WO2019230201A1 - 換気システム、空気調和システムおよび空気調和システムの設置方法 - Google Patents

換気システム、空気調和システムおよび空気調和システムの設置方法 Download PDF

Info

Publication number
WO2019230201A1
WO2019230201A1 PCT/JP2019/015472 JP2019015472W WO2019230201A1 WO 2019230201 A1 WO2019230201 A1 WO 2019230201A1 JP 2019015472 W JP2019015472 W JP 2019015472W WO 2019230201 A1 WO2019230201 A1 WO 2019230201A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
zone
exhaust port
exhaust
port
Prior art date
Application number
PCT/JP2019/015472
Other languages
English (en)
French (fr)
Inventor
守 濱田
章吾 玉木
野本 宗
四十宮 正人
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020521761A priority Critical patent/JP6964771B2/ja
Priority to CN201980028562.8A priority patent/CN112154291B/zh
Priority to EP19810738.5A priority patent/EP3805653B1/en
Priority to US17/045,733 priority patent/US11976839B2/en
Publication of WO2019230201A1 publication Critical patent/WO2019230201A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F9/00Use of air currents for screening, e.g. air curtains
    • F24F2009/002Room dividers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/10Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with air supply, or exhaust, through perforated wall, floor or ceiling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a ventilation system, an air conditioning system, and an installation method of the air conditioning system, and more particularly to a ventilation system that performs ventilation and air conditioning for each zone, an air conditioning system, and an installation method thereof.
  • Patent Document 1 the presence of a person in the air-conditioning target zone and the presence of a person in the vicinity zone of the air-conditioning target zone are detected, and the presence of a person in the air-conditioning target zone is detected. It has been proposed to perform different air conditioning operations depending on the detected case.
  • Patent Document 2 includes an ambient air conditioning area in which a radiant cooling panel and an air outlet for introducing outside air and auxiliary cooling are provided for each zone, and a task air conditioning area in which a small air conditioner is provided for each worker. Air conditioning systems have been proposed. In the ambient air-conditioning area of Patent Document 2, the state of the cooling medium flowing through the radiant panel and the air volume at the outlet are controlled in accordance with the presence or absence of a worker for each zone.
  • the present invention solves the problems as described above, and suppresses air convection between zones and improves the reduction effect of power consumption. Ventilation system, air conditioning system, and air conditioning system installation It aims to provide a method.
  • a ventilation system is disposed in a first zone, and is disposed in a first air supply port and a first exhaust port used for ventilation of the first zone, and a second zone adjacent to the first zone,
  • a second air inlet and a second air outlet used for ventilation in the second zone, and the first air inlet, the first air outlet, the second air inlet, and the second air outlet are:
  • the first air inlet, the first air outlet, the second air inlet, and the second air outlet are arranged in the same plane, and the first air outlet, the first air inlet, and the second air inlet are in one direction.
  • the first exhaust port, the first exhaust port, the second exhaust port, and the second supply port are arranged in this order in the order of the second exhaust port.
  • An air conditioning system includes the ventilation system, a first indoor unit that is disposed in the first zone and air-conditions the first zone, and a second indoor unit that is disposed in the second zone and air-conditions the second zone. And comprising.
  • the first indoor unit is disposed in the first zone
  • the second indoor unit is disposed in the second zone adjacent to the first zone
  • the first air inlet and the first One exhaust port is disposed in the first zone
  • the second air supply port and the second air exhaust port are disposed in the second zone
  • the first air supply port, the first exhaust port, the second air supply port, 2 exhaust ports are arranged on the same plane
  • the first air supply port, the first air exhaust port, the second air supply port, and the second air exhaust port are arranged in one direction, the first air exhaust port, the first air supply port, It arrange
  • the first exhaust port, the first air supply port, the second air supply port, and the second exhaust port are arranged in this order, or in one direction, the first air supply port and the first exhaust port.
  • FIG. 1 is a schematic configuration diagram of an air conditioning system according to Embodiment 1.
  • FIG. It is a schematic block diagram of the 1st indoor unit in Embodiment 1.
  • FIG. It is a figure which shows the ventilation structure of the air conditioning system in Embodiment 1.
  • FIG. 3 is a functional block diagram of a control device in Embodiment 1.
  • FIG. 3 is an operation flow of the air conditioning system according to Embodiment 1.
  • FIG. 3 is a diagram illustrating a planar arrangement of each component of the air conditioning system according to Embodiment 1.
  • 2 is a schematic diagram illustrating an air flow in the air-conditioning system of Embodiment 1.
  • FIG. 2 is a schematic diagram showing a ventilation airflow in the air conditioning system of Embodiment 1.
  • FIG. 6 is a functional block diagram of a control device according to Embodiment 2.
  • FIG. It is an operation
  • FIG. FIG. 6 is a schematic diagram showing an air flow in the air conditioning system of the second embodiment.
  • FIG. 5 is a schematic configuration diagram of an air conditioning system according to Embodiment 3.
  • FIG. 10 is a functional block diagram of a control device in a third embodiment. 10 is an operation flow of the air conditioning system according to Embodiment 3.
  • FIG. 6 is a schematic diagram showing an air flow in the air conditioning system of the third embodiment. 10 is an operation flow of the air conditioning system according to Embodiment 4.
  • FIG. 1 is a schematic configuration diagram of an air-conditioning system 100 according to the first embodiment.
  • FIG. 1 is a schematic view of an air-conditioning target space R that is air-conditioned by the air conditioning system 100 as viewed from the side.
  • Air conditioning system 100 of the present embodiment the air conditioning target space R of the first zone Z 1, such as room office buildings, which divided and air conditioning in the second zone Z 2 adjacent the first zone Z 1 and It is.
  • the first zone Z 1 is a space that is air-conditioned by the first indoor unit 11
  • the second zone Z 2 is a space that is air-conditioned by the second indoor unit 21.
  • the first zone Z 1 and the second boundary zone Z 2 a zone boundary B 12.
  • the air conditioning system 100 is disposed in the first zone Z 1, and is disposed in the first zone Z 1 , the first indoor unit 11 that air-conditions the first zone Z 1 , and the first zone Z 1. 1 is provided with a first air inlet 12 and a first exhaust port 13 used for ventilation of the first detector 14.
  • the air conditioning system 100 is disposed in the second zone Z 2, a second indoor unit 21 for air conditioning a second zone Z 2, arranged in the second zone Z 2, used for ventilation of the second zone Z 2
  • the second air supply port 22 and the second exhaust port 23, and the second detection unit 24 are disposed on the same surface such as a ceiling surface.
  • the air conditioning system 100 includes a ventilator 200 that is disposed outside the air conditioning target space R and communicates with the first air inlet 12, the first exhaust port 13, the second air inlet 22, and the second exhaust port 23. Prepare.
  • the air conditioning system 100 also includes a control device 50 provided in a building management room or the like. The control device 50 receives an operation instruction for the air conditioning system 100 via the operation unit 150 that receives an input from the user, and performs overall control of the air conditioning system 100 based on the operation information instructed via the operation unit 150. To do.
  • FIG. 2 is a schematic configuration diagram of the first indoor unit 11 in the first embodiment.
  • the second indoor unit 21 has the same configuration as the first indoor unit 11, and here, the first indoor unit 11 will be described as a representative.
  • the first indoor unit 11 includes a housing 110, a heat exchanger 111 disposed in the housing 110, and a fan 112.
  • an air conditioning outlet 113 that blows out conditioned air that has passed through the heat exchanger 111 and an air conditioning inlet 114 that sucks in indoor air are provided below the housing 110.
  • the air conditioning outlet 113 is provided with a wind direction plate 115 that adjusts the blowing direction of the conditioned air.
  • the first indoor unit 11 sucks indoor air from the air-conditioning inlet 114 by a fan 112, is cooled or heated by the heat exchanger 111, that blown out from the air conditioning outlet 113 into the room, the first zone Z 1 Cooling or Heat up.
  • FIG. 3 is a diagram showing a ventilation structure of the air-conditioning system 100 according to the first embodiment.
  • the first air inlet 12 and the second air inlet 22 are connected to the ventilator 200 via the air supply path 201.
  • the first exhaust port 13 and the second exhaust port 23 are connected to the ventilator 200 via the exhaust air passage 202.
  • the supply air passage 201 and the exhaust air passage 202 are formed independently of each other, the supply air passage 201 is provided with the supply air fan 203, and the exhaust air passage 202 is provided with the exhaust fan 204. .
  • the ventilation device 200 is provided with a total heat exchanger or a sensible heat exchanger that performs heat exchange between the indoor air flowing through the exhaust air passage 202 and the outdoor air flowing through the supply air passage 201. Also good.
  • the first air supply port 12 and the first exhaust port 13, and the second air supply port 22 and the second exhaust port 23 may be connected to different ventilation devices 200.
  • First detector 14 includes a human detecting sensor for detecting the first zone Z 1 Uchinohito, an indoor temperature sensor for detecting a first indoor temperature of the zone Z 1.
  • the second detection unit 24 includes a human detecting sensor for detecting the second zone Z 2 Uchinohito, an indoor temperature sensor for detecting the second zone indoor temperature of Z 2.
  • the detection results by the first detection unit 14 and the second detection unit 24 are output to the control device 50.
  • the human detection sensor is, for example, an infrared sensor or a camera, and detects the presence or absence of a person in each zone based on the temperature distribution or image in each zone.
  • the indoor temperature sensor is, for example, an infrared sensor.
  • the first detection unit 14 and the second detection unit 24 may be built in the first indoor unit 11 and the second indoor unit 21. Further, the human detection sensor and the room temperature sensor may be constituted by one infrared sensor or may be separate sensors. In addition, the first zone Z 1 and the second zone Z 2 may not be separately provided with a detection unit, and the one zone and the temperature of the first zone Z 1 and the second zone Z 2 may be detected by one detection unit. .
  • the operation unit 150 accepts operation information instructions such as an operation mode, temperature setting, humidity setting, air volume setting, and wind direction setting in the air conditioning system 100.
  • the operation modes of the air conditioning system 100 include cooling operation, heating operation, air blowing operation, ventilation operation, and the like.
  • the operation unit 150 is a remote controller attached to the air conditioning system 100.
  • the operation unit 150 may be a smartphone, a mobile phone, a PDA (Personal Digital Assistant), a personal computer, or a tablet.
  • FIG. 4 is a functional block diagram of the control device 50 in the first embodiment.
  • the control device 50 includes a storage unit 51, a determination unit 52, an air conditioning control unit 53, and a ventilation control unit 54 as functional units.
  • the control device 50 is also referred to as dedicated hardware or a CPU (Central processing unit, central processing device, processing device, arithmetic device, microprocessor, microcomputer, or processor that executes a program stored in a memory (not shown). ).
  • the control device 50 is dedicated hardware, the control device 50 is, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable ⁇ ⁇ ⁇ Gate Array), or a combination thereof. Applicable.
  • Each functional unit realized by the control device 50 may be realized by individual hardware, or each functional unit may be realized by one piece of hardware.
  • each function executed by the control device 50 is realized by software, firmware, or a combination of software and firmware.
  • Software or firmware is described as a program and stored in a memory.
  • the CPU implements each function of the control device 50 by reading and executing a program stored in the memory.
  • the memory is a non-volatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM. Note that part of the functions of the control device 50 may be realized by dedicated hardware, and part of it may be realized by software or firmware.
  • the storage unit 51 stores instruction contents input from the user via the operation unit 150. Specifically, the storage unit 51 stores an operation mode, temperature setting, humidity setting, air volume setting, air direction setting, and the like of the air conditioning system 100. Note that the storage unit 51 is not limited to that included in the control device 50, and may be configured by a memory provided separately from the control device 50.
  • the determination unit 52 Based on the detection results of the first detection unit 14 and the second detection unit 24, the determination unit 52 performs the air conditioning operation of the zone where the person is detected, stops the air conditioning operation of the zone where the person is not detected, The air conditioning control unit 53 is instructed to do so. Specifically, when a person is detected in the first zone Z 1 by the first detection unit 14, the first indoor unit 11 is set in the air conditioning operation, and when no person is detected, the first indoor unit 11 is turned on. The air conditioning control unit 53 is instructed to perform the air blowing operation. Similarly, if a person in the second zone Z 2 by the second detection unit 24 is detected, the second indoor unit 21 and the air conditioning operation, if a person is not detected, the blowing operation the second indoor unit 21 To the air conditioning control unit 53.
  • the air conditioning operation is a cooling operation or a heating operation.
  • the air conditioning control unit 53 controls the first indoor unit 11 and the second indoor unit 21 based on the instruction content from the determination unit 52 and the instruction content stored in the storage unit 51. Specifically, when the determination unit 52 instructs the air conditioning control unit 53 to set the first indoor unit 11 to the air conditioning operation, the indoor temperature detected by the first detection unit 14 is stored in the storage unit 51. The first indoor unit 11 is controlled so that the set temperature is stored.
  • the air volume of the fan 112 of the first indoor unit 11, the operating frequency of the compressor of the outdoor unit (not shown) connected to the first indoor unit 11, the opening degree of the expansion valve, and the like are controlled.
  • the air conditioning control unit 53 when the air conditioning control unit 53 is instructed by the determination unit 52 to set the first indoor unit 11 to the air blowing operation, the air conditioning control unit 53 stops the inflow of the refrigerant to the heat exchanger 111 of the first indoor unit 11 and the fan The driving of 112 is continued.
  • the air conditioning control unit 53 performs the same control as the control of the first indoor unit 11 even when the determination unit 52 instructs the air conditioning operation and the air blowing operation of the second indoor unit 21.
  • the ventilation control unit 54 controls the ventilation device 200 based on the instruction content stored in the storage unit 51. Specifically, the air volume of the air supply fan 203 and the exhaust fan 204 of the ventilation device 200 is controlled.
  • FIG. 5 is an operation flow of the air conditioning system 100 according to the first embodiment. This operation flow is executed by the control device 50 for each zone. First, it is determined whether or not a person is detected in the zone (S1). And when a person is detected (S1: YES), the air-conditioning driving
  • the air-conditioning operation is performed only when there are people in the zone, and the air-blowing operation is performed when there are no people, thereby reducing power consumption without impairing comfort. be able to.
  • the air conditioning system 100 of the present embodiment has a configuration that suppresses air convection between zones, and improves the effect of reducing power consumption.
  • FIG. 6 is a diagram illustrating a planar arrangement of each component of the air-conditioning system 100 according to the first embodiment.
  • the first indoor unit 11 is disposed at the center of the first zone Z 1
  • second indoor unit 21 is located in the center of the second zone Z 2.
  • the first supply port 12 and the second supply port 22 is arranged in the vicinity of the zone boundary B 12.
  • the first air inlet 12 and the second air inlet 22 are disposed adjacent to each other.
  • the first exhaust port 13 is disposed on the opposite side of the first air supply port 12 with the first indoor unit 11 interposed therebetween
  • the second exhaust port 23 is disposed on the second air supply port with the second indoor unit 21 interposed therebetween. 22 on the opposite side.
  • the position of the first air inlet 12 in the first zone Z 1 and the position of the second air inlet 22 in the second zone Z 2 are the first has become symmetrical with respect to the zone Z 1 and zone boundary B 12 is the boundary between the second zone Z 2.
  • the position of the first exhaust port 13 in the first zone Z 1 and the position of the second exhaust port 23 in the second zone Z 2 are symmetric with respect to the zone boundary B 12 .
  • the “symmetry” mentioned here includes not only completely symmetrical but also substantially symmetric.
  • the first air inlet 12, the first air outlet 13, the second air inlet 22, and the second air outlet 23 are arranged in one direction, the first air outlet 13, the first air inlet.
  • the second air supply port 22 and the second exhaust port 23 are arranged in this order. Further, the distance between the first air inlet 12 and the first exhaust port 13 is shorter than the distance between the first air inlet 12 and the second exhaust port 23, and the distance between the second air inlet 22 and the second exhaust port 23 is short. The distance is shorter than the distance between the second air supply port 22 and the first exhaust port 13.
  • FIG. 7 is a schematic diagram showing an air flow in the air-conditioning system 100 of the first embodiment.
  • the air blown from the first air supply port 12 is sucked into the first exhaust port 13, and the air blown from the second air supply port 22 is sucked into the second exhaust port 23.
  • the air supply port and an exhaust port in each zone, compared with a case of placing the only outlet to the second zone Z 2 disposed only the supply port to the first zone Z 1
  • air convection between the zones is suppressed, and the air flow can be closed for each zone.
  • the first air supply opening 12 The air blown from the air is sucked into the second exhaust port 23 arranged nearby. As a result, the air flow is not closed in the zone, and convection between the zones occurs.
  • the distance between the air supply port and the exhaust port in each zone is shorter than the distance between the exhaust port or the air supply port of the adjacent zone, so that the air supply and Exhaust is performed and the air flow can be closed.
  • the air conditioning system 100 of the present embodiment by performing the air supply to the first supply port 12 and second supply port 22 is disposed in the vicinity of the zone boundary B 12, it is possible to reduce the inflow of air from other zones as an air curtain it can.
  • the air conditioning system 100 of the present embodiment the first zone Z 1 and can suppress the convection of air is generated between the second zone Z 2, to improve the effect of reducing the power consumption it can.
  • FIG. 8 is a schematic diagram showing ventilation airflow in the air-conditioning system 100 of the first embodiment.
  • the first air inlet 12 and the first air outlet 13, and the second air inlet 22 and the second air outlet 23 are arranged on the same horizontal plane, and are indicated by thick arrows in FIG. 8 in the zone. Horizontal airflow is generated. Thereby, the whole zone can be ventilated efficiently.
  • FIG. The air conditioning system 100A in Embodiment 2 will be described.
  • the supply air amount or the exhaust air amount of the first air inlet 12, the first air outlet 13, the second air inlet 22, and the second air outlet 23 is adjusted according to the presence or absence of a person in each zone. This is different from the first embodiment.
  • FIG. 9 is a diagram showing a ventilation structure of the air conditioning system 100A according to the second embodiment.
  • a first supply air volume adjustment unit 120 is provided upstream of the first supply port 12, and the second supply air is upstream of the second supply port 22.
  • An air volume adjusting unit 220 is provided.
  • a first exhaust air flow rate adjustment unit 130 is provided downstream of the first exhaust port 13, and a second exhaust air flow rate adjustment unit 230 is provided downstream of the second exhaust port 23.
  • Air volume which is the air supply from the first supply port 12 to the first zone Z 1 is regulated by the first supply air flow rate adjusting unit 120, the air volume which is the air supply from the second supply port 22 to the second zone Z 2 Is adjusted by the second supply air volume adjustment unit 220.
  • the air volume exhausted from the first exhaust port 13 is adjusted by the first exhaust air volume adjusting unit 130, and the air volume exhausted from the second exhaust port 23 is adjusted by the second exhaust air volume adjusting unit 230.
  • the first supply air flow rate adjustment unit 120, the second supply air flow rate adjustment unit 220, the first exhaust air flow rate adjustment unit 130, and the second exhaust air flow rate adjustment unit 230 are, for example, dampers driven by a motor or the like, or the control device 50. By controlling the opening degree of the blades of the damper, the supply air volume and the exhaust air volume are adjusted.
  • FIG. 10 is a functional block diagram of the control device 50 according to the second embodiment.
  • the determination unit 52 Based on the detection results of the first detection unit 14 and the second detection unit 24, the determination unit 52 according to the present embodiment performs air conditioning in a zone in which a person is detected, and stops air conditioning and air blowing in a zone in which no person is detected.
  • the air conditioning control unit 53 is instructed. Specifically, when a person is detected in the first zone Z 1 by the first detection unit 14, the first indoor unit 11 is set in the air conditioning operation, and when no person is detected, the first indoor unit 11 is turned on. The air conditioning control unit 53 is instructed to stop. Similarly, if a person in the second zone Z 2 by the second detection unit 24 is detected, the second indoor unit 21 and the air conditioning operation, if a person is not detected, to stop the second indoor unit 21 The air conditioning control unit 53 is instructed.
  • the determination unit 52 performs ventilation in a zone where a person is detected based on the detection results of the first detection unit 14 and the second detection unit 24, and stops ventilation in a zone where no person is detected. 54 is instructed. Specifically, if a person by the first detector 14 to a first zone Z 1 is detected, performs ventilation in the first zone Z 1, if a person is not detected, the first zone Z 1 The ventilation control unit 54 is instructed to stop ventilation. Similarly, if a person is detected in the second zone Z 2, performs ventilation in the second zone Z 2, if a person is not detected, the ventilation control section to stop the ventilation in the second zone Z 2 54 is instructed.
  • the air conditioning control unit 53 controls the first indoor unit 11 and the second indoor unit 21 based on the instruction content from the determination unit 52 and the instruction content stored in the storage unit 51. Specifically, the air conditioning control unit 53 controls the first indoor unit 11 as in the first embodiment when the determination unit 52 instructs the first indoor unit 11 to perform the air conditioning operation. In addition, when the determination unit 52 instructs the air conditioning control unit 53 to stop the first indoor unit 11, the air conditioning control unit 53 stops the flow of the refrigerant into the heat exchanger 111 of the first indoor unit 11, and the fan 112 is turned off. Stop. The air conditioning control unit 53 performs the same control as the control of the first indoor unit 11 when the determination unit 52 instructs the air conditioning operation of the second indoor unit 21 and the stop of the second indoor unit 21.
  • the ventilation control unit 54 controls the ventilation device 200 based on the instruction content stored in the storage unit 51. Further, the ventilation control unit 54, based on the instruction content from the determination unit 52, the first supply air volume adjustment unit 120, the first exhaust air volume adjustment unit 130, the second supply air volume adjustment unit 220, and the second exhaust air volume adjustment unit. 230 is controlled. Specifically, when the determination unit 52 instructs the ventilation control unit 54 to perform ventilation in the first zone Z 1, the ventilation air flow rate of the first air supply port 12 and the exhaust gas of the first exhaust port 13 are exhausted. The opening degree of the first supply air volume adjustment unit 120 and the first exhaust air volume adjustment unit 130 is controlled so that the air volume becomes a predetermined air volume. At this time, the ventilation control unit 54 includes the first supply air amount adjustment unit 120 and the first exhaust air amount adjustment unit so that the supply air amount of the first intake port 12 and the exhaust air amount of the first exhaust port 13 are the same. 130 is controlled.
  • the ventilation control section 54 from the determination unit 52, when it is instructed to stop the ventilation of the first zone Z 1, supply air volume of the first air supply opening 12 and the exhaust air volume of the first exhaust port 13 The opening degree of the first supply air volume adjusting unit 120 and the first exhaust air volume adjusting unit 130 is controlled so as to be zero. Further, the ventilation control section 54, from the determination unit 52, when the ventilation and stopping of the second zone Z 2 is instructed, as in the control of the first supply air volume adjusting unit 120 and the first exhaust air amount controller 130 Then, the second supply air flow rate adjustment unit 220 and the second exhaust air flow rate adjustment unit 230 are controlled.
  • FIG. 11 is an operation flow of the air conditioning system 100A according to the second embodiment. This operation flow is executed by the control device 50 for each zone. First, it is determined whether or not a person is detected in the zone (S1). When a person is detected (S1: YES), an air conditioning operation and a ventilation operation are performed based on the instruction content stored in the storage unit 51 (S11). Here, the operation is continued when the air-conditioning operation and the ventilation operation are already performed, and the operation is resumed when the operation is stopped.
  • FIG. 12 is a schematic diagram illustrating an air flow in the air-conditioning system 100A of the second embodiment.
  • the human in the second zone Z 2 indicates the flow of air if not detected.
  • the air-conditioning operation is performed only when there are people in the zone, and when there are no people, the air-conditioning and the air blowing are stopped, thereby reducing the power consumption without impairing the comfort. it can.
  • the air flow in each zone can be closed, and the effect of reducing power consumption can be improved.
  • air supply between the zones can be suppressed by setting the supply air volume and the exhaust air volume to the same volume. Further, by stopping the ventilation of the second zone Z 2 a person has not been detected, at the time of cooling operation, it is possible to prevent the high temperature of the outside air flows into the second zone Z 2, the second zone Z 2 The rise in room temperature can be suppressed. In the heating operation, it is possible to prevent the low-temperature low outside air flows into the second zone Z 2, can suppress the reduction of the room temperature in the second zone Z 2. In this way, by suppressing the increase in room temperature or the decrease in room temperature in the zone where there is no person, it is possible to suppress an increase in the air conditioning load even when air flows in from the zone where there is no person. As a result, the effect of reducing power consumption can be further improved.
  • Embodiment 3 The air conditioning system 100B of Embodiment 3 will be described.
  • the third embodiment differs from the second embodiment in that ventilation is operated or stopped according to the outdoor temperature.
  • FIG. 13 is a schematic configuration diagram of an air-conditioning system 100B according to the third embodiment.
  • the air conditioning system 100B of the present embodiment further includes an outdoor temperature sensor 60 that detects an outdoor temperature outside the air conditioning target space R.
  • the outdoor temperature sensor 60 may be built in the outdoor unit connected to the first indoor unit 11 or the second indoor unit 21, or may be disposed in the supply air path 201 of the ventilation device 200.
  • the outdoor temperature detected by the outdoor temperature sensor 60 is output to the control device 50.
  • FIG. 14 is a functional block diagram of control device 50 in the third embodiment.
  • the determination unit 52 When the first indoor unit 11 and the second indoor unit 21 perform the cooling operation, the determination unit 52 according to the present embodiment operates or stops ventilation according to the outdoor temperature detected by the outdoor temperature sensor 60.
  • the ventilation control unit 54 is instructed. More specifically, the determination unit 52, similarly to the second embodiment, if a person is detected in the first zone Z 1, the first chamber operating as air conditioning operation, to perform ventilation of the first zone Z 1
  • the air conditioning control unit 53 and the ventilation control unit 54 are instructed.
  • the determination unit 52 when a person in the first zone Z 1 is not detected, instructs the air conditioning control unit 53 to stop the first indoor unit 11. Further, in a case where the first indoor unit 11 which has stopped is performing cooling operation before stopping, when the outdoor temperature is lower than the room temperature, so as to ventilate the first zone Z 1, the ventilation control section 54 To instruct. Further, the determination unit 52 determines the first zone when the stopped first indoor unit 11 does not perform the cooling operation before the stop (for example, when the heating operation is performed), or when the outdoor temperature is equal to or higher than the indoor temperature. It instructs the ventilation control section 54 to stop the ventilation in the Z 1. Determining unit 52 for the second zone Z 2, it performs the same control as the first zone Z 1.
  • the air conditioning control unit 53 controls the first indoor unit 11 and the second indoor unit 21 based on the instruction content from the determination unit 52 and the instruction content stored in the storage unit 51 as in the second embodiment.
  • the ventilation control unit 54 also includes a first supply air volume adjustment unit 120, a first exhaust air volume adjustment unit 130, and a second supply air volume adjustment unit based on the instruction content from the determination unit 52. 220 and the second exhaust air volume adjusting unit 230 are controlled.
  • FIG. 15 is an operation flow of the air conditioning system 100 according to the third embodiment. This operation flow is executed by the control device 50 for each zone. First, it is determined whether or not a person is detected in the zone (S1). When a person is detected (S1: YES), an air conditioning operation and a ventilation operation are performed based on the instruction content stored in the storage unit 51 (S11). Here, the operation is continued when the air-conditioning operation and the ventilation operation are already performed, and the operation is resumed when the operation is stopped.
  • the indoor unit is stopped (S21). After the stop of the indoor unit, it is determined whether or not the operation mode of the indoor unit before the stop is a cooling operation (S22). If it is a cooling operation (S22: YES), it is determined whether or not the outdoor temperature is lower than the indoor temperature (S23). When the outdoor temperature is lower than the indoor temperature (S23: YES), a ventilation operation is performed (S24).
  • FIG. 16 is a schematic diagram illustrating an air flow in the air-conditioning system 100B of the third embodiment.
  • the second indoor unit 21 is a case which carried out the cooling operation, the outdoor temperature shows the flow of air is lower than the room temperature .
  • the air-conditioning operation is performed according to the presence or absence of a person in the zone, so that power consumption can be reduced without impairing comfort, and air between the zones can be reduced. Convection can be suppressed and the effect of reducing power consumption can be improved.
  • the outside air cooling effect is to obtain a cooling effect by supplying outside air having a low temperature into the room. Therefore, in the present embodiment, during the cooling operation in which the outdoor temperature is lower than the indoor temperature, an outdoor air cooling effect can be obtained by performing the ventilation operation, and the power consumption reduction effect can be improved throughout the year. .
  • Embodiment 4 An air conditioning system 100 according to Embodiment 4 will be described.
  • the fourth embodiment is different from the third embodiment in that the amount of ventilation air is controlled according to the number of people in each zone.
  • the first detection unit 14 and the second detection unit 24 detect the presence of a person and the number of people.
  • it may be provided separately number detecting sensor for detecting the number of people on the basis of the CO 2 concentration in each zone.
  • the determination unit 52 instructs the ventilation control unit 54 to change the ventilation air volume according to the detected number of people.
  • the ventilation air volume is the supply air volume at the first air inlet 12 and the exhaust air volume at the first exhaust port 13, or the supply air volume at the second air inlet 22 and the exhaust air volume at the second exhaust port 23.
  • the determination unit 52 similarly to the second embodiment, if a person is detected in the first zone Z 1, indicating the first indoor operation to the air conditioning control unit 53 so as to air conditioning operation. Further, in a case where the first indoor unit 11 in operation is performing a cooling operation, when the outdoor temperature is lower than the room temperature, so as to ventilate the first zone Z 1 at the maximum air volume, ventilation control unit 54 is instructed.
  • the determination unit 52 determines the number of people detected when the first indoor unit 11 in operation is not performing cooling operation (for example, when performing heating operation) or when the outdoor temperature is equal to or higher than the indoor temperature. to perform ventilation of the first zone Z 1 in accordance with the air volume, it instructs the ventilation control section 54.
  • the determination unit 52 if a person in the first zone Z 1 is not detected, instructs the air conditioning control unit 53 to stop the first indoor unit 11. Further, when the stopped first indoor unit 11 is performing the cooling operation before the stop and the outdoor temperature is lower than the indoor temperature, the ventilation is performed so that the ventilation in the first zone Z 1 is performed with the maximum air volume. The controller 54 is instructed. Further, the determination unit 52 determines the first zone when the stopped first indoor unit 11 does not perform the cooling operation before the stop (for example, when the heating operation is performed), or when the outdoor temperature is equal to or higher than the indoor temperature. It instructs the ventilation control section 54 to stop the ventilation in the Z 1. Determining unit 52 for the second zone Z 2, it performs the same control as the first zone Z 1.
  • the air conditioning control unit 53 controls the first indoor unit 11 and the second indoor unit 21 based on the instruction content from the determination unit 52 and the instruction content stored in the storage unit 51 as in the second embodiment.
  • the ventilation control unit 54 controls the first supply air volume adjustment unit 120, the first exhaust air volume adjustment unit 130, the second supply air volume adjustment unit 220, and the second exhaust air volume adjustment unit 230 based on the instruction content from the determination unit 52. Control. Specifically, when the determination unit 52 instructs the ventilation control unit 54 to perform ventilation in the first zone Z 1 with the maximum air volume, the ventilation air volume of the first air inlet 12 and the first air outlet 13. The opening degree of the first supply air flow rate adjustment unit 120 and the first exhaust air flow rate adjustment unit 130 is controlled so that the exhaust air flow rate becomes maximum.
  • the ventilation control section 54, the determination unit 52, when instructed to perform ventilation of the first zone Z 1 in the wind amount corresponding to the detected occupancy, supply air volume of the first air supply port 12 and the The opening degree of the first supply air volume adjusting unit 120 and the first exhaust air volume adjusting unit 130 is controlled so that the exhaust air volume at one exhaust port 13 is proportional to the number of people.
  • the first air supply volume adjustment unit 120 and the first air supply air volume adjustment unit 120 and the first air supply air volume adjustment unit 120 and the first air supply air volume adjustment unit 120 and the first air supply air volume adjustment unit 120 and the first air supply air volume adjustment unit 120 are configured so The opening degree of the exhaust air volume adjusting unit 130 is controlled.
  • the ventilation control unit 54 causes the first supply air volume adjustment unit 120 and the first exhaust air volume adjustment unit 130 so that the supply air volume at the first supply port 12 and the exhaust air volume at the first exhaust port 13 are the same.
  • the ventilation control part 54 controls the opening degree of the 1st supply air volume adjustment part 120 and the 1st exhaust air volume adjustment part 130 so that an intake air volume and an exhaust air volume may increase / decrease in steps according to the number of people. May be.
  • the same control as the first supply air volume adjustment unit 120 and the first exhaust air volume adjustment unit 130 is performed on the second supply air volume adjustment unit 220 and the second exhaust air volume adjustment unit 230.
  • FIG. 17 is an operation flow of the air conditioning system 100 according to the fourth embodiment. This operation flow is executed by the control device 50 for each zone. First, it is determined whether or not a person is detected in the zone (S1). And when a person is detected (S1: YES), the air-conditioning driving
  • the air-conditioning operation is a cooling operation (S31). If it is a cooling operation (S31: YES), it is determined whether or not the outdoor temperature is lower than the indoor temperature (S32). Here, when the outdoor temperature is lower than the indoor temperature (S32: YES), the ventilation operation with the maximum air volume is performed (S33). When the cooling operation is not performed (S31: NO), or when the outdoor temperature is equal to or higher than the room temperature (S32: NO), the ventilation operation is performed with the air volume adjusted according to the number of people in the zone (S34). .
  • the indoor unit is stopped (S21). After the stop of the indoor unit, it is determined whether or not the operation mode of the indoor unit before the stop is a cooling operation (S22). If it is a cooling operation (S22: YES), it is determined whether or not the outdoor temperature is lower than the indoor temperature (S23). When the outdoor temperature is lower than the indoor temperature (S23: YES), the ventilation operation with the maximum air volume is performed (S35).
  • air convection between zones can be suppressed and the power consumption reduction effect can be improved, and an outside air cooling effect can be obtained in a zone where no person is detected. be able to. Even in a zone where a person is detected, during the cooling operation, an outside air cooling effect can be obtained, the air conditioning load is reduced, and the power consumption is reduced. Furthermore, the ventilation load is reduced and the power consumption can be further reduced by setting the ventilation air volume in the zone in which the person is detected to the minimum necessary air volume according to the number of persons other than during the cooling operation.
  • FIG. 18 is a diagram illustrating a planar arrangement of each component of the air-conditioning system 100C according to the first modification. As shown in FIG. 18, the first air inlet 12, the first air outlet 13, the second air inlet 22, and the second air outlet 23 may be arranged at the corners of each zone.
  • the position of the first air inlet 12 and the position of the second air inlet 22 are symmetric with respect to the zone boundary B 12 , and the position of the first air outlet 13 and the second air outlet 23. and the position is symmetrical with respect to the zone boundary B 12.
  • the distance between the first air inlet 12 and the first air outlet 13 is shorter than the distance between the first air inlet 12 and the second air outlet 23, and the second air inlet 22. Since the distance between the second exhaust port 23 and the second exhaust port 23 is shorter than the distance between the second air supply port 22 and the first exhaust port 13, a closed air flow in the zone can be realized.
  • the first supply port 12 and second supply port 22 is disposed in the vicinity of the zone boundary B 12 6 and 18, the first exhaust port 13 and the second exhaust port in the vicinity of the zone boundary B 12 23 may be arranged.
  • the first exhaust port 13, the first air supply port 12, the second air supply port 22, and the second exhaust port 23 are arranged in this order in one direction.
  • the air vent 12, the first exhaust port 13, the second exhaust port 23, and the second air supply port 22 may be arranged in this order. That is, in the vicinity of the zone boundary B 12, by arranging either the air supply port or the exhaust port, it is possible to realize a closed airflow within the zone.
  • the first supply port 12, first exhaust port 13 may be a second supply port 22 and the second exhaust port 23 is disposed at a position away from the zone boundary B 12.
  • FIG. 19 is a diagram illustrating a planar arrangement of each component of the air-conditioning system 100D in the second modification. As shown in FIG. 19, the first air supply port 12 and the first exhaust port 13 in the present modification are disposed at the end of the first zone Z 1 opposite to the zone boundary B 12 . Further, the second air supply port 22 and the second exhaust port 23 are arranged at the end of the second zone Z 2 opposite to the zone boundary B 12 .
  • the position of the first air inlet 12 and the position of the second air inlet 22 are symmetric with respect to the zone boundary B 12 , and the position of the first air outlet 13 and the position of the second air outlet 23. and is symmetrical with respect to the zone boundary B 12.
  • the distance between the first air inlet 12 and the first air outlet 13 is shorter than the distance between the first air inlet 12 and the second air outlet 23, and the second air inlet 22.
  • the second exhaust port 23 are shorter than the distance between the second air supply port 22 and the first exhaust port 13.
  • FIG. 20 is a diagram illustrating a planar arrangement of each component of the air-conditioning system 100E in the third modification. As shown in FIG. 20, in this modification, the air conditioning target space R is divided into three zones, and air conditioning and ventilation are performed for each zone. Air conditioning system 100E of this modification is disposed in the third zone Z 3 adjacent to the second zone Z 2, the third indoor unit 31 to the air conditioner of the third zone Z 3, are disposed in the third zone Z 3 further comprising a third air supply port 32 and the third exhaust port 33 is used to ventilate the third zone Z 3, and.
  • the third indoor unit 31 is located in the center of the third zone Z 3.
  • the second exhaust port 23 and the third exhaust port 33 are disposed adjacent to each other.
  • the third air supply port 32 is disposed on the opposite side of the third exhaust port 33 with the third indoor unit 31 in between.
  • the “symmetry” mentioned here includes not only completely symmetrical but also substantially symmetric.
  • the distance between the second air inlet 22 and the second exhaust port 23 is shorter than the distance between the second air inlet 22 and the third exhaust port 33, and the third air inlet 32 and the third exhaust port 33 The distance is arranged to be shorter than the distance between the third air supply port 32 and the second exhaust port 23.
  • the first zone Z 1 and can suppress the convection of air is generated between the second zone Z 2, it is possible to improve the effect of reducing power consumption.
  • FIG. 21 is a schematic diagram illustrating the air flow in the air-conditioning system 100E of Modification 3. Air flow in the first zone Z 1 and the second zone Z 2, the same as the first embodiment shown in FIG. Further, as shown in FIG. 21, the air blown from the third air supply port 32 is sucked into the third exhaust port 33. In this way, even when the number of zones increases, by arranging both the air supply and exhaust ports in each zone, air convection between the zones is suppressed, and the air flow is closed for each zone. Can do. In addition, by making the distance between the air inlet and exhaust port in each zone shorter than the distance between the adjacent zone exhaust port or air inlet, air is supplied and exhausted in the zone, and the air flow is reduced. It can be closed and the effect of reducing power consumption can be improved.
  • the said embodiment although it was set as the structure which arrange
  • the air conditioning control unit 53 if the second zone Z 2 no one, as conditioned air does not flow into the second zone Z 2, and control the wind direction plate 115 of the first indoor unit 11 Good.
  • a first air direction adjusting unit is provided in at least one of the first air inlet 12 and the first exhaust port 13, and the second air direction is adjusted in at least one of the second air inlet 22 and the second exhaust port 23.
  • a part may be provided.
  • the first wind direction adjusting unit and the second wind direction adjusting unit are, for example, wind direction plates.
  • the first airflow direction adjusting unit, at least one of the exhaust wind of air supply wind direction and the first outlet 13 of the first air supply port 12 is adjusted so as not suited to the second zone Z 2.
  • the second airflow direction adjusting unit, at least one of the exhaust direction of the air supply wind direction and the second exhaust port 23 of the second air supply port 22 is adjusted so as not suited to the first zone Z 1.
  • the first wind direction adjusting unit and the second wind direction adjusting unit may be manually adjusted and fixed at the time of arrangement, or may be controlled by the control device 50 according to the presence or absence of a person in an adjacent zone.
  • FIG. 22 is an operation flow of the air conditioning system 100 according to the fourth modification. This operation flow is executed by the control device 50 for each zone. First, it is determined whether or not a person is detected in the zone (S1). If a person is detected (S1: YES), it is determined whether a person is detected in an adjacent zone (S41). If no person is detected in the adjacent zone (S41: NO), the indoor unit and the wind direction of the ventilation are controlled (S42).
  • the control device 50 determines that the blowing air direction of the first indoor unit 11 is the second zone. controlling the wind direction plate 115 so as not suitable for Z 2.
  • the control device 50 supplies the air supply direction and the first exhaust port of the first supply port 12.
  • exhaust wind direction 13 controls the first airflow direction adjusting unit so as not suitable for the second zone Z 2. It is controlled in the same manner for the second zone Z 2.
  • an air conditioning operation and a ventilation operation are performed based on the instruction content stored in the storage unit 51 (S11).
  • the air conditioning operation and the ventilation operation are performed with the adjusted wind direction, and when a person is detected in the adjacent zone, the airflow is in a predetermined wind direction (for example, downward). Air-conditioning operation and ventilation operation are performed.
  • the inflow of the air to the zone where a person is not detected can further be suppressed.
  • the first zone Z 1 and can suppress the convection of air is generated between the second zone Z 2, it is possible to improve the effect of reducing power consumption.
  • it may be provided separately to suppress air curtain air convection between zones to the zone boundary B 12. Thereby, the convection of the air between zones can further be suppressed.
  • the 1st supply port 12 and the 1st exhaust gas are not limited to this. It is good also as a structure which provides a 1st air volume adjustment part in at least any one of the opening
  • the supply fan 203 and the exhaust fan 204 may be the first supply air volume adjustment unit 120 and the first exhaust air volume adjustment unit 130, and the second supply air volume adjustment unit 220 and the second exhaust air volume adjustment unit 230. In this case, by controlling the rotation speeds of the supply fan 203 and the exhaust fan 204, the supply air amount and the exhaust air amount from each supply port and each exhaust port are controlled.
  • the indoor unit when no person is detected in the zone, the indoor unit is set to the air blowing operation (S3 in FIG. 5), but the air blowing may be stopped.
  • the indoor unit in the zone when no person is detected in the zone, the indoor unit in the zone is stopped (S12 in FIG. 11, S21 in FIG. 15, and FIG. 17), but the indoor unit is not stopped. It is good also as a ventilation driving
  • the ventilation when no person is detected in the zone, the ventilation is stopped and the ventilation air volume is set to 0 (S12 in FIG. 11, FIG. 15, and S25 in FIG. 17). The ventilation air volume may be decreased so as to approach 0. Even in these cases, the air flow is closed in each zone, and the power consumption can be reduced.
  • movement flow (FIG.5, FIG.11, FIG.15, FIG.17) of the air conditioning system 100 in the said embodiment was set as the structure performed for every zone, it is at least 1 zone among several zones. May be executed.
  • the 1st indoor unit 11 and the 2nd indoor unit 21 are not essential, and may be provided with another air-conditioning apparatus, and the 1st air inlet 12, the 1st exhaust port 13, and the 2nd A ventilation system including an air supply port 22 and a second exhaust port 23 may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)
  • Ventilation (AREA)

Abstract

第1ゾーンに配置され、該第1ゾーンの換気に用いられる第1給気口および第1排気口と、第1ゾーンに隣接する第2ゾーンに配置され、該第2ゾーンの換気に用いられる第2給気口および第2排気口と、を備え、第1給気口と、第1排気口と、第2給気口と、第2排気口とは、同一平面上に配置され、第1給気口、第1排気口、第2給気口および第2排気口は、一方向において、第1排気口、第1給気口、第2給気口、第2排気口の順に配置される、または一方向において、第1給気口、第1排気口、第2排気口、第2給気口の順に配置されるものとする。

Description

換気システム、空気調和システムおよび空気調和システムの設置方法
 本発明は、換気システム、空気調和システムおよび空気調和システムの設置方法に関するものであり、詳しくは、ゾーン毎に換気および空調を行う換気システム、空気調和システムおよびその設置方法に関するものである。
 従来、事務所などの複数人が存在する空間を空調する手法として、空間を複数のゾーンに分割し、ゾーン毎に空調を行って消費電力を削減することが知られている。例えば、特許文献1では、空調対象ゾーンの人の存在、および空調対象ゾーンの近傍ゾーンの人の存在を検知し、空調対象ゾーンに人の存在を検知した場合と、近傍ゾーンに人の存在を検知した場合とで、異なる空調運転を実施することが提案されている。
 また、室内において人が存在する作業域とそれ以外の領域とを、それぞれタスク域およびアンビエント域として分割し、タスク域を効率的に空調するタスク・アンビエント空調も知られている。例えば、特許文献2では、ゾーン毎に放射冷房パネルと外気導入および補助冷房を行う吹出口とが設けられたアンビエント空調域と、執務者毎に小型空調装置が設けられたタスク空調域とからなる空気調和システムが提案されている。特許文献2のアンビエント空調域では、ゾーン毎に執務者の在または不在に応じて、放射パネルに流れる冷熱媒流れ状態および吹出口の風量が制御される。
特開2015-114085号公報 特開2013-195047号公報
 ここで、特許文献1および特許文献2に記載されるように、ゾーン毎に空調または外気導入を制御した場合も、ゾーン間で空気が対流することで、消費電力の削減効果が減少してしまう。例えば、冷房時に、人が存在するゾーンの温度を26℃にするために空調し、人が不在のゾーンの空調を停止した場合、人が存在するゾーンと不在のゾーンとの空気の対流により、人が存在するゾーンにおける26℃の空気が不在のゾーンに流入してしまう。これにより、不在のゾーンも空調されることになり、空調負荷が削減されず、消費電力を効果的に削減できなくなってしまう。
 本発明は、上記のような課題を解決するものであり、ゾーン間での空気の対流を抑制し、消費電力の削減効果を向上させることができる換気システム、空気調和システムおよび空気調和システムの設置方法を提供することを目的とする。
 本発明に係る換気システムは、第1ゾーンに配置され、該第1ゾーンの換気に用いられる第1給気口および第1排気口と、第1ゾーンに隣接する第2ゾーンに配置され、該第2ゾーンの換気に用いられる第2給気口および第2排気口と、を備え、第1給気口と、第1排気口と、第2給気口と、第2排気口とは、同一平面上に配置され、第1給気口、第1排気口、第2給気口および第2排気口は、一方向において、第1排気口、第1給気口、第2給気口、第2排気口の順に配置される、または一方向において、第1給気口、第1排気口、第2排気口、第2給気口の順に配置されるものとする。
 本発明に係る空気調和システムは、上記換気システムと、第1ゾーンに配置され、第1ゾーンを空調する第1室内機と、第2ゾーンに配置され、第2ゾーンを空調する第2室内機と、を備える。
 本発明に係る空気調和システムの設置方法は、第1室内機を第1ゾーンに配置し、第2室内機を前記第1ゾーンに隣接する第2ゾーンに配置し、第1給気口および第1排気口を第1ゾーンに配置し、第2給気口および第2排気口を第2ゾーンに配置し、第1給気口と、第1排気口と、第2給気口と、第2排気口とを同一平面上に配置し、第1給気口、第1排気口、第2給気口および第2排気口を、一方向において、第1排気口、第1給気口、第2給気口、第2排気口の順に配置する、または一方向において、第1給気口、第1排気口、第2排気口、第2給気口の順に配置するものである。
 本発明によれば一方向において、第1排気口、第1給気口、第2給気口、第2排気口の順に配置する、または一方向において、第1給気口、第1排気口、第2排気口、第2給気口の順に配置することで、ゾーン間での空気の対流を抑制することができる。これにより、無駄な空調を抑制し、ゾーン毎に効率的に空調を行うことができるため、空気調和システムにおける消費電力の削減効果を向上させることができる。
実施の形態1における空気調和システムの概略構成図である。 実施の形態1における第1室内機の概略構成図である。 実施の形態1における空気調和システムの換気構造を示す図である。 実施の形態1における制御装置の機能ブロック図である。 実施の形態1における空気調和システムの動作フローである。 実施の形態1における空気調和システムの各構成要素の平面的な配置を示す図である。 実施の形態1の空気調和システムにおける空気の流れを示す模式図である。 実施の形態1の空気調和システムにおける換気気流を示す模式図である。 実施の形態2における空気調和システムの換気構造を示す図である。 実施の形態2における制御装置の機能ブロック図である。 実施の形態2における空気調和システムの動作フローである。 実施の形態2の空気調和システムにおける空気の流れを示す模式図である。 実施の形態3における空気調和システムの概略構成図である。 実施の形態3における制御装置の機能ブロック図である。 実施の形態3における空気調和システムの動作フローである。 実施の形態3の空気調和システムにおける空気の流れを示す模式図である。 実施の形態4における空気調和システムの動作フローである。 変形例1における空気調和システムの各構成要素の平面的な配置を示す図である。 変形例2における空気調和システムの各構成要素の平面的な配置を示す図である。 変形例3における空気調和システムの各構成要素の平面的な配置を示す図である。 変形例3の空気調和システムにおける空気の流れを示す模式図である。 変形例4における空気調和システムの動作フローである。
 以下、図面に基づいて本発明の実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
 実施の形態1.
 図1は、実施の形態1における空気調和システム100の概略構成図である。図1は、空気調和システム100により空調される空調対象空間Rを側方から見た模式図である。本実施の形態の空気調和システム100は、オフィスビルの居室などの空調対象空間Rを第1ゾーンZと、第1ゾーンZと隣接する第2ゾーンZとに分割して空調するものである。第1ゾーンZは、第1室内機11によって空調される空間であり、第2ゾーンZは、第2室内機21によって空調される空間である。第1ゾーンZと第2ゾーンZの境界を、ゾーン境界B12とする。
 図1に示すように、空気調和システム100は、第1ゾーンZに配置され、第1ゾーンZを空調する第1室内機11と、第1ゾーンZに配置され、第1ゾーンZの換気に用いられる第1給気口12および第1排気口13と、第1検出部14と、を備える。また、空気調和システム100は、第2ゾーンZに配置され、第2ゾーンZを空調する第2室内機21と、第2ゾーンZに配置され、第2ゾーンZの換気に用いられる第2給気口22および第2排気口23と、第2検出部24と、を備える。本実施の形態では、第1給気口12と第1排気口13、および第2給気口22と第2排気口23は、例えば天井面などの同一面上に配置される。
 さらに、空気調和システム100は、空調対象空間Rの外に配置され、第1給気口12、第1排気口13、第2給気口22および第2排気口23と連通する換気装置200を備える。また、空気調和システム100は、ビルの管理室などに設けられる制御装置50を備える。制御装置50は、使用者による入力を受け付ける操作部150を介して、空気調和システム100に対する運転指示を受信し、操作部150を介して指示された運転情報に基づいて空気調和システム100を統括制御する。
 図2は、実施の形態1における第1室内機11の概略構成図である。なお、第2室内機21は、第1室内機11と同じ構成を有しており、ここでは、代表として第1室内機11について説明する。図2に示すように、第1室内機11は、筐体110と、筐体110内に配置される熱交換器111と、ファン112と、を備える。また、筐体110の下方には、熱交換器111を通過した空調空気を吹き出す空調吹出口113と、室内空気を吸い込む空調吸込口114とが設けられる。また、空調吹出口113には、空調空気の吹出し方向を調節する風向板115が設けられる。第1室内機11は、ファン112によって空調吸込口114から室内空気を吸い込み、熱交換器111で冷却または加熱し、空調吹出口113から室内に吹出すことで、第1ゾーンZの冷房または暖房を行う。
 図3は、実施の形態1における空気調和システム100の換気構造を示す図である。図3に示すように、第1給気口12および第2給気口22は、給気風路201を介して、換気装置200に接続される。第1排気口13および第2排気口23は、排気風路202を介して換気装置200に接続される。換気装置200では、給気風路201と排気風路202とが互いに独立して形成され、給気風路201には給気ファン203が設けられ、排気風路202には、排気ファン204が設けられる。なお、図示していないが、換気装置200は、排気風路202を流れる室内空気と給気風路201を流れる室外空気との熱交換を行う全熱熱交換器または顕熱熱交換器を設けてもよい。また、第1給気口12および第1排気口13と、第2給気口22および第2排気口23とが、別々の換気装置200に接続される構成としてもよい。
 給気ファン203により吸い込まれた外気(OA)は、給気風路201を通って、第1給気口12から第1ゾーンZへ給気(SA)され、第2給気口22から第2ゾーンZへ給気(SA)される。また、排気ファン204により第1排気口13および第2排気口23から吸い込まれた室内空気(RA)は、排気風路202を通って室外に排気(EA)される。
 第1検出部14は、第1ゾーンZ内の人を検出する人検出センサと、第1ゾーンZの室内温度を検出する室内温度センサとを含む。第2検出部24は、第2ゾーンZ内の人を検出する人検出センサと、第2ゾーンZの室内温度を検出する室内温度センサとを含む。第1検出部14および第2検出部24による検出結果は、制御装置50へ出力される。人検出センサは、例えば赤外線センサまたはカメラなどであり、各ゾーンにおける温度分布または画像に基づいて、各ゾーンにおける人の有無を検出する。室内温度センサは、例えば赤外線センサである。
 なお、第1検出部14および第2検出部24は、第1室内機11および第2室内機21に内蔵されてもよい。また、人検出センサと室内温度センサとを1つの赤外線センサで構成してもよいし、別々のセンサとしてもよい。また、第1ゾーンZと第2ゾーンZとで別々に検出部を設けず、1つの検出部によって、第1ゾーンZおよび第2ゾーンZの人および温度を検出してもよい。
 操作部150は、空気調和システム100における運転モード、温度設定、湿度設定、風量設定、および風向設定などの運転情報の指示を受け付ける。空気調和システム100の運転モードは、冷房運転、暖房運転、送風運転、および換気運転などを含む。操作部150は、空気調和システム100に付属されるリモコンである。その他に、スマートフォン、携帯電話、PDA(Personal Digital Assistant)、パソコン、またはタブレットを操作部150としてもよい。
 図4は、実施の形態1における制御装置50の機能ブロック図である。図4に示すように、制御装置50は、機能部として、記憶部51と、判定部52と、空調制御部53と、換気制御部54とを有する。制御装置50は、専用のハードウェア、またはメモリ(図示せず)に格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)で構成される。制御装置50が専用のハードウェアである場合、制御装置50は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものが該当する。制御装置50が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。
 制御装置50がCPUの場合、制御装置50が実行する各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、メモリに格納される。CPUは、メモリに格納されたプログラムを読み出して実行することにより、制御装置50の各機能を実現する。ここで、メモリは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリである。なお、制御装置50の機能の一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。
 記憶部51は、操作部150を介して使用者から入力される指示内容を記憶する。具体的には、記憶部51は、空気調和システム100の運転モード、温度設定、湿度設定、風量設定、および風向設定などを記憶する。なお、記憶部51は、制御装置50に含まれるものに限定されず、制御装置50とは別に設けられるメモリで構成されてもよい。
 判定部52は、第1検出部14および第2検出部24の検出結果に基づき、人が検出されたゾーンの空調運転を行い、人が検出されないゾーンの空調運転を停止して、送風運転とするよう、空調制御部53へ指示する。具体的には、第1検出部14により第1ゾーンZに人が検出された場合は、第1室内機11を空調運転とし、人が検出されなかった場合は、第1室内機11を送風運転とするよう空調制御部53へ指示する。同様に、第2検出部24により第2ゾーンZに人が検出された場合は、第2室内機21を空調運転とし、人が検出されなかった場合は、第2室内機21を送風運転とするよう空調制御部53へ指示する。なお、空調運転とは、冷房運転または暖房運転である。
 空調制御部53は、判定部52からの指示内容および記憶部51に記憶される指示内容に基づき、第1室内機11および第2室内機21を制御する。具体的には、空調制御部53は、判定部52より、第1室内機11を空調運転とするよう指示された場合は、第1検出部14により検出される室内温度が、記憶部51に記憶される設定温度となるように、第1室内機11を制御する。ここでは、第1室内機11のファン112の風量、ならびに第1室内機11に接続される室外機(図示せず)の圧縮機の運転周波数および膨張弁の開度などが制御される。
 また、空調制御部53は、判定部52より、第1室内機11を送風運転とするよう指示された場合は、第1室内機11の熱交換器111への冷媒の流入を停止させ、ファン112の駆動を継続させる。空調制御部53は、判定部52より、第2室内機21の空調運転および送風運転が指示された場合も、第1室内機11の制御と同様の制御を行う。
 換気制御部54は、記憶部51に記憶される指示内容に基づき、換気装置200を制御する。具体的には、換気装置200の給気ファン203および排気ファン204の風量などが制御される。
 図5は、実施の形態1における空気調和システム100の動作フローである。本動作フローは、制御装置50により各ゾーンに対して実行される。まず、ゾーン内に人が検出されたか否かが判断される(S1)。そして、人が検出された場合は(S1:YES)、記憶部51に記憶される指示内容に基づいた空調運転が行われる(S2)。ここでは、すでに空調運転が行われている場合は運転が継続され、停止されている場合は、運転が再開される。一方、人が検出されなかった場合は(S1:NO)、送風運転が行われる(S3)。
 そして、空気調和システム100の運転を終了するか否かが判断される(S4)。ここで、運転を終了する場合は(S4:YES)、空気調和システム100の動作が停止され、本処理を終了する。一方、運転を終了しない場合は(S4:NO)、ステップS1に戻って以降の処理が繰り返される。
 上記のように、本実施の形態では、ゾーン内に人がいる場合にのみ空調運転を行い、人がいない場合には送風運転を行うことで、快適性を損なうことなく、消費電力を削減することができる。ここで、ゾーン毎に空調制御を行う場合であっても、ゾーン間での空気の対流が発生すると、消費電力の削減効果が減少してしまう。そこで、本実施の形態の空気調和システム100は、ゾーン間での空気の対流を抑制する構成を備え、消費電力削減の効果を向上させている。
 本実施の形態の空気調和システム100における、ゾーン間での空気の対流を抑制する構成について説明する。図6は、実施の形態1における空気調和システム100の各構成要素の平面的な配置を示す図である。図6に示すように、第1室内機11は、第1ゾーンZの中央に配置され、第2室内機21は、第2ゾーンZの中央に配置される。第1給気口12および第2給気口22は、ゾーン境界B12の近傍にそれぞれ配置される。また、第1給気口12と第2給気口22とは、互いに隣接して配置される。第1排気口13は、第1室内機11を挟んで、第1給気口12の反対側に配置され、第2排気口23は、第2室内機21を挟んで、第2給気口22の反対側に配置される。
 また、図6に示すように、本実施の形態では、第1ゾーンZにおける第1給気口12の位置と、第2ゾーンZにおける第2給気口22の位置とは、第1ゾーンZと第2ゾーンZとの境界であるゾーン境界B12に対して対称となっている。また、第1ゾーンZにおける第1排気口13の位置と、第2ゾーンZにおける第2排気口23の位置とは、ゾーン境界B12に対して対称となっている。なお、ここで言う「対称」とは完全に対称なものだけでなく、略対称である場合も含む。さらに、本実施の形態では、第1給気口12、第1排気口13、第2給気口22および第2排気口23が、一方向において、第1排気口13、第1給気口12、第2給気口22、第2排気口23の順に配置される。また、第1給気口12と第1排気口13との距離が第1給気口12と第2排気口23との距離より短く、第2給気口22と第2排気口23との距離が第2給気口22と第1排気口13との距離より短くなるように配置される。
 図7は、実施の形態1の空気調和システム100における空気の流れを示す模式図である。図7に示すように、第1給気口12から吹き出される空気は、第1排気口13へ吸い込まれ、第2給気口22から吹き出される空気は、第2排気口23へ吸い込まれる。このように、各ゾーンに給気口および排気口の両方を配置することで、第1ゾーンZに給気口のみを配置し第2ゾーンZに排気口のみを配置する場合などと比べて、ゾーン間での空気の対流が抑制され、ゾーン毎に空気の流れを閉じることができる。
 また、各ゾーンに給気口および排気口の両方を配置した場合でも、例えばゾーン境界B12の近傍に第1給気口12と第2排気口23とを配置すると、第1給気口12から吹き出された空気は、近くに配置される第2排気口23に吸い込まれる。これにより、ゾーン内で空気の流れが閉じず、ゾーン間の対流が発生してしまう。これに対し、本実施の形態では、各ゾーン内の給気口と排気口との距離を、隣接するゾーンの排気口または給気口との距離より短くすることで、ゾーン内で給気および排気が行われ、空気の流れを閉じることができる。
 さらに、ゾーン境界B12付近に第1給気口12および第2給気口22を配置して給気を行うことで、エアカーテンのように他のゾーンからの空気の流入を低減することができる。その結果、本実施の形態の空気調和システム100では、第1ゾーンZと第2ゾーンZとの間で空気の対流が発生することを抑制でき、消費電力の削減効果を向上させることができる。
 図8は、実施の形態1の空気調和システム100における換気気流を示す模式図である。第1給気口12と第1排気口13、および第2給気口22と第2排気口23を、水平な同一面上に配置することで、ゾーン内に、図8の太い矢印で示す水平方向の気流が発生する。これにより、ゾーン全体を効率良く換気することができる。なお、第1給気口12、第1排気口13、第2給気口22および第2排気口23を天井面と同一平面に配置してもよい。これにより空間への突出が抑制され、スペースを有効活用できるとともに、意匠性も向上する。
 実施の形態2.
 実施の形態2における空気調和システム100Aについて説明する。実施の形態2では、各ゾーンにおける人の有無に応じて、第1給気口12、第1排気口13、第2給気口22および第2排気口23の給気風量または排気風量を調節する点において、実施の形態1と相違する。
 図9は、実施の形態2における空気調和システム100Aの換気構造を示す図である。図9に示すように、給気風路201において、第1給気口12の上流には第1給気風量調節部120が設けられ、第2給気口22の上流には、第2給気風量調節部220が設けられる。また、排気風路202において、第1排気口13の下流には第1排気風量調節部130が設けられ、第2排気口23の下流には、第2排気風量調節部230が設けられる。
 第1給気口12から第1ゾーンZへ給気される風量は、第1給気風量調節部120によって調節され、第2給気口22から第2ゾーンZへ給気される風量は、第2給気風量調節部220によって調節される。また、第1排気口13から排気される風量は、第1排気風量調節部130によって調節され、第2排気口23から排気される風量は、第2排気風量調節部230によって調節される。第1給気風量調節部120、第2給気風量調節部220、第1排気風量調節部130および第2排気風量調節部230は、例えばモータなどによって駆動されるダンパーであるり、制御装置50によってダンパーの羽根の開度が制御されることにより、給気風量および排気風量を調節する。
 図10は、実施の形態2における制御装置50の機能ブロック図である。本実施の形態の判定部52は、第1検出部14および第2検出部24の検出結果に基づき、人が検出されたゾーンの空調を行い、人が検出されないゾーンの空調および送風を停止するよう、空調制御部53へ指示する。具体的には、第1検出部14により第1ゾーンZに人が検出された場合は、第1室内機11を空調運転とし、人が検出されなかった場合は、第1室内機11を停止するよう空調制御部53へ指示する。同様に、第2検出部24により第2ゾーンZに人が検出された場合は、第2室内機21を空調運転とし、人が検出されなかった場合は、第2室内機21を停止するよう空調制御部53へ指示する。
 また、判定部52は、第1検出部14および第2検出部24の検出結果に基づき、人が検出されたゾーンの換気を行い、人が検出されないゾーンの換気を停止するよう、換気制御部54へ指示する。具体的には、第1検出部14により第1ゾーンZに人が検出された場合は、第1ゾーンZにおける換気を行い、人が検出されなかった場合は、第1ゾーンZにおける換気を停止するよう換気制御部54へ指示する。同様に、第2ゾーンZに人が検出された場合は、第2ゾーンZにおける換気を行い、人が検出されなかった場合は、第2ゾーンZにおける換気を停止するよう換気制御部54へ指示する。
 空調制御部53は、判定部52からの指示内容および記憶部51に記憶される指示内容に基づき、第1室内機11および第2室内機21を制御する。具体的には、空調制御部53は、判定部52より、第1室内機11を空調運転とするよう指示された場合は、実施の形態1と同様に、第1室内機11を制御する。また、空調制御部53は、判定部52より、第1室内機11を停止するよう指示された場合は、第1室内機11の熱交換器111への冷媒の流入を停止し、ファン112を停止する。空調制御部53は、判定部52より、第2室内機21の空調運転および第2室内機21の停止が指示された場合も、第1室内機11の制御と同様の制御を行う。
 換気制御部54は、記憶部51に記憶される指示内容に基づき、換気装置200を制御する。また、換気制御部54は、判定部52からの指示内容に基づき、第1給気風量調節部120、第1排気風量調節部130、第2給気風量調節部220および第2排気風量調節部230を制御する。具体的には、換気制御部54は、判定部52より、第1ゾーンZにおける換気を行うよう指示された場合は、第1給気口12の給気風量および第1排気口13の排気風量が所定の風量となるよう第1給気風量調節部120および第1排気風量調節部130の開度を制御する。このとき、換気制御部54は、第1給気口12の給気風量と第1排気口13の排気風量とが同じ風量となるよう第1給気風量調節部120および第1排気風量調節部130を制御する。
 また、換気制御部54は、判定部52より、第1ゾーンZの換気を停止するよう指示された場合は、第1給気口12の給気風量および第1排気口13の排気風量が0となるよう、第1給気風量調節部120および第1排気風量調節部130の開度を制御する。また、換気制御部54は、判定部52より、第2ゾーンZの換気および停止が指示された場合は、第1給気風量調節部120および第1排気風量調節部130の制御と同様に、第2給気風量調節部220および第2排気風量調節部230の制御を行う。
 図11は、実施の形態2における空気調和システム100Aの動作フローである。本動作フローは、制御装置50により各ゾーンに対して実行される。まず、ゾーン内に人が検出されたか否かが判断される(S1)。そして、人が検出された場合は(S1:YES)、記憶部51に記憶される指示内容に基づいた空調運転および換気運転が行われる(S11)。ここでは、すでに空調運転および換気運転が行われている場合は運転が継続され、停止されている場合は、運転が再開される。
 一方、人が検出されなかった場合は(S1:NO)、室内機および換気運転が停止される(S12)。そして、空気調和システム100Aの運転を終了するか否かが判断され(S4)、運転を終了する場合は(S4:YES)、空気調和システム100Aの動作が停止され、本処理を終了する。一方、運転を終了しない場合は(S4:NO)、ステップS1に戻って以降の処理が繰り返される。
 図12は、実施の形態2の空気調和システム100Aにおける空気の流れを示す模式図である。図12では、第2ゾーンZに人が検出されなかった場合の空気の流れを示している。本実施の形態においても、ゾーン内に人がいる場合にのみ空調運転を行い、人がいな場合には空調および送風を停止することで、快適性を損なうことなく、消費電力を削減することができる。また、実施の形態1と同様に、各ゾーン内での空気の流れを閉じることができ、消費電力の削減効果を向上させることができる。
 さらに、換気を行う際に、各ゾーン内における給気風量と排気風量を同じ風量とすることで、ゾーン間の空気の対流を抑制することができる。また、人が検出されなかった第2ゾーンZの換気を停止することにより、冷房運転時には、高温の外気が第2ゾーンZに流入することを防ぐことができ、第2ゾーンZの室温の上昇を抑制できる。また、暖房運転時には、低温の低外気が第2ゾーンZに流入することを防ぐことができ、第2ゾーンZの室温の低下を抑制できる。このように、人が不在のゾーンの室温上昇または室温低下を抑制することで、人が不在のゾーンから空気が流入してしまった場合にも空調負荷の増加を抑制することができる。その結果、消費電力の削減効果をさらに向上させることができる。
 実施の形態3.
 実施の形態3の空気調和システム100Bについて説明する。実施の形態3では、室外温度に応じて換気の運転または停止を行う点において、実施の形態2と相違する。
 図13は、実施の形態3における空気調和システム100Bの概略構成図である。本実施の形態の空気調和システム100Bは、空調対象空間Rの外の室外温度を検出する室外温度センサ60をさらに備える。室外温度センサ60は、第1室内機11または第2室内機21に接続される室外機に内蔵されてもよく、もしくは換気装置200の給気風路201に配置されてもよい。室外温度センサ60により検出された室外温度は、制御装置50に出力される。
 図14は、実施の形態3における制御装置50の機能ブロック図である。本実施の形態の判定部52は、第1室内機11および第2室内機21が冷房運転を行う場合は、室外温度センサ60により検出される室外温度に応じて、換気の運転または停止を行うよう換気制御部54へ指示する。具体的には、判定部52は、実施の形態2と同様に、第1ゾーンZに人が検出された場合、第1室内運転を空調運転とし、第1ゾーンZにおける換気を行うよう空調制御部53および換気制御部54へ指示する。
 また、判定部52は、第1ゾーンZに人が検出されなかった場合、第1室内機11を停止するよう空調制御部53へ指示する。また、停止した第1室内機11が停止前に冷房運転を行っていた場合であって、室外温度が室内温度よりも低い場合は、第1ゾーンZにおける換気を行うよう、換気制御部54へ指示する。さらに、判定部52は、停止した第1室内機11が停止前に冷房運転を行っていない場合(例えば暖房運転を行っていた場合)、または室外温度が室内温度以上の場合は、第1ゾーンZにおける換気を停止するよう換気制御部54へ指示する。判定部52は、第2ゾーンZについても、第1ゾーンZと同様の制御を行う。
 空調制御部53は、実施の形態2と同様に、判定部52からの指示内容および記憶部51に記憶される指示内容に基づき、第1室内機11および第2室内機21を制御する。また、換気制御部54も、実施の形態2と同様に、判定部52からの指示内容に基づき、第1給気風量調節部120、第1排気風量調節部130、第2給気風量調節部220および第2排気風量調節部230を制御する。
 図15は、実施の形態3における空気調和システム100の動作フローである。本動作フローは、制御装置50により各ゾーンに対して実行される。まず、ゾーン内に人が検出されたか否かが判断される(S1)。そして、人が検出された場合は(S1:YES)、記憶部51に記憶される指示内容に基づいた空調運転および換気運転が行われる(S11)。ここでは、すでに空調運転および換気運転が行われている場合は運転が継続され、停止されている場合は、運転が再開される。
 一方、ゾーン内に人が検出されなかった場合は(S1:NO)、室内機が停止される(S21)。室内機の停止後、停止する前の室内機の動作モードが冷房運転であったか否かが判断される(S22)。そして、冷房運転だった場合は(S22:YES)、室外温度が室内温度よりも低いか否かが判断される(S23)。室外温度が室内温度よりも低い場合は(S23:YES)、換気運転が行われる(S24)。
 一方、停止する前の室内機の運転モードが冷房運転でなかった場合(S22:NO)、または室外温度が室内温度以上の場合は(S23:NO)、換気が停止される(S25)。そして、空気調和システム100Bの運転を終了するか否かが判断され(S4)、運転を終了する場合は(S4:YES)、空気調和システム100の動作が停止され、本処理を終了する。一方、運転を終了しない場合は(S4:NO)、ステップS1に戻って以降の処理が繰り返される。
 図16は、実施の形態3の空気調和システム100Bにおける空気の流れを示す模式図である。図16では、第2ゾーンZに人が検出されず、第2室内機21が冷房運転を行っていた場合であって、室外温度が室内温度よりも低い場合の空気の流れを示している。本実施の形態においても、実施の形態2と同様に、ゾーン内の人の有無に応じて空調運転を行うことで、快適性を損なうことなく、消費電力を削減できるとともに、ゾーン間での空気の対流を抑制し、消費電力の削減効果を向上させることができる。
 また、第1室内機11および第2室内機21が冷房運転を行う場合、室外温度が室内温度よりも低いときには、換気を行った方が外気冷房効果を得られ、消費電力の削減効果が得られる。ここで、外気冷房効果とは、温度の低い外気を室内に供給することで冷房効果を得ることである。そこで、本実施の形態では、室外温度が室内温度よりも低い冷房運転時は、換気運転を行うことで、外気冷房効果を得ることができ、年間を通じて消費電力の削減効果を向上させることができる。
 実施の形態4.
 実施の形態4の空気調和システム100について説明する。実施の形態4では、各ゾーン内の人の数に応じて換気風量を制御する点において、実施の形態3と相違する。
 本実施の形態では、第1検出部14および第2検出部24によって、人の有無を検出するとともに、人の数も検出する。なお、各ゾーンのCO濃度に基づいて人の数を検出する人数検出センサを別途設けてもよい。判定部52は、検出された人数に応じて、換気風量を変更するよう換気制御部54へ指示する。換気風量は、第1給気口12の給気風量および第1排気口13の排気風量、または第2給気口22の給気風量および第2排気口23の排気風量である。
 具体的には、判定部52は、実施の形態2と同様に、第1ゾーンZに人が検出された場合、第1室内運転を空調運転とするよう空調制御部53へ指示する。また、運転中の第1室内機11が冷房運転を行っている場合であって、室外温度が室内温度よりも低い場合は、最大風量で第1ゾーンZにおける換気を行うよう、換気制御部54へ指示する。また、判定部52は、運転中の第1室内機11が冷房運転を行っていない場合(例えば暖房運転を行っていた場合)、または室外温度が室内温度以上の場合は、検出された人数に応じた風量で第1ゾーンZにおける換気を行うよう、換気制御部54へ指示する。
 また、判定部52は、第1ゾーンZに人が検出されなかった場合は、第1室内機11を停止するよう空調制御部53へ指示する。また、停止した第1室内機11が停止前に冷房運転を行っていた場合であって、室外温度が室内温度よりも低い場合は、最大風量で第1ゾーンZにおける換気を行うよう、換気制御部54へ指示する。さらに、判定部52は、停止した第1室内機11が停止前に冷房運転を行っていない場合(例えば暖房運転を行っていた場合)、または室外温度が室内温度以上の場合は、第1ゾーンZにおける換気を停止するよう換気制御部54へ指示する。判定部52は、第2ゾーンZについても、第1ゾーンZと同様の制御を行う。
 空調制御部53は、実施の形態2と同様に、判定部52からの指示内容および記憶部51に記憶される指示内容に基づき、第1室内機11および第2室内機21を制御する。
 換気制御部54は、判定部52からの指示内容に基づき、第1給気風量調節部120、第1排気風量調節部130、第2給気風量調節部220および第2排気風量調節部230を制御する。具体的には、換気制御部54は、判定部52により最大風量で第1ゾーンZにおける換気を行うよう指示された場合は、第1給気口12の給気風量および第1排気口13の排気風量が最大となるよう、第1給気風量調節部120および第1排気風量調節部130の開度を制御する。
 また、換気制御部54は、判定部52により、検出された人数に応じた風量で第1ゾーンZにおける換気を行うよう指示された場合は、第1給気口12の給気風量および第1排気口13の排気風量が人数に比例するように、第1給気風量調節部120および第1排気風量調節部130の開度を制御する。具体的には、第1給気口12の給気風量および第1排気口13の排気風量が、人数が多いほど大きくなり、少ないほど小さくなるよう、第1給気風量調節部120および第1排気風量調節部130の開度が制御される。このとき、換気制御部54は、第1給気口12の給気風量と第1排気口13の排気風量とが同じになるよう第1給気風量調節部120および第1排気風量調節部130を制御する。または、換気制御部54は、人の数に応じて、段階的に給気風量および排気風量が増減するよう、第1給気風量調節部120および第1排気風量調節部130の開度を制御してもよい。第2給気風量調節部220および第2排気風量調節部230に対しても第1給気風量調節部120および第1排気風量調節部130と同様の制御が行われる。
 図17は、実施の形態4における空気調和システム100の動作フローである。本動作フローは、制御装置50により各ゾーンに対して実行される。まず、ゾーン内に人が検出されたか否かが判断される(S1)。そして、人が検出された場合は(S1:YES)、記憶部51に記憶される指示内容に基づいた空調運転が行われる(S2)。ここでは、すでに空調運転が行われている場合は運転が継続され、停止されている場合は、運転が再開される。
 その後、空調運転が冷房運転か否かが判断される(S31)。そして、冷房運転である場合は(S31:YES)、室外温度が室内温度よりも低いか否かが判断される(S32)。ここで、室外温度が室内温度よりも低い場合は(S32:YES)、最大風量での換気運転が行われる(S33)。また、冷房運転でない場合(S31:NO)、または室外温度が室内温度以上である場合(S32:NO)は、ゾーン内の人数に応じて調節された風量での換気運転が行われる(S34)。
 一方、ゾーン内に人が検出されなかった場合は(S1:NO)、室内機が停止される(S21)。室内機の停止後、停止する前の室内機の動作モードが冷房運転であったか否かが判断される(S22)。そして、冷房運転だった場合は(S22:YES)、室外温度が室内温度よりも低いか否かが判断される(S23)。室外温度が室内温度よりも低い場合は(S23:YES)、最大風量での換気運転が行われる(S35)。
 一方、停止する前の室内機の運転モードが冷房運転でなかった場合(S22:NO)、または室外温度が室内温度以上の場合は(S23:NO)、換気が停止される(S25)。そして、空気調和システム100の運転を終了するか否かが判断され(S4)、運転を終了する場合は(S4:YES)、空気調和システム100の動作が停止され、本処理を終了する。一方、運転を終了しない場合は(S4:NO)、ステップS1に戻って以降の処理が繰り返される。
 本実施の形態においても、実施の形態3と同様に、ゾーン間での空気の対流を抑制し、消費電力の削減効果を向上できるとともに、人が検出されなかったゾーンにおいて、外気冷房効果を得ることができる。また、人が検出されたゾーンにおいても、冷房運転時には、外気冷房効果を得ることができ、空調負荷が低減されて消費電力が削減される。さらに、冷房運転時以外にも、人が検出されたゾーンにおける換気風量を人数に応じた必要最低減の風量とすることで、換気負荷が低減され、消費電力をさらに削減することができる。
 以上、本発明の実施の形態について図面を参照して説明したが、本発明の具体的な構成はこれに限られるものでなく、発明の要旨を逸脱しない範囲で変更可能である。例えば、第1給気口12、第1排気口13、第2給気口22、第2排気口23の配置は、図6の例に限定されるものではない。図18は、変形例1における空気調和システム100Cの各構成要素の平面的な配置を示す図である。図18に示すように、第1給気口12、第1排気口13、第2給気口22および第2排気口23は、各ゾーンの角部にそれぞれ配置されてもよい。この場合も、第1給気口12の位置と、第2給気口22の位置とは、ゾーン境界B12に対して対称であり、第1排気口13の位置と、第2排気口23の位置とは、ゾーン境界B12に対して対称である。また、図18に示す配置においても、第1給気口12と第1排気口13との距離が第1給気口12と第2排気口23との距離より短く、第2給気口22と第2排気口23との距離が第2給気口22と第1排気口13との距離より短くなっているため、ゾーン内での閉じた気流を実現することができる。
 また、図6および図18ではゾーン境界B12の近傍に第1給気口12および第2給気口22を配置したが、ゾーン境界B12の近傍に第1排気口13および第2排気口23を配置してもよい。詳しくは、図6では、一方向において、第1排気口13、第1給気口12、第2給気口22、第2排気口23の順に配置されるが、一方向において、第1給気口12、第1排気口13、第2排気口23、第2給気口22の順に配置されてもよい。すなわち、ゾーン境界B12の近傍に、給気口または排気口の何れかを配置することで、ゾーン内での閉じた気流を実現することができる。
 また、第1給気口12、第1排気口13、第2給気口22および第2排気口23をゾーン境界B12から離れた位置に配置してもよい。図19は、変形例2における空気調和システム100Dの各構成要素の平面的な配置を示す図である。図19に示すように、本変形例における第1給気口12および第1排気口13は、第1ゾーンZのゾーン境界B12とは反対側の端部に配置される。また、第2給気口22および第2排気口23は、第2ゾーンZのゾーン境界B12とは反対側の端部に配置される。また、第1給気口12の位置と、第2給気口22の位置とは、ゾーン境界B12に対して対称であり、第1排気口13の位置と、第2排気口23の位置とは、ゾーン境界B12に対して対称である。
 さらに、図19に示す配置においても、第1給気口12と第1排気口13との距離が第1給気口12と第2排気口23との距離より短く、第2給気口22と第2排気口23との距離が第2給気口22と第1排気口13との距離より短くなっている。これにより、第1給気口12から吹き出される空気は、第1排気口13へ吸い込まれ、第2給気口22から吹き出される空気は、第2排気口23へ吸い込まれるため、各ゾーン内で空気の流れを閉じることができる。その結果、第1ゾーンZと第2ゾーンZとの間で空気の対流が発生することを抑制でき、消費電力の削減効果を向上させることができる。
 また、空調対象空間Rを分割するゾーンの数は2つに限定されるものではなく、3つ以上のゾーンに分割してもよい。図20は、変形例3における空気調和システム100Eの各構成要素の平面的な配置を示す図である。図20に示すように、本変形例では、空調対象空間Rを3つのゾーンに分割し、ゾーン毎に空調および換気が行われる。本変形例の空気調和システム100Eは、第2ゾーンZに隣接する第3ゾーンZに配置され、第3ゾーンZを空調する第3室内機31と、第3ゾーンZに配置され、第3ゾーンZの換気に用いられる第3給気口32および第3排気口33と、をさらに備える。
 第1ゾーンZおよび第2ゾーンZにおける各構成要素の配置は、図6に示す実施の形態1と同じである。また、図20に示すように、第3室内機31は、第3ゾーンZの中央に配置される。そして、第2ゾーンZと第3ゾーンZとのゾーン境界B23の近傍には、第2排気口23と、第3排気口33とが隣接して配置される。また、第3給気口32は、第3室内機31を挟んで、第3排気口33の反対側に配置される。
 また、図20に示すように、第2ゾーンZにおける第2給気口22の位置と、第3ゾーンZにおける第3給気口32の位置とは、ゾーン境界B23に対して対称となっている。また、第2ゾーンZにおける第2排気口23の位置と、第3ゾーンZにおける第3排気口33の位置とは、ゾーン境界B23に対して対称となっている。なお、ここで言う「対称」とは完全に対称なものだけでなく、略対称である場合も含む。さらに、第2給気口22と第2排気口23との距離が第2給気口22と第3排気口33との距離より短く、第3給気口32と第3排気口33との距離が第3給気口32と第2排気口23との距離より短くなるように配置される。その結果、第1ゾーンZと第2ゾーンZとの間で空気の対流が発生することを抑制でき、消費電力の削減効果を向上させることができる。
 図21は、変形例3の空気調和システム100Eにおける空気の流れを示す模式図である。第1ゾーンZおよび第2ゾーンZにおける空気の流れは、図7に示す実施の形態1と同じである。また、図21に示すように、第3給気口32から吹き出される空気は、第3排気口33へ吸い込まれる。このように、ゾーンの数が増えた場合も、各ゾーンに給気口および排気口の両方を配置することで、ゾーン間での空気の対流が抑制され、ゾーン毎に空気の流れを閉じることができる。また、各ゾーン内の給気口と排気口との距離を、隣接するゾーン排気口または給気口との距離より短くすることで、ゾーン内で給気および排気が行われ、空気の流れを閉じることができ、消費電力の削減効果を向上させることができる。
 また、上記実施の形態では、第1室内機11、第1給気口12および第1排気口13を空調対象空間Rの天井に配置する構成としたが、これに限定されるものではなく、居室の環境などに応じて、空調対象空間Rの床または壁面に配置してもよい。第2室内機21、第2給気口22および第2排気口23についても同様である。この場合も、第1給気口12と第1排気口13との距離が第1給気口12と第2排気口23との距離より短く、第2給気口22と第2排気口23との距離が第2給気口22と第1排気口13との距離より短くなるように配置すればよい。
 さらに、空気調和システム100における、ゾーン間での空気の対流を抑制する構成として、各室内機から吹き出される空調空気の風向、もしくは各給気口の給気風向または各排気口の排気風向を調節してもよい。具体的には、空調制御部53は、第2ゾーンZに人がいない場合、空調空気が第2ゾーンZに流入しないように、第1室内機11の風向板115を制御してもよい。
 また、第1給気口12および第1排気口13の少なくとも何れか一方に第1風向調節部を設け、第2給気口22および第2排気口23の少なくとも何れか一方に第2風向調節部を設けてもよい。第1風向調節部および第2風向調節部は、例えば風向板である。そして、第1風向調節部は、第1給気口12の給気風向および第1排気口13の排気風向の少なくとも何れか一方が、第2ゾーンZに向かないよう調節する。また、第2風向調節部は、第2給気口22の給気風向および第2排気口23の排気方向の少なくとも何れか一方が、第1ゾーンZに向かないよう調節する。第1風向調節部および第2風向調節部は、配置時に手動で調節され、固定されてもよいし、制御装置50によって、隣接するゾーンの人の有無に応じて制御されてもよい。
 図22は、変形例4における空気調和システム100の動作フローである。本動作フローは、制御装置50により各ゾーンに対して実行される。まず、ゾーン内に人が検出されたか否かが判断される(S1)。そして、人が検出された場合は(S1:YES)、隣接するゾーンにおいて人が検出されたか否かが判断される(S41)。そして、隣接するゾーンにおいては人が検出されていない場合は(S41:NO)、室内機および換気の風向が制御される(S42)。
 具体的には、制御装置50は、第1ゾーンZに人が検出された場合であって、第2ゾーンZに人が検出されない場合、第1室内機11の吹出し風向が第2ゾーンZに向かないように風向板115を制御する。また、制御装置50は、第1ゾーンZに人が検出された場合であって、第2ゾーンZに人が検出されない場合、第1給気口12の給気風向および第1排気口13の排気風向が、第2ゾーンZに向かないよう第1風向調節部を制御する。第2ゾーンZについても同様に制御される。
 その後、記憶部51に記憶される指示内容に基づいた空調運転および換気運転が行われる(S11)。ここでは、隣接ゾーンに人が検出されなかった場合は、調節後の風向で空調運転および換気運転が行われ、隣接ゾーンに人が検出された場合は、所定の風向(例えば下向き)の風向で空調運転および換気運転が行われる。
 一方、人が検出されなかった場合は(S1:NO)、室内機および換気運転が停止される(S12)。そして、空気調和システム100の運転を終了するか否かが判断され(S4)、運転を終了する場合は(S4:YES)、空気調和システム100Aの動作が停止され、本処理を終了する。一方、運転を終了しない場合は(S4:NO)、ステップS1に戻って以降の処理が繰り返される。
 このように構成することで、人が検出されないゾーンへの空気の流入をさらに抑制することができる。その結果、第1ゾーンZと第2ゾーンZとの間で空気の対流が発生することを抑制でき、消費電力の削減効果を向上させることができる。
 さらに、ゾーン境界B12にゾーン間の空気の対流を抑制するエアカーテンを別途設けてもよい。これにより、ゾーン間の空気の対流をさらに抑制することができる。
 また、上記実施の形態では、第1給気風量調節部120および第1排気風量調節部130を備える構成としたが、これに限定されるものではなく、第1給気口12および第1排気口13の少なくとも何れか一方に、第1風量調節部を設ける構成としてもよい。同様に、第2給気口22および第2排気口23の少なくとも何れか一方に第2風量調節部を設ける構成としてもよい。また、第1給気口12および第1排気口13と、第2給気口22および第2排気口23とが、別々の換気装置200に接続される構成とした場合、各換気装置200における給気ファン203および排気ファン204を、第1給気風量調節部120および第1排気風量調節部130、ならびに第2給気風量調節部220および第2排気風量調節部230としてもよい。この場合は、給気ファン203および排気ファン204の回転数を制御することで、各給気口および各排気口からの給気風量および排気風量が制御される。
 また、実施の形態1では、ゾーン内に人が検出されない場合、室内機を送風運転としたが(図5のS3)、送風を停止してもよい。実施の形態2~4では、ゾーン内に人が検出されない場合、ゾーン内の室内機を停止したが(図11のS12、図15、図17のS21)、室内機を停止するのではなく、送風運転としてもよい。また、実施の形態2~4では、ゾーン内に人が検出されない場合、換気を停止し、換気風量を0としたが(図11のS12、図15、図17のS25)、換気風量を0とするのではなく、0に近づくように換気風量を減少させてもよい。これらの場合でも、各ゾーン内で空気の流れが閉じることに変わりはなく、消費電力を削減することができる。
 また、上記実施の形態における空気調和システム100の動作フロー(図5、図11、図15、図17)は、ゾーン毎に実行される構成としたが、複数のゾーンの内、少なくとも一つのゾーンに対して実行されてもよい。また、空気調和システム100において、第1室内機11および第2室内機21は必須ではなく、その他の空調機器を備えてもよいし、第1給気口12、第1排気口13、第2給気口22および第2排気口23を備える換気システムであってもよい。
 11 第1室内機、12 第1給気口、13 第1排気口、14 第1検出部、21 第2室内機、22 第2給気口、23 第2排気口、24 第2検出部、31 第3室内機、32 第3給気口、33 第3排気口、50 制御装置、51 記憶部、52 判定部、53 空調制御部、54 換気制御部、60 室外温度センサ、100、100A、100B、100C、100D、100E 空気調和システム、110 筐体、111 熱交換器、112 ファン、113 空調吹出口、114 空調吸込口、115 風向板、120 第1給気風量調節部、130 第1排気風量調節部、150 操作部、200 換気装置、201 給気風路、202 排気風路、203 給気ファン、204 排気ファン、220 第2給気風量調節部、230 第2排気風量調節部、B12 ゾーン境界、B23 ゾーン境界、R 空調対象空間、Z 第1ゾーン、Z 第2ゾーン、Z 第3ゾーン。

Claims (14)

  1.  第1ゾーンに配置され、該第1ゾーンの換気に用いられる第1給気口および第1排気口と、
     前記第1ゾーンに隣接する第2ゾーンに配置され、該第2ゾーンの換気に用いられる第2給気口および第2排気口と、を備え、
     前記第1給気口と、前記第1排気口と、前記第2給気口と、前記第2排気口とは、同一平面上に配置され、
     前記第1給気口、前記第1排気口、前記第2給気口および前記第2排気口は、
     一方向において、前記第1排気口、前記第1給気口、前記第2給気口、前記第2排気口の順に配置される、または
     一方向において、前記第1給気口、前記第1排気口、前記第2排気口、前記第2給気口の順に配置される換気システム。
  2.  前記第1給気口と前記第1排気口との距離は、前記第1給気口と前記第2排気口との距離より短く、
     前記第2給気口と前記第2排気口との距離は、前記第2給気口と前記第1排気口との距離より短い請求項1に記載の換気システム。
  3.  前記第1ゾーンにおける前記第1給気口の位置と、前記第2ゾーンにおける前記第2給気口の位置とは、前記第1ゾーンと前記第2ゾーンとの境界に対して対称であり、
     前記第1ゾーンにおける前記第1排気口の位置と、前記第2ゾーンにおける前記第2排気口の位置とは、前記境界に対して対称である請求項1または2に記載の換気システム。
  4.  請求項1~3の何れか一項に記載の換気システムと、
     前記第1ゾーンに配置され、該第1ゾーンを空調する第1室内機と、
     前記第2ゾーンに配置され、該第2ゾーンを空調する第2室内機と、
    を備える空気調和システム。
  5.  前記第1ゾーンにおける人を検出する検出部を備え、
     前記第1ゾーンに人が検出されない場合、前記第1室内機は、運転を停止するまたは送風運転する請求項4に記載の空気調和システム。
  6.  前記第1ゾーンに人が検出されない場合、前記第1給気口の給気風量および前記第1排気口の排気風量を0とする、または減少させる風量調節部を備える請求項5に記載の空気調和システム。
  7.  室外温度センサと、
     室内温度センサと、を備え、
     前記風量調節部は、
     前記第1ゾーンに人が検出されない場合であって、前記第1室内機が冷房運転を行うものであり、かつ前記室外温度センサにより検出された室外温度が前記室内温度センサにより検出された室内温度よりも低い場合、前記給気風量および前記排気風量を減少させず、
     前記第1ゾーンに人が検出されない場合であって、かつ前記第1室内機が冷房運転を行うものではない場合、または前記第1ゾーンに人が検出されない場合であって、かつ前記室外温度が前記室内温度以上の場合、前記給気風量および前記排気風量を0とする、または減少させる請求項6に記載の空気調和システム。
  8.  前記風量調節部は、
     前記第1ゾーンに人が検出された場合であって、前記第1室内機が冷房運転を行うものであり、かつ前記室外温度が前記室内温度よりも低い場合、前記給気風量および前記排気風量を最大風量とする請求項7に記載の空気調和システム。
  9.  前記検出部は、前記第1ゾーンにおける人の数を検出するものであり、
     前記風量調節部は、
     前記第1ゾーンに人が検出された場合であって、かつ前記第1室内機が冷房運転を行うものではない場合、または前記第1ゾーンに人が検出された場合であって、かつ前記室外温度が前記室内温度以上の場合は、前記給気風量および前記排気風量を、前記人の数に応じた風量とする請求項8に記載の空気調和システム。
  10.  前記風量調節部は、前記給気風量と前記排気風量とを同じ風量とする請求項6~9の何れか一項に記載の空気調和システム。
  11.  前記第1給気口の給気風向および前記第1排気口の排気風向の少なくとも何れか一方が、前記第2ゾーンに向かないよう調節する風向調節部を備える請求項4~10の何れか一項に記載の空気調和システム。
  12.  前記検出部は、前記第2ゾーンにおける人を検出するものであり、
     前記第1ゾーンに人が検出された場合であって、前記第2ゾーンに人が検出されない場合、前記第1給気口の給気風向および前記第1排気口の排気風向が、前記第2ゾーンに向かないようにし、
     前記第1ゾーンおよび前記第2ゾーンの両方に人が検出された場合、前記第1給気口の給気風向および前記第1排気口の排気風向を下向きにする風向調節部を備える請求項5~10の何れか一項に記載の空気調和システム。
  13.  前記第1給気口および前記第1排気口は、前記第1ゾーンと前記第2ゾーンの境界と直交する方向において、前記第1室内機を挟んだ両側にそれぞれ配置され、
     前記第2給気口および前記第2排気口は、前記境界と直交する方向において、前記第2室内機を挟んだ両側にそれぞれ配置される請求項4~12の何れか一項に記載の空気調和システム。
  14.  第1室内機を第1ゾーンに配置し、
     第2室内機を前記第1ゾーンに隣接する第2ゾーンに配置し、
     第1給気口および第1排気口を前記第1ゾーンに配置し、
     第2給気口および第2排気口を前記第2ゾーンに配置し、
     前記第1給気口と、前記第1排気口と、前記第2給気口と、前記第2排気口とを同一平面上に配置し、
     前記第1給気口、前記第1排気口、前記第2給気口および前記第2排気口を、
     一方向において、前記第1排気口、前記第1給気口、前記第2給気口、前記第2排気口の順に配置する、または
     一方向において、前記第1給気口、前記第1排気口、前記第2排気口、前記第2給気口の順に配置する空気調和システムの設置方法。
PCT/JP2019/015472 2018-05-30 2019-04-09 換気システム、空気調和システムおよび空気調和システムの設置方法 WO2019230201A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020521761A JP6964771B2 (ja) 2018-05-30 2019-04-09 空気調和システム
CN201980028562.8A CN112154291B (zh) 2018-05-30 2019-04-09 换气系统、空气调节系统以及空气调节系统的设置方法
EP19810738.5A EP3805653B1 (en) 2018-05-30 2019-04-09 Air-conditioning system
US17/045,733 US11976839B2 (en) 2018-05-30 2019-04-09 Ventilation system, air-conditioning system, and method of installing air-conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2018/020765 2018-05-30
PCT/JP2018/020765 WO2019229878A1 (ja) 2018-05-30 2018-05-30 空気調和システムおよび空気調和システムの設置方法

Publications (1)

Publication Number Publication Date
WO2019230201A1 true WO2019230201A1 (ja) 2019-12-05

Family

ID=68697958

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/020765 WO2019229878A1 (ja) 2018-05-30 2018-05-30 空気調和システムおよび空気調和システムの設置方法
PCT/JP2019/015472 WO2019230201A1 (ja) 2018-05-30 2019-04-09 換気システム、空気調和システムおよび空気調和システムの設置方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020765 WO2019229878A1 (ja) 2018-05-30 2018-05-30 空気調和システムおよび空気調和システムの設置方法

Country Status (5)

Country Link
US (1) US11976839B2 (ja)
EP (1) EP3805653B1 (ja)
JP (1) JP6964771B2 (ja)
CN (1) CN112154291B (ja)
WO (2) WO2019229878A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270515A1 (ja) * 2021-06-23 2022-12-29 ダイキン工業株式会社 排気装置を有する空気調和装置
WO2023112137A1 (ja) * 2021-12-14 2023-06-22 三菱電機株式会社 空調システムおよび空調管理システム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11859856B1 (en) 2019-01-04 2024-01-02 Renu, Inc. HVAC system with single piece body
US11859845B1 (en) * 2019-01-04 2024-01-02 Renu, Inc. Networked HVAC system having local and networked control
US11692750B1 (en) 2020-09-15 2023-07-04 Renu, Inc. Electronic expansion valve and superheat control in an HVAC system
CN116221936B (zh) * 2023-03-07 2023-09-05 北京科技大学 一种适应变化热需求的分区多模式送风方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711394A (en) * 1987-02-26 1987-12-08 Samuel Glenn W Multiple-unit HVAC energy management system
US5695396A (en) * 1995-03-17 1997-12-09 Daimler-Benz Aerospace Airbus Gmbh Ventilating system for reducing contaminations in the air of an aircraft
JP2005083731A (ja) * 2003-09-08 2005-03-31 Lg Electronics Inc 空気調和機の換気風量制御方法
US20130210336A1 (en) * 2010-09-07 2013-08-15 H. Luedi + Co. Ag Arrangement for ventilating a room, in particular a laboratory room
JP2013195047A (ja) 2012-03-23 2013-09-30 Sanki Eng Co Ltd タスク・アンビエント空調システム
JP2015114085A (ja) 2013-12-13 2015-06-22 株式会社竹中工務店 空調システム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1679534B2 (de) * 1967-03-11 1972-09-07 Fa H Krantz, 5100 Aachen Verfahren zum klimatisieren von grossraumbueros od.dgl. und anordnung zur durchfuehrung des verfahrens
AU542354B2 (en) * 1981-10-21 1985-02-21 Mitsubishi Denki Kabushiki Kaisha Ceiling mounted air conditioner
JPH07233982A (ja) * 1994-02-22 1995-09-05 Fujita Corp 室内空気清浄維持システム
DE10301335A1 (de) * 2003-01-15 2004-07-29 LGB Lufttechnische Anlagen und Gerätebau GmbH Luftschleiergerät mit Wärmestrahler
CN1207518C (zh) * 2003-05-22 2005-06-22 上海交通大学 基于室内人数检测的新风控制器
KR100596244B1 (ko) * 2004-04-29 2006-07-03 엘지전자 주식회사 공조기
KR100577252B1 (ko) * 2004-06-24 2006-05-10 엘지전자 주식회사 공기청정 겸용 환기시스템
US8033479B2 (en) * 2004-10-06 2011-10-11 Lawrence Kates Electronically-controlled register vent for zone heating and cooling
US9677777B2 (en) * 2005-05-06 2017-06-13 HVAC MFG, Inc. HVAC system and zone control unit
JP2007327702A (ja) * 2006-06-08 2007-12-20 Daikin Ind Ltd 空調ゾーニングシステム
JP4165604B2 (ja) * 2006-07-31 2008-10-15 ダイキン工業株式会社 空調制御装置および空調制御方法
US20080277486A1 (en) * 2007-05-09 2008-11-13 Johnson Controls Technology Company HVAC control system and method
JP5312055B2 (ja) * 2009-01-07 2013-10-09 三菱電機株式会社 空気調和システム
JP5330940B2 (ja) 2009-09-11 2013-10-30 パナソニック株式会社 空調制御システム
JP5528833B2 (ja) * 2010-01-29 2014-06-25 三洋電機株式会社 換気制御装置
KR20130120604A (ko) * 2012-04-26 2013-11-05 에스케이텔레콤 주식회사 외기 도입을 위한 건물 에너지 관리 방법 및 이를 위한 장치
WO2015079548A1 (ja) * 2013-11-29 2015-06-04 三菱電機株式会社 空調システム
US20150204551A1 (en) * 2013-12-30 2015-07-23 Degree Controls, Inc. Energy saving method for room level heating and cooling system
EP3104494B1 (en) * 2014-02-03 2022-08-10 Mitsubishi Electric Corporation Power control system, health management device, exercise measurement device, and power command device
JP6150742B2 (ja) 2014-02-24 2017-06-21 三菱電機株式会社 熱交換換気装置
US9557070B2 (en) * 2015-05-07 2017-01-31 Samsung Electronics Co., Ltd. Air conditioner and method for controlling the same
JP6493997B2 (ja) * 2017-08-30 2019-04-03 高砂熱学工業株式会社 空調装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711394A (en) * 1987-02-26 1987-12-08 Samuel Glenn W Multiple-unit HVAC energy management system
US5695396A (en) * 1995-03-17 1997-12-09 Daimler-Benz Aerospace Airbus Gmbh Ventilating system for reducing contaminations in the air of an aircraft
JP2005083731A (ja) * 2003-09-08 2005-03-31 Lg Electronics Inc 空気調和機の換気風量制御方法
US20130210336A1 (en) * 2010-09-07 2013-08-15 H. Luedi + Co. Ag Arrangement for ventilating a room, in particular a laboratory room
JP2013195047A (ja) 2012-03-23 2013-09-30 Sanki Eng Co Ltd タスク・アンビエント空調システム
JP2015114085A (ja) 2013-12-13 2015-06-22 株式会社竹中工務店 空調システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270515A1 (ja) * 2021-06-23 2022-12-29 ダイキン工業株式会社 排気装置を有する空気調和装置
JP2023003126A (ja) * 2021-06-23 2023-01-11 ダイキン工業株式会社 排気装置を有する空気調和装置
WO2023112137A1 (ja) * 2021-12-14 2023-06-22 三菱電機株式会社 空調システムおよび空調管理システム

Also Published As

Publication number Publication date
US11976839B2 (en) 2024-05-07
EP3805653A1 (en) 2021-04-14
CN112154291B (zh) 2022-01-11
JP6964771B2 (ja) 2021-11-10
EP3805653A4 (en) 2021-07-21
JPWO2019230201A1 (ja) 2020-12-17
WO2019229878A1 (ja) 2019-12-05
CN112154291A (zh) 2020-12-29
EP3805653B1 (en) 2023-10-25
US20210025617A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
WO2019230201A1 (ja) 換気システム、空気調和システムおよび空気調和システムの設置方法
US8249751B2 (en) Power saving air-conditioning system
WO2019146121A1 (ja) 空調システムおよび換気装置
US20190203971A1 (en) Heat exchange-type ventilation device
JP2018155444A (ja) 空気調和システム及び建物
JP2014173826A (ja) 全熱交換型の換気装置
JP6061695B2 (ja) 空調システム
US20210048199A1 (en) Air-conditioning system
JP6219107B2 (ja) 空調方法及び当該空調方法において使用する空調システム
JP7170592B2 (ja) 換気システム
JP4228279B2 (ja) 床吹出し空調システム
JPH1151445A (ja) 輻射式空調システム
KR101203999B1 (ko) 혼합 공기조화 시스템 및 그 제어 방법
US20240003580A1 (en) Air-conditioning system, controller for air-conditioning apparatus, and control method for air-conditioning apparatus
JP4425695B2 (ja) 換気空調装置
JP2021046983A (ja) 環境制御システム
JP7357511B2 (ja) 空調システム
KR101527609B1 (ko) 공기 조화 시스템 및 그의 제어방법
JP4346295B2 (ja) 空調機の風量制御装置
JP2012063113A (ja) 空気調和機
JP2006242492A (ja) 空気調和機
JPH05306834A (ja) 空調システム
JP2020125881A (ja) 空気調和システム及び空気調和システムの制御方法
JP2000310431A (ja) 空調換気装置
JPWO2023079709A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810738

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521761

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019810738

Country of ref document: EP

Effective date: 20210111