the center axis of the second clamping portion 72 is deviated from the rotation axis A4. Therefore, due to the rotation of the second shaft portion 71, the second sandwiching portion 72 is moved away from the rotation axis A1 (the center axis) is away from the rotation axis A1 (position shown in FIG. 6B), and the center axis is turned to the rotation axis A1. It will be displaced between the approaching position (position shown in FIG. 6A) approaching. In a state where the second holding pin 52B is located at the separation position, a predetermined gap is formed with the peripheral end surface (peripheral end portion) of the substrate W.
  • the spin chuck 5 further includes a second opening / closing unit 58 for opening and closing the three second holding pins 52B collectively.
  • the second opening / closing unit 58 includes a second drive magnet 76 provided in a one-to-one correspondence with each second holding pin 52B, and a second one provided in a one-to-one correspondence with each second holding pin 52B.
  • a lifting unit 79 is also provided in a lifting unit 79.
  • the second drive magnet 76 is fixed to the lower end of the second support shaft 75 of each second clamping pin 52B. As the second drive magnet 76 rotates about the rotation axis A4, the second clamping pin 52B rotates about the rotation axis A4.
  • the second drive magnet 76 is a permanent magnet and extends in the longitudinal direction along the horizontal.
  • the magnetic pole directions of the three second driving magnets 76 corresponding to the three plural (for example) second holding pins 52B are the rotations of the substrate W in the state where no external force is applied to the second holding pins 52B. Common in the radial direction.
  • the second urging magnet 77 is disposed adjacent to the corresponding second holding pin 52B and closer to the direction away from the rotation axis A1 than the center position of the second holding pin 52B. .
  • the second urging magnet 77 exerts a magnetic force on the corresponding second driving magnet 76.
  • the magnetic pole direction of each second biasing magnet 77 is opposite to the magnetic pole direction of each first biasing magnet 67 with respect to the rotational radius direction of the substrate W.
  • the first urging magnets 67 and the second urging magnets 77 are alternately arranged in the circumferential direction Y.
  • the second opening / closing magnet 78 has an arc shape centered on the rotation axis A1.
  • the three second opening / closing magnets 78 are at a common height position.
  • the three second opening / closing magnets 78 are arranged at equal intervals in the circumferential direction Y on the circumference coaxial with the rotation axis A1.
  • the three first opening / closing magnets 68 and the three second opening / closing magnets 78 are alternately arranged in the circumferential direction Y.
  • the magnetic pole directions of the three first opening / closing magnets 68 and the magnetic pole directions of the three second opening / closing magnets 78 are directions along the rotational radius direction of the spin base 51.
  • the magnetic pole direction of each first opening / closing magnet 68 and the magnetic pole direction of each second opening / closing magnet 78 are opposite to each other.
  • the outer peripheral surface of the first opening / closing magnet 68 is, for example, N-pole
  • the outer peripheral surface of the second opening / closing magnet 78 has an S-polarity of opposite polarity.
  • the 2nd magnet raising / lowering unit 79 may be comprised using the electric motor.
  • the second magnet lifting unit 79 may include a plurality (for example, three) of individual lifting units that individually lift and lower the second opening / closing magnet 78.
  • the first opening / closing magnets 68 and the second opening / closing magnets 78 are alternately arranged in the circumferential direction Y at intervals of 60 °.
  • the first clamping pins 52A and the second clamping pins 52B are also arranged in the circumferential direction Y at 60 ° intervals.
  • FIG. 5A and 5B the first opening / closing magnet 68 and the first clamping pin 52A are aligned in the circumferential direction Y (opposite each other).
  • FIG. 5A shows a state where the first opening / closing magnet 68 is in the lower position
  • FIG. 5B shows a state where the first opening / closing magnet 68 is in the upper position.
  • the first drive magnet 66 is disposed so that, for example, the north pole faces inward in the rotational radius direction and the south pole faces outward in the rotational radius direction.
  • the first clamping pin 52A is located at the contact position. That is, in a state where the first opening / closing magnet 68 is in the lower position, the first holding portion 62 of the first holding pin 52A is arranged at the contact position.
  • the first opening / closing magnet 68 is raised and placed in the upper position.
  • the first clamping pin 52 ⁇ / b> A rotates about the rotation axis A ⁇ b> 3 against the repulsive magnetic force of the first urging magnet 67.
  • the 1st clamping part 62 moves to a separation position from a contact position. That is, in a state where the first opening / closing magnet 68 is in the upper position, the first holding portion 62 of the first holding pin 52A is disposed in the separated position.
  • FIG. 6A shows a state where the second opening / closing magnet 78 is in the lower position
  • FIG. 6B shows a state where the second opening / closing magnet 78 is in the upper position.
  • the second drive magnet 76 is arranged, for example, such that the south pole faces inward in the rotational radius direction and the north pole faces outward in the rotational radius direction.
  • the second clamping pin 52B is located at the contact position. That is, in a state where the second opening / closing magnet 78 is in the lower position, the second holding portion 72 of the second holding pin 52B is disposed at the contact position.
  • the second opening / closing magnet 78 is raised and placed in the upper position.
  • the second clamping pin 52 ⁇ / b> B rotates about the rotation axis A ⁇ b> 4 against the repulsive magnetic force of the second urging magnet 77.
  • the 2nd clamping part 72 moves to a separation position from a contact position. That is, in a state where the second opening / closing magnet 78 is in the upper position, the second holding portion 72 of the second holding pin 72A is disposed in the separated position.
  • FIGS. 10B, 11B, 12B, 13B, 14B, 15B show the opening / closing states of the holding pins 52A, 52B.
  • the reason why the first opening / closing magnet 68 and / or the second opening / closing magnet 78 is not shown in the plan view is that it is retracted downward.
  • the first opening / closing magnet 68 and the second opening / closing magnet 78, and the first holding pin 52A and the second holding pin 52B are aligned in the circumferential direction Y (opposing each other).
  • the first opening / closing magnet 68 and the second opening / closing magnet 78 are both in the upper position.
  • each of the three first sandwiching pins 52A and the three second sandwiching pins 52B has a sandwiching section (the first sandwiching section 62 and the second sandwiching section 72).
  • An open state (open) located in the separated position is exhibited.
  • the first opening / closing magnet 68 and the second opening / closing magnet 78, and the first holding pin 52A and the second holding pin 52B are aligned in the circumferential direction Y (opposing each other).
  • the first opening / closing magnet 68 and the second opening / closing magnet 78 are both in the lower position.
  • each of the three first sandwiching pins 52A and the three second sandwiching pins 52B has a sandwiching section (the first sandwiching section 62 and the second sandwiching section 72).
  • the closed state (close) located in the clamping position is exhibited.
  • FIGS. 10A and 10B the first opening / closing magnet 68 and the second opening / closing magnet 78, and the first holding pin 52A and the second holding pin 52B are aligned in the circumferential direction Y, respectively.
  • the first opening / closing magnet 68 is in the upper position and the second opening / closing magnet 78 is in the lower position.
  • 9A and 9B show the spin base 51 in a non-rotating state
  • FIGS. 10A and 10B show the spin base 51 in a rotating state.
  • the three first holding pins 52A exhibit an open state in which the first holding portion 62 is located at the separated position
  • the three second holding pins 52A The clamping pin 52B exhibits a closed state (close) in which the second clamping unit 72 is located at the contact position.
  • FIGS. 12A and 12B the first opening / closing magnet 68 and the second opening / closing magnet 78, and the first holding pin 52A and the second holding pin 52B are aligned in the circumferential direction Y, respectively.
  • the first opening / closing magnet 68 is in the lower position and the second opening / closing magnet 78 is in the upper position.
  • 11A and 11B show the spin base 51 in a non-rotating state
  • FIGS. 12A and 12B show the spin base 51 in a rotating state.
  • the three first clamping pins 52A exhibit a closed state in which the first clamping part 62 is located at the contact position, and the second clamping part 72 is An open state (open) located in the separated position is exhibited.
  • FIG. 13 is a block diagram for explaining the electrical configuration of the main part of the substrate processing apparatus 1.
  • the control device 3 is configured using, for example, a microcomputer.
  • the control device 3 includes an arithmetic unit such as a CPU, a fixed memory device, a storage unit such as a hard disk drive, and an input / output unit.
  • the storage unit stores a program executed by the arithmetic unit.
  • control device 3 performs the spin motor 54, the first magnet lifting unit 69, the second magnet lifting unit 79, the blocking plate rotating unit 49, the blocking member lifting unit 50, and the nozzle moving unit 20 in accordance with a predetermined program. , 30 etc. are controlled. Further, the control device 3 opens and closes the sulfuric acid valve 24, the hydrogen peroxide solution valve 26, the SC1 valve 33, the gas valve 35, the rinsing liquid valve 45, the inert gas valve 48, and the like according to a predetermined program.
  • FIG. 14 is a flowchart for explaining an example of substrate processing by the processing unit 2.
  • FIG. 15 is a timing chart for explaining the second rinsing step S6 and the spin dry step S7.
  • 16A to 16G are schematic diagrams for explaining each process of the substrate processing example. A substrate processing example will be described with reference to FIGS. Reference is made to FIGS. 15 and 16A to 16G as appropriate.
  • This substrate processing example is a resist removal process for removing the resist from the upper surface of the substrate W.
  • the resist is mainly composed of a resin (polymer), a photosensitive agent, an additive, and a solvent.
  • the substrate processing example is performed on the substrate W by the processing unit 2, the substrate W after the ion implantation processing at a high dose is carried into the chamber 4 (S1 in FIG. 14). It is assumed that the substrate W has not undergone a process for ashing the resist.
  • the control device 3 moves the hand H (see FIG. 1) of the substrate transport robot CR (see FIG. 1) holding the substrate W in the chamber 4 while all the nozzles and the like are retracted from above the spin chuck 5. By entering the inside, the substrate W is delivered to the spin chuck 5 with its surface facing upward.
  • the control device 3 controls the first magnet lifting unit 69 and the second magnet lifting unit 79 to move the first opening / closing magnet 68 and the second opening / closing magnet 78 from the upper position to the lower position. Lower and hold in the down position. Thereby, all of the first clamping unit 62 and the second clamping unit 72 are driven from the separated position to the contact position and are held at the contact position. As a result, the substrate W is sandwiched between the three first sandwiching pins 52A and the three second sandwiching pins 52B (both sandwiched states).
  • the control device 3 starts the rotation of the substrate W by the spin motor 54 (S2 in FIG. 14).
  • the substrate W is raised to a predetermined liquid processing speed (within 300 to 1500 rpm, for example, 500 rpm) and maintained at the liquid processing speed.
  • the control device 3 executes a sulfuric acid-containing liquid process (chemical liquid process) S3 as shown in FIG. 16A.
  • control device 3 controls the nozzle moving unit 20 to move the sulfuric acid-containing liquid nozzle 18 from the retracted position to the processing position. Further, the control device 3 opens the sulfuric acid valve 24 and the hydrogen peroxide water valve 26 at the same time. Accordingly, H 2 SO 4 is supplied to the sulfuric acid-containing liquid nozzle 18 through the sulfuric acid pipe 23, and H 2 O 2 is supplied to the sulfuric acid-containing liquid nozzle 18 through the hydrogen peroxide water pipe 25. H 2 SO 4 and H 2 O 2 are mixed in the sulfuric acid-containing liquid nozzle 18 to generate a high-temperature (for example, 160 to 220 ° C.) SPM. The SPM is discharged from the discharge port of the sulfuric acid-containing liquid nozzle 18 and reaches the central portion of the surface of the substrate W.
  • high-temperature for example, 160 to 220 ° C.
  • the SPM discharged from the sulfuric acid-containing liquid nozzle 18 lands on the surface of the substrate W and then flows outward along the surface of the substrate W by centrifugal force. Therefore, SPM is supplied to the entire surface of the substrate W, and an SPM liquid film covering the entire surface of the substrate W is formed on the substrate W. As a result, the resist and the SPM chemically react, and the resist on the substrate W is removed from the substrate W by the SPM.
  • the SPM that has moved to the peripheral edge of the substrate W is scattered from the peripheral edge of the substrate W toward the side of the substrate W, and is processed after being received by the processing cup 11.
  • the control device 3 controls the nozzle moving unit 20 so that the sulfuric acid-containing liquid nozzle 18 is positioned at the peripheral position facing the peripheral edge of the surface of the substrate W and the center of the upper surface of the substrate W You may make it move between the center positions which oppose a part.
  • the SPM liquid deposition position on the upper surface of the substrate W is scanned over the entire upper surface of the substrate W. Thereby, the entire upper surface of the substrate W can be processed uniformly.
  • the control device 3 closes the sulfuric acid valve 24 and the hydrogen peroxide solution valve 26 and stops the SPM discharge from the sulfuric acid-containing liquid nozzle 18. Thereby, sulfuric-acid containing liquid process S3 is complete
  • the high-temperature SPM falls on the first sandwiching pin 52A and the second sandwiching pin 52B that sandwich the substrate W. Since this SPM contains sulfuric acid and has a high temperature (for example, 160 to 220 ° C.), there is a possibility that the first sandwiching pin 52A and the second sandwiching pin 52B including the resin material may permeate. In particular, since the resin member that is the base material of the first holding pin 52A and the second holding pin 52B contains carbon fiber, the carbon fiber is detached from the resin member over time, and a void is formed in the resin member. There is a risk of being. When the SPM enters the gap, the chemical solution soaks into the first holding part and the second holding part.
  • a first rinsing step (S4 in FIG. 14) is performed in which the SPM adhering to the surface of the substrate W is washed away using a rinsing liquid.
  • the control device 3 controls the blocking member lifting / lowering unit 50 so that the blocking member 8 disposed at the retracted position is moved to the rinse processing position (see FIG. 16B) set between the retracted position and the blocking position.
  • the control device 3 opens the rinse liquid valve 45. Thereby, the rinse liquid is discharged from the discharge port 9a of the central axis nozzle 9 toward the center of the surface of the substrate W rotating at the liquid processing speed.
  • the rinse liquid discharged from the central axis nozzle 9 is deposited on the center of the surface of the substrate W covered with SPM.
  • the rinsing liquid that has landed on the center of the surface of the substrate W receives the centrifugal force generated by the rotation of the substrate W and flows on the surface of the substrate W toward the periphery of the substrate W.
  • the SPM on the substrate W is washed away by the rinse liquid and discharged around the substrate W.
  • the SPM and the resist (and the resist residue) are washed away over the entire surface of the substrate W.
  • the rinse liquid that has moved to the peripheral edge of the substrate W is scattered from the peripheral edge of the substrate W toward the side of the substrate W, is received by the processing cup 11, and then processed.
  • the control device 3 closes the rinsing liquid valve 45 and stops the discharge of the rinsing liquid from the discharge port 9a of the central shaft nozzle 9. Moreover, the control apparatus 3 controls the interruption
  • an SC1 step (S5 in FIG. 14) for cleaning the surface of the substrate W using SC1 is performed.
  • the control device 3 controls the nozzle moving unit 30 to move the SC1 nozzle 28 from the retracted position to the processing position.
  • the control device 3 opens the SC1 valve 33 and the gas valve 35.
  • the SC1 droplet jet is ejected from the SC1 nozzle 28.
  • the control device 3 controls the nozzle moving unit 30 in parallel with the ejection of the SC1 droplet jet from the SC1 nozzle 28 so that the SC1 nozzle 28 is positioned between the center position and the peripheral position of the substrate W.
  • the SC1 liquid landing position from the SC1 nozzle 28 can be reciprocated between the center of the surface of the substrate W and the peripheral edge of the surface of the substrate W. Thereby, the entire area of the surface of the substrate W can be scanned for the liquid deposition position of SC1.
  • SC1 By supplying SC1 to the surface of the substrate W, the resist residue can be removed from the surface of the substrate W. Further, the sulfur component can be removed from the surface of the substrate W by supplying SC1 to the surface of the substrate W.
  • the control device 3 closes the SC1 valve 33 and the gas valve 35, and stops the discharge of the SC1 droplet jet from the SC1 nozzle 28. Thereby, SC1 process S5 is complete
  • a second rinsing step (S6 in FIG. 14) is performed in which SC1 adhering to the surface of the substrate W is washed away with a rinsing liquid.
  • the control device 3 controls the blocking member lifting / lowering unit 50 to lower the blocking member 8 disposed at the retracted position to the rinse processing position and hold it at the rinse processing position. Further, the control device 3 opens the rinse liquid valve 45. Thereby, the rinse liquid is discharged from the discharge port 9a of the central axis nozzle 9 toward the center of the surface of the substrate W rotating at the liquid processing speed. The rinse liquid discharged from the central axis nozzle 9 is deposited on the center of the surface of the substrate W covered with SC1.
  • the rinsing liquid that has landed on the center of the surface of the substrate W receives the centrifugal force generated by the rotation of the substrate W and flows on the surface of the substrate W toward the peripheral edge of the substrate W.
  • the SC1 on the substrate W is washed away by the rinse liquid and discharged around the substrate W.
  • the SC1 and the resist residue are washed away over the entire surface of the substrate W.
  • the rinse liquid that has moved to the peripheral edge of the substrate W is scattered from the peripheral edge of the substrate W toward the side of the substrate W, is received by the processing cup 11, and then processed.
  • the control device 3 closes the rinsing liquid valve 45 and stops the discharge of the rinsing liquid from the discharge port 9a of the central axis nozzle 9. Further, the control device 3 controls the blocking member lifting / lowering unit 50 to lower the blocking member 8 to the blocking position.
  • the peripheral edge of the substrate W, the first clamping unit 62 and the second clamping unit 72 are in contact via a strong pressing force.
  • the rinse liquid enters between the peripheral edge portion of the substrate W and the first and second sandwiching portions 62 and 72 by the action of the capillary force of the rinse solution. It is difficult to discharge the rinse liquid that has entered in this way. Therefore, at the end of the second rinsing step S6 or at the end of the second rinsing step S6, the rinsing liquid remains between the peripheral portion of the substrate W and the first and second holding portions 62 and 72.
  • a spin dry process for drying the substrate W is performed.
  • the substrate W is rotated at a predetermined drying speed (for example, 1000 to several thousand rpm), and the liquid is caused around the substrate W by a large centrifugal force applied to the liquid adhering to the substrate W. It is a process of shaking off.
  • control device 3 controls the blocking member lifting / lowering unit 50 to lower the blocking member 8 toward the blocking position and hold it at the blocking position.
  • the control device 3 controls the shield plate rotation unit 49 to rotate the shield plate 41 around the rotation axis A2 in synchronization with the substrate W.
  • the control device 3 opens the inert gas valve 48 and discharges the inert gas from the discharge port 9a.
  • the control device 3 controls the spin motor 54 to accelerate the rotation of the substrate W to the drying speed and maintain it at the drying speed. Thereby, a large centrifugal force is applied to the liquid on the substrate W, and the liquid adhering to the substrate W is shaken off around the substrate W.
  • the rinsing liquid remaining between the peripheral edge portion of the substrate W and the first holding portion 62 and the second holding portion 72 is removed. May contain SPM. This is considered to be caused by the SPM soaking into the resin member of the first sandwiching pin 52A and the second sandwiching pin 52B soaking into the rinse liquid. In this state, if the spin dry process (S7 in FIG. 14) described below is executed, there is a possibility that particle contamination occurs on the surface of the substrate W. In order to prevent the occurrence of such particle contamination, the spin drying step S7 is performed as follows.
  • the control device 3 controls the spin motor 54 to accelerate the rotation of the substrate W to the first drying speed V1 (for example, in the range of 800 to 2500 rpm, for example, 1500 rpm), and the first drying speed. V1 is maintained (first spin dry process).
  • the first drying speed V1 is a speed at which the liquid on the substrate W can be shaken out around the substrate W, but is relatively low. Therefore, there is a problem that if the substrate W is rotated at the first drying speed V1 over the entire period of the spin drying step S7, it takes a long time.
  • the control device 3 is in parallel with the initial stage of the spin dry step S7 (the state in which the rinsing liquid is attached to the surface of the substrate W and the first holding unit 62 and the second holding unit 72).
  • the first holding unit 55 (three first holding pins 52A) holds the substrate W and the second holding unit 56 does not hold the substrate W (see FIG. 16E)
  • a second clamping state (see FIG. 16F) in which the substrate W is sandwiched by the first sandwiching unit 56 (three second sandwiching pins 52B) and the substrate W is not sandwiched by the first sandwiching unit 55 is sequentially executed.
  • the control device 3 The second magnet lifting / lowering unit 79 is controlled so that the second opening / closing magnet 78 that has been in the lower position is raised toward the upper position and held in the upper position. Thereby, the 2nd clamping part 72 of the 2nd clamping pin 52B moves to a separation
  • the first holding pin 52A and the second holding pin 52B are rotated at the first drying speed V1
  • the first holding pin 52A and the second holding pin It is set to a period sufficient for the liquid adhering to 52B to shake off (for example, about 3 seconds).
  • the second clamping unit 72 rotates around the rotation axis A1 while the second clamping unit 72 is separated from the peripheral edge of the substrate W. Therefore, a large centrifugal force accompanying the rotation of the substrate W acts on the rinse liquid adhering to the second clamping unit 72 before the start of the first clamping process T1. Thereby, the rinse liquid is shaken off from the second clamping unit 72. Therefore, at the end of the first clamping step T1, the second clamping unit 72 is dry.
  • the control device 3 controls the second magnet lifting unit 79 to place the second opening / closing magnet 78 in the lower position. Is lowered and held in the lower position. Thereby, the 2nd clamping part 72 of the 2nd clamping pin 52B moves to a contact position from a separation position. Thereby, the both clamping state which clamps the board
  • the control device 3 controls the first magnet raising / lowering unit 69 to raise the first opening / closing magnet 68 which has been in the lower position so far toward the upper position, and holds the first opening / closing magnet 68 in the upper position.
  • the 1st clamping part 62 of 52 A of 1st clamping pins moves to a separation position from a contact position.
  • the 2nd clamping state as mentioned above is implement
  • the first clamping pin 52A and the second clamping pin 52B are rotated at the first drying speed V1
  • the first clamping pin 52A and the second clamping pin It is set to a period sufficient for the liquid adhering to 52B to shake off (for example, about 3 seconds).
  • the first clamping parts 62 rotate around the rotation axis A1 while the first clamping parts 62 are separated from the peripheral edge of the substrate W. Therefore, a large centrifugal force accompanying the rotation of the substrate W acts on the rinse liquid adhering to the first clamping unit 62 before the start of the second clamping process T2. Thereby, the rinse liquid is shaken off from the first clamping unit 62. Therefore, at the end of the second clamping step T2, the first clamping unit 62 is dry.
  • the control device 3 controls the first magnet lifting unit 69 to move the first opening / closing magnet 68 to the lower position. Is lowered and held in the lower position. Thereby, the 1st clamping part 62 of 52 A of 1st clamping pins moves to a contact position from a separation position.
  • a both-clamping state in which the substrate W is clamped by the six clamping pins 52A and 52B is realized (both clamping process T3).
  • the first sandwiching portion 62 in the already dried state comes into contact with the peripheral portion of the substrate W.
  • the control device 3 controls the spin motor 54 to rotate the substrate W at a second drying speed V2 (for example, about 1200 to about 2000 rpm, which is faster than the first drying speed V1, for example, about And is maintained at the second drying speed V2 (second spin drying step).
  • a second drying speed V2 for example, about 1200 to about 2000 rpm, which is faster than the first drying speed V1, for example, about And is maintained at the second drying speed V2 (second spin drying step).
  • the control device 3 controls the spin motor 54 to stop the rotation of the substrate W by the spin chuck 5 (S8 in FIG. 14). Further, the control device 3 controls the shield plate rotation unit 49 to stop the rotation of the shield plate 41. Further, the control device 3 controls the blocking member lifting / lowering unit 50 to raise the blocking member 8 and retract it to the retracted position.
  • the control device 3 releases the clamping by the first clamping pin 52A and the second clamping pin 52B. Specifically, the control device 3 controls the first magnet lifting unit 69 and the second magnet lifting unit 79 to move the first opening / closing magnet 68 and the second opening / closing magnet 78 from the lower position. Ascend toward the upper position and hold in the upper position. As a result, all of the first clamping unit 62 and the second clamping unit 72 are driven from the contact position to the separated position and held at the separated position. Thereby, the holding of the substrate W by the three first holding pins 52A and the three second holding pins 52B is released.
  • control device 3 causes the hand H of the substrate transport robot CR to enter the chamber 4. And the control apparatus 3 hold
  • the first holding unit 55 holds the substrate W and the second holding unit 56 does not hold the substrate W. 1 is maintained (first clamping step T1).
  • each second clamping part 72 is separated from the peripheral edge part of the substrate W.
  • the second clamping unit 72 rotates around the rotation axis A1 while the second clamping unit 72 is separated from the peripheral edge of the substrate W. Therefore, even if the rinsing liquid adheres to the second clamping part 72 before the start of the first clamping process T1, the rinsing liquid adhering to the second clamping part 72 increases with the rotation of the substrate W. Centrifugal force acts, whereby the rinse liquid is shaken off from the second sandwiching portion 72. Therefore, at the end of the first clamping step T1, the second clamping unit 72 is dry.
  • each first clamping part 62 is separated from the peripheral part of the substrate W, and each second clamping part 72 is in contact with the peripheral part of the substrate W.
  • a rinsing liquid is provided between the second sandwiching portion 72 and the peripheral portion of the substrate W in the second sandwiching step T2. Does not exist. That is, in the second sandwiching step T2, the substrate W can be sandwiched by the second sandwiching unit 56 without the rinsing liquid being present between the second sandwiching portion 72 and the peripheral portion of the substrate W.
  • the first clamping unit 62 rotates around the rotation axis A1 while the first clamping unit 62 is separated from the peripheral edge of the substrate W. Therefore, even if the rinsing liquid adheres to the first clamping part 62 before the start of the second clamping process T2, the rinsing liquid adhering to the first clamping part 62 increases with the rotation of the substrate W. Centrifugal force acts, whereby the rinse liquid is shaken off from the first clamping unit 62. Therefore, at the end of the second clamping step T2, the first clamping unit 62 is dry.
  • the spin dry step S7 is performed while suppressing or preventing the rinsing liquid from remaining between the first sandwiching portion 62 and the peripheral portion of the substrate W and between the second sandwiching portion 72 and the peripheral portion of the substrate W. Can be executed. Therefore, the occurrence of particle contamination can be suppressed or prevented.
  • the second sandwiching process T1 is separated from the peripheral edge of the substrate W.
  • the rinsing liquid from the substrate W falls on the sandwiching portion 72.
  • the rotation speed of the substrate W is high enough to shake off the rinsing liquid, it acts on each of the second holding portions 72 rotating while being separated from the peripheral edge portion of the substrate W in the first holding step T1.
  • the centrifugal force is large. Thereby, in the 1st clamping process T1, the 2nd clamping part 72 can be dried more favorably.
  • FIG. 17 shows a case where a total of two pairs of the first clamping step T1 and the second clamping step T2 are performed, but a total of three or more pairs may be performed.
  • the first clamping step T1 may be started before the end of the second rinsing step S6, not after the start of the spin dry step S7. Good.
  • the rotation speed of the substrate W is lower than the first drying speed V1 when switching from the first clamping process T1 to the second clamping process T2. It may be once lowered to a switching speed (for example, about 200 rpm). In this case, the switching from the first clamping step T1 to the second clamping step T2 can be performed without applying a large load to the first clamping unit 55 and the second clamping unit 56.
  • the substrate is kept at the first drying speed V1 without increasing the rotation of the substrate W to the second drying speed V2 in parallel with the both clamping steps T3. W may continue to rotate.
  • the second sandwiching step is performed in parallel with the spin dry step S7 after the final second sandwiching step T2. T2 may continue to be maintained.
  • the first period Te1 and the second clamping step T2 for executing the first clamping step T1 are executed.
  • the second period Te2 is set to be a period sufficient for the liquid adhering to the first sandwiching pin 52A and the second sandwiching pin 52B to shake off. The period may be such that the liquid is removed to such an extent that the chemical component contained in the rinse liquid adhering to the sandwiching pins 52A and 52B is not transferred.
  • a first discharging solution supplying step for supplying a discharging solution to the surface of the substrate W prior to the sulfuric acid-containing solution step S3.
  • the neutralizing liquid is, for example, carbonated water.
  • carbonated water is used as the rinsing liquid
  • carbonated water from a common carbonated water supply unit may be used as the first charge removal liquid supply step.
  • a first cleaning step for cleaning the surface of the substrate W using the first cleaning chemical may be performed prior to the sulfuric acid-containing liquid step S3.
  • An example of such first cleaning chemical solution is hydrofluoric acid (HF).
  • a hydrogen peroxide solution supplying process for supplying H 2 O 2 to the upper surface (front surface) of the substrate W is performed prior to the first rinsing process S4 after the sulfuric acid-containing liquid process S3. May be.
  • the control device 3 closes only the sulfuric acid valve 24 while keeping the hydrogen peroxide solution valve 26 open.
  • H 2 O 2 is supplied to the sulfuric acid-containing liquid nozzle 18, and H 2 O 2 is discharged from the discharge port of the sulfuric acid-containing liquid nozzle 18.
  • the influence of heat on the hydrogen peroxide solution supply process can be alleviated, and the sulfur component remaining (S remaining) on the surface of the substrate W can be prevented or suppressed.
  • the SC1 process can be abolished.
  • an organic solvent (drying liquid) having a low surface tension such as IPA (isopropyl alcohol) is supplied to replace the rinsing liquid on the upper surface of the substrate W with the organic solvent.
  • a process may be performed.
  • the step of replacing the supplied organic solvent with the water repellent and forming the water repellent film on the upper surface of the substrate W may be performed after the organic solvent replacement step.
  • first clamping step T1 and the second clamping step T2 are executed not only in the period from the end of the second rinsing step S6 to the spin dry step S7, but also in the beginning and middle of the second rinsing step S6. You may do it.
  • the resist removal process is described as an example, but the process is not limited to the resist, and may be a process of removing other organic substances using SPM.
  • the nozzle for discharging the rinsing liquid may be provided in a separate member from the blocking member 8 instead of the central shaft nozzle 9 integrated with the blocking member 8.
  • first clamping unit 55 and the second clamping unit 56 have been described as including the three clamping pins 52A and 52B, respectively, but may include four or more clamping pins 52A and 52B, respectively. .
  • a mechanical structure such as a link structure is provided as a spin chuck 5 that can switch the sandwiching state of the substrate W between the first sandwiching state and the second sandwiching state. It is also possible to employ a method of switching between the first clamping state and the second clamping state using
  • the sulfuric acid-containing liquid supply unit 6 is described as an example of a nozzle mixing type in which H 2 SO 4 and H 2 O 2 are mixed inside the sulfuric acid-containing liquid nozzle 18.
  • a mixing part connected via a pipe is provided on the upstream side of the sulfuric acid-containing liquid nozzle 18, and a pipe mixing type in which mixing of H 2 SO 4 and H 2 O 2 is performed in this mixing part is adopted. You can also.
  • the sulfuric acid-containing liquid supplied to the surface of the substrate W in the sulfuric acid-containing liquid step S3 may be sulfuric acid (concentrated sulfuric acid) or SOM (sulfuric acid ozone (a liquid in which ozone is dispersed in sulfuric acid)) in addition to SPM. Good.
  • sulfuric acid-containing liquid supplied to the surface of the substrate W in the chemical liquid process is not limited to the sulfuric acid-containing liquid, but may be other chemical liquids.
  • the substrate processing example may not include the sulfuric acid-containing liquid step S3.
  • the sulfuric acid-containing liquid process S3 is not included, in the processing unit 2, when the sulfuric acid-containing liquid has been used in the past, at the end of the rinsing process or at the end of the rinsing process,
  • the rinsing liquid remaining between the first holding pin 52A and the second holding pin 52B and the peripheral portion of the substrate W contains a sulfuric acid-containing liquid or the like.
  • the present invention can be suitably applied.
  • the substrate processing apparatus 1 is an apparatus for processing the surface of the substrate W made of a semiconductor wafer.
  • the substrate processing apparatus is a substrate for a liquid crystal display device, an organic EL (electroluminescence) display.
  • Even devices that process substrates such as FPD (Flat Panel Display) substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, photomask substrates, ceramic substrates, solar cell substrates, etc. Good.
  • 1 substrate processing device 2: processing unit 3: control device 5: spin chuck (substrate holding and rotating device) 10: Rinse solution supply unit 54: Spin motor (rotary unit) 55: 1st clamping unit 56: 2nd clamping unit 57: 1st opening / closing unit (clamping drive unit) 58: Second opening / closing unit (clamping drive unit) 62: 1st clamping part 72: 2nd clamping part A1: Rotation axis line Te1: 1st period Te2: 2nd period V1: 2nd drying speed V2: 2nd drying speed W: Substrate Y: Circumference direction

Abstract

基板処理方法は、リンス工程およびスピンドライ工程の少なくとも一方に並行して、少なくとも3つの第2の挟持部を基板の周縁部から離間させながら少なくとも3つの第1の挟持部を基板の周縁部に接触させることにより、第1の挟持ユニットによって基板を挟持し第2の挟持ユニットによって前記基板を挟持しない第1の挟持状態を実現し、その第1の挟持状態を所定の第1の期間維持する第1の挟持工程と、前記第1の挟持工程の後、前記スピンドライ工程に並行して、前記少なくとも3つの第1の挟持部を前記基板の周縁部から離間させながら前記少なくとも3つの第2の挟持部を前記基板の周縁部に接触させることにより、前記第2の挟持ユニットによって前記基板を挟持し前記第1の挟持ユニットによって前記基板を挟持しない第2の挟持状態を実現し、その第2の挟持状態を所定の第2の期間維持する第2の挟持工程とを含む。

Description

基板処理方法および基板処理装置
 この発明は、基板処理方法および基板処理装置に関する。処理対象となる基板には、たとえば、半導体ウエハ、液晶表示装置用基板、プラズマディスプレイ用基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などが含まれる。
 半導体装置の製造工程において、たとえば、基板を1枚ずつ処理する枚葉式の基板処理装置は、たとえば、基板を水平に保持して回転させるスピンチャックと、スピンチャックに保持されている基板の主面に処理液を供給する処理液供給ユニットとを備えている。スピンチャックとして、複数の挟持ピンを基板の周縁部に接触させて当該基板を水平方向に挟むことにより基板を水平に保持する挟持式のチャックが採用されることがある。挟持式のチャックでは、複数の挟持ピンは、基板の外周形状に対応する円周上で適当な間隔を空けて設けられている。
 典型的な基板処理工程では、スピンチャックに保持された基板に対して、処理液としての薬液が供給される薬液工程が実行される。薬液工程において、基板に供給された薬液は基板の回転による遠心力を受けて周縁部から排出される。その後、処理液としてのリンス液が基板に供給されるリンス工程が実行される。リンス工程において、基板に供給されたリンス液は基板の回転による遠心力を受けて周縁部から排出される。その後、基板の主面に付着しているリンス液を排除するためのスピンドライ工程が行われる。スピンドライ工程では、基板が高速回転されることにより、基板に付着しているリンス液が振り切られて排除(乾燥)される。一般的なリンス液は脱イオン水である。
US5882433 A
 リンス工程の終了後には、挟持ピンの挟持部と基板の周縁部との間にリンス液が残存している。この残存するリンス液(挟持部と基板の周縁部との間に残存するリンス液)に薬液が含まれていることがある。この状態でスピンドライ工程が実行されると、このリンス液に含まれる薬液が乾燥して、基板の主面の周縁部にパーティクルが発生するおそれがある。すなわち、挟持部と基板の周縁部との間に液体が残存したままスピンドライ工程が行われることに起因するパーティクル汚染の発生を抑制または防止することが求められていた。
 そこで、この発明の目的の一つは、基板の周縁部におけるパーティクルの発生を抑制または防止できる、基板処理方法および基板処理装置を提供することである。
 この発明は、基板の周縁部に接触可能な少なくとも3つの第1の挟持部を有し、前記少なくとも3つの第1の挟持部が前記基板の周縁部に接触することによって前記基板を挟持する第1の挟持ユニットと、前記第1の挟持ユニットとは別に設けられ、前記基板の周縁部に接触可能な少なくとも3つの第2の挟持部を有し、前記少なくとも3つの第2の挟持部が前記基板の周縁部に接触することによって前記基板を挟持する第2の挟持ユニットとを含む基板保持回転装置を含む基板処理装置において実行され、前記基板に対して薬液を用いた処理を施すための基板処理方法であって、前記基板保持回転装置によって保持されている前記基板を、当該基板の中央部を通る回転軸線回りに回転させながら、前記基板の主面にリンス液を供給するリンス工程と、前記基板の主面に対してリンス液を供給せずに、当該基板を、当該基板の主面からリンス液を振り切ることができる振り切り速度で前記回転軸線回りに回転させるスピンドライ工程と、前記リンス工程および前記スピンドライ工程の少なくとも一方に並行して、前記少なくとも3つの第2の挟持部を前記基板の周縁部から離間させながら前記少なくとも3つの第1の挟持部を前記基板の周縁部に接触させることにより、前記第1の挟持ユニットによって前記基板を挟持し前記第2の挟持ユニットによって前記基板を挟持しない第1の挟持状態を実現し、その第1の挟持状態を所定の第1の期間維持する第1の挟持工程と、前記第1の挟持工程の後、前記スピンドライ工程に並行して、前記少なくとも3つの第1の挟持部を前記基板の周縁部から離間させながら前記少なくとも3つの第2の挟持部を前記基板の周縁部に接触させることにより、前記第2の挟持ユニットによって前記基板を挟持し前記第1の挟持ユニットによって前記基板を挟持しない第2の挟持状態を実現し、その第2の挟持状態を所定の第2の期間維持する第2の挟持工程とを含む、基板処理方法を提供する。
 この方法によれば、リンス工程およびスピンドライ工程の少なくとも一方に並行して、第1の挟持ユニットによって基板を挟持し第2の挟持ユニットによって基板を挟持しない第1の挟持状態が維持される(第1の挟持工程)。第1の挟持状態においては、各第2の挟持部が基板の周縁部から離間させられている。
 第1の挟持工程において、各第2の挟持部が基板の周縁部から離間させられながら当該第2の挟持部が回転軸線回りに回転する。そのため、第1の挟持工程の開始前に第2の挟持部に液体が付着していても、基板の回転に伴って第2の挟持部に付着している液体に遠心力が作用し、これにより、当該液体が、第2の挟持部から振り切られる。そのため、第1の挟持工程の終了時においては、第2の挟持部から液体が除去されている。
 第1の挟持工程の終了後、スピンドライ工程に並行して、第2の挟持ユニットによって基板を挟持し第1の挟持ユニットによって基板を挟持しない第2の挟持状態が維持される(第2の挟持工程)。第2の挟持状態においては、各第1の挟持部が基板の周縁部から離間させられ、かつ当該第2の挟持部が基板の周縁部に接触している。
 既に液体除去済みの第2の挟持部が基板の周縁部に接触するので、第2の挟持工程において、第2の挟持部と基板の周縁部との間に液体が存在しない。すなわち、第2の挟持工程では、第2の挟持部と基板の周縁部との間に、薬液を含んだ液体を存在させることなく、第2の挟持ユニットによって基板を挟持できる。
 また、第2の挟持工程において、各第1の挟持部が基板の周縁部から離間させられながら当該第1の挟持部が回転軸線回りに回転する。そのため、第2の挟持工程の開始前に第1の挟持部に液体が付着していても、基板の回転に伴って第1の挟持部に付着している液体に大きな遠心力が作用し、これにより、当該液体が、第1の挟持部から振り切られる。そのため、第2の挟持工程の終了後には第1の挟持部から液体が除去されている。
 その後、第2の挟持ユニットによって基板を挟持する場合に、既に乾燥済みの第1の挟持部が基板の周縁部に接触する。このとき、第1の挟持部と基板の周縁部との間に液体が存在しない。すなわち、第2の挟持工程の後の工程において、第1の挟持部と基板の周縁部との間に、薬液を含んだ液体を存在させることなく、第1の挟持ユニットによって基板を挟持できる。
 したがって、第1および第2の挟持部と基板の周縁部との間に、薬液を含んだ液体が残存することを抑制または防止しながらスピンドライ工程を実行できる。そのため、基板の周縁部におけるパーティクルの発生を、抑制または防止できる。
 この発明の一実施形態では、前記基板処理方法が、前記リンス工程の前に、前記基板保持回転装置によって保持されている前記基板を、前記回転軸線回りに回転させながら、前記基板の主面に薬液を供給する薬液工程をさらに含む。
 この方法によれば、リンス工程に先立って薬液工程が実行される。薬液の種類や薬液の温度および挟持部の材質によっては、薬液工程において挟持部の内部に薬液が染み込むおそれがある。そして、染み込んだ薬液が第1の挟持部と基板の周縁部との間や第2の挟持部と基板の周縁部との間に残存するリンス液に染み出すことにより、リンス工程の終盤やリンス工程の終了時において、第1の挟持部と基板の周縁部との間や第2の挟持部と基板の周縁部との間に残存するリンス液に薬液が含まれることがある。この状態でスピンドライ工程が実行されると、基板の周縁部においてパーティクルが発生するおそれがある。
 この方法によれば、第1および第2の挟持部と基板の周縁部との間に、薬液を含んだ液体が残存することを抑制または防止しながらスピンドライ工程を実行できる。そのため、パーティクル汚染の発生を、抑制または防止できる。
 また、前記薬液が、硫酸含有液を含んでいてもよい。
 硫酸含有液は、一般的に、非常に高い液温を有している状態で基板処理に使用される。この場合、挟持ピンの材質によっては硫酸含有液が挟持ピンに染み込むおそれがある。そして、スピンドライ工程中に、挟持部と基板の周縁部との間に残存するリンス液に硫酸含有液が染み出すと、基板の周縁部においてパーティクルが発生するおそれがある。
 この方法によれば、第1および第2の挟持部と基板の周縁部との間に、硫酸含有液を含んだ液体が残存することを抑制または防止しながらスピンドライ工程を実行できる。そのため、薬液として硫酸含有液を用いる場合であっても、基板の周縁部におけるパーティクルの発生を、抑制または防止できる。
 この発明の一実施形態では、前記第1の期間が、前記少なくとも3つの第1の挟持部からリンス液を振り切ることが可能な期間であり、前記第2の期間が、前記少なくとも3つの第2の挟持部からリンス液を振り切ることが可能な期間である。
 この方法によれば、第1の挟持工程の終了の時点で、第2の挟持部を乾燥させることができる。また、第2の挟持工程の終了の時点で、第1の挟持部を乾燥させることができる。これにより、スピンドライ工程中における、第1および第2の挟持部と基板の周縁部との間における薬液を含んだ液体の残存を、より効果的に抑制できる。
 この発明の一実施形態では、前記基板処理方法が、前記第1の挟持状態において、前記基板の周縁部から離間している前記少なくとも3つの第2の挟持部を前記基板の周縁部に接触させることにより、前記第1の挟持状態から、前記第1の挟持ユニットおよび前記第2の挟持ユニットによって前記基板を挟持する両挟持状態に遷移する第1の遷移工程と、前記両挟持状態において、前記基板の周縁部に接触している前記少なくとも3つの第1の挟持部を前記基板の周縁部から離間させることにより、前記両挟持状態から前記第2の挟持状態に遷移する第2の遷移工程とをさらに含む。
 この方法によれば、第1の挟持状態から両挟持状態を一旦経て第2の挟持状態に遷移させるので、基板の回転を停止させることなく、第1の挟持状態から第2の挟持状態へと遷移させることができる。
 この発明の一実施形態では、前記基板処理方法が、前記第2の挟持工程の後、前記スピンドライ工程に並行して、前記第1の挟持ユニットおよび前記第2の挟持ユニットによって前記基板を挟持する両挟持状態を実現する両挟持工程をさらに含む。
 この方法によれば、第2の挟持工程の後、スピンドライ工程に並行して、第1の挟持ユニットおよび第2の挟持ユニットによって基板を挟持する両挟持状態が実現される(両挟持工程)。これにより、第2の挟持工程の後に、第1の挟持工程や第2の挟持工程よりも速い速度で基板を回転させることが可能である。
 この発明の一実施形態では、前記スピンドライ工程が、前記第1の挟持工程および前記第2の挟持工程に並行して、前記基板を、当該基板の主面からリンス液を振り切ることができる第1の乾燥速度で前記回転軸線回りに回転させる第1のスピンドライ工程と、前記両挟持工程に並行して、前記基板を、当該基板の主面からリンス液を振り切ることができ、前記第1の乾燥速度よりも速い第2の乾燥速度で前記回転軸線回りに回転させる第2のスピンドライ工程とを含む。
 この方法によれば、スピンドライ工程において、より速い第2の乾燥速度で基板を回転させることができるので、基板を良好に振り切り乾燥させることができる。
 この発明の一実施形態では、前記第1の挟持工程が、前記スピンドライ工程に並行して実行される。
 仮に、第1の挟持工程がリンス工程に並行して実行される場合には、基板の周縁部から離間している第2の挟持部に基板からのリンス液が降り掛かるおそれがある。また、基板の回転速度が遅いために、第1の挟持工程において周縁部から離間しながら回転している各第2の挟持部に作用する遠心力が大きくならないおそれがある。
 これに対し、この方法によれば、第1の挟持工程が、スピンドライ工程に並行して実行されるので、基板の周縁部から離間している第2の挟持部に基板からのリンス液が降り掛かるおそれがない。また、リンス液を振り切るほどの基板の回転速度になるために、第1の挟持工程において周縁部から離間しながら回転している各第2の挟持部に作用する遠心力が大きい。これにより、第1の挟持工程において、第2の挟持部をより良好に乾燥させることができる。
 この発明の一実施形態では、前記第2の挟持工程の後、前記スピンドライ工程に並行して、前記第1の挟持工程および前記第2の挟持工程が再度実行される。
 この方法によれば、第1の挟持工程および前記第2の挟持工程が複数回実行される。そのため、第1および第2の挟持部と基板の周縁部との間における薬液を含んだ液体の残存をより一層効果的に抑制しながらスピンドライ工程を実行できる。そのため、基板の周縁部におけるパーティクルの発生を、より効果的に抑制できる。
 この発明は、基板に対して薬液を用いた処理を施すための基板処理装置であって、前記基板の周縁部に接触可能な少なくとも3つの第1の挟持部を有し、前記少なくとも3つの第1の挟持部によって前記基板を挟持することが可能な第1の挟持ユニットと、前記第1の挟持ユニットとは別に設けられ、前記基板の周縁部に接触可能な少なくとも3つの第2の挟持部を有し、前記少なくとも3つの第2の挟持部によって前記基板を挟持することが可能な第2の挟持ユニットと、前記第1の挟持ユニットおよび前記第2の挟持ユニットを、前記基板の中央部を通る回転軸線まわりに回転させる回転ユニットと、前記第1の挟持ユニットおよび前記第2の挟持ユニットを駆動する挟持駆動ユニットとを含む基板保持回転装置と、前記基板保持回転装置によって保持されている前記基板の主面に対してリンス液を供給するためのリンス液供給ユニットと、前記回転ユニット、前記挟持駆動ユニットおよび前記リンス液供給ユニットを制御する制御装置とを含み、前記制御装置が、前記基板保持回転装置によって保持されている前記基板を、前記回転ユニットによって当該基板の中央部を通る回転軸線回りに回転させながら、前記リンス液供給ユニットによって前記基板の主面にリンス液を供給するリンス工程と、前記基板の主面に対してリンス液を供給せずに、当該基板を、前記回転ユニットによって、当該基板の主面からリンス液を振り切ることができる振り切り速度で前記回転軸線回りに回転させるスピンドライ工程と、前記リンス工程および前記スピンドライ工程の少なくとも一方に並行して、前記少なくとも3つの第2の挟持部からリンス液を振り切るために、前記挟持駆動ユニットによって、前記少なくとも3つの第2の挟持部を前記基板の周縁部から離間させながら前記少なくとも3つの第1の挟持部を前記基板の周縁部に接触させることにより、前記第1の挟持ユニットによって前記基板を挟持し前記第2の挟持ユニットによって前記基板を挟持しない第1の挟持状態を実現し、その第1の挟持状態を所定の第1の期間維持する第1の挟持工程と、前記第1の挟持工程の後、前記スピンドライ工程に並行して、前記少なくとも3つの第1の挟持部からリンス液を振り切るために、前記挟持駆動ユニットによって、前記少なくとも3つの第1の挟持部を前記基板の周縁部から離間させながら前記少なくとも3つの第2の挟持部を前記基板の周縁部に接触させることにより、前記第2の挟持ユニットによって前記基板を挟持し前記第1の挟持ユニットによって前記基板を挟持しない第2の挟持状態を実現し、その第2の挟持状態を所定の第2の期間維持する第2の挟持工程とを実行する、基板処理装置を提供する。
 この構成によれば、リンス工程およびスピンドライ工程の少なくとも一方に並行して、第1の挟持ユニットによって基板を挟持し第2の挟持ユニットによって基板を挟持しない第1の挟持状態が維持される(第1の挟持工程)。第1の挟持状態においては、各第2の挟持部が基板の周縁部から離間させられている。
 第1の挟持工程において、各第2の挟持部が基板の周縁部から離間させられながら当該第2の挟持部が回転軸線回りに回転する。そのため、第1の挟持工程の開始前に第2の挟持部に液体が付着していても、基板の回転に伴って第2の挟持部に付着している液体に遠心力が作用し、これにより、当該液体が、第2の挟持部から振り切られる。そのため、第1の挟持工程の終了時においては、第2の挟持部から液体が除去されている。
 第1の挟持工程の終了後、スピンドライ工程に並行して、第2の挟持ユニットによって基板を挟持し第1の挟持ユニットによって基板を挟持しない第2の挟持状態が維持される(第2の挟持工程)。第2の挟持状態においては、各第1の挟持部が基板の周縁部から離間させられ、かつ当該第2の挟持部が基板の周縁部に接触している。
 既に液体除去済みの第2の挟持部が基板の周縁部に接触するので、第2の挟持工程において、第2の挟持部と基板の周縁部との間に液体が存在しない。すなわち、第2の挟持工程では、第2の挟持部と基板の周縁部との間に、薬液を含んだ液体を存在させることなく、第2の挟持ユニットによって基板を挟持できる。
 また、第2の挟持工程において、各第1の挟持部が基板の周縁部から離間させられながら当該第1の挟持部が回転軸線回りに回転する。そのため、第2の挟持工程の開始前に第1の挟持部に液体が付着していても、基板の回転に伴って第1の挟持部に付着している液体に大きな遠心力が作用し、これにより、当該液体が、第1の挟持部から振り切られる。そのため、第2の挟持工程の終了後には第1の挟持部から液体が除去されている。
 その後、第2の挟持ユニットによって基板を挟持する場合に、既に乾燥済みの第1の挟持部が基板の周縁部に接触する。このとき、第1の挟持部と基板の周縁部との間に液体が存在しない。すなわち、第2の挟持工程の後の工程において、第1の挟持部と基板の周縁部との間に、薬液を含んだ液体を存在させることなく、第1の挟持ユニットによって基板を挟持できる。
 したがって、第1および第2の挟持部と基板の周縁部との間に、薬液を含んだ液体が残存することを抑制または防止しながらスピンドライ工程を実行できる。そのため、基板の周縁部におけるパーティクルの発生を、抑制または防止できる。
 この発明の一実施形態では、前記制御装置が、前記リンス工程の前に、前記基板保持回装置によって保持されている前記基板を、前記回転軸線回りに回転させながら、前記基の主面に薬液を供給する薬液工程をさらに実行する。
 この構成によれば、リンス工程に先立って薬液工程が実行される。薬液の種類や薬液の温度および挟持部の材質によっては、薬液工程において挟持部の内部に薬液が染み込むおそれがある。そして、染み込んだ薬液が第1の挟持部と基板の周縁部との間や第2の挟持部と基板の周縁部との間に残存するリンス液に染み出すことにより、リンス工程の終盤やリンス工程の終了時において、第1の挟持部と基板の周縁部との間や第2の挟持部と基板の周縁部との間に残存するリンス液に薬液が含まれることがある。この状態でスピンドライ工程が実行されると、基板の周縁部においてパーティクルが発生するおそれがある。
 この方法によれば、第1および第2の挟持部と基板の周縁部との間に、薬液を含んだ液体が残存することを抑制または防止しながらスピンドライ工程を実行できる。そのため、パーティクル汚染の発生を、抑制または防止できる。
 また、前記薬液が、硫酸含有液を含んでいてもよい。
 硫酸含有液は、一般的に、非常に高い液温を有している状態で基板処理に使用される。この場合、挟持ピンの材質によっては硫酸含有液が挟持ピンに染み込むおそれがある。そして、スピンドライ工程中に、挟持部と基板の周縁部との間に残存するリンス液に硫酸含有液が染み出すと、基板の周縁部においてパーティクルが発生するおそれがある。
 この方法によれば、第1および第2の挟持部と基板の周縁部との間に、硫酸含有液を含んだ液体が残存することを抑制または防止しながらスピンドライ工程を実行できる。そのため、薬液として硫酸含有液を用いる場合であっても、基板の周縁部におけるパーティクルの発生を、抑制または防止できる。
 この発明の一実施形態では、前記第1の期間が、前記少なくとも3つの第1の挟持部からリンス液を振り切ることが可能な期間であり、前記第2の期間が、前記少なくとも3つの第2の挟持部からリンス液を振り切ることが可能な期間である。
 この構成によれば、第1の挟持工程の終了の時点で、第2の挟持部を乾燥させることができる。また、第2の挟持工程の終了の時点で、第1の挟持部を乾燥させることができる。これにより、スピンドライ工程中における、第1および第2の挟持部と基板の周縁部との間における薬液を含んだ液体の残存を、より効果的に抑制できる。
 この発明の一実施形態では、前記制御装置が、前記第1の挟持状態において、前記基板の周縁部から離間している前記少なくとも3つの第2の挟持部を前記基板の周縁部に接触させることにより、前記第1の挟持状態から、前記第1の挟持ユニットおよび前記第2の挟持ユニットによって前記基板を挟持する両挟持状態に遷移する第1の遷移工程と、前記両挟持状態において、前記基板の周縁部に接触している前記少なくとも3つの第1の挟持部を前記基板の周縁部から離間させることにより、前記両挟持状態から前記第2の挟持状態に遷移する第2の遷移工程とをさらに実行する。
 この構成によれば、第1の挟持状態から両挟持状態を一旦経て第2の挟持状態に遷移させるので、基板の回転を停止させることなく、第1の挟持状態から第2の挟持状態へと遷移させることができる。
 この発明の一実施形態では、前記制御装置が、前記第2の挟持工程の後、前記スピンドライ工程に並行して、前記第1の挟持ユニットおよび前記第2の挟持ユニットによって前記基板を挟持する両挟持状態を実現する両挟持工程をさらに実行する。
 この構成によれば、第2の挟持工程の後、スピンドライ工程に並行して、第1の挟持ユニットおよび第2の挟持ユニットによって基板を挟持する両挟持状態が実現される(両挟持工程)。これにより、第2の挟持工程の後に、第1の挟持工程や第2の挟持工程よりも速い速度で基板を回転させることが可能である。
 この発明の一実施形態では、前記制御装置が、前記スピンドライ工程において、前記第1の挟持工程および前記第2の挟持工程に並行して、前記基板を、当該基板の主面からリンス液を振り切ることができる第1の乾燥速度で前記回転軸線回りに回転させる第1のスピンドライ工程と、前記両挟持工程に並行して、前記基板を、当該基板の主面からリンス液を振り切ることができ、前記第1の乾燥速度よりも速い第2の乾燥速度で前記回転軸線回りに回転させる第2のスピンドライ工程とを実行する。
 この構成によれば、スピンドライ工程において、より速い第2の乾燥速度で基板を回転させることができるので、基板を良好に振り切り乾燥させることができる。
 この発明の一実施形態では、前記制御装置が、前記第1の挟持工程を、前記スピンドライ工程に並行して実行する。
 仮に、第1の挟持工程がリンス工程に並行して実行される場合には、基板の周縁部から離間している第2の挟持部に基板からのリンス液が降り掛かるおそれがある。また、基板の回転速度が遅いために、第1の挟持工程において周縁部から離間しながら回転している各第2の挟持部に作用する遠心力が大きくならないおそれがある。
 これに対し、この構成によれば、第1の挟持工程が、スピンドライ工程に並行して実行されるので、基板の周縁部から離間している第2の挟持部に基板からのリンス液が降り掛かるおそれがない。また、リンス液を振り切るほどの基板の回転速度になるために、第1の挟持工程において周縁部から離間しながら回転している各第2の挟持部に作用する遠心力が大きい。これにより、第1の挟持工程において、第2の挟持部をより良好に乾燥させることができる。
 この発明の一実施形態では、前記制御装置が、前記第2の挟持工程の後、前記スピンドライ工程に並行して前記第1の挟持工程および前記第2の挟持工程を再度実行する。
 この構成によれば、第1の挟持工程および前記第2の挟持工程が複数回実行される。そのため、第1および第2の挟持部と基板の周縁部との間における薬液を含んだ液体の残存をより一層効果的に抑制しながらスピンドライ工程を実行できる。そのため、基板の周縁部におけるパーティクルの発生を、より効果的に抑制できる。
 この発明の一実施形態では、前記第1の挟持部および前記第2の挟持部が、樹脂部材を含む。
 この構成によれば、第1の挟持部および第2の挟持部が樹脂部材を含む場合には、第1の挟持ユニットおよび第2の挟持ユニットによって基板を挟持しながら、薬液を用いた処理を基板に対し施すことにより、第1の挟持部および第2の挟持部に薬液が染み込むおそれがある。そして、リンス工程において、第1の挟持部と基板の周縁部との間や第2の挟持部と基板の周縁部との間にリンス液が残存することがある。このリンス液に、薬液工程において染み込んだ薬液が染み出している状態でスピンドライ工程が実行されると、基板の主面にパーティクル汚染が発生するおそれがある。
 この構成によれば、第1および第2の挟持部と基板の周縁部との間に、薬液を含んだ液体が残存することを抑制または防止しながらスピンドライ工程を実行できる。そのため、第1の挟持部および第2の挟持部が樹脂部材を含む場合であっても、基板の周縁部におけるパーティクルの発生を、抑制または防止できる。
 この発明の一実施形態では、前記樹脂部材には炭素が含まれている。
 この構成によれば、第1の挟持部および第2の挟持部が、炭素を含む樹脂部材を含む場合には、経時劣化により、樹脂部材から炭素が抜け落ちる。そして、炭素が抜け落ちた後の樹脂部材には微細な空隙が発生し、その空隙に薬液が入り込むことにより、第1の挟持部および第2の挟持部に対して薬液が染み込むことが考えられる。
 この構成によれば、第1および第2の挟持部と基板の周縁部との間に、薬液を含んだ液体が残存することを抑制または防止しながらスピンドライ工程を実行できる。そのため、第1の挟持部および第2の挟持部が、炭素を含む樹脂部材を含む場合であっても、基板の周縁部におけるパーティクルの発生を、抑制または防止できる。
 本発明における前述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
図1は、本発明の一実施形態に係る基板処理装置の内部のレイアウトを説明するための図解的な平面図である。 図2は、前記基板処理装置に備えられた処理ユニットの内部を水平方向に見た模式図である。 図3は、前記処理ユニットに備えられたスピンチャックの、より具体的な構成を説明するための側面図である。 図4は、前記スピンチャックの、より具体的な構成を説明するための平面図である。 図5Aは、第1の挟持ピンの近傍の構成を拡大して示す断面図である。図5Aには、第1の挟持部が接触位置にある状態を示す。 図5Bは、第1の挟持ピンの近傍の構成を拡大して示す断面図である。図5Bには、第1の挟持部が離間位置にある状態を示す。 図6Aは、第2の挟持ピンの近傍の構成を拡大して示す断面図である。図6Aには、第2の挟持部が接触位置にある状態を示す。 図6Bは、第2の挟持ピンの近傍の構成を拡大して示す断面図である。図6Bには、第2の挟持部が離間位置にある状態を示す。 図7A,7Bは、第1の挟持ユニットおよび第2の挟持ユニットの状態を示す模式的な図である。 図8A,8Bは、第1の挟持ユニットおよび第2の挟持ユニットの状態を示す模式的な図である。 図9A,9Bは、第1の挟持ユニットおよび第2の挟持ユニットの状態を示す模式的な図である。 図10A,10Bは、第1の挟持ユニットおよび第2の挟持ユニットの状態を示す模式的な図である。 図11A,11Bは、第1の挟持ユニットおよび第2の挟持ユニットの状態を示す模式的な図である。 図12A,12Bは、第1の挟持ユニットおよび第2の挟持ユニットの状態を示す模式的な図である。 図13は、前記基板処理装置の主要部の電気的構成を説明するためのブロック図である。 図14は、前記処理ユニットによる基板処理例を説明するための流れ図である。 図15は、第2のリンス工程およびスピンドライ工程を説明するためのタイミングチャートである。 図16A,16Bは、SPM工程および第1のリンス工程を説明するための図解的な図である。 図16C,16Dは、SC1工程および前記第2のリンス工程を説明するための図解的な図である。 図16E~16Gは、前記スピンドライ工程を説明するための図解的な図である。 図17は、前記処理ユニットによる第1の変形処理例の一部を説明するためのタイミングチャートである。 図18は、前記処理ユニットによる第2の変形処理例の一部を説明するためのタイミングチャートである。 図19は、前記処理ユニットによる第3の変形処理例の一部を説明するためのタイミングチャートである。 図20は、前記処理ユニットによる第4の変形処理例の一部を説明するためのタイミングチャートである。
 図1は、この発明の一実施形態に係る基板処理装置を上から見た模式図である。基板処理装置1は、シリコンウエハなどの基板Wを一枚ずつ処理する枚葉式の装置である。この実施形態では、基板Wは、円板状の基板である。基板処理装置1は、処理液およびリンス液で基板Wを処理する複数の処理ユニット2と、処理ユニット2で処理される複数枚の基板Wを収容する基板収容器Cが載置されるロードポートLPと、ロードポートLPと処理ユニット2との間で基板Wを搬送するインデクサロボットIRおよび基板搬送ロボットCRと、基板処理装置1を制御する制御装置3とを含む。インデクサロボットIRは、基板収容器Cと基板搬送ロボットCRとの間で基板Wを搬送する。基板搬送ロボットCRは、インデクサロボットIRと処理ユニット2との間で基板Wを搬送する。複数の処理ユニット2は、たとえば、同様の構成を有している。
 図2は、処理ユニット2の構成例を説明するための図解的な断面図である。
 処理ユニット2は、内部空間を有する箱形のチャンバ4と、チャンバ4内で一枚の基板Wを水平な姿勢で保持して、基板Wの中心を通る鉛直な回転軸線A1まわりに基板Wを回転させるスピンチャック(基板保持回転装置)5と、スピンチャック5に保持されている基板Wの表面(主面。たとえばパターン形成面)に、薬液の一例としての硫酸含有液を供給するための硫酸含有液供給ユニット6と、スピンチャック5に保持されている基板Wの表面に、SC1(NHOHとHとを含む混合液)を供給するためのSC1供給ユニット7と、スピンチャック5に保持されている基板Wの上面に対向する遮断部材8と、遮断部材8の内部を上下に挿通し、スピンチャック5に保持されている基板Wの上面の中央部に向けて、リンス液を含む処理流体を吐出するための中心軸ノズル9と、中心軸ノズル9にリンス液を供給するためのリンス液供給ユニット10と、スピンチャック5を取り囲む筒状の処理カップ11とを含む。
 チャンバ4は、スピンチャック5を収容する箱状の隔壁14と、隔壁14の上部から隔壁14内に清浄空気(フィルタによってろ過された空気)を送る送風ユニットとしてのFFU(ファン・フィルタ・ユニット)15と、隔壁14の下部からチャンバ4内の気体を排出する排気ダクト16とを含む。FFU15は、隔壁14の上方に配置されており、隔壁14の天井に取り付けられている。FFU15は、隔壁14の天井からチャンバ4内に下向きに低湿度の清浄空気を送る。排気ダクト16は、処理カップ11の底部に接続されており、基板処理装置1が設置される工場に設けられた排気処理設備に向けてチャンバ4内の気体を導出する。したがって、チャンバ4内を下方に流れるダウンフロー(下降流)が、FFU15および排気ダクト16によって形成される。基板Wの処理は、チャンバ4内にダウンフローが形成されている状態で行われる。
 スピンチャック5として、基板Wを水平方向に挟んで基板Wを水平に保持する挟持式のチャックが採用されている。スピンチャック5の具体的な構成は後述する。
 硫酸含有液供給ユニット6は、硫酸含有液ノズル18と、硫酸含有液ノズル18が先端部に取り付けられたノズルアーム19と、ノズルアーム19を移動させることにより、硫酸含有液ノズル18を移動させるノズル移動ユニット20(図13参照)とを含む。硫酸含有液供給ユニット6から供給される硫酸含有液は、たとえば、SPM(HSO(硫酸)およびH(過酸化水素水)を含む硫酸過酸化水素水混合液(sulfuric acid/hydrogen peroxide mixture))である。
 硫酸含有液ノズル18は、たとえば、連続流の状態で、硫酸含有液の一例としてのSPMを吐出するストレートノズルである。硫酸含有液ノズル18は、たとえば、基板Wの上面に向けて、垂直方向、傾斜方向または水平な方向に、SPMを吐出する垂直姿勢でノズルアーム19に取り付けられている。ノズルアーム19は水平方向に延びている。
 ノズル移動ユニット20は、揺動軸線まわりにノズルアーム19を水平移動させることにより、硫酸含有液ノズル18を水平に移動させる。ノズル移動ユニット20は、モータ等を含む構成である。ノズル移動ユニット20は、硫酸含有液ノズル18から吐出されたSPMが基板Wの上面に着液する処理位置と、硫酸含有液ノズル18が平面視でスピンチャック5の周囲に設定された退避位置との間で、硫酸含有液ノズル18を水平に移動させる。この実施形態では、処理位置は、たとえば、硫酸含有液ノズル18から吐出されたSPMが基板Wの上面中央部に着液する中央位置である。
 硫酸含有液供給ユニット6は、硫酸含有液ノズル18にHSOを供給する硫酸供給ユニット21と、硫酸含有液ノズル18にHを供給する過酸化水素水供給ユニット22とをさらに含む。
 硫酸供給ユニット21は、硫酸含有液ノズル18に一端が接続された硫酸配管23と、硫酸配管23を開閉するための硫酸バルブ24とを含む。硫酸配管23には、硫酸供給源から所定の高温に保たれたHSOが供給される。硫酸供給ユニット21は、硫酸配管23の開度を調整して、硫酸配管23を流通するHSOの流量を調整する硫酸流量調整バルブをさらに備えていてもよい。この硫酸流量調整バルブは、弁座が内部に設けられたバルブボディと、弁座を開閉する弁体と、開位置と閉位置との間で弁体を移動させるアクチュエータとを含む。他の流量調整バルブについても同様である。
 過酸化水素水供給ユニット22は、硫酸含有液ノズル18に一端が接続された過酸化水素水配管25と、過酸化水素水配管25を開閉するための過酸化水素水バルブ26とを含む。過酸化水素水配管25には、過酸化水素水供給源から温度調整されていない常温(約23℃)程度のHが供給される。過酸化水素水供給ユニット22は、過酸化水素水配管25の開度を調整して、過酸化水素水配管25を流通するHの流量を調整する過酸化水素水量調整バルブをさらに備えていてもよい。
 硫酸バルブ24および過酸化水素水バルブ26が開かれると、硫酸配管23からのHSOおよび過酸化水素水配管25からのHが、硫酸含有液ノズル18のケーシング内へと供給され、ケーシング内において十分に混合(攪拌)される。この混合によって、HSOとHとが均一に混ざり合い、HSOとHとの反応によってHSOおよびHの混合液(SPM)が生成される。SPMは、酸化力が強いペルオキソ一硫酸(Peroxomonosulfuric acid;HSO)を含み、混合前のHSOの温度よりも高い温度(100℃以上。たとえば160~220℃)まで昇温させられる。生成された高温のSPMは、硫酸含有液ノズル18のケーシングに開口した吐出口から吐出される。
 SC1供給ユニット7は、SC1ノズル28と、SC1ノズル28が先端部に取り付けられたノズルアーム29と、ノズルアーム29を移動させることにより、SC1ノズル28を移動させるノズル移動ユニット30(図13参照)とを含む。ノズル移動ユニット30は、揺動軸線まわりにノズルアーム29を水平移動させることにより、SC1ノズル28を水平に移動させる。ノズル移動ユニット30は、モータ等を含む構成である。ノズル移動ユニット30は、SC1ノズル28から吐出されたSC1が基板Wの表面に着液する(SC1ノズル28から吐出されたSC1の液滴の噴流が基板Wの表面に吹き付けられる)処理位置と、SC1ノズル28が平面視でスピンチャック5の周囲に設定された退避位置との間で、SC1ノズル28を水平に移動させる。また、ノズル移動ユニット30は、SC1ノズル28から吐出されたSC1の着液位置(SC1ノズル28から吐出されたSC1の液滴の噴流の吹き付け位置)が基板Wの表面の中央部と基板Wの表面の周縁部との間で移動するように、硫酸含有液ノズル18を水平に移動させる。
 SC1ノズル28は、スピンチャック5に保持されている基板Wの表面に、SC1の液滴の噴流を吐出する(SC1を噴霧状に吐出する)。SC1ノズル28は、SC1の微小の液滴を噴出する、公知の二流体ノズル(たとえば特開2017-005230号公報等参照)の形態を有している。SC1供給ユニット7は、SC1供給源からの常温の液体のSC1をSC1ノズル28に供給するSC1配管32と、SC1配管32からSC1ノズル28へのSC1の供給および供給停止を切り換えるべく、SC1配管32を開閉するSC1バルブ33と、気体供給源からの気体をSC1ノズル28に供給する気体配管34と、気体配管34からSC1ノズル28への気体の供給および供給停止を切り換えるべく、気体配管34を開閉する気体バルブ35とをさらに含む。SC1ノズル28に供給される気体としては、一例として窒素ガス(N)等の不活性ガスを例示できるが、それ以外に、たとえば乾燥空気や清浄空気などを採用できる。SC1ノズル28は、二流体ノズルの形態ではなく、SC1を連続流の態様で吐出するストレートノズルの形態を有していてもよい。
 気体バルブ35を開いてSC1ノズル28の気体吐出口から気体を吐出させながら、SC1バルブ33を開いて液体吐出口からSC1を吐出させることにより、第1の有機溶剤ノズル31の下方近傍でSC1に気体を衝突(混合)させることによりSC1の微小の液滴を生成することができ、SC1を噴霧状に吐出できる。
 遮断部材8は、遮断板41と、遮断板41に一体回転可能に設けられた回転軸42とを含む。遮断板41は、基板Wとほぼ同じ径またはそれ以上の径を有する円板状である。遮断板41は、その下面に基板Wの表面の全域に対向する円形の水平平坦面からなる基板対向面41aを有している。
 回転軸42は、遮断板41の中心を通り鉛直に延びる回転軸線A2(基板Wの回転軸線A1と一致する軸線)まわりに回転可能に設けられている。回転軸42は、円筒状である。回転軸42は、遮断板41の上方で水平に延びる支持アーム43に相対回転可能に支持されている。
 遮断板41の中央部には、遮断板41および回転軸42を上下に貫通する円筒状の貫通穴40が形成されている。貫通穴40には、中心軸ノズル9が上下に挿通している。すなわち、中心軸ノズル9は、遮断板41および回転軸42を上下に貫通している。
 中心軸ノズル9は、貫通穴40の内部を上下に延びる円柱状のケーシングを備えている。中心軸ノズル9の下端は、基板対向面41aに開口して、吐出口9aを形成している。   
 中心軸ノズル9は、支持アーム43によって、当該支持アーム43に対し回転不能に支持されている。中心軸ノズル9は、遮断板41、回転軸42、および支持アーム43と共に昇降する。中心軸ノズル9の上流端には、リンス液供給ユニット10が接続されている。
 リンス液供給ユニット10は、中心軸ノズル9にリンス液を案内するリンス液配管44と、リンス液配管44を開閉するリンス液バルブ45とを含む。リンス液は、たとえば水である。この実施形態において、水は、純水(脱イオン水)、炭酸水、電解イオン水、水素水、オゾン水、および希釈濃度(たとえば、10~100ppm程度)のアンモニア水のいずれかである。リンス液バルブ45が開かれると、リンス液供給源からのリンス液が、リンス液配管44から中心軸ノズル9に供給される。これにより、中心軸ノズル9の吐出口9aから下方に向けてリンス液が吐出される。
 中心軸ノズル9には、不活性ガス供給ユニット46が接続されている。不活性ガス供給ユニット46は、中心軸ノズル9の上流端に接続された不活性ガス配管47と、不活性ガス配管47の途中部に介装された不活性ガスバルブ48とを含む。不活性ガスは、たとえば窒素ガス(N)である。不活性ガスバルブ48が開かれると、中心軸ノズル9の吐出口9aから下方に向けて不活性ガスが吐出される。不活性ガスバルブ48が閉じられると、吐出口9aからの不活性ガスの吐出が停止される。
 遮断板41には、電動モータ等を含む構成の遮断板回転ユニット49が結合されている。遮断板回転ユニット49は、遮断板41および回転軸42を、支持アーム43に対して回転軸線A2まわりに回転させる。
 支持アーム43には、電動モータ、ボールねじ等を含む構成の遮断部材昇降ユニット50が結合されている。遮断部材昇降ユニット50は、遮断部材8(遮断板41および回転軸42)ならびに中心軸ノズル9を、支持アーム43と共に鉛直方向に昇降する。
 遮断部材昇降ユニット50は、遮断板41を、基板対向面41aがスピンチャック5に保持されている基板Wの上面に近接する遮断位置(図2に破線で図示。図16E~図16G等に示す位置)と、遮断位置よりも大きく上方に退避した退避位置(図2に実線で図示)の間で昇降させる。遮断部材昇降ユニット50は、遮断位置、中間位置(図16Bおよび図16Dに示す位置)および退避位置で遮断板41を保持可能である。遮断板41が遮断位置にある状態の、基板対向面41aが基板Wの上面との間の空間は、その周囲の空間から完全に隔離されているわけではないが、当該空間に対する、周囲の空間からの気体の流入はない。すなわち、当該空間は、実質的にその周囲の空間と遮断されている。
 図2に示すように、処理カップ11は、スピンチャック5に保持されている基板Wよりも外方(回転軸線A1から離れる方向)に配置されている。処理カップ11は、次に述べるスピンベース51を取り囲んでいる。スピンチャック5が基板Wを回転させている状態で、薬液やリンス液、保護液等の液体が基板Wに供給されると、基板Wに供給された液体が基板Wの周囲に振り切られる。これらの液体が基板Wに供給されるとき、処理カップ11の上端部11aは、次に述べるスピンベース51よりも上方に配置される。したがって、基板Wの周囲に排出された液体は、処理カップ11によって受け止められる。そして、処理カップ11に受け止められた液体は、図示しない回収装置または廃液装置に送られる。
 図3は、スピンチャック5の、より具体的な構成を説明するための側面図である。図4は、スピンチャック5の、より具体的な構成を説明するための平面図である。図5A,5Bは、第1の挟持ピン52Aの近傍の構成を拡大して示す断面図である。図6A,6Bは、第2の挟持ピン52Bの近傍の構成を拡大して示す断面図である。図3は、図4を切断面線III-IIIから見た図である。
 図2および図3に示すように、スピンチャック5は、鉛直方向に沿う回転軸線A1のまわりに回転可能なスピンベース51と、スピンベース51の上面の周縁部に、スピンベース51の周方向Yに沿ってほぼ等間隔を開けて植設された複数(この実施形態では6つ)の挟持ピンと、スピンベース51の回転中心の下面に固定された回転軸53と、回転軸53を回転軸線A1まわりに回転させるスピンモータ54とを含む。スピンチャック5に備えられる挟持ピンは全て、基板Wの周縁部に接触する支持部(第1の挟持ユニット55や、第2の挟持ユニット56)が可動するピンである。6つの挟持ピンおよびスピンベース51は、回転軸53の回転に同伴して回転する。
 図4に示すように、6つの挟持ピンは、互いに隣り合わない3つの挟持ピン52Aおよび互いに隣り合わない3つの挟持ピン52Bが、同時に開閉される一つの群(第1の挟持ユニット55または第2の挟持ユニット56)を構成している。換言すると、6つの挟持ピンは、第1の挟持ユニット55に含まれる3つの挟持ピン52A(以下、「第1の挟持ピン52A」という。)と、第2の挟持ユニット56に含まれる3つの挟持ピン52B(以下、「第2の挟持ピン52B」という。)とを含む。第1の挟持ピン52Aと、第2の挟持ピン52Bとは、周方向Yに関し交互に配置されている。第1の挟持ユニット55に着目すれば、3つの第1の挟持ピン52Aが等間隔(120°間隔)に配置されている。また、第2の挟持ユニット56に着目すれば、3つの第2の挟持ピン52Bが等間隔(120°間隔)に配置されている。
 図5A,5Bに示すように、各第1の挟持ピン52Aは、第1の軸部61と、第1の軸部61の上端に一体的に形成された第1の挟持部62とを含み、第1の軸部61および第1の挟持部62がそれぞれ円柱形状に形成されている。第1の挟持部62は、第1の軸部61の中心軸線から偏心して設けられている。第1の軸部61の上端と第1の挟持部62の下端との間をつなぐ表面は、第1の挟持部62から第1の軸部61の周面に向かって下降する第1のテーパ面63を形成している。
 図5A,5Bに示すように、各第1の挟持ピン52Aは、第1の軸部61がその中心軸線と同軸の回動軸線A3まわりに回転可能であるようにスピンベース51に取り付けられている。より詳細には、第1の軸部61の下端部には、スピンベース51に対して第1の軸受け64を介して支持された第1の支持軸65が設けられている。
 図5A,5Bに示すように、第1の挟持ピン52Aは、導電性部材70を含む。導電性部材70は、第1の軸部61と第1の挟持部62とを含む。導電性部材70は、第1の支持軸65を介して接地されている。導電性部材70は、耐薬品性および導電性を有する複合材料で形成されている。複合材料の具体例は、樹脂と炭素とを含む材料である。導電性部材70は、樹脂で形成された樹脂部材に炭素材料が分散された態様を有している。導電性部材70に含まれる炭素は、たとえば炭素繊維(カーボンファイバー)である。導電性部材70に含まれる炭素は、炭素の粉末または粒子であってもよい。導電性部材70に含まれる樹脂の具体例は、PFA(perfluoro-alkylvinyl-ether-tetrafluoro-ethlene- copolymer)、PCTFE(Poly Chloro Tri Furuoro Ethylene)、PTFE(polytetrafluoroethylene)、およびPEEK(polyether-ether ketone)である。
 図5A,5Bに示すように、第1の挟持部62の中心軸線は回動軸線A3からずれている。したがって、第1の軸部61の回転により、第1の挟持部62は、(中心軸線が)回転軸線A1から離れた遠い離間位置(図5Bに示す位置)と、中心軸線が回転軸線A1に近づいた接触位置(図5Aに示す位置)との間で変位することになる。第1の挟持ピン52Aが離間位置に位置する状態では、基板Wの周端面(周端部)と第1の挟持部62との間に所定のギャップが形成される。
 図3および図4に示すように、スピンチャック5は、3つの第1の挟持ピン52Aを一括して開閉するための第1の開閉ユニット57をさらに含む。第1の開閉ユニット57は、各第1の挟持ピン52Aに一対一対応で設けられた第1の駆動用磁石66と、各第1の挟持ピン52Aに一対一対応で設けられた第1の付勢用磁石67と、各第1の挟持ピン52Aに一対一対応で設けられた第1の開閉用磁石68と、複数の第1の開閉用磁石68を一括して昇降させる第1の磁石昇降ユニット69とを含む。
 第1の駆動用磁石66は、各第1の挟持ピン52Aの第1の支持軸65の下端に固定されている。第1の駆動用磁石66の回動軸線A3回りの回動に伴って、第1の挟持ピン52Aが回動軸線A3回りに回動する。第1の駆動用磁石66は永久磁石であり、水平に沿って長手状に延びている。3つの複数(たとえば)の第1の挟持ピン52Aに対応する3つの第1の駆動用磁石66の磁極方向は、第1の挟持ピン52Aに外力が付与されていない状態で、基板Wの回転半径方向に関して共通している。
 第1の付勢用磁石67は、対応する第1の挟持ピン52Aに隣接して、かつ第1の挟持ピン52Aの中心位置よりも回転軸線A1から離間する方向に寄るように配置されている。第1の付勢用磁石67は、対応する第1の駆動用磁石66に対して磁力を及ぼす。
 第1の開閉用磁石68は、回転軸線A1を中心とする円弧状をなしている。3つの第1の開閉用磁石68は、互いに共通の高さ位置である。3つの第1の開閉用磁石68は、回転軸線A1と同軸の円周上において周方向Yに等間隔を空けて配置されている。
 第1の磁石昇降ユニット69は、たとえば、上下方向に伸縮可能に設けられたシリンダを含む構成であり、当該シリンダによって支持されている。また、第1の磁石昇降ユニット69が、電動モータを用いて構成されていてもよい。また、第1の磁石昇降ユニット69は、第1の開閉用磁石68を個別に昇降させる個別昇降ユニットを複数(たとえば3つ)含む構成であってもよい。
 図6A,6Bに示すように、各第2の挟持ピン52Bは、第2の軸部71と、第2の軸部71の上端に一体的に形成された第2の挟持部72とを含み、第2の軸部71および第2の挟持部72がそれぞれ円柱形状に形成されている。第2の挟持部72は、第2の軸部71の中心軸線から偏心して設けられている。第2の軸部71の上端と第2の挟持部72の下端との間をつなぐ表面は、第2の挟持部72から第2の軸部71の周面に向かって下降する第2のテーパ面73を形成している。
 図6A,6Bに示すように、各第2の挟持ピン52Bは、第2の軸部71がその中心軸線と同軸の回動軸線A4まわりに回転可能であるようにスピンベース51に取り付けられている。より詳細には、第2の軸部71の下端部には、スピンベース51に対して第2の軸受け74を介して支持された第2の支持軸75が設けられている。
 図6A,6Bに示すように、第2の挟持ピン52Bは、導電性部材80を含む。導電性部材80は、第2の軸部71と第2の挟持部72とを含む。導電性部材80は、第2の支持軸75を介して接地されている。導電性部材80は、耐薬品性および導電性を有する複合材料で形成されている。複合材料の具体例は、樹脂と炭素とを含む材料である。導電性部材80は、樹脂で形成された樹脂部材に炭素材料が分散された態様を有している。導電性部材80に含まれる炭素は、たとえば炭素繊維(カーボンファイバー)である。導電性部材80に含まれる炭素は、炭素の粉末または粒子であってもよい。導電性部材80に含まれる樹脂の具体例は、PFA(perfluoro-alkylvinyl-ether-tetrafluoro-ethlene- copolymer)、PCTFE(Poly Chloro Tri Furuoro Ethylene)、PTFE(polytetrafluoroethylene)、およびPEEK(polyether-ether ketone)である。
 図6A,6Bに示すように、第2の挟持部72の中心軸線は回動軸線A4からずれている。したがって、第2の軸部71の回転により、第2の挟持部72は、(中心軸線が)回転軸線A1から離れた遠い離間位置(図6Bに示す位置)と、中心軸線が回転軸線A1に近づいた接触位置(図6Aに示す位置)との間で変位することになる。第2の挟持ピン52Bが離間位置に位置する状態では、基板Wの周端面(周端部)と所定のギャップが形成される。
 図3および図4に示すように、スピンチャック5は、3つの第2の挟持ピン52Bを一括して開閉するための第2の開閉ユニット58をさらに含む。第2の開閉ユニット58は、各第2の挟持ピン52Bに一対一対応で設けられた第2の駆動用磁石76と、各第2の挟持ピン52Bに一対一対応で設けられた第2の付勢用磁石77と、各第2の挟持ピン52Bに一対一対応で設けられた第2の開閉用磁石78と、複数の第2の開閉用磁石78を一括して昇降させる第2の磁石昇降ユニット79とを含む。
 第2の駆動用磁石76は、各第2の挟持ピン52Bの第2の支持軸75の下端に固定されている。第2の駆動用磁石76の回動軸線A4回りの回動に伴って、第2の挟持ピン52Bが回動軸線A4回りに回動する。第2の駆動用磁石76は永久磁石であり、水平に沿って長手状に延びている。3つの複数(たとえば)の第2の挟持ピン52Bに対応する3つの第2の駆動用磁石76の磁極方向は、第2の挟持ピン52Bに外力が付与されていない状態で、基板Wの回転半径方向に関して共通している。
 第2の付勢用磁石77は、対応する第2の挟持ピン52Bに隣接して、かつ第2の挟持ピン52Bの中心位置よりも回転軸線A1から離間する方向に寄るように配置されている。第2の付勢用磁石77は、対応する第2の駆動用磁石76に対して磁力を及ぼす。各第2の付勢用磁石77の磁極方向は、基板Wの回転半径方向に関して、各第1の付勢用磁石67の磁極方向と逆向きである。第1の付勢用磁石67と第2の付勢用磁石77とは、周方向Yに関し交互に配置されている。
 第2の開閉用磁石78は、回転軸線A1を中心とする円弧状をなしている。3つの第2の開閉用磁石78は、互いに共通の高さ位置である。3つの第2の開閉用磁石78は、回転軸線A1と同軸の円周上において周方向Yに等間隔を空けて配置されている。3つの第1の開閉用磁石68と3つの第2の開閉用磁石78とは、周方向Yに関し交互に配置されている。
 3つの第1の開閉用磁石68の磁極方向および3つの第2の開閉用磁石78の磁極方向は、ともに、スピンベース51の回転半径方向に沿う方向である。各第1の開閉用磁石68の磁極方向と、各第2の開閉用磁石78の磁極方向とは、互いに逆向きである。第1の開閉用磁石68の外周面がたとえばN極である場合には、第2の開閉用磁石78の外周面は逆極性のS極を有している
 第2の磁石昇降ユニット79は、たとえば、上下方向に伸縮可能に設けられたシリンダを含む構成であり、当該シリンダによって支持されている。また、第2の磁石昇降ユニット79が、電動モータを用いて構成されていてもよい。また、第2の磁石昇降ユニット79は、第2の開閉用磁石78を個別に昇降させる個別昇降ユニットを複数(たとえば3つ)含む構成であってもよい。
 第1の開閉用磁石68および第2の開閉用磁石78は、周方向Yに60°の間隔で交互に配置されている。また、第1の挟持ピン52Aおよび第2の挟持ピン52Bも、周方向Yに60°間隔で配置されている。
 図5A,図5Bでは、第1の開閉用磁石68と第1の挟持ピン52Aとが、周方向Yに揃っている(互いに対向している)。この状態で、図5Aでは、第1の開閉用磁石68が下位置にある状態を示し、図5Bでは、第1の開閉用磁石68が上位置にある状態を示す。図5Aに示すように、第1の開閉用磁石68が下位置にある状態では、第1の開閉用磁石68からの磁力が第1の駆動用磁石66に作用しない。そのため、第1の駆動用磁石66は、たとえばN極が回転半径方向の内方に向きかつS極が回転半径方向の外方に向くように配置されている。この状態で、第1の挟持ピン52Aは接触位置に位置している。すなわち、第1の開閉用磁石68が下位置にある状態では、第1の挟持ピン52Aの第1の挟持部62が接触位置に配置されている。
 図5Aに示す状態から、第1の開閉用磁石68を上昇させ、上位置に配置する。第1の開閉用磁石68の上面が第1の駆動用磁石66に接近することにより、第1の開閉用磁石68と第1の駆動用磁石66との間に離間力が発生する。そのため、第1の挟持ピン52Aが、第1の付勢用磁石67の反発磁力に抗って回動軸線A3回りに回動する。これにより、第1の挟持部62が接触位置から離間位置へと移動する。すなわち、第1の開閉用磁石68が上位置にある状態では、第1の挟持ピン52Aの第1の挟持部62が離間位置に配置される。
 図6A,図6Bでは、第2の開閉用磁石78と第2の挟持ピン52Bとが、周方向Yに揃っている(互いに対向している)。この状態で、図6Aでは、第2の開閉用磁石78が下位置にある状態を示し、図6Bでは、第2の開閉用磁石78が上位置にある状態を示す。図5Aに示すように、第2の開閉用磁石78が下位置にある状態では、第2の開閉用磁石78からの磁力が第2の駆動用磁石76に作用しない。そのため、第2の駆動用磁石76は、たとえばS極が回転半径方向の内方に向きかつN極が回転半径方向の外方に向くように配置されている。この状態で、第2の挟持ピン52Bは接触位置に位置している。すなわち、第2の開閉用磁石78が下位置にある状態では、第2の挟持ピン52Bの第2の挟持部72が接触位置に配置されている。
 図6Aに示す状態から、第2の開閉用磁石78を上昇させ、上位置に配置する。第2の開閉用磁石78の上面が第2の駆動用磁石76に接近することにより、第2の開閉用磁石78と第2の駆動用磁石76との間に離間力が発生する。そのため、第2の挟持ピン52Bが、第2の付勢用磁石77の反発磁力に抗って回動軸線A4回りに回動する。これにより、第2の挟持部72が接触位置から離間位置へと移動する。すなわち、第2の開閉用磁石78が上位置にある状態では、第2の挟持ピン72Aの第2の挟持部72が離間位置に配置される。
 図7A~図12Bは、第1の挟持ユニット55および第2の挟持ユニット56の状態を示す模式的な図である。図7A,8A,9A,10A,11A,12Aには、第1の駆動用磁石66、第2の駆動用磁石76、第1の付勢用磁石67、第2の付勢用磁石77、第1の開閉用磁石68および第2の開閉用磁石78の状態を示し、図10B,11B,12B,13B,14B,15Bに、各挟持ピン52A,52Bの開閉状況を示す。ここで、平面図において第1の開閉用磁石68および/または第2の開閉用磁石78が図示されていないのは、下方に退避しているからである。
 図7A,7Bには、第1の開閉用磁石68および第2の開閉用磁石78、ならびに第1の挟持ピン52Aおよび第2の挟持ピン52Bが、それぞれ周方向Yに揃っており(互いに対向しており)、かつ第1の開閉用磁石68および第2の開閉用磁石78が共に上位置にある状態を示す。この状態において、図7Bに示すように、3つの第1の挟持ピン52Aおよび3つの第2の挟持ピン52Bのいずれも、挟持部(第1の挟持部62および第2の挟持部72)が離間位置に位置する開放状態(open)を呈する。
 図8A,8Bには、第1の開閉用磁石68および第2の開閉用磁石78、ならびに第1の挟持ピン52Aおよび第2の挟持ピン52Bが、それぞれ周方向Yに揃っており(互いに対向しており)、かつ第1の開閉用磁石68および第2の開閉用磁石78が共に下位置にある状態を示す。この状態において、図7Bに示すように、3つの第1の挟持ピン52Aおよび3つの第2の挟持ピン52Bのいずれも、挟持部(第1の挟持部62および第2の挟持部72)が挟持位置に位置する閉塞状態(close)を呈する。
 図9A,9Bおよび図10A,10Bには、第1の開閉用磁石68および第2の開閉用磁石78、ならびに第1の挟持ピン52Aおよび第2の挟持ピン52Bが、それぞれ周方向Yに揃っており(互いに対向しており)、第1の開閉用磁石68が上位置にあり、かつ第2の開閉用磁石78が下位置にある状態を示す。図9A,9Bはスピンベース51の非回転状態であり、図10A,10Bは、スピンベース51の回転状態である。スピンベース51の回転/非回転によらずに、3つの第1の挟持ピン52Aが、第1の挟持部62が離間位置に位置する開放状態(open)を呈し、かつ、3つの第2の挟持ピン52Bが、第2の挟持部72が接触位置に位置する閉塞状態(close)を呈する。
 図11A,11Bおよび図12A,12Bには、第1の開閉用磁石68および第2の開閉用磁石78、ならびに第1の挟持ピン52Aおよび第2の挟持ピン52Bが、それぞれ周方向Yに揃っており(互いに対向しており)、第1の開閉用磁石68が下位置にあり、かつ第2の開閉用磁石78が上位置にある状態を示す。図11A,11Bはスピンベース51の非回転状態であり、図12A,12Bは、スピンベース51の回転状態である。スピンベース51の回転/非回転によらずに、3つの第1の挟持ピン52Aが、第1の挟持部62が接触位置に位置する閉塞状態(close)を呈し、第2の挟持部72が離間位置に位置する開放状態(open)を呈する。
 図13は、基板処理装置1の主要部の電気的構成を説明するためのブロック図である。
 制御装置3は、たとえばマイクロコンピュータを用いて構成されている。制御装置3はCPU等の演算ユニット、固定メモリデバイス、ハードディスクドライブ等の記憶ユニット、および入出力ユニットを有している。記憶ユニットには、演算ユニットが実行するプログラムが記憶されている。
 また、制御装置3は、予め定められたプログラムに従って、スピンモータ54、第1の磁石昇降ユニット69、第2の磁石昇降ユニット79、遮断板回転ユニット49、遮断部材昇降ユニット50、ノズル移動ユニット20,30等の動作を制御する。さらに、制御装置3は、予め定められたプログラムに従って、硫酸バルブ24、過酸化水素水バルブ26、SC1バルブ33、気体バルブ35、リンス液バルブ45、不活性ガスバルブ48等を開閉する。
 図14は、処理ユニット2による基板処理例を説明するための流れ図である。図15は、第2のリンス工程S6およびスピンドライ工程S7を説明するためのタイミングチャートである。図16A~16Gは、この基板処理例の各工程を説明するための図解的な図である。図1~図14を参照しながら基板処理例について説明する。図15および図16A~16Gについては適宜参照する。
 この基板処理例は、基板Wの上面からレジストを除去するレジスト除去処理である。レジストは、樹脂(ポリマー)、感光剤、添加剤、溶剤を主成分としている。処理ユニット2によって基板Wに基板処理例が施されるときには、チャンバ4の内部に、高ドーズでのイオン注入処理後の基板Wが搬入される(図14のS1)。基板Wは、レジストをアッシングするための処理を受けていないものとする。
 制御装置3は、ノズル等が全てスピンチャック5の上方から退避している状態で、基板Wを保持している基板搬送ロボットCR(図1参照)のハンドH(図1参照)をチャンバ4の内部に進入させることにより、基板Wがその表面を上方に向けた状態でスピンチャック5に受け渡される。
 制御装置3は、第1の磁石昇降ユニット69および第2の磁石昇降ユニット79を制御して、第1の開閉用磁石68および第2の開閉用磁石78を、上位置から下位置に向けて下降し、下位置のまま保持する。それによって、第1の挟持部62および第2の挟持部72の全てが離間位置から接触位置へと駆動されて、その接触位置に保持される。これにより、3つの第1の挟持ピン52Aおよび3つの第2の挟持ピン52Bによって基板Wが挟持される(両挟持状態)。
 制御装置3は、スピンモータ54によって基板Wの回転を開始させる(図14のS2)。基板Wは予め定める液処理速度(300~1500rpmの範囲内で、たとえば500rpm)まで上昇させられ、その液処理速度に維持される。
 基板Wの回転速度が液処理速度に達すると、制御装置3は、図16Aに示すように、硫酸含有液工程(薬液工程)S3を実行する。
 具体的には、制御装置3は、ノズル移動ユニット20を制御して、硫酸含有液ノズル18を、退避位置から処理位置に移動させる。また、制御装置3は、硫酸バルブ24および過酸化水素水バルブ26を同時に開く。これにより、硫酸配管23を通ってHSOが硫酸含有液ノズル18に供給されると共に、過酸化水素水配管25を通ってHが硫酸含有液ノズル18に供給される。硫酸含有液ノズル18の内部においてHSOとHとが混合され、高温(たとえば、160~220℃)のSPMが生成される。そのSPMが、硫酸含有液ノズル18の吐出口から吐出され、基板Wの表面の中央部に着液する。
 硫酸含有液ノズル18から吐出されたSPMは、基板Wの表面に着液した後、遠心力によって基板Wの表面に沿って外方に流れる。そのため、SPMが基板Wの表面の全域に供給され、基板Wの表面の全域を覆うSPMの液膜が基板W上に形成される。これにより、レジストとSPMとが化学反応し、基板W上のレジストがSPMによって基板Wから除去される。基板Wの周縁部に移動したSPMは、基板Wの周縁部から基板Wの側方に向けて飛散し、処理カップ11に受け止められた後、処理される。
 また、硫酸含有液工程S3において、制御装置3が、ノズル移動ユニット20を制御して、硫酸含有液ノズル18を、基板Wの表面の周縁部に対向する周縁位置と、基板Wの上面の中央部に対向する中央位置との間で移動するようにしてもよい。この場合、基板Wの上面におけるSPMの着液位置が、基板Wの上面の全域を走査させられる。これにより、基板Wの上面全域を均一に処理できる。
 SPMの吐出開始から予め定める期間が経過すると、制御装置3は、硫酸バルブ24および過酸化水素水バルブ26を閉じて、硫酸含有液ノズル18からのSPMの吐出を停止する。これにより、硫酸含有液工程S3が終了する。その後、制御装置3がノズル移動ユニット20を制御して、硫酸含有液ノズル18を退避位置に戻させる。
 硫酸含有液工程S3においては、高温のSPMが、基板Wを挟持している第1の挟持ピン52Aおよび第2の挟持ピン52Bに降り掛かる。このSPMは、硫酸を含有し、かつ高温(たとえば、160~220℃)であるので、樹脂材料を含む、第1の挟持ピン52Aおよび第2の挟持ピン52Bに染み込むおそれがある。とくに、第1の挟持ピン52Aおよび第2の挟持ピン52Bの基材である樹脂部材には炭素繊維が含まれているので、経時によって樹脂部材から炭素繊維が離脱し、樹脂部材に空隙が形成されるおそれがある。この空隙にSPMが入り込むことにより、第1の挟持部および第2の挟持部に薬液が染み込む。
 次いで、図16Bに示すように、基板Wの表面に付着しているSPMを、リンス液を用いて洗い流す第1のリンス工程(図14のS4)が行われる。具体的には、制御装置3は遮断部材昇降ユニット50を制御して、退避位置に配置されている遮断部材8を、退避位置と遮断位置との間に設定されたリンス処理位置(図16Bに示す位置)まで降下させ、そのリンス処理位置に保持させる。また、制御装置3は、リンス液バルブ45を開く。これにより、液処理速度で回転している基板Wの表面中央部に向けて、中心軸ノズル9の吐出口9aからリンス液が吐出される。中心軸ノズル9から吐出されたリンス液は、SPMによって覆われている基板Wの表面中央部に着液する。基板Wの表面中央部に着液したリンス液は、基板Wの回転による遠心力を受けて基板Wの表面を基板Wの周縁部に向けて流れる。これにより、基板W上のSPMが、リンス液によって外方に押し流され、基板Wの周囲に排出される。これにより、基板Wの表面の全域においてSPMおよびレジスト(およびレジスト残渣)が洗い流される。基板Wの周縁部に移動したリンス液は、基板Wの周縁部から基板Wの側方に向けて飛散し、処理カップ11に受け止められた後、処理される。
 第1のリンス工程S4の開始から予め定める期間が経過すると、制御装置3は、リンス液バルブ45を閉じて、中心軸ノズル9の吐出口9aからのリンス液の吐出を停止させる。また、制御装置3は、遮断部材昇降ユニット50を制御して、遮断部材8を退避位置まで上昇させる。
 次いで、図16Cに示すように、SC1を用いて基板Wの表面を洗浄するSC1工程(図14のS5)が行われる。具体的には、SC1工程S5において、制御装置3は、ノズル移動ユニット30を制御することにより、SC1ノズル28を退避位置から処理位置に移動させる。その後、制御装置3は、SC1バルブ33および気体バルブ35を開く。これにより、図16Cに示すように、SC1ノズル28から、SC1の液滴の噴流が吐出される。また、制御装置3は、SC1ノズル28からのSC1の液滴の噴流の吐出に並行して、ノズル移動ユニット30を制御して、SC1ノズル28を基板Wの中央位置と周縁位置との間で往復移動させる(ハーフスキャン)。これにより、SC1ノズル28からのSC1の着液位置を、基板Wの表面中央部と基板Wの表面周縁部との間で往復移動させることができる。これにより、SC1の着液位置を、基板Wの表面の全域を走査させることができる。基板Wの表面へのSC1の供給により、レジスト残渣を、基板Wの表面から除去できる。また、基板Wの表面へのSC1の供給により、基板Wの表面から硫黄成分を除去できる。
 SC1の吐出開始から予め定める期間が経過すると、制御装置3は、SC1バルブ33および気体バルブ35を閉じて、SC1ノズル28からのSC1の液滴の噴流の吐出を停止する。これにより、SC1工程S5が終了する。その後、制御装置3がノズル移動ユニット30を制御して、SC1ノズル28を退避位置に戻させる。
 次いで、図16Dに示すように、基板Wの表面に付着しているSC1を、リンス液を用いて洗い流す第2のリンス工程(図14のS6)が行われる。具体的には、制御装置3は遮断部材昇降ユニット50を制御して、退避位置に配置されている遮断部材8を、リンス処理位置まで降下させ、そのリンス処理位置に保持させる。また、制御装置3は、リンス液バルブ45を開く。これにより、液処理速度で回転している基板Wの表面中央部に向けて、中心軸ノズル9の吐出口9aからリンス液が吐出される。中心軸ノズル9から吐出されたリンス液は、SC1によって覆われている基板Wの表面中央部に着液する。基板Wの表面中央部に着液したリンス液は、基板Wの回転による遠心力を受けて基板Wの表面を基板Wの周縁部に向けて流れる。これにより、基板W上のSC1が、リンス液によって外方に押し流され、基板Wの周囲に排出される。これにより、基板Wの表面の全域においてSC1およびレジスト残渣が洗い流される。基板Wの周縁部に移動したリンス液は、基板Wの周縁部から基板Wの側方に向けて飛散し、処理カップ11に受け止められた後、処理される。
 第2のリンス工程S6の開始から予め定める期間が経過すると、制御装置3は、リンス液バルブ45を閉じて、中心軸ノズル9の吐出口9aからのリンス液の吐出を停止させる。また、制御装置3は、遮断部材昇降ユニット50を制御して、遮断部材8を遮断位置まで下降させる。
 第2のリンス工程S6において、第1の挟持部62および第2の挟持部72が挟持位置にある状態では、基板Wの周縁部と、第1の挟持部62および第2の挟持部72とは強い押圧力を介して接触している。しかしながら、このような状態であっても、リンス液の毛細管力の働きにより、基板Wの周縁部と、第1の挟持部62および第2の挟持部72との間にリンス液が進入する。こうして進入したリンス液は、排出することが困難である。そのため、第2のリンス工程S6の終盤や第2のリンス工程S6の終了時には、基板Wの周縁部と第1の挟持部62および第2の挟持部72との間にリンス液が残存する。
 次いで、図16E~16Gに示すように、基板Wを乾燥させるスピンドライ工程(図14のS7)が行われる。スピンドライ工程S7は、基板Wを所定の乾燥速度(たとえば千~数千rpm)で回転させることにより、基板Wに付着している液に加わる大きな遠心力により、当該液を基板Wの周囲に振り切る工程である。
 具体的には、制御装置3は、遮断部材昇降ユニット50を制御して、遮断部材8を遮断位置に向けて下降させ、遮断位置に保持する。また、この状態で、制御装置3は遮断板回転ユニット49を制御することにより、遮断板41を回転軸線A2回りに基板Wに同期して回転させる。また、制御装置3は、不活性ガスバルブ48を開いて、吐出口9aから不活性ガスを吐出する。この状態で、制御装置3はスピンモータ54を制御することにより、基板Wの回転を乾燥速度まで加速させ、乾燥速度に維持する。これにより、大きな遠心力が基板W上の液体に加わり、基板Wに付着している液体が基板Wの周囲に振り切られる。
 ところで、第2のリンス工程S6の終盤や第2のリンス工程S6の終了時において、基板Wの周縁部と第1の挟持部62および第2の挟持部72との間に残存するリンス液がSPMを含有することがある。これは、第1の挟持ピン52Aおよび第2の挟持ピン52Bの樹脂部材に染み込んだSPMが、リンス液に染み出すことが原因であると考えられる。この状態で、次に述べるスピンドライ工程(図14のS7)が実行されると、基板Wの表面にパーティクル汚染が発生するおそれがある。このようなパーティクル汚染の発生を防止するために、スピンドライ工程S7を以下のように実行している。
 具体的には、制御装置3はスピンモータ54を制御することにより、基板Wの回転を第1の乾燥速度V1(たとえば800~2500rpmの範囲で、たとえば1500rpm)まで加速させ、第1の乾燥速度V1に維持する(第1のスピンドライ工程)。この第1の乾燥速度V1は、基板W上の液体を基板Wの周囲に振り切ることが可能な速度であるが、比較的低速である。そのため、スピンドライ工程S7の全期間に亘って、第1の乾燥速度V1で基板Wを回転させると長時間を要してしまう、という問題がある。
 図15に示すように、制御装置3は、スピンドライ工程S7の初期(基板Wの表面ならびに第1の挟持部62および第2の挟持部72にリンス液が付着している状態)に並行して、第1の挟持ユニット55(3つの第1の挟持ピン52A)によって基板Wを挟持し第2の挟持ユニット56によって基板Wを挟持しない第1の挟持状態(図16E参照)と、第2の挟持ユニット56(3つの第2の挟持ピン52B)によって基板Wを挟持し第1の挟持ユニット55によって基板Wを挟持しない第2の挟持状態(図16F参照)とを順次実行する。
 具体的には、第1の乾燥速度V1での基板Wの回転開始時と同時、または、第1の乾燥速度V1での基板Wの回転開始から所定の期間が経過すると、制御装置3は、第2の磁石昇降ユニット79を制御して、それまで下位置にあった第2の開閉用磁石78を上位置に向けて上昇させ、当該上位置に保持する。これにより、第2の挟持ピン52Bの第2の挟持部72が接触位置から離間位置に移動する。これにより、前述のような第1の挟持状態が実現される。そして、この状態のまま、所定の第1の期間Te1だけ維持される(第1の挟持工程T1)。第1の期間Te1は、第1の乾燥速度V1でスピンベース51ならびに第1の挟持ピン52Aおよび第2の挟持ピン52Bを回転させたときに、第1の挟持ピン52Aおよび第2の挟持ピン52Bに付着している液体が振り切るのに十分な期間(たとえば約3秒間)に設定されている。
 第1の挟持工程T1において、各第2の挟持部72が基板Wの周縁部から離間させられながら当該第2の挟持部72が回転軸線A1回りに回転する。そのため、第1の挟持工程T1の開始前に第2の挟持部72に付着しているリンス液に、基板Wの回転に伴う大きな遠心力が作用する。これにより、当該リンス液が、第2の挟持部72から振り切られる。そのため、第1の挟持工程T1の終了時においては、第2の挟持部72が乾燥している。
 第1の挟持状態の実現から第1の期間Te1(たとえば約3秒間)が経過すると、制御装置3は、第2の磁石昇降ユニット79を制御して、第2の開閉用磁石78を下位置に向けて下降させ、当該下位置に保持する。これにより、第2の挟持ピン52Bの第2の挟持部72が離間位置から接触位置に移動する。これにより、6つの挟持ピン52A,52Bで基板Wを挟持する両挟持状態が実現される(第1の遷移工程)。
 その後、制御装置3は、第1の磁石昇降ユニット69を制御して、それまで下位置にあった第1の開閉用磁石68を上位置に向けて上昇させ、当該上位置に保持する。これにより、第1の挟持ピン52Aの第1の挟持部62が接触位置から離間位置に移動する。これにより、前述のような第2の挟持状態が実現される(第2の遷移工程)。そして、この状態のまま、所定の第2の期間Te2だけ維持される(第2の挟持工程T2)。第2の期間Te2は、第1の乾燥速度V1でスピンベース51ならびに第1の挟持ピン52Aおよび第2の挟持ピン52Bを回転させたときに、第1の挟持ピン52Aおよび第2の挟持ピン52Bに付着している液体が振り切るのに十分な期間(たとえば約3秒間)に設定されている。
 第2の挟持工程T2において、各第1の挟持部62が基板Wの周縁部から離間させられながら当該第1の挟持部62が回転軸線A1回りに回転する。そのため、第2の挟持工程T2の開始前に第1の挟持部62に付着しているリンス液に、基板Wの回転に伴う大きな遠心力が作用する。これにより、当該リンス液が、第1の挟持部62から振り切られる。そのため、第2の挟持工程T2の終了時においては、第1の挟持部62が乾燥している。
 第2の挟持状態の実現から第2の期間Te2(たとえば約3秒間)が経過すると、制御装置3は、第1の磁石昇降ユニット69を制御して、第1の開閉用磁石68を下位置に向けて下降させ、当該下位置に保持する。これにより、第1の挟持ピン52Aの第1の挟持部62が離間位置から接触位置に移動する。これにより、図16Gに示すように、6つの挟持ピン52A,52Bで基板Wを挟持する両挟持状態が実現される(両挟持工程T3)。
 このとき、既に乾燥している状態の第1の挟持部62が基板Wの周縁部に接触する。このとき、両挟持工程T3において、第1の挟持部62と基板Wの周縁部との間にリンス液が存在しない。すなわち、両挟持工程T3では、第1の挟持部62と基板Wの周縁部との間にリンス液を存在させることなく、第1の挟持ユニット55によって基板Wを挟持できる。
 その後、制御装置3は、スピンモータ54を制御することにより、基板Wの回転を、第1の乾燥速度V1よりも速い第2の乾燥速度V2(たとえば約1200~約2000rpmの範囲で、たとえば約1500rpm)まで加速させ、第2の乾燥速度V2に維持する(第2のスピンドライ工程)。これにより、より一層大きな遠心力が基板W上の液体に加わり、基板Wに付着している液体が基板Wの周囲に振り切られる。このようにして、基板Wから液が除去され、基板Wが乾燥させられる。
 そして、スピンドライ工程S7の開始から予め定める期間が経過すると、制御装置3は、スピンモータ54を制御して、スピンチャック5による基板Wの回転を停止させる(図14のS8)。また、制御装置3は、遮断板回転ユニット49を制御して遮断板41の回転を停止させる。さらに、制御装置3は、遮断部材昇降ユニット50を制御して、遮断部材8を上昇させ、退避位置へと退避させる。
 次いで、チャンバ4内から基板Wが搬出される(図14のS9)。まず、制御装置3は、第1の挟持ピン52Aおよび第2の挟持ピン52Bによる挟持を解除する。具体的には、制御装置3は、第1の磁石昇降ユニット69および第2の磁石昇降ユニット79を制御して、第1の開閉用磁石68および第2の開閉用磁石78を、下位置から上位置に向けて上昇し、上位置のまま保持する。それによって、第1の挟持部62および第2の挟持部72の全てが接触位置から離間位置へと駆動されて、その離間位置に保持される。これにより、3つの第1の挟持ピン52Aおよび3つの第2の挟持ピン52Bによる基板Wの挟持が解除される。
 また、制御装置3は、基板搬送ロボットCRのハンドHをチャンバ4の内部に進入させる。そして、制御装置3は、挟持ピン52A,52Bによる挟持が解除された基板Wを、基板搬送ロボットCRのハンドHに保持させる。その後、制御装置3は、基板搬送ロボットCRのハンドHをチャンバ4内から退避させる。これにより、表面(パターン形成面)からレジストが除去された基板Wがチャンバ4から搬出される。
 以上により、この発明の一実施形態によれば、スピンドライ工程S7の初期段階に並行して、第1の挟持ユニット55によって基板Wを挟持し第2の挟持ユニット56によって基板Wを挟持しない第1の挟持状態が維持される(第1の挟持工程T1)。第1の挟持状態においては、各第2の挟持部72が基板Wの周縁部から離間させられている。
 第1の挟持工程T1において、各第2の挟持部72が基板Wの周縁部から離間させられながら当該第2の挟持部72が回転軸線A1回りに回転する。そのため、第1の挟持工程T1の開始前に第2の挟持部72にリンス液が付着していても、基板Wの回転に伴って第2の挟持部72に付着しているリンス液に大きな遠心力が作用し、これにより、当該リンス液が、第2の挟持部72から振り切られる。そのため、第1の挟持工程T1の終了時においては、第2の挟持部72が乾燥している。
 第1の挟持工程T1の終了後、スピンドライ工程S7に並行して、第2の挟持ユニット56によって基板Wを挟持し第1の挟持ユニット55によって基板Wを挟持しない第2の挟持状態が維持される(第2の挟持工程T2)。第2の挟持状態においては、各第1の挟持部62が基板Wの周縁部から離間させられ、かつ各第2の挟持部72が基板Wの周縁部に接触している。
 既に乾燥している状態の第2の挟持部72が基板Wの周縁部に接触するので、第2の挟持工程T2において、第2の挟持部72と基板Wの周縁部との間にリンス液が存在しない。すなわち、第2の挟持工程T2では、第2の挟持部72と基板Wの周縁部との間にリンス液を存在させることなく、第2の挟持ユニット56によって基板Wを挟持できる。
 また、第2の挟持工程T2において、各第1の挟持部62が基板Wの周縁部から離間させられながら当該第1の挟持部62が回転軸線A1回りに回転する。そのため、第2の挟持工程T2の開始前に第1の挟持部62にリンス液が付着していても、基板Wの回転に伴って第1の挟持部62に付着しているリンス液に大きな遠心力が作用し、これにより、当該リンス液が、第1の挟持部62から振り切られる。そのため、第2の挟持工程T2の終了時においては、第1の挟持部62が乾燥している。
 その後、両挟持工程T3において、第2の挟持ユニット56によって基板Wを挟持する場合に、既に乾燥している状態の第1の挟持部62が基板Wの周縁部に接触する。このとき、両挟持工程T3において、第1の挟持部62と基板Wの周縁部との間にリンス液が存在しない。すなわち、両挟持工程T3では、第1の挟持部62と基板Wの周縁部との間にリンス液を存在させることなく、第1の挟持ユニット55によって基板Wを挟持できる。
 したがって、第1の挟持部62と基板Wの周縁部との間および第2の挟持部72と基板Wの周縁部との間にリンス液が残存することを抑制または防止しながらスピンドライ工程S7を実行できる。そのため、パーティクル汚染の発生を、抑制または防止できる。
 また、第1の挟持工程T1が、スピンドライ工程S7の開始後に開始される(すなわち、スピンドライ工程S7に並行して実行される)ので、基板Wの周縁部から離間している第2の挟持部72に基板Wからのリンス液が降り掛かるおそれがない。また、この場合、リンス液を振り切るほどの基板Wの回転速度になるために、第1の挟持工程T1において基板Wの周縁部から離間しながら回転している各第2の挟持部72に作用する遠心力が大きい。これにより、第1の挟持工程T1において、第2の挟持部72をより良好に乾燥させることができる。
 以上、この発明の一実施形態について説明したが、本発明はさらに他の形態で実施することもできる。
 たとえば、図17に示す第1の変形処理例のように、第2の挟持工程T2の後、スピンドライ工程S7に並行して第1の挟持工程T1および第2の挟持工程T2を再度実行するようにしてもよい。図17では、第1の挟持工程T1および第2の挟持工程T2の対を合計2対行う場合を記しているが、合計3対以上で行うようにしてもよい。第1の挟持工程T1および第2の挟持工程T2を複数回実行することにより、第1の挟持部62と基板Wの周縁部との間および第2の挟持部72と基板Wの周縁部との間のリンス液の残存をより一層効果的に抑制しながらスピンドライ工程S7を実行できる。そのため、パーティクル汚染の発生を、より効果的に抑制できる。
 また、図18に示す第2の変形処理例のように、第1の挟持工程T1を、スピンドライ工程S7の開始後ではなく、第2のリンス工程S6の終了前から開始するようにしてもよい。
 また、図19に示す第3の変形処理例のように、第1の挟持工程T1から第2の挟持工程T2への切り換え時に、基板Wの回転速度を、第1の乾燥速度V1よりも低い切り換え速度(たとえば約200rpm)程度に一旦落とすようにしてもよい。この場合、第1の挟持ユニット55や第2の挟持ユニット56に大きな負荷を与えることなく、第1の挟持工程T1から第2の挟持工程T2への切り換えを行うことができる。
 また、図20に示す第4の変形処理例のように、両挟持工程T3に並行して基板Wの回転を第2の乾燥速度V2まで上昇させずに、第1の乾燥速度V1のまま基板Wを回転させ続けるようにしてもよい。
 また、第1~第4の変形処理例を適宜組み合わせることもできる。
 また、図14および図15に示す基板処理例ならびに第1~第4の変形処理例において、最後の第2の挟持工程T2の後、スピンドライ工程S7に並行して、当該第2の挟持工程T2が維持され続けてもよい。
 また、図14および図15に示す基板処理例ならびに第1~第4の変形処理例において、第1の挟持工程T1を実行するための第1の期間Te1、および第2の挟持工程T2を実行するための第2の期間Te2は、それぞれ、第1の挟持ピン52Aおよび第2の挟持ピン52Bに付着している液体が振り切るのに十分な期間であるとしたが、完全に乾かなくても、挟持ピン52A,52Bに付着しているリンス液に含まれる薬液成分が転写しない程度に液体が除去されるような期間であればよい。
 また、図14および図15に示す基板処理例ならびに第1~第4の変形処理例において、硫酸含有液工程S3に先立って、基板Wの表面に除電液を供給する第1の除電液供給工程が実行されてもよい。除電液は、たとえば炭酸水である。この場合、基板Wの持ち込み帯電に起因する静電気放電の発生を効果的に抑制できる。リンス液として炭酸水を用いる場合には、第1の除電液供給工程として共通の炭酸水供給ユニットからの炭酸水を用いるようにしてもよい。
 また、前述の基板処理例において、硫酸含有液工程S3に先立って、基板Wの表面を、第1の洗浄薬液を用いて洗浄する第1の洗浄工程が実行されてもよい。このような第1の洗浄薬液として、たとえばフッ酸(HF)を例示できる。
 また、前述の基板処理例において、硫酸含有液工程S3の後第1のリンス工程S4に先立って、Hを基板Wの上面(表面)に供給する過酸化水素水供給工程が実行されてもよい。この場合、制御装置3は、過酸化水素水バルブ26を開いた状態に維持しつつ硫酸バルブ24だけを閉じる。これにより、硫酸含有液ノズル18にHだけが供給され、硫酸含有液ノズル18の吐出口からHが吐出される。この過酸化水素水供給工ンに対する熱影響を緩和することが出来ると共に、基板Wの表面への硫黄成分の残留(S残り)を防止または抑制できる。また、この過酸化水素水供給工程を設ける場合には、SC1工程を廃止することも可能である。
 また、スピンドライ工程S7に先立って、IPA(イソプロピルアルコール)などの低表面張力を有する有機溶剤(乾燥液)を供給して、基板Wの上面上のリンス液を有機溶剤によって置換する有機溶剤置換工程が実行されてもよい。さらに、供給した有機溶剤を撥水剤に置換し、撥水剤の膜を基板Wの上面に形成する工程が、有機溶剤置換工程の後に実行されていてもよい。
 また、第1の挟持工程T1および第2の挟持工程T2を、第2のリンス工程S6の終盤からスピンドライ工程S7の期間だけでなく、第2のリンス工程S6の序盤および中盤においても実行するようにしてもよい。
 また、図14の基板処理例ではレジスト除去処理を例に挙げたが、レジストに限られず、SPMを用いて他の有機物の除去をする処理であってもよい。
 また、リンス液を吐出するためのノズルを、遮断部材8に一体化された中心軸ノズル9ではなく、遮断部材8と別部材に設ける構成であってもよい。
 また、第1の挟持ユニット55および第2の挟持ユニット56が、それぞれ3つの挟持ピン52A,52Bを備えているとして説明したが、それぞれ4つ以上の挟持ピン52A,52Bを備えていてもよい。
 また、基板Wの挟持状態を第1の挟持状態と第2の挟持状態との間で切り換え可能なスピンチャック5として、特開2004-111902号公報に示すように、リンク構造等機械的な構造を用いて第1の挟持状態と第2の挟持状態とを切り換える方式を採用することもできる。
 また、前述の実施形態では、硫酸含有液供給ユニット6として、HSOおよびHの混合を硫酸含有液ノズル18の内部で行うノズル混合タイプのものを例に挙げて説明したが、硫酸含有液ノズル18の上流側に配管を介して接続された混合部を設け、この混合部において、HSOとHとの混合が行われる配管混合タイプのものを採用することもできる。
 また、硫酸含有液工程S3において基板Wの表面に供給される硫酸含有液は、SPMの他、硫酸(濃硫酸)やSOM(硫酸オゾン(硫酸にオゾンを分散させた液体))であってもよい。また、薬液工程において基板Wの表面に供給される硫酸含有液は、硫酸含有液に限られず、それ以外の薬液であってもよい。
 また、基板処理例が硫酸含有液工程S3を含んでいなくてもよい。たとえば、硫酸含有液工程S3を含まない場合であっても、その処理ユニット2において、過去に、硫酸含有液を用いて処理を行った場合には、リンス工程の終盤またはリンス工程の終了時に、第1の挟持ピン52Aおよび第2の挟持ピン52Bと基板Wの周縁部との間に残存するリンス液が硫酸含有液等を含有している。この場合に、本願発明を好適に適用できる。
 また、前述の実施形態において、基板処理装置1が半導体ウエハからなる基板Wの表面を処理する装置である場合について説明したが、基板処理装置が、液晶表示装置用基板、有機EL(electroluminescence)表示装置などのFPD(Flat Panel display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などの基板を処理する装置であってもよい。
 その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
 この出願は、2018年5月29日に日本国特許庁に提出された特願2018-102558号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。
1   :基板処理装置
2   :処理ユニット
3   :制御装置
5   :スピンチャック(基板保持回転装置)
10  :リンス液供給ユニット
54  :スピンモータ(回転ユニット)
55  :第1の挟持ユニット
56  :第2の挟持ユニット
57  :第1の開閉ユニット(挟持駆動ユニット)
58  :第2の開閉ユニット(挟持駆動ユニット)
62  :第1の挟持部
72  :第2の挟持部
A1  :回転軸線
Te1 :第1の期間
Te2 :第2の期間
V1  :第2の乾燥速度
V2  :第2の乾燥速度
W   :基板
Y   :周方向

Claims (20)

  1.  基板の周縁部に接触可能な少なくとも3つの第1の挟持部を有し、前記少なくとも3つの第1の挟持部が前記基板の周縁部に接触することによって前記基板を挟持する第1の挟持ユニットと、前記第1の挟持ユニットとは別に設けられ、前記基板の周縁部に接触可能な少なくとも3つの第2の挟持部を有し、前記少なくとも3つの第2の挟持部が前記基板の周縁部に接触することによって前記基板を挟持する第2の挟持ユニットとを含む基板保持回転装置を含む基板処理装置において実行され、前記基板に対して薬液を用いた処理を施すための基板処理方法であって、
     前記基板保持回転装置によって保持されている前記基板を、当該基板の中央部を通る回転軸線回りに回転させながら、前記基板の主面にリンス液を供給するリンス工程と、
     前記基板の主面に対してリンス液を供給せずに、当該基板を、当該基板の主面からリンス液を振り切ることができる振り切り速度で前記回転軸線回りに回転させるスピンドライ工程と、
     前記リンス工程および前記スピンドライ工程の少なくとも一方に並行して、前記少なくとも3つの第2の挟持部を前記基板の周縁部から離間させながら前記少なくとも3つの第1の挟持部を前記基板の周縁部に接触させることにより、前記第1の挟持ユニットによって前記基板を挟持し前記第2の挟持ユニットによって前記基板を挟持しない第1の挟持状態を実現し、その第1の挟持状態を所定の第1の期間維持する第1の挟持工程と、
     前記第1の挟持工程の後、前記スピンドライ工程に並行して、前記少なくとも3つの第1の挟持部を前記基板の周縁部から離間させながら前記少なくとも3つの第2の挟持部を前記基板の周縁部に接触させることにより、前記第2の挟持ユニットによって前記基板を挟持し前記第1の挟持ユニットによって前記基板を挟持しない第2の挟持状態を実現し、その第2の挟持状態を所定の第2の期間維持する第2の挟持工程とを含む、基板処理方法。
  2.  前記リンス工程の前に、前記基板保持回転装置によって保持されている前記基板を、前記回転軸線回りに回転させながら、前記基板の主面に薬液を供給する薬液工程をさらに含む、請求項1に記載の基板処理方法。
  3.  前記薬液が、硫酸含有液を含む、請求項2に記載の基板処理方法。
  4.  前記第1の期間が、前記少なくとも3つの第1の挟持部からリンス液を振り切ることが可能な期間であり、
     前記第2の期間が、前記少なくとも3つの第2の挟持部からリンス液を振り切ることが可能な期間である、請求項1~3のいずれか一項に記載の基板処理方法。
  5.  前記第1の挟持状態において、前記基板の周縁部から離間している前記少なくとも3つの第2の挟持部を前記基板の周縁部に接触させることにより、前記第1の挟持状態から、前記第1の挟持ユニットおよび前記第2の挟持ユニットによって前記基板を挟持する両挟持状態に遷移する第1の遷移工程と、
     前記両挟持状態において、前記基板の周縁部に接触している前記少なくとも3つの第1の挟持部を前記基板の周縁部から離間させることにより、前記両挟持状態から前記第2の挟持状態に遷移する第2の遷移工程とをさらに含む、請求項1~3のいずれか一項に記載の基板処理方法。
  6.  前記第2の挟持工程の後、前記スピンドライ工程に並行して、前記第1の挟持ユニットおよび前記第2の挟持ユニットによって前記基板を挟持する両挟持状態を実現する両挟持工程をさらに含む、請求項1~3のいずれか一項に記載の基板処理方法。
  7.  前記スピンドライ工程が、
     前記第1の挟持工程および前記第2の挟持工程に並行して、前記基板を、当該基板の主面からリンス液を振り切ることができる第1の乾燥速度で前記回転軸線回りに回転させる第1のスピンドライ工程と、
     前記両挟持工程に並行して、前記基板を、当該基板の主面からリンス液を振り切ることができ、前記第1の乾燥速度よりも速い第2の乾燥速度で前記回転軸線回りに回転させる第2のスピンドライ工程とを含む、請求項6に記載の基板処理方法。
  8.  前記第1の挟持工程が、前記スピンドライ工程に並行して実行される、請求項1~3のいずれか一項に記載の基板処理方法。
  9.  前記第2の挟持工程の後、前記スピンドライ工程に並行して、前記第1の挟持工程および前記第2の挟持工程が再度実行される、請求項1~3のいずれか一項に記載の基板処理方法。
  10.  基板に対して薬液を用いた処理を施すための基板処理装置であって、
     前記基板の周縁部に接触可能な少なくとも3つの第1の挟持部を有し、前記少なくとも3つの第1の挟持部によって前記基板を挟持することが可能な第1の挟持ユニットと、前記第1の挟持ユニットとは別に設けられ、前記基板の周縁部に接触可能な少なくとも3つの第2の挟持部を有し、前記少なくとも3つの第2の挟持部によって前記基板を挟持することが可能な第2の挟持ユニットと、前記第1の挟持ユニットおよび前記第2の挟持ユニットを、前記基板の中央部を通る回転軸線まわりに回転させる回転ユニットと、前記第1の挟持ユニットおよび前記第2の挟持ユニットを駆動する挟持駆動ユニットとを含む基板保持回転装置と、
     前記基板保持回転装置によって保持されている前記基板の主面に対してリンス液を供給するためのリンス液供給ユニットと、
     前記回転ユニット、前記挟持駆動ユニットおよび前記リンス液供給ユニットを制御する制御装置とを含み、
     前記制御装置が、前記基板保持回転装置によって保持されている前記基板を、前記回転ユニットによって当該基板の中央部を通る回転軸線回りに回転させながら、前記リンス液供給ユニットによって前記基板の主面にリンス液を供給するリンス工程と、前記基板の主面に対してリンス液を供給せずに、当該基板を、前記回転ユニットによって、当該基板の主面からリンス液を振り切ることができる振り切り速度で前記回転軸線回りに回転させるスピンドライ工程と、前記リンス工程および前記スピンドライ工程の少なくとも一方に並行して、前記少なくとも3つの第2の挟持部からリンス液を振り切るために、前記挟持駆動ユニットによって、前記少なくとも3つの第2の挟持部を前記基板の周縁部から離間させながら前記少なくとも3つの第1の挟持部を前記基板の周縁部に接触させることにより、前記第1の挟持ユニットによって前記基板を挟持し前記第2の挟持ユニットによって前記基板を挟持しない第1の挟持状態を実現し、その第1の挟持状態を所定の第1の期間維持する第1の挟持工程と、前記第1の挟持工程の後、前記スピンドライ工程に並行して、前記少なくとも3つの第1の挟持部からリンス液を振り切るために、前記挟持駆動ユニットによって、前記少なくとも3つの第1の挟持部を前記基板の周縁部から離間させながら前記少なくとも3つの第2の挟持部を前記基板の周縁部に接触させることにより、前記第2の挟持ユニットによって前記基板を挟持し前記第1の挟持ユニットによって前記基板を挟持しない第2の挟持状態を実現し、その第2の挟持状態を所定の第2の期間維持する第2の挟持工程とを実行する、基板処理装置。
  11.  前記制御装置が、前記リンス工程の前に、前記基板保持回転装置によって保持されている前記基板を、前記回転軸線回りに回転させながら、前記基板の主面に薬液を供給する薬液工程をさらに実行する、請求項10に記載の基板処理装置。
  12.  前記薬液が、硫酸含有液を含む、請求項11に記載の基板処理装置。
  13.  前記第1の期間が、前記少なくとも3つの第1の挟持部からリンス液を振り切ることが可能な期間であり、
     前記第2の期間が、前記少なくとも3つの第2の挟持部からリンス液を振り切ることが可能な期間である、請求項10~12のいずれか一項に記載の基板処理装置。
  14.  前記制御装置が、前記第1の挟持状態において、前記基板の周縁部から離間している前記少なくとも3つの第2の挟持部を前記基板の周縁部に接触させることにより、前記第1の挟持状態から、前記第1の挟持ユニットおよび前記第2の挟持ユニットによって前記基板を挟持する両挟持状態に遷移する第1の遷移工程と、前記両挟持状態において、前記基板の周縁部に接触している前記少なくとも3つの第1の挟持部を前記基板の周縁部から離間させることにより、前記両挟持状態から前記第2の挟持状態に遷移する第2の遷移工程とをさらに実行する、請求項10~12のいずれか一項に記載の基板処理装置。
  15.  前記制御装置が、前記第2の挟持工程の後、前記スピンドライ工程に並行して、前記第1の挟持ユニットおよび前記第2の挟持ユニットによって前記基板を挟持する両挟持状態を実現する両挟持工程をさらに実行する、請求項10~12のいずれか一項に記載の基板処理装置。
  16.  前記制御装置が、前記スピンドライ工程において、前記第1の挟持工程および前記第2の挟持工程に並行して、前記基板を、当該基板の主面からリンス液を振り切ることができる第1の乾燥速度で前記回転軸線回りに回転させる第1のスピンドライ工程と、前記両挟持工程に並行して、前記基板を、当該基板の主面からリンス液を振り切ることができ、前記第1の乾燥速度よりも速い第2の乾燥速度で前記回転軸線回りに回転させる第2のスピンドライ工程とを実行する、請求項15に記載の基板処理装置。
  17.  前記制御装置が、前記第1の挟持工程を、前記スピンドライ工程に並行して実行する、請求項10~12のいずれか一項に記載の基板処理装置。
  18.  前記制御装置が、前記第2の挟持工程の後、前記スピンドライ工程に並行して前記第1の挟持工程および前記第2の挟持工程を再度実行する、請求項10~12のいずれか一項に記載の基板処理装置。
  19.  前記第1の挟持部および前記第2の挟持部が、樹脂部材を含む、請求項10~12のいずれか一項に記載の基板処理装置。
  20.  前記樹脂部材には炭素が含まれている、請求項19に記載の基板処理装置。
PCT/JP2019/020516 2018-05-29 2019-05-23 基板処理方法および基板処理装置 WO2019230564A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018102558A JP7144193B2 (ja) 2018-05-29 2018-05-29 基板処理方法および基板処理装置
JP2018-102558 2018-05-29

Publications (1)

Publication Number Publication Date
WO2019230564A1 true WO2019230564A1 (ja) 2019-12-05

Family

ID=68698843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020516 WO2019230564A1 (ja) 2018-05-29 2019-05-23 基板処理方法および基板処理装置

Country Status (3)

Country Link
JP (1) JP7144193B2 (ja)
TW (1) TWI724429B (ja)
WO (1) WO2019230564A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022018019A (ja) 2020-07-14 2022-01-26 株式会社Screenホールディングス 基板処理方法および基板処理装置
EP4095605B1 (en) 2021-03-30 2023-11-29 Tencent Technology (Shenzhen) Company Limited Photoresist removal method and photoresist removal system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107023A (ja) * 1995-10-13 1997-04-22 Toshiba Microelectron Corp 被処理物の回転保持装置
JP2015084450A (ja) * 2015-01-08 2015-04-30 東京エレクトロン株式会社 基板処理装置、基板処理方法及びその基板処理方法を実行させるためのプログラムを記録した記憶媒体
JP2018046062A (ja) * 2016-09-12 2018-03-22 株式会社Screenホールディングス 基板処理方法および基板処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107023A (ja) * 1995-10-13 1997-04-22 Toshiba Microelectron Corp 被処理物の回転保持装置
JP2015084450A (ja) * 2015-01-08 2015-04-30 東京エレクトロン株式会社 基板処理装置、基板処理方法及びその基板処理方法を実行させるためのプログラムを記録した記憶媒体
JP2018046062A (ja) * 2016-09-12 2018-03-22 株式会社Screenホールディングス 基板処理方法および基板処理装置

Also Published As

Publication number Publication date
JP7144193B2 (ja) 2022-09-29
JP2019207948A (ja) 2019-12-05
TWI724429B (zh) 2021-04-11
TW202004983A (zh) 2020-01-16

Similar Documents

Publication Publication Date Title
KR101833684B1 (ko) 기판 처리 방법 및 기판 처리 장치
JP6894264B2 (ja) 基板処理方法および基板処理装置
US9892955B2 (en) Substrate holding/rotating device, substrate processing apparatus including the same, and substrate processing method
JP6660628B2 (ja) 基板保持回転装置およびそれを備えた基板処理装置、ならびに基板処理方法
US10192771B2 (en) Substrate holding/rotating device, substrate processing apparatus including the same, and substrate processing method
WO2017164185A1 (ja) 基板処理方法および基板処理装置
US11465167B2 (en) Substrate treatment apparatus
CN107430987B (zh) 基板处理方法和基板处理装置
JP6674679B2 (ja) 基板保持回転装置およびそれを備えた基板処理装置、ならびに基板処理方法
JP2008004878A (ja) 基板処理方法および基板処理装置
KR20170098183A (ko) 기판 처리 장치 및 기판 처리 방법
US10978317B2 (en) Substrate processing method and substrate processing apparatus
WO2019230564A1 (ja) 基板処理方法および基板処理装置
KR20180108435A (ko) 기판 유지 회전 장치 및 그것을 구비한 기판 처리 장치, 및 기판 처리 방법
WO2017164186A1 (ja) 基板処理方法および基板処理装置
KR20190126915A (ko) 기판 처리 방법 및 기판 처리 장치
KR20180108733A (ko) 기판 처리 방법 및 기판 처리 장치
WO2016152371A1 (ja) 基板処理方法および基板処理装置
JP7066471B2 (ja) 基板処理方法および基板処理装置
JP2016167553A (ja) 基板処理装置及びそのチャック洗浄方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812360

Country of ref document: EP

Kind code of ref document: A1