WO2019230196A1 - モールド品の製造方法 - Google Patents

モールド品の製造方法 Download PDF

Info

Publication number
WO2019230196A1
WO2019230196A1 PCT/JP2019/015249 JP2019015249W WO2019230196A1 WO 2019230196 A1 WO2019230196 A1 WO 2019230196A1 JP 2019015249 W JP2019015249 W JP 2019015249W WO 2019230196 A1 WO2019230196 A1 WO 2019230196A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mold
manufacturing
time
thin
Prior art date
Application number
PCT/JP2019/015249
Other languages
English (en)
French (fr)
Inventor
克英 大橋
拓也 五十嵐
崇裕 三木
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201980025209.4A priority Critical patent/CN112154054B/zh
Priority to JP2020521759A priority patent/JP6937907B2/ja
Publication of WO2019230196A1 publication Critical patent/WO2019230196A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating

Definitions

  • the present invention relates to a method for manufacturing a molded product.
  • the thickness of the molded product be uniform in order to prevent defects such as flow defects and various molding defects caused by resin flow fluctuations during molding.
  • the thickness cannot be made uniform, and in many cases, a thick part or a thin part having a small thickness is arranged.
  • voids are present inside the thick part due to resin shrinkage during molding.
  • Patent Document 1 discloses a molded part that insert-molds a member molded by a pre-mold having one or more convex shapes, and includes a resin portion other than the convex shape for fixing the pre-molded member to a mold.
  • a composite integrally molded product characterized by being enclosed and insert-molded is disclosed.
  • a method for manufacturing a molded product according to the first aspect of the present invention is a method for manufacturing a molded product comprising a molding process in which a mold is filled with a resin, and the molded product has a thin resin thickness.
  • the thin-walled portion and the thick-walled portion that is thicker than the thin-walled portion, and the thick-wall forming portion that forms the thick-walled portion in the mold is more than the thin-walled forming portion that forms the thin-walled portion.
  • the mold process is arranged near the mold gate filled with resin.
  • the molding process includes a first process of filling the mold gate with resin, and a zero flow rate of the resin in the thin portion after the first process. And a third step of filling the mold gate with resin after the second step.
  • voids inside the thick part can be reduced without generating burrs.
  • FIG. 1 to 5 are views showing a flow meter 100 which is a molded product manufactured by the method of the present invention.
  • 1 is an external perspective view of the flow meter 100
  • FIG. 2 is a plan view of the flow meter 100
  • FIG. 3 is a front view of the flow meter 100
  • FIG. 4 is a bottom view of the flow meter 100
  • FIG. It is sectional drawing.
  • the flow meter 100 includes a resin portion 101 and a substrate 102.
  • the resin part 101 includes a connector 104, a housing gate 105, a mounting hole 106, a flange 107, and a flow path 109.
  • a metal terminal 103 that is electrically connected to the outside of the flow meter 100 is disposed inside the connector 104.
  • the mounting hole 106 and the flange 107 are used for fixing the flow meter 100.
  • the housing gate 105 is a portion that becomes a resin inlet when the resin portion 101 is formed.
  • the flow meter 100 includes a thick portion 110 having a thick resin and a thin portion 120 having a thinner resin than the thick portion 110.
  • the resin reaches the flow path 109 from the casing gate 105 through the thick portion 110 and the thin portion 120. That is, the thick part 110 is closer to the housing gate 105 than the thin part 120.
  • FIG. 6 is a view showing a manufacturing apparatus 90 that molds the flow meter 100.
  • the manufacturing apparatus 90 includes a mold 1, a molding machine 2, and a computer 900.
  • the molding machine 2 includes a heating cylinder 2a, a screw 2b, and a plunger 2c.
  • the pellet-shaped resin 101a is fed into the molding machine 2 to the molding side, and the resin 101a becomes the molten resin 101b by the screw 2b incorporated in the heating cylinder 2a, and is stored in the screw tip portion 2bb.
  • the accumulated molten resin 101b is moved forward by the forward movement 2cc of the plunger 2c of the molding machine, and the molten resin 101b is put into the mold 1.
  • the computer 900 includes a CPU, a ROM, and a RAM. The CPU expands and executes a program stored in the ROM, thereby controlling the screw 2b and the plunger 2c of the molding machine 2 as will be described later.
  • the amount of the molten resin 101b flowing into the mold 1 per unit time is affected by the operations of both the screw 2b and the plunger 2c. In the present embodiment, the movements of both are collectively referred to as “screw speed”. . Further, a state where the molten resin 101b does not flow into the mold 1 is defined as zero screw speed. That is, the screw speed is a real number of zero or more, and the larger the screw speed, the larger the amount of the molten resin 101b flowing into the mold 1 per unit time.
  • FIG. 7 is a diagram showing the configuration of the mold 1.
  • the mold 1 includes an upper mold 1a, a lower mold 1b, a sprue runner 1c into which the molten resin 101b of the molding machine 2 is poured, a cavity 1e engraved to form a molded product, and a molten resin 101b into the cavity 1e.
  • a mold gate 1d for pouring.
  • FIG. 7 shows a state in which the mold 1 is closed, when the mold 1 is opened, the substrate 102 serving as an insert member is placed inside the thin-wall forming portion 120Z, which will be described later, or from the thin-wall forming portion 120Z. Mounted on the opposite side of the mold gate 1d.
  • a portion where the thick portion 110 is formed is a thick portion 110Z
  • a portion where the thin portion 120 is formed is a thin portion 120Z
  • a portion where the flow passage 109 is formed is a flow passage formation portion 109Z
  • a housing A portion where the body gate 105 is formed is referred to as a gate forming portion 105Z.
  • the gate forming portion 105Z is adjacent to the mold gate 1d, and is arranged with the gate forming portion 105Z, the thick forming portion 110Z, the thin forming portion 120Z, and the flow path forming portion 109Z from the left as shown in FIG.
  • the molten resin 101b flows in this order.
  • the flow of the molten resin 101b in the cavity 1e is expressed as a resin flow mf.
  • the higher the screw speed the faster the inflow speed of the molten resin 101b in the mold gate 1d.
  • the screw speed is zero, the inflow speed of the molten resin 101b in the mold gate 1d is zero. Therefore, it can be said that the screw speed and the inflow speed of the molten resin 101b in the mold gate 1d are in a proportional relationship.
  • FIG. 8 is a diagram showing a state immediately after the start.
  • the molten resin 101b extruded from the molding machine 2 starts to be pushed into the mold 1 at a screw speed v3.
  • the screw speed v3 needs to be set high so that the molten resin 101b does not rapidly cool inside the mold 1.
  • the molten resin 101b flows from the sprue runner 1c as shown in FIG. 8 (b), and flows into the cavity 1e through the mold gate 1d.
  • the resin flow mf still remains in the thick formation part 110Z.
  • FIG. 9 is a diagram showing a state until time t1 later than immediately after the start.
  • time t1 about 90% of the cavity 1e is filled with the molten resin 101b.
  • the screw speed from t0 to t1 at which filling is started is constant at v3.
  • the molten resin 101b is not filled up to 100% in the cavity 1e, the pressure inside the mold 1 is low, and the substrate 102 is not deformed or damaged, and no burrs occur on the mold mating surface.
  • FIG. 10 is a diagram showing a state from time t1 to time t2.
  • the cavity 1e is filled with approximately 100% of the molten resin 101b.
  • This process is also called a pressure holding process.
  • the screw speed is set to a low speed v1. Further, by not causing a rapid pressure increase, it is possible to maintain a state in which the substrate 102 is not deformed or damaged, and burrs are not generated on the die mating surface.
  • FIG. 11 is a diagram showing a state from time t2 to time t3. From time t2 to time t3, the screw speed is set to v0, that is, zero. When the screw speed becomes zero, the flow of the molten resin 101b in the cavity 1e stops, and the molten resin 101b in the cavity 1e starts to be cooled and solidified from the surface. Further, the resin shrinkage occurs in the molten resin 101b along with cooling and solidification. Due to this action, the thin portion 120 of the flow meter 100 has a smaller volume than other parts, and thus cools and solidifies in a short time. The time required for cooling and solidification can be calculated from the shape and the material of the resin used, and the time from time t2 to time t3 is the same as the calculated time or a time with a slight margin added.
  • a void 200 is created as a gap in the center of the thick wall due to the shrinkage of the molten resin 101b.
  • the thick part 110 is thick and large, the whole thick part 110 is not cooled and solidified due to heat storage of the molten resin, and only the surface layer is solidified.
  • the sprue runner 1c and the mold gate 1d are parts having a smaller volume than the other parts. However, the sprue runner 1c and the metal mold gate 1d are flow paths through which the molten resin 101b with the entire volume of the cavity 1e flows.
  • FIG. 12 is a diagram showing a state from time t3 to time t4. From time t3 to time t4, the screw speed is set to v2, which is faster than v1, and the pressing of the molten resin 101b from the molding machine 2 into the mold 1 is started again. As described above, since the sprue runner 1c and the mold gate 1d have not been solidified, the molten resin 101b can be pushed into the thick-wall forming portion 110Z. The thin portion 120 is already cooled and solidified from time t2 to time t3. Therefore, the molten resin 101b flowing into the cavity 1e from the mold gate 1d is blocked by the solidified resin portion 120c of the thin portion 120, and is poured into the void 200 existing in the thick portion 110Z. Therefore, the void 200 is reduced.
  • the screw speed at time t3 to t4 is set to v2, which is faster than v1 of the previous step, the molten resin 101b tends to flow into the void 200.
  • the screw speed is set to v2 which is faster than v1, but since the molten resin 101b on the surface layer has already been cooled and solidified, no burr is generated on the outer periphery of the cavity 1e.
  • the substrate 102 mounted in the vicinity of the thin portion 120 since the thin portion 120 is cooled and solidified by time t3, the substrate 102 is not deformed or damaged.
  • FIG. 13 is a diagram showing a state after time t4. After time t4, the screw speed is again set to v0, that is, zero. After time t4, the entire molten resin 101b pushed into the mold 1 is cooled and solidified. However, the time of this step is not particularly limited as long as the flow meter 100 can be cooled from the cavity 1e without being deformed or damaged.
  • the screw speed was set to v0, that is, zero as shown in FIG.
  • the molten resin 101a started to be cooled and solidified, and voids 200 as voids were formed in the thick portion 110 due to resin shrinkage. And it cooled as it was and the molded article in which the void 200 remained as it was was formed.
  • FIG. 16 is a diagram showing a molded product formed by the second conventional technique. As shown in FIG. 16, in the second conventional method, the rigidity of the mold 1 cannot withstand the pressure inside the mold 1, and the burr 101 d is generated from the mating surface of the mold 1. In addition, the substrate 102 may be deformed and broken due to an increase in pressure inside the mold 1.
  • the flow meter 100 created by the method of the embodiment enables a molding method of a resin product in which burrs and substrates are not deformed or broken.
  • the flow meter 100 created by the method of the embodiment can significantly reduce voids that are voids in a wide area inside the resin.
  • the mold product in the present embodiment that is, the method for manufacturing the flow meter 100 includes a molding step of filling the mold 1 with the resin 101a.
  • the flow meter 100 includes a thin portion 120 having a thin resin thickness and a thick portion 110 having a thicker thickness than the thin portion 120.
  • the thick portion 110 ⁇ / b> Z that forms the thick portion 110 is disposed closer to the mold gate 1 d that is filled with the resin 101 a than the thin portion 120 ⁇ / b> Z that forms the thin portion 120.
  • the molding step includes a first step of filling the mold gate 1d with the resin 101a, for example, a step from time t0 to time t2, and a second step of zeroing the flow rate of the resin in the thin portion forming 120Z after the first step.
  • a process from time t2 to time t3 and a third process for filling the mold gate 1d with the resin 101a after the second process, for example, time t3 to time t4 are provided.
  • the thin portion 120 is solidified by the process from time t2 to time t3, solidification of the surface layer also acts simultaneously, so that burrs generated on the mating surfaces of the dies can be suppressed. Thereafter, the resin 101a pushed between the mold gate 1d and the thin portion 120 has no escape and is sandwiched between them. Therefore, the resin 101a can be pushed into the void 200 generated in the thick portion 110, and the void 200 is reduced. That is, according to this method, voids in the thick portion 110 can be reduced without generating burrs. In addition, since this method can be formed by a single molding without using a premold member, the number of steps can be reduced and the cost can be significantly reduced as compared with the method using a premold member.
  • time t2 to time t3 The time length from time t2 to time t3 is calculated based on the shape of the thin portion 120 and the material of the resin 101a. Therefore, the time for cooling and solidifying the thin portion 120 can be calculated appropriately.
  • the process before setting the screw speed to zero is composed of a process from time t0 to time t1 and a process from time t1 to time t2.
  • the inflow speed of the resin 101a in the mold gate 1d in the process from the time t1 to the time t2 is slower than the inflow speed of the resin 101a in the mold gate 1d in the process from the time t0 to the time t1. Therefore, a sudden pressure increase in the cavity 1e can be avoided, and the substrate 102 can be maintained in a state where no deformation or breakage of the substrate 102 or burrs on the die-mating surface has occurred.
  • the inflow speed of the resin 101a to the mold gate 1d is constant.
  • the inflow speed of the resin 101a in the mold gate 1d in the process from the time t3 to the time t4 is slower than the inflow speed of the resin 101a in the mold gate 1d in the process from the time t0 to the time t1, and in the process from the time t1 to the time t2. It is faster than the inflow speed of the resin 101a in the mold gate 1d. Therefore, voids inside the thick portion 110 can be reduced without generating burrs.
  • the resin 101a filled in the mold 1 is pumped by the screw 2a whose rotational speed is controlled by the computer 900. Therefore, it is possible to easily mass-produce mold members with reduced voids.
  • the flow meter 100 includes a substrate 102 and a metal terminal 103 which are insert products, and the substrate 102 and the metal terminal 103 are arranged on the opposite side of the mold gate 1d from the thin-wall forming portion 120Z.
  • Insert products are low in rigidity and cannot withstand resin pressure, and often result in breakage, deformation, and the like, and are required to be molded at as low a pressure as possible.
  • the step of making the resin flow rate zero is executed until the resin of the thin portion 120 is solidified. Therefore, the insert member mounted near the thin portion 120 and the insert member mounted behind the thin portion 120 are not damaged or deformed by the inflow of the resin 101a from time t3 to time t4.
  • the speed may be variable at each of time t0 to time t1, time t1 to time t2, and time t3 to time t4. In other words, the speed does not necessarily have to be kept constant at each time.
  • the screw speed from time t1 to time t2 may be equal to or higher than the screw speed from time t3 to time t4.
  • the relationship is v1 ⁇ v2, but the relationship may be v1 ⁇ v2.
  • the flow meter 100 is formed by molding, but other articles may be formed. That is, the above-described embodiment can be widely applied to molded products that are injection-molded by a molding machine. Also, the resin material can be applied to various materials that can be similarly injection molded. Moreover, you may shape
  • the insert product is not deformed or destroyed. It is possible to form a molded body in which the portion is integrally wrapped with resin, and it is possible to provide an inexpensive and high-quality molded product.
  • an element that individually measures the flow rate, temperature, and humidity of air, or an insert product of an electronic circuit board in which a plurality of the elements are combined It is possible to form a molded body in which at least a part of the outer periphery of the board is integrally wrapped with resin without destroying the board or the board and simultaneously inserting terminals for electrical connection with the outside into the mold.
  • a molded product having an inexpensive and high-quality sensing function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

バリを発生させることなく厚肉部内部のボイドを減少させることができる モールド品の製造方法は、金型内に樹脂を充填して形成するモールド工程を備え、モールド品は、樹脂の肉厚が薄い薄肉部、および薄肉部よりも肉厚が厚い厚肉部を有し、金型において、厚肉部を形成する厚肉形成部は、薄肉部を形成する薄肉形成部よりも樹脂が充填される金型ゲートの近くに配され、モールド工程は、金型ゲートに樹脂を充填する第1工程と、第1工程の後に、薄肉部における樹脂の流動速度をゼロにする第2工程と、第2工程の後に、金型ゲートに樹脂を充填する第3工程と、を備える。

Description

モールド品の製造方法
 本発明は、モールド品の製造方法に関する。
 モールド品は、成形時の樹脂流動変動から発生する流動不具合や各種成形不良等の欠陥を防止するために、肉厚は均一にすることが望ましい。しかし製品の要求仕様から肉厚が均一にできず部分的に肉厚が厚い厚肉部や肉厚の薄い薄肉部が配置されることが多い。特に肉厚の厚い厚肉部においては成形時の樹脂収縮から厚肉部内部にボイドが介在してしまう問題が知られている。ボイドの介在を抑制するために樹脂充填時の保圧圧力を高くすることも考えられるが、圧力の上昇によりバリが生じることが知られている。特許文献1には、一つ以上の凸形状を有するプリモールドによって成形された部材をインサート成形する成形部品であって、前記プリモールド部材を金型に固定するための凸形状以外の樹脂部分を内包してインサート成形することを特徴とする複合一体成形品が開示されている。
特開2000-326359号公報
 特許文献1に記載されている発明では、バリを発生させることなく厚肉部内部のボイドを減少させることができない。
 本発明の第1の態様によるモールド品の製造方法は、金型内に樹脂を充填して形成するモールド工程を備えるモールド品の製造方法であって、前記モールド品は、樹脂の肉厚が薄い薄肉部、および前記薄肉部よりも肉厚が厚い厚肉部を有し、前記金型において、前記肉厚部を形成する厚肉形成部は、前記薄肉部を形成する薄肉形成部よりも前記樹脂が充填される金型ゲートの近くに配され、前記モールド工程は、前記金型ゲートに樹脂を充填する第1工程と、前記第1工程の後に、前記薄肉部における樹脂の流動速度をゼロにする第2工程と、前記第2工程の後に、前記金型ゲートに樹脂を充填する第3工程と、を備える。
 本発明によれば、バリを発生させることなく厚肉部内部のボイドを減少させることができる。
流量計100の外観斜視図 流量計100の平面図 流量計100の正面図 流量計100の底面図 図3におけるV-V断面図 製造装置90を示す図 金型1の構成を示す図 開始直後の状態を示す図 時刻t1までの状態を示す図 時刻t1~時刻t2における状態を示す図 時刻t2~時刻t3における状態を示す図 時刻t3~時刻t4における状態を示す図 時刻t4以降の状態を示す図 第1の従来手法による時刻t10~時刻t20における状態を示す図 第1の従来手法による時刻t20以降の状態を示す図 第2の従来手法によるモールド成形を示す図
―実施の形態―
 以下、図1~図16を参照して、本発明にかかるモールド品の製造方法の実施の形態を説明する。
(流量計)
 図1~図5は、本発明の方法により製造されるモールド品である流量計100を示す図である。図1は流量計100の外観斜視図、図2は流量計100の平面図、図3は流量計100の正面図、図4は流量計100の底面図、図5は図3におけるV-V断面図である。
 図1~図4に示すように、流量計100は、樹脂部101と、基板102とを備える。樹脂部101は、コネクタ104、筐体ゲート105、取付け穴106、フランジ107、および流路109を備える。コネクタ104の内部には流量計100の外部と電気的に接続される金属端子103が配される。取付け穴106およびフランジ107は、流量計100を固定するために用いられる。筐体ゲート105は、樹脂部101を形成する際に樹脂の流入口となる箇所である。
 図5の断面図に示すように、流量計100は、樹脂の厚みが厚い厚肉部110と、厚肉部110よりも樹脂の厚みが薄い薄肉部120とを備える。流量計100の製造工程では、樹脂は前述の筐体ゲート105から厚肉部110、薄肉部120を経由して流路109に至る。すなわち厚肉部110は薄肉部120よりも筐体ゲート105に近い。
(製造装置)
 図6は、流量計100のモールド成形を行う製造装置90を示す図である。製造装置90は、金型1と、成形機2と、コンピュータ900とを備える。成形機2は、加熱筒2aと、スクリュー2bと、プランジャー2cとを備える。成形機2にペレット状の樹脂101aが成形側へ送り込まれ、加熱筒2a内部に組み込まれているスクリュー2bにて樹脂101aが溶融樹脂101bとなり、スクリュー先端部2bbへと溜められる。溜められた溶融樹脂101bは成形機のプランジャー2cの前進動作2ccによりスクリュー2bが前進し、金型1に溶融樹脂101bが入れ込まれる。コンピュータ900は、CPU、ROM、およびRAMを備え、CPUがROMに格納されるプログラムをRAMに展開して実行することにより、後述するように成形機2のスクリュー2bおよびプランジャー2cを制御する。
 金型1に流入する溶融樹脂101bの単位時間当たりの量は、スクリュー2bおよびプランジャー2cの両方の動作が影響を与えるが、本実施の形態では両者の動きをまとめて「スクリュー速度」と呼ぶ。また金型1に溶融樹脂101bが流入しない状態をスクリュー速度ゼロと定義する。すなわちスクリュー速度はゼロ以上の実数であり、スクリュー速度が大きいほど、金型1に流入する溶融樹脂101bの単位時間当たりの量が多い。
 図7は、金型1の構成を示す図である。金型1は、上型1aと、下型1bと、成形機2の溶融樹脂101bが流し込まれるスプルランナー1cと、モールド品を形成するために彫り込まれたキャビティ1eと、キャビティ1eへ溶融樹脂101bを流し入れる金型ゲート1dとを備える。なお図7では金型1が閉じた状態を示しているが、金型1を開いている際に、インサート部材となる基板102を後述する薄肉形成部120Zの内部、または薄肉形成部120Zから金型ゲート1dの逆側に搭載する。
 以下では、キャビティ1eのうち厚肉部110を形成する箇所を厚肉形成部110Z、薄肉部120を形成する箇所を薄肉形成部120Z、流路109を形成する箇所を流路形成部109Z、筐体ゲート105を形成する箇所をゲート形成部105Zと呼ぶ。ゲート形成部105Zは金型ゲート1dに隣接しており、図7に示すように図示左からゲート形成部105Z、厚肉形成部110Z、薄肉形成部120Z、流路形成部109Zと並ぶ。溶融樹脂101bはこの順番に流れる。以下では、キャビティ1e内の溶融樹脂101bの流れを樹脂流動mfとして表す。
(製造方法)
 以下、図8~図13を参照してモールド成形の工程を説明する。ただし図8~図13はいずれも、図示上部の「(a)」にスクリュー速度の時系列変化を示し、図示下部の「(b)」に金型1内部の溶融樹脂101bの状態を示す。図8は開始直後の状態、図9は時刻t1の状態、図10は時刻t2の状態、図11は時刻t3の状態、図12は時刻t4の状態、図13は時刻t4以降の状態をそれぞれ示す。なおスクリュー速度V0~V3は、数値が大きいほど速度が速いことを示しており、具体的にはV3が最も速い速度である。以下に説明するスクリュー速度の制御、およびスクリュー速度を変化させるタイミングの決定は、コンピュータ900により実行される。ただしコンピュータ900の代わりにオペレータがスクリュー速度およびスクリュー速度を変化させるタイミングを決定してもよい。
 またスクリュー速度が速いほど金型ゲート1dにおける溶融樹脂101bの流入速度が速く、スクリュー速度がゼロの場合は金型ゲート1dにおける溶融樹脂101bの流入速度はゼロである。そのためスクリュー速度と金型ゲート1dにおける溶融樹脂101bの流入速度は比例関係にあるといえる。
 図8は、開始直後の状態を示す図である。成形機2から押し出される溶融樹脂101bは、図8(a)に示すようにスクリュー速度v3で金型1内に押し込みが開始される。このとき、金型1の内部で溶融樹脂101bが急冷しないようにスクリュー速度v3は高めに設定する必要がある。金型1内部では、溶融樹脂101bが図8(b)に示すようにスプルランナー1cから流れ込み、金型ゲート1dを通過してキャビティ1eへと流れ込む。ただし樹脂流動mfは、まだ厚肉形成部110Zに留まっている。
 図9は、開始直後よりも後で時刻t1までの状態を示す図である。時刻t1には、キャビティ1eの約90%が溶融樹脂101bで満たされている。充填が開始されたt0からt1までのスクリュー速度はv3で一定である。ここでキャビティ1eに溶融樹脂101bは100%までは充填されていないので、金型1内部の圧力は低く、基板102の変形や破損、また金型合わせ面のバリは生じていない。
 図10は、時刻t1~時刻t2における状態を示す図である。時刻t2においてキャビティ1e内は、溶融樹脂101bにより約100%充填される。この工程では、保圧工程とも呼ばれる。溶融樹脂101bがキャビティ1eに100%充填されることによるキャビティ1e内の急激な圧力上昇を避けるために、スクリュー速度を低速のv1に設定する。また急激な圧力上昇を生じさせないことで、基板102の変形や破損、金型合わせ面のバリは生じていない状態を保つことができる。
 図11は、時刻t2~時刻t3における状態を示す図である。時刻t2~時刻t3では、スクリュー速度はv0、すなわちゼロに設定する。スクリュー速度がゼロになると、キャビティ1e内の溶融樹脂101bの流動は停止し、キャビティ1e内部の溶融樹脂101bは、表層面から冷却固化が始まる。また、冷却固化に伴い溶融樹脂101bでは樹脂収縮が生じる。この作用により、流量計100の薄肉部120においては、他の部位に比べ容積が薄く少ないため、短時間で冷却固化する。冷却固化に要する時間は、形状および使用する樹脂の材質から算出可能であり、時刻t2~時刻t3の時間は、算出した時間と同一、または若干のマージンを加えた時間である。
 時刻t2~時刻t3において厚肉部110では、溶融樹脂101bの収縮により厚肉中央に空隙となるボイド200が作り出される。このとき、厚肉部110は容積が厚く大きいため、溶融樹脂の蓄熱により厚肉部110の全体の冷却固化には至らず、表層面だけが固化している状態である。なおスプルランナー1cや金型ゲート1dは、他の部位より容積が少ない部位であるが、キャビティ1e全容積の溶融樹脂101bが流れる流路であるため、溶融樹脂101bの潜熱によりスプルランナー1cおよび金型ゲート1d部位の周囲は高温に加熱され、キャビティ1eの金型温度に比べ、高温な状態となる。この高温状態は、スプルランナー1cおよび金型ゲート1dの溶融樹脂101bにおいて冷却の遅れを生じさせるため、固化には至らない。
 図12は、時刻t3~時刻t4における状態を示す図である。時刻t3~時刻t4では、スクリュー速度はv1よりも速いv2に設定され、成形機2から金型1内部へ溶融樹脂101bの押込みが再度開始される。前述のとおり、スプルランナー1cおよび金型ゲート1dは固化に至っていないので、厚肉形成部110Zへの溶融樹脂101bの押込みが可能である。また薄肉部120は、時刻t2~時刻t3において既に冷却固化している。そのため金型ゲート1dからキャビティ1eへ流れ込んだ溶融樹脂101bは、固化した薄肉部120の樹脂101cで塞き止められ、厚肉形成部110Zに存在するボイド200へ流し込まれる。そのためボイド200は縮小する。
 時刻t3~t4におけるスクリュー速度が先の工程のv1よりも速いv2に設定されているので、ボイド200へ溶融樹脂101bが流入しやすい。なお、スクリュー速度は、v1よりも速いv2に設定されているが、すでに表層面の溶融樹脂101bは冷却固化しているので、キャビティ1eの外周にバリは発生しない。また薄肉部120の近傍に搭載した基板102においても同様に、時刻t3までに薄肉部120は冷却固化していることから、基板102に変形や破損を生じることはない。
 図13は、時刻t4以降の状態を示す図である。時刻t4以降ではスクリュー速度は再びv0、すなわちゼロに設定される。時刻t4以降では、金型1内に押し込まれた溶融樹脂101b全体が冷却固化される。ただし本工程の時間は特に限定されず、キャビティ1eから流量計100を変形や破損させることなく取り出せる程度に冷却できればよい。
(従来手法)
 図14~図16を参照して2つの従来手法によるモールド成形の工程を説明する。まず第1の従来手法を図14~図15を参照して説明する。
 第1の従来手法によれば、図14に示すように充填を開始する時刻t0から時刻t10まで一定のスクリュー速度v30で充填を行った。そして時刻t10から時刻t20まではスクリュー速度を遅くしてv10で溶融樹脂101bをキャビティ1e内に100%充填した。そして時刻t20以降は、図15に示すようにスクリュー速度をv0、すなわちゼロに設定した。これに伴い溶融樹脂101aは冷却固化が始まり、樹脂収縮により厚肉部110には空隙であるボイド200が形成された。そしてこのまま冷却され、ボイド200がそのまま残存するモールド品が形成された。
 第2の従来手法では、ボイド200の対策として溶融樹脂101bを充填する圧力が高く設定された。図16は、第2の従来手法により形成されたモールド品を示す図である。図16に示すように、第2の従来手法では金型1内部の圧力に対し、金型1の剛性が耐えられず、金型1の合わせ面からバリ101dが生じていた。また金型1内部の圧力が高くなることにより基板102が変形及び破壊することもあった。
 実施の形態の手法により作成した流量計100は、バリや基板が変形や破壊することのない樹脂品の成形工法を可能とする。
 また実施の形態の手法により作成した流量計100は、樹脂内部の広い領域において空隙となっているボイドを大幅に低減することができる。
 上述した実施の形態によれば、次の作用効果が得られる。
(1)本実施の形態におけるモールド品、すなわち流量計100の製造方法は、金型1内に樹脂101aを充填して形成するモールド工程を備える。流量計100は、樹脂の肉厚が薄い薄肉部120、および薄肉部120よりも肉厚が厚い厚肉部110を有する。金型1において、厚肉部110を形成する厚肉形成部110Zは、薄肉部120を形成する薄肉形成部120Zよりも樹脂101aが充填される金型ゲート1dの近くに配される。モールド工程は、金型ゲート1dに樹脂101aを充填する第1工程、たとえば時刻t0~時刻t2の工程と、第1工程の後に、薄肉部形成120Zにおける樹脂の流動速度をゼロにする第2工程、たとえば時刻t2~時刻t3の工程と、第2工程の後に、金型ゲート1dに樹脂101aを充填する第3工程、たとえば時刻t3~時刻t4と、を備える。
 時刻t2~時刻t3の工程により薄肉部120が固化するので、表面層の固化も同時に作用するため、金型の合わせ面に生じるバリを抑制できる。これ以後は金型ゲート1dと薄肉部120の間で押込まれた樹脂101aは逃げ場が無くなり、間に挟まれた状態になる。そのため厚肉部110に生じているボイド200へ樹脂101aの押込みが可能となり、ボイド200が減少する。すなわち、本手法によればそのためバリを発生させることなく厚肉部110内部のボイドを減少させることができる。なお本手法はプリモールド部材を用いず1回のモールド成形で形成ができるため、プリモールド部材を用いる手法に比べて工数の削減と大幅な低コストが図れる。
(2)時刻t3~時刻t4におけるスクリュー速度v2は、時刻t2の直前におけるスクリュー速度v1よりも速い。そのためボイド200をより減少させることができる。
(3)時刻t2~時刻t3の時間的な長さは、薄肉部120の形状、および樹脂101aの材料に基づき算出される。そのため薄肉部120が冷却固化される時間を適切に算出できる。
(4)スクリュー速度をゼロにする前の工程は、時刻t0~時刻t1の工程と時刻t1~時刻t2の工程とから構成される。時刻t1~時刻t2の工程における樹脂101aの金型ゲート1dにおける流入速度は、時刻t0~時刻t1の工程における樹脂101aの金型ゲート1dにおける流入速度よりも遅い。そのためキャビティ1e内の急激な圧力上昇を避け、基板102の変形や破損、金型合わせ面のバリは生じていない状態を保つことができる。
(5)時刻t0~時刻t1の工程、時刻t1~時刻t2の工程、時刻t3~時刻t4の工程のそれぞれにおいて、樹脂101aの金型ゲート1dにおける流入速度は一定である。時刻t3~時刻t4の工程における樹脂101aの金型ゲート1dにおける流入速度は、時刻t0~時刻t1の工程における樹脂101aの金型ゲート1dにおける流入速度よりも遅く、時刻t1~時刻t2の工程における樹脂101aの金型ゲート1dにおける流入速度よりも速い。そのためバリを発生させることなく厚肉部110内部のボイドを減少させることができる。
(6)金型1に充填される樹脂101aは、コンピュータ900により回転数が制御されたスクリュー2aにより圧送される。そのためボイドが減少されたモールド部材を容易に大量生産できる。
(7)流量計100にはインサート品である基板102および金属端子103が含まれ、基板102および金属端子103は薄肉形成部120Zから金型ゲート1dとは逆側に配される。インサート品においては、剛性が低く樹脂圧に耐えられず、破損や変形等に至る場合も多くあり、できるだけ低圧で成形することが求められている。本実施の形態の手法によれば、樹脂流動速度をゼロにする工程が薄肉部120の樹脂が固化するまで実行される。そのため、薄肉部120近傍に搭載されるインサート部材や薄肉部120の後方に搭載されるインサート部材は、時刻t3~時刻t4における樹脂101aの流入による破損や変形が生じない。
(変形例1)
 上述した実施の形態におけるモールド工程において、時刻t0~時刻t2におけるスクリュー速度を一定としてもよい。
(変形例2)
 時刻t0~時刻t1、時刻t1~時刻t2、時刻t3~時刻t4のそれぞれにおいて、速度を可変にしてもよい。換言すると、それぞれの時間において速度を必ずしも一定に保たなくてもよい。
(変形例3)
 上述した実施の形態におけるモールド工程において、時刻t1~時刻t2のスクリュー速度を、時刻t3~時刻t4のスクリュー速度以上としてもよい。換言すると、上述した実施の形態ではv1<v2の関係にあったが、v1≧v2の関係にあってもよい。
(変形例4)
 上述した実施の形態ではモールド成形により流量計100を成形したが、他の物品を成形してもよい。すなわち上述した実施の形態は、成形機で射出成形されるモールド成形品に対して幅広く適用できる。また、樹脂材においても同様に射出成形可能な様々な材料に適用できる。またインサート品を有しない物品を成形してもよい。
 上述した各実施の形態および変形例は、それぞれ組み合わせてもよい。上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 本発明によるモールド品の製造方法によれば、樹脂の充填圧力で変形や破損が生じやすいインサート品であっても、前記インサート品を変形や破壊することなく、前記インサート品外周の少なくても一部を樹脂で一体に包み込んだ成形体を形成することが可能であり、安価で高品質なモールド品を提供することができる。
 また本発明によるモールド品の製造方法によれば、空気の流量、温度、湿度をそれぞれ単独で計測する素子、または前記素子を複数個組み合わせて配置した電子回路基板のインサート品であっても、素子や基板を破壊することなく、また外部との電気接続を行う端子を金型に同時インサートして、前記基板外周の少なくても一部を樹脂で一体に包み込んだ成形体を形成することが可能であり、安価で高品質なセンシング機能を有したモールド品を提供することができる。
1・・・・・・・金型
1d・・・・・・ゲート
1e・・・・・・キャビティ
2・・・・・・・成形機
100・・・・・流量計
101、101a、101b、101c・・樹脂
102・・・・・基板
110・・・・・厚肉部
120・・・・・薄肉部
200・・ボイド

Claims (9)

  1.  金型内に樹脂を充填して形成するモールド工程を備えるモールド品の製造方法であって、
     前記モールド品は、樹脂の肉厚が薄い薄肉部、および前記薄肉部よりも肉厚が厚い厚肉部を有し、
     前記金型において、前記厚肉部を形成する厚肉形成部は、前記薄肉部を形成する薄肉形成部よりも前記樹脂が充填される金型ゲートの近くに配され、
     前記モールド工程は、
     前記金型ゲートに樹脂を充填する第1工程と、
     前記第1工程の後に、前記薄肉部における樹脂の流動速度をゼロにする第2工程と、
     前記第2工程の後に、前記金型ゲートに樹脂を充填する第3工程と、を備えるモールド品の製造方法。
  2.  請求項1に記載のモールド品の製造方法において、
     前記第3工程における前記樹脂の前記金型ゲートにおける流入速度は、前記第1工程の終了直前における前記樹脂の前記金型ゲートにおける流入速度よりも速い、モールド品の製造方法。
  3.  請求項1に記載のモールド品の製造方法において、
     前記第2工程の時間的な長さは、前記薄肉部の形状、および前記樹脂の材料に基づき算出される、モールド品の製造方法。
  4.  請求項1に記載のモールド品の製造方法において、
     前記第1工程は、第1前半工程と前記第1前半工程の次に実行される第1後半工程とから構成され、
     前記第1後半工程における前記樹脂の前記金型ゲートにおける流入速度は、前記第1前半工程における前記樹脂の前記金型ゲートにおける流入速度よりも遅い、モールド品の製造方法。
  5.  請求項4に記載のモールド品の製造方法において、
     前記第1前半工程、前記第1後半工程、および前記第3工程のそれぞれにおいて、前記樹脂の前記金型ゲートにおける流入速度は一定であり、
     前記第3工程における前記樹脂の前記金型ゲートにおける流入速度は、前記第1前半工程における前記樹脂の前記金型ゲートにおける流入速度よりも遅く、前記第1後半工程における前記樹脂の前記金型ゲートにおける流入速度よりも速い、モールド品の製造方法。
  6.  請求項1に記載のモールド品の製造方法において、
     前記金型に充填される樹脂は、コンピュータにより回転数が制御されたスクリューにより圧送される、モールド品の製造方法。
  7.  請求項1に記載のモールド品の製造方法において、
     前記モールド品にはインサート品が含まれ、前記インサート品は前記薄肉形成部の内部、または前記薄肉形成部から前記金型ゲートとは逆側に配されるモールド品の製造方法。
  8.  請求項1に記載のモールド品の製造方法において、
     前記モールド品は、樹脂の充填圧力で容易に変形や破損を生じやすいインサート品が含まれ、金型にインサートして、前記インサート品外周の少なくても一部を樹脂で一体に包み込んだモールド品の製造方法。
  9.  請求項1に記載のモールド品の製造方法において、
     前記モールド品は、空気の流量、温度、湿度をそれぞれ単独で計測する素子、または前記素子を複数個組み合わせて配置した電子回路基板のインサート品が含まれ、また外部との電気接続を行う端子を金型に同時インサートして、前記基板外周の少なくても一部を樹脂で一体に包み込み、センシング機能を有したモールド品の製造方法。
PCT/JP2019/015249 2018-05-31 2019-04-08 モールド品の製造方法 WO2019230196A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980025209.4A CN112154054B (zh) 2018-05-31 2019-04-08 模制品的制造方法
JP2020521759A JP6937907B2 (ja) 2018-05-31 2019-04-08 モールド品の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-104235 2018-05-31
JP2018104235 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019230196A1 true WO2019230196A1 (ja) 2019-12-05

Family

ID=68696943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015249 WO2019230196A1 (ja) 2018-05-31 2019-04-08 モールド品の製造方法

Country Status (3)

Country Link
JP (1) JP6937907B2 (ja)
CN (1) CN112154054B (ja)
WO (1) WO2019230196A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112391810A (zh) * 2020-11-30 2021-02-23 无锡小天鹅电器有限公司 顶盖框、衣物处理设备及顶盖框模具
CN112458705A (zh) * 2020-11-30 2021-03-09 无锡小天鹅电器有限公司 工作台、衣物处理设备和工作台模具
CN112522920A (zh) * 2020-11-30 2021-03-19 无锡小天鹅电器有限公司 分配器把手、分配器、衣物处理设备和把手模具
CN112522921A (zh) * 2020-11-30 2021-03-19 无锡小天鹅电器有限公司 外观部件、家用电器和模具
CN113492494A (zh) * 2020-04-01 2021-10-12 瑞皇精密工业股份有限公司 模具改良结构
WO2022110510A1 (zh) * 2020-11-30 2022-06-02 无锡小天鹅电器有限公司 外观部件、家用电器和模具

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000210997A (ja) * 1999-01-20 2000-08-02 Sumitomo Bakelite Co Ltd フェノ―ル樹脂成形材料の射出成形方法
JP2015058593A (ja) * 2013-09-17 2015-03-30 ファナック株式会社 射出成形機の制御方法
WO2017096272A1 (en) * 2015-12-04 2017-06-08 Extrude To Fill, LLC Method of molding a part

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1010756B (zh) * 1986-08-21 1990-12-12 三菱金属株式会社 熔化塑料注射成型法
JPH07299850A (ja) * 1994-04-30 1995-11-14 Tsuoisu Kk 射出成形方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000210997A (ja) * 1999-01-20 2000-08-02 Sumitomo Bakelite Co Ltd フェノ―ル樹脂成形材料の射出成形方法
JP2015058593A (ja) * 2013-09-17 2015-03-30 ファナック株式会社 射出成形機の制御方法
WO2017096272A1 (en) * 2015-12-04 2017-06-08 Extrude To Fill, LLC Method of molding a part

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113492494A (zh) * 2020-04-01 2021-10-12 瑞皇精密工业股份有限公司 模具改良结构
CN112391810A (zh) * 2020-11-30 2021-02-23 无锡小天鹅电器有限公司 顶盖框、衣物处理设备及顶盖框模具
CN112458705A (zh) * 2020-11-30 2021-03-09 无锡小天鹅电器有限公司 工作台、衣物处理设备和工作台模具
CN112522920A (zh) * 2020-11-30 2021-03-19 无锡小天鹅电器有限公司 分配器把手、分配器、衣物处理设备和把手模具
CN112522921A (zh) * 2020-11-30 2021-03-19 无锡小天鹅电器有限公司 外观部件、家用电器和模具
WO2022110510A1 (zh) * 2020-11-30 2022-06-02 无锡小天鹅电器有限公司 外观部件、家用电器和模具

Also Published As

Publication number Publication date
JPWO2019230196A1 (ja) 2021-04-22
JP6937907B2 (ja) 2021-09-22
CN112154054B (zh) 2022-06-17
CN112154054A (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
WO2019230196A1 (ja) モールド品の製造方法
JP2011136361A (ja) 鋳物の鋳造方法及び鋳造装置
JP2755826B2 (ja) 可塑性プラスチック材料から成形品を射出成形するための方法
JP2019181503A (ja) ダイカスト金型、当該ダイカスト金型で製造されたダイカスト品およびダイカスト品の製造方法
JP5060060B2 (ja) 金型及び金型を用いた成形方法
US11548232B2 (en) Method of manufacturing isotropic parts utilizing additive manufacturing methods
JP4793514B1 (ja) 射出成形装置及び長尺成形品の製造方法
EP3950262A1 (en) Injection molding apparatus and injection molding method
JP2008302634A (ja) 射出成形用金型
EP1916085B1 (en) Material-feeding structure for a mold and casing fabrication method using the same structure
CN105636720B (zh) 使用发泡砂的砂型的成型方法、成型模具以及砂型
JP7139192B2 (ja) 樹脂成形金型及び成形方法
CN108883559B (zh) 注射成型模具、注射成型方法以及成型品
KR200394900Y1 (ko) 니들 게이트를 구비한 사출 금형장치
JPH03182313A (ja) 成形金型の製造方法
JP2005193241A (ja) ダイカスト用金型およびダイカスト鋳造方法
JP2007531630A (ja) 鋳造品の製造方法
JP2019130843A (ja) 成形型および樹脂成形品の製造方法
CN109202039B (zh) 一种模具设计方法
JP2002096351A (ja) インモールドコート方法
JPH03199015A (ja) 成形金型の製造方法
KR100240581B1 (ko) 파워 스티어링 오일펌프 하우징 제조방법
JP6949528B2 (ja) 成形品の製造方法、成形品およびプリンター
JP2002273771A (ja) 樹脂用射出成形金型及び樹脂成形方法
JPH09277014A (ja) 樹脂中子を用いた軽合金ダイカスト製造法及び中空状軽合金ダイカスト鋳造品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811053

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521759

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811053

Country of ref document: EP

Kind code of ref document: A1