WO2019230088A1 - 監視システム及び監視方法 - Google Patents

監視システム及び監視方法 Download PDF

Info

Publication number
WO2019230088A1
WO2019230088A1 PCT/JP2019/007452 JP2019007452W WO2019230088A1 WO 2019230088 A1 WO2019230088 A1 WO 2019230088A1 JP 2019007452 W JP2019007452 W JP 2019007452W WO 2019230088 A1 WO2019230088 A1 WO 2019230088A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing device
processing
monitoring system
data
measurement data
Prior art date
Application number
PCT/JP2019/007452
Other languages
English (en)
French (fr)
Inventor
康晴 大西
靖行 福田
隆 工藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to KR1020207033479A priority Critical patent/KR102464187B1/ko
Priority to JP2020521706A priority patent/JP6981547B2/ja
Priority to CN201980035065.0A priority patent/CN112204371B/zh
Publication of WO2019230088A1 publication Critical patent/WO2019230088A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture

Definitions

  • the present invention relates to a monitoring system and a monitoring method.
  • Patent Document 1 discloses a method of attaching a sensor to a facility to be monitored and monitoring the facility based on time series data measured by the sensor.
  • the amount of data collected and analyzed by sensors can be large.
  • the data transmission distance can be long. If there is a lot of data to be processed and the data transmission distance is long, if the data transmission mechanism is not appropriate, communication troubles such as communication delays occur, and good monitoring cannot be performed.
  • This invention makes it a subject to provide the monitoring system suitable for the monitoring of the installation where a data transmission distance becomes long.
  • a plurality of first processing devices each having a vibration sensor are attached to the facility to be monitored, A second processing device having a distance of 1 m or more and 100 m or less from the first processing device and each of the plurality of first processing devices via a cable; Provided is a monitoring method in which a third processing device having a distance of 50 m or more from the second processing device and the second processing device are wirelessly communicated, and a frequency of wireless communication is from 400 MHz to 5.3 GHz Is done.
  • a monitoring system suitable for monitoring equipment with a long data transmission distance is realized.
  • the monitoring system includes a data transmission mechanism suitable for monitoring a facility having a long data transmission distance.
  • the monitoring content is monitoring whether there is an abnormality in the facility or a sign of failure. Details will be described below.
  • FIG. 1 shows an example of a functional block diagram of the monitoring system of this embodiment.
  • the monitoring system includes a plurality of first processing devices 10, a second processing device 20, and a third processing device 30.
  • the plurality of first processing devices 10 are attached to the facility 40 to be monitored.
  • the number of the first processing apparatuses 10 is 3, but the present invention is not limited to this.
  • the equipment 40 to be monitored is exemplified by a belt conveyor, but is not limited thereto.
  • Each of the plurality of first processing apparatuses 10 has a vibration sensor.
  • the vibration sensor measures the vibration generated in the facility 40 to be monitored.
  • the vibration sensor may be a uniaxial acceleration sensor that measures acceleration in a uniaxial direction, a triaxial acceleration sensor that measures acceleration in a triaxial direction, or the like.
  • the vibration sensors included in the plurality of first processing apparatuses may be the same type of vibration sensors, or a plurality of types of vibration sensors may be mixed.
  • a plurality of first processing devices 10 may include a single-axis acceleration sensor and a three-axis acceleration sensor, or all of the plurality of first processing devices 10 may include three.
  • An axial acceleration sensor may be provided, or all of the plurality of first processing devices 10 may include a uniaxial acceleration sensor.
  • the first processing device 10 processes “processing for transmitting vibration sensor measurement data to the second processing device 20”, “processing vibration sensor measurement data, and processing data of the measurement data (hereinafter simply referred to as“ processing data ”). ) ”And“ processing for determining whether there is an abnormality in the equipment 40 to be monitored based on the measurement data or processing data and transmitting the determination result to the second processing device 20 ”. Perform at least one of them.
  • the first processing device 10 may transmit all measurement data and / or processing data to the second processing device 20, or a part of the measurement data and / or processing data may be transmitted to the second processing device 20. May be sent to.
  • the second processing device 20 is installed in the vicinity of the equipment 40 to be monitored.
  • the distance between each of the plurality of first processing apparatuses 10 and the second processing apparatus 20 is 1 m or more and 100 m or less.
  • the standard of communication between each of the plurality of first processing devices 10 and the second processing device 20 is preferably suitable for transmission of data having a relatively large amount of data.
  • Each of the plurality of first processing devices 10 and the second processing device 20 having a relatively short transmission distance communicates via a cable.
  • the communication standard is exemplified by RS485, but is not limited thereto.
  • first processing apparatus 10, the second processing apparatus 20, and the cable may have a water / dust resistance (eg, IP67) structure in consideration of outdoor installation or the like.
  • the second processing device 20 performs “processing for transmitting the determination result received from the first processing device 10 to the third processing device 30” and “measurement data and / or processing data received from the first processing device 10”. Based on the above, at least one of “the process of determining whether there is an abnormality in the equipment 40 to be monitored and transmitting the determination result to the third processing device 30” is executed.
  • the third processing device 30 is installed at a position relatively distant from the monitoring target facility 40, the first processing device 10, and the second processing device 20.
  • the third processing device 30 is installed in, for example, an office or a monitoring center.
  • the distance between the second processing device 20 and the third processing device 30 is 50 m or more, preferably 100 m or more.
  • advantages such as ensuring the safety of an operator who operates the third processing device 30 are obtained.
  • the frequency of wireless communication between the second processing device 20 and the third processing device 30 is not less than 400 MHz and not more than 5.3 GHz (example: 920 MHz).
  • the third processing device 30 outputs the determination result received from the second processing device 20 via the output device. For example, the third processing device 30 displays the determination result on the display. The operator monitors the state of the facility 40 to be monitored based on the information output from the third processing device 30. Further, the third processing device 30 may store the determination result received from the second processing device 20 in the storage device.
  • Each functional unit included in each apparatus of the present embodiment includes a CPU (Central Processing Unit), a memory, and a memory of an arbitrary computer Programs loaded on the hard disk, storage units such as hard disks for storing the programs (programs stored in advance from the stage of shipping the device, CD (Compact Disc), etc., downloaded from a server on the Internet, etc.
  • CPU Central Processing Unit
  • storage units such as hard disks for storing the programs (programs stored in advance from the stage of shipping the device, CD (Compact Disc), etc., downloaded from a server on the Internet, etc.
  • This is realized by any combination of hardware and software centering on the network connection interface. It will be understood by those skilled in the art that there are various modifications to the implementation method and apparatus.
  • FIG. 2 is a block diagram illustrating the hardware configuration of each device according to this embodiment.
  • each device includes a processor 1A, a memory 2A, an input / output interface 3A, a peripheral circuit 4A, and a bus 5A.
  • the peripheral circuit 4A includes various modules.
  • the processing device may not have the peripheral circuit 4A.
  • the bus 5A is a data transmission path for the processor 1A, the memory 2A, the peripheral circuit 4A, and the input / output interface 3A to transmit data to each other.
  • the processor 1A is an arithmetic processing unit such as a CPU or a GPU (Graphics Processing Unit).
  • the memory 2A is a memory such as a RAM (Random Access Memory) or a ROM (Read Only Memory).
  • the input / output interface 3A includes an interface for acquiring information from an input device, an external device, an external server, a sensor, and the like, an interface for outputting information to an output device, an external device, an external server, and the like.
  • the input device is, for example, a keyboard, a mouse, a microphone, or the like.
  • the output device is, for example, a display, a speaker, a printer, a mailer, or the like.
  • the processor 1A can issue a command to each module and perform a calculation based on the calculation result.
  • the monitoring system of the present embodiment it is possible to monitor whether there is an abnormality in the monitoring target facility 40 based on the measurement data of the vibration sensor attached to the monitoring target facility 40. For this reason, highly reliable monitoring is realized.
  • the operator can check whether there is an abnormality in the monitoring target facility 40 via the third processing device 30 installed at a position relatively distant from the monitoring target facility 40. Can be monitored. For this reason, the operator can perform monitoring at a safe place away from the facility 40 to be monitored.
  • the first processing device 10 attached to the facility 40 to be monitored and / or the second processing device 20 installed in the vicinity of the first processing device 10 and the vibration sensor measurement data and Whether or not there is an abnormality in the monitoring target equipment 40 is determined based on the processing data. Then, only the determination result is transmitted to the third processing device 30.
  • transmission of data having a relatively large amount of data such as measurement data and / or processed data is performed between the first processing device 10 and the second processing device 20 having a relatively short distance. And between the 2nd processing apparatus 20 and the 3rd processing apparatus 30 with comparatively long distance, data with comparatively small data amount like the determination result is transmitted.
  • data having a relatively large amount of data does not need to be transmitted between devices having a relatively long distance. According to such a monitoring system of the present embodiment, it is possible to reduce inconvenience that communication trouble such as communication delay occurs.
  • data having a relatively large amount of data such as measurement data and / or processing data is transmitted via a cable. For this reason, inconveniences that cause communication troubles such as communication delays can be reduced.
  • communication between two devices having a relatively long distance is performed wirelessly. For this reason, the problem of the wiring which may arise when communicating via a long cable can be avoided.
  • data transmitted between the second processing device 20 and the third processing device 30 is a determination result, and the amount of data is relatively small. For this reason, even in wireless communication, data can be transmitted without causing communication trouble.
  • the monitoring system is a monitoring system having a data transmission mechanism suitable for monitoring a facility having a long data transmission distance.
  • FIG. 3 shows an example of a functional block diagram of the monitoring system of the present embodiment.
  • the monitoring system according to the present embodiment is different from the monitoring system according to the first embodiment in that a connection box 50 is provided.
  • Other configurations of the monitoring system of the present embodiment are the same as those of the monitoring system of the first embodiment.
  • the connection box 50 is a relay device that transmits information received from each of the plurality of first processing devices 10 to the second processing device 20.
  • the connection box 50 is installed close to the second processing apparatus 20.
  • Each of the plurality of first processing apparatuses 10 communicates with the connection box 50 via a cable.
  • the communication standard is exemplified by RS485, but is not limited thereto.
  • the second processing device 20 and the connection box 50 may communicate wirelessly or via a cable.
  • the connection box 50 may have a water / dust resistant (eg, IP67) structure in consideration of outdoor installation or the like.
  • the monitoring system of the present embodiment it is possible to achieve the same operational effects as the monitoring system of the first embodiment. Further, by providing the connection box 50, data transmission between the plurality of first processing devices 10 and the second processing devices 20 can be performed smoothly.
  • the monitoring system of the present embodiment has the same configuration as that of the second embodiment (see FIG. 3), and the configuration is more concrete. In addition, you may have the structure similar to 1st Embodiment (refer FIG. 1).
  • the equipment 40 to be monitored is a belt conveyor.
  • the first processing apparatus 10 is attached to some or all of the plurality of pulleys 60. Note that the installation positions of the monitoring target equipment 40 and the first processing device 10 are merely examples, and other configurations may be employed.
  • FIG. 5 shows an example of a functional block diagram of the first processing apparatus 10.
  • the first processing device 10 includes a sensor unit 11, a first data processing unit 12, a first transmission unit 13, a first mode management unit 14, and a first reception unit 15. And have.
  • FIG. 6 shows an example of a functional block diagram of the second processing device 20.
  • the second processing device 20 includes a second receiving unit 21, a determining unit 22, a second data processing unit 23, a 2-2 transmitting unit 24, and a second mode management. Section 25 and a 2-1 transmission section 26.
  • the monitoring system of this embodiment has a first mode and a second mode.
  • the monitoring system is in one of the first mode and the second mode, and these modes can be switched alternately.
  • the monitoring system in the first mode makes a simple abnormality determination as compared to the second mode.
  • each of the plurality of first processing apparatuses 10 determines whether there is an abnormality.
  • the monitoring system in the second mode makes a detailed abnormality determination as compared with that in the first mode.
  • the second processing device 20 determines whether there is an abnormality.
  • the sensor unit 11 has the vibration sensor described in the first embodiment. During the first mode, the sensor unit 11 continues measurement by the vibration sensor.
  • the first data processing unit 12 determines whether there is an abnormality in the monitoring target equipment 40 based on the measurement data of the vibration sensor. During the first mode, the first data processing unit 12 repeatedly performs the above determination based on the latest measurement data every predetermined time.
  • abnormal feature quantities appearing in measurement data and machining data (hereinafter referred to as “abnormal feature quantities”) when an abnormality occurs in the monitoring target equipment 40 are registered in the database. Then, when the abnormal feature amount is extracted from the measurement data or the processed data, the first data processing unit 12 determines that an abnormality has occurred in the monitoring target equipment 40. On the other hand, when the abnormal characteristic amount is not extracted from the measurement data or the processed data, the first data processing unit 12 determines that no abnormality has occurred in the monitoring target equipment 40.
  • the characteristic amount at the time of abnormality may be a characteristic at a certain point in time or a characteristic of time-series change.
  • the abnormal feature amount may be defined by one type of value, or may be defined by a combination of a plurality of types of values.
  • the value extracted from the measurement data includes a peak value appearing in a predetermined time frame in a waveform indicating the magnitude of vibration in a predetermined axial direction with respect to the time axis, and a plurality of values appearing in the predetermined time frame in the waveform.
  • the average value of peak values, the magnitude of an arbitrary peak value relative to the average value (peak value / average value), and the integrated value of the magnitude of vibration observed in the waveform for the predetermined time frame The magnitude of an arbitrary peak value (peak value / integrated value) with respect to the integrated value, the S / N ratio, and the like are exemplified.
  • processing data data obtained by Fourier transform of measurement data (a waveform indicating the magnitude of vibration in a predetermined axial direction with respect to the time axis) is exemplified.
  • values extracted from such processed data include an average value of values at a specific frequency such as a high-order wave, a partial integrated value, and the like.
  • Examples of the processed data include differential data between measurement data (a waveform indicating the magnitude of vibration in a predetermined axial direction with respect to the time axis) and reference data.
  • the first transmission unit 13 transmits the determination result of the first data processing unit 12 (whether there is an abnormality in the monitoring target equipment 40) to the second processing device 20. During the first mode, the first transmission unit 13 repeatedly transmits the latest determination result every predetermined time.
  • the first transmission unit 13 transmits measurement data and / or processing data to the second processing device 20 during the first mode. For example, the first transmission unit 13 transmits measurement data and / or processing data for a predetermined time to the second processing device 20 every predetermined time.
  • the second receiving unit 21 receives the determination result of the first processing device 10 and the measurement data and / or processing data from each of the plurality of first processing devices 10.
  • the determination unit 22 determines whether the determination result of the first processing apparatus 10 indicates “the monitoring target facility 40 is abnormal” or “the monitoring target facility 40 is abnormal”.
  • the 2-2 transmission unit 24 transmits the determination result of the first processing device 10 to the third processing device 30.
  • the second data processing unit 23 uses the measurement data or processing data received from the first processing device 10 to monitor the equipment 40 to be monitored. Determine if there is an abnormality. Then, the 2-2 transmission unit 24 transmits the determination result of the second processing device 20 to the third processing device 30. The 2-2 transmission unit 24 may transmit the determination result of the first processing device 10 to the third processing device 30 in addition to the determination result of the second processing device 20.
  • the second data processing unit 23 performs determination with higher accuracy than the first data processing unit 12.
  • the determination method of the second data processing unit 23 is designed to satisfy the condition.
  • the second data processing unit 23 can determine whether there is an abnormality in the monitoring target equipment 40 in the same manner as the determination by the first data processing unit 12.
  • the second data processing unit 23 may determine whether there is an abnormality in the monitoring target equipment 40 by a method different from the determination by the first data processing unit 12. Specifically, a method of determining the presence / absence of abnormality of the monitoring target facility 40 using a machine learning (eg, deep learning) technique is exemplified.
  • machine learning eg, deep learning
  • the sensor unit 11 continues measurement by the vibration sensor during the second mode.
  • the first data processing unit 12 does not determine whether there is an abnormality in the monitored equipment 40. Note that the first data processing unit 12 may execute a process of processing the measurement data and generating the processed data.
  • the first transmission unit 13 transmits measurement data and / or processing data to the second processing device 20.
  • the first transmission unit 13 transmits measurement data and / or processing data for a predetermined time to the second processing device 20 every predetermined time. Note that during the second mode, the first transmission unit 13 does not transmit the determination result of the first processing device 10 to the second processing device 20.
  • the second receiving unit 21 receives measurement data and / or processing data from each of the plurality of first processing devices 10.
  • the second data processing unit 23 determines whether there is an abnormality in the monitoring target equipment 40 based on the measurement data or the processing data. Then, the 2-2 transmission unit 24 transmits the determination result of the second processing device 20 to the third processing device 30.
  • the determination method by the second data processing unit 23 is the same as that described in “Processing contents of the first processing device 10 and the second processing device 20 in the first mode”.
  • the second mode management unit 25 estimates the state of the monitoring target equipment 40 based on the measurement data and / or processing data received from the first processing device 10. Then, the second mode management unit 25 determines the mode based on the estimated state of the monitored facility 40.
  • the second mode management unit 25 estimates the rotation speed of the pulley 60 based on the measurement data or the processing data.
  • the rotation speed is calculated using the appearance time interval of features that appear repeatedly in the measurement data and processing data (the time interval from the first appearance until the next appearance) as the time required for the pulley 60 to make one revolution. May be.
  • the second mode management unit 25 determines the second mode.
  • the second mode management unit 25 determines the first mode.
  • the monitoring system of the present embodiment can switch between the first mode for performing simple determination and the second mode for performing detailed determination according to the rotation state of the pulley 60 (speed of the belt conveyor).
  • the second processing device 20 stores information indicating the current mode in its own storage device. And the 2nd mode management part 25 updates the information which shows the present mode memorize
  • the second mode management unit 25 can execute the process of determining the above-described mode repeatedly at predetermined time intervals.
  • the 2-1st transmission unit 26 notifies each of the plurality of first processing devices 10 of the mode determined by the second mode management unit 25.
  • the 2-1st transmission unit 26 has a plurality of first processing devices 10 when the mode determined by the second mode management unit 25 is different from the current mode at that time (that is, when the mode is switched). Each may be notified.
  • the mode determined by the second mode management unit 25 is the same as the current mode at that time (that is, when the mode is not switched), it is not necessary to notify each of the plurality of first processing devices 10. Also good.
  • the first receiving unit 15 receives the mode notification from the second processing device 20.
  • the first processing device 10 stores information indicating the current mode in its own storage device.
  • the 1st mode management part 14 updates the information which shows the present mode memorize
  • the sensor unit 11 of the first processing apparatus 10 continues measurement by the vibration sensor. And the 1st processing apparatus 10 performs the process of S11 thru
  • the first processing device 10 determines whether it is time to execute a predetermined process.
  • the first mode management unit 14 checks the current mode (S11).
  • the first data processing unit 12 determines whether there is an abnormality in the monitoring target equipment 40 based on the measurement data and / or processing data ( S12). Then, the first transmission unit 13 transmits the determination result of the first data processing unit 12 and the measurement data and / or processing data used for the determination to the second processing device 20 (S13).
  • the first transmission unit 13 transmits measurement data and / or processing data to the second processing device 20 (S14). .
  • the second mode management unit 25 confirms the current mode (S31).
  • the determination result of the first processing device 10 is included in the information received by the second receiving unit 21 from the first processing device 10. Is included.
  • the determination unit 22 determines whether the determination result indicates “the monitoring target facility 40 is abnormal” or “the monitoring target facility 40 is abnormal”.
  • the 2-2 transmission unit 24 receives the determination result of the first processing device 10 received by the second reception unit 21. Is transmitted to the third processing device 30 (S35).
  • the processing unit 23 determines whether there is an abnormality in the monitoring target equipment 40 (S32). Then, the 2-2 transmission unit 24 transmits the determination result of the second processing device 20 to the third processing device 30 (S33).
  • the second mode management unit 25 estimates the rotational speed of the pulley 60 (S51). .
  • the second mode management unit 25 determines the second mode (S53).
  • the second mode management unit 25 determines the first mode (S54).
  • the second mode management unit 25 When the newly determined mode is different from the current mode at that time, that is, when the mode is switched (Yes in S55), the second mode management unit 25 indicates the current mode stored in the self-memory measure. Information is updated (S56). In addition, the 2-1st transmission unit 26 notifies the plurality of first processing devices 10 of the newly determined mode (S56). On the other hand, when the newly determined mode is the same as the current mode at that time, that is, when the mode is not switched (No in S55), the process of S56 is not executed.
  • the same effect as the monitoring system of the 1st and 2nd embodiment is realizable.
  • the detailed determination of the presence / absence of abnormality by the second processing device 20 is suppressed only when necessary, and in other cases, the simple determination of the presence / absence of abnormality by the first processing device 10 is performed. It can be. For this reason, it is possible to reduce the processing load of the monitoring system as compared with the case where the detailed presence / absence determination is always performed. In addition, since the detailed presence / absence determination is performed when necessary, a highly reliable monitoring system is realized.
  • the case where it is necessary is, for example, a case where the first processing apparatus 10 determines that there is an abnormality.
  • a measure such as stopping the operation of the monitoring target equipment 40 is taken. Stopping the operation of the equipment 40 to be monitored is an action that should be avoided as much as possible because a great deal of damage occurs. Therefore, when it is determined that there is an abnormality by simple determination by the first processing device 10, detailed determination by the second processing device 20 is performed, and the determination result of the second processing device 20 is output. As a result, the reliability of the “abnormality determination result” output from the monitoring system can be increased. As a result, it is possible to suppress the inconvenience that the operation of the monitoring target equipment 40 is unnecessarily stopped due to erroneous determination of “abnormal”.
  • the monitoring system according to the present embodiment has the same configuration as that of the third embodiment (see FIG. 3), and further includes additional functions not described in the third embodiment.
  • FIG. 5 An example of a functional block diagram of the first processing apparatus 10 is shown in FIG. 5 as in the third embodiment.
  • An example of a functional block diagram of the second processing device 20 is shown in FIG.
  • the second processing apparatus 20 of the present embodiment is different from the second processing apparatus 20 of the third embodiment in that it includes a collation unit 27. Note that other functional units other than the verification unit 27 shown in FIGS. 5 and 10 have the configuration described in the third embodiment.
  • the first transmission unit 13 of the first processing device 10 illustrated in FIG. 5 transmits the measurement data to the second processing device 20 at a predetermined timing during the first mode.
  • the first transmission unit 13 repeatedly transmits measurement data to the second processing device 20 at a predetermined time interval.
  • the second receiving unit 21 of the second processing device 20 shown in FIG. 10 receives the measurement data.
  • the second data processing unit 23 processes the measurement data as necessary, and determines whether there is an abnormality in the monitoring target equipment 40 based on the measurement data and / or the processing data.
  • the collation unit 27 collates the determination result of the first processing device 10 received by the second reception unit 21 with the determination result of the second data processing unit 23, and determines whether or not they match. Then, the 2-2 transmission unit 24 transmits the result of collation by the collation unit 27 to the third processing device 30.
  • the first processing apparatus 10 repeats the processing every predetermined time during the first mode.
  • the time interval for repeating the process is larger than the time interval for repeating the processes of S11 to S14 in FIG.
  • the first processing device 10 determines whether it is time to execute a predetermined process. When the execution timing comes (Yes in S20), the first transmission unit 13 transmits the measurement data to the second processing device 20 (S21).
  • the first processing device 10 continues the same processing unless there is an input for ending the processing or a mode change to the second mode (No in S22).
  • the second processing device 20 repeats the processing every predetermined time during the first mode.
  • the second data processing unit 23 detects the equipment to be monitored based on the measurement data received by the second receiving unit 21. The presence / absence of 40 abnormalities is determined (S41).
  • the collation unit 27 collates the determination result (for example, the latest determination result) of the first processing device 10 with the determination result of the second data processing unit 23 in S41 (S42).
  • the collation result (whether or not they match) by the second-second transmission unit 24 and the collation unit 27 is transmitted to the third processing device 30 (S43).
  • the second processing device 20 continues the same processing unless there is an input for ending the processing or a mode change to the second mode (No in S44).
  • the same effect as the monitoring system of the 1st thru / or a 3rd embodiment is realizable.
  • the second processing device 20 makes a determination every predetermined time while the first mode continues and the determination by the first processing device 10 continues.
  • the collation result between the determination result of the first processing device 10 and the determination result of the second processing device 20 can be transmitted to the third processing device 30.
  • the abnormality that has occurred in the first processing apparatus 10 can be detected by the periodic check.
  • a part or all of the above embodiment can be described as in the following supplementary notes, but is not limited to the following.
  • a third processing device in wireless communication with the second processing device; Have The distance between the first processing apparatus and the second processing apparatus is 1 m or more and 100 m or less, The distance between the second processing apparatus and the third processing apparatus is 50 m or more,
  • a monitoring system in which a frequency of wireless communication between the second processing device and the third processing device is 400 MHz or more and 5.3 GHz or less. 2.
  • the monitoring system has a plurality of modes; During the first mode, The first processing apparatus is Determine the presence or absence of abnormality of the equipment based on the measurement data of the vibration sensor, The determination result of the first processing device and the measurement data and / or the processing data of the measurement data are transmitted to the second processing device, The second processing device comprises: When the determination result of the first processing device indicates no abnormality, the determination result of the first processing device is transmitted to the third processing device, When the determination result of the first processing device indicates that there is an abnormality, it is determined whether there is an abnormality in the equipment based on the measurement data or the processing data, and the determination result of the second processing device is used as the third processing.
  • a monitoring system that transmits to a device. 4).
  • the monitoring system has a plurality of modes; During the second mode, The first processing device transmits the measurement data of the vibration sensor or the processing data of the measurement data to the second processing device, A monitoring system in which the second processing device determines whether there is an abnormality in the facility based on the measurement data or the processing data, and transmits a determination result of the second processing device to the third processing device. 5. In the monitoring system according to 3 or 4, The monitoring system in which the second processing device determines a mode and notifies the plurality of first processing devices. 6).
  • the second processing device is a monitoring system that estimates a state of the facility based on the measurement data and / or the processing data, and determines a mode based on the estimated state of the facility. 7).
  • the facility is a belt conveyor;
  • the first processing device is attached to some or all of the plurality of pulleys,
  • the second processing device estimates a rotation speed of the pulley based on the measurement data or the machining data, and determines the second mode when the estimated rotation speed is a reference value or less, and the estimated A monitoring system that determines the first mode when the rotational speed is greater than a reference value. 8).
  • the first processing device transmits the measurement data to the second processing device at a predetermined timing, The second processing device determines whether or not there is an abnormality in the equipment based on the measurement data, and checks the state of the first processing device by collating with the determination result of the first processing device. system.
  • the facility is a belt conveyor; A monitoring system in which the first processing device is attached to some or all of a plurality of pulleys. 10.
  • a plurality of first processing devices each having a vibration sensor are attached to the facility to be monitored, A second processing device having a distance of 1 m or more and 100 m or less from the first processing device and each of the plurality of first processing devices via a cable; A monitoring method in which a third processing device having a distance of 50 m or more from the second processing device is wirelessly communicated with the second processing device, and a frequency of wireless communication is from 400 MHz to 5.3 GHz.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本発明の監視システムは、監視対象の設備に取り付けられ、各々が振動センサを有する複数の第1の処理装置(10)と、複数の第1の処理装置各々とケーブルを介して通信する第2の処理装置(20)と、第2の処理装置(20)と無線で通信する第3の処理装置(30)と、を有する。第1の処理装置(10)と第2の処理装置(20)との距離は1m以上100m以下である。第2の処理装置(20)と第3の処理装置(30)との距離は50m以上である。第2の処理装置(20)と第3の処理装置(30)との間の無線通信の周波数は400MHz以上5.3GHz以下である。

Description

監視システム及び監視方法
 本発明は、監視システム及び監視方法に関する。
 特許文献1には、監視対象の設備にセンサを取り付け、当該センサが測定した時系列データに基づきその設備の監視を行う方法が開示されている。
特開2009-270843号公報
 センサで収集したデータに基づき設備の異常等を検出する監視においては、センサで収集し、解析するデータの量が多くなり得る。一方で、監視対象の設備の大きさやその設置位置等に起因し、データを伝送する距離が長くなり得る。処理するデータが多く、かつ、データの伝送距離が長い場合、データ伝送の仕組みが適切でなければ、通信遅延等の通信トラブルが生じ、良好な監視を行えなくなる。
 本発明は、データ伝送距離が長くなる設備の監視に適した監視システムを提供することを課題とする。
 本発明によれば、
 監視対象の設備に取り付けられ、各々が振動センサを有する複数の第1の処理装置と、
 複数の前記第1の処理装置各々とケーブルを介して通信する第2の処理装置と、
 前記第2の処理装置と無線で通信する第3の処理装置と、
を有し、
 前記第1の処理装置と前記第2の処理装置との距離は1m以上100m以下であり、
 前記第2の処理装置と前記第3の処理装置との距離は50m以上であり、
 前記第2の処理装置と前記第3の処理装置との間の無線通信の周波数は400MHz以上5.3GHz以下である監視システムが提供される。
 また、本発明によれば、
 各々が振動センサを有する複数の第1の処理装置を監視対象の設備に取り付け、
 前記第1の処理装置との距離が1m以上100m以下である第2の処理装置と、複数の前記第1の処理装置各々とをケーブルを介して通信させ、
 前記2の処理装置との距離が50m以上である第3の処理装置と、前記第2の処理装置とを無線で通信させ、無線通信の周波数は400MHz以上5.3GHz以下である監視方法が提供される。
 本発明によれば、データ伝送距離が長くなる設備の監視に適した監視システムが実現される。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態の監視システムの機能ブロック図の一例を示す図である。 本実施形態の各装置のハードウエア構成の一例を示す図である。 本実施形態の監視システムの機能ブロック図の一例を示す図である。 本実施形態の監視システムの適用例を示す図である。 本実施形態の第1の処理装置の機能ブロック図の一例を示す図である。 本実施形態の第2の処理装置の機能ブロック図の一例を示す図である。 本実施形態の第1の処理装置の処理の流れの一例を示すフローチャートである。 本実施形態の第2の処理装置の処理の流れの一例を示すフローチャートである。 本実施形態の第2の処理装置の処理の流れの一例を示すフローチャートである。 本実施形態の第2の処理装置の機能ブロック図の一例を示す図である。 本実施形態の第1の処理装置の処理の流れの一例を示すフローチャートである。 本実施形態の第2の処理装置の処理の流れの一例を示すフローチャートである。
<第1の実施形態>
 本実施形態の監視システムは、データ伝送距離が長くなる設備の監視に適したデータ伝送の仕組みを備える。監視内容は、設備の異常や故障予兆の有無の監視である。以下、詳細に説明する。
 図1に、本実施形態の監視システムの機能ブロック図の一例を示す。図示するように、監視システムは、複数の第1の処理装置10と、第2の処理装置20と、第3の処理装置30とを有する。
 複数の第1の処理装置10は、監視対象の設備40に取り付けられる。図では第1の処理装置10の数が3であるが、これに限定されない。監視対象の設備40は、ベルトコンベア等が例示されるが、これに限定されない。
 複数の第1の処理装置10は、各々が振動センサを有する。振動センサは、監視対象の設備40に生じた振動を測定する。振動センサは、一軸方向の加速度を測定する一軸加速度センサであってもよいし、三軸方向の加速度を測定する三軸加速度センサであってもよいし、その他であってもよい。なお、複数の第1の処理装置が備える振動センサは、同種の振動センサであってもよいし、複数種類の振動センサが混在してもよい。例えば、複数の第1の処理装置10の中に、一軸加速度センサを備えるものと、三軸加速度センサを備えるものとが混在してもよいし、複数の第1の処理装置10のすべてが三軸加速度センサを備えてもよいし、複数の第1の処理装置10のすべてが一軸加速度センサを備えてもよい。
 第1の処理装置10は、「振動センサの測定データを第2の処理装置20に送信する処理」、「振動センサの測定データを加工し、測定データの加工データ(以下単に「加工データ」という)を第2の処理装置20に送信する処理」及び「測定データ又は加工データに基づき監視対象の設備40の異常の有無を判定し、判定結果を第2の処理装置20に送信する処理」の中の少なくとも1つを実行する。なお、第1の処理装置10は全ての測定データ及び/又は加工データを第2の処理装置20に送信してもよいし、一部の測定データ及び/又は加工データを第2の処理装置20に送信してもよい。
 第2の処理装置20は、監視対象の設備40の近傍に設置される。複数の第1の処理装置10各々と第2の処理装置20との距離は、1m以上100m以下である。複数の第1の処理装置10各々と第2の処理装置20との間の通信の規格は、比較的データ量が多いデータの伝送に適したものが好ましい。伝送距離が比較的短い複数の第1の処理装置10各々と第2の処理装置20とは、ケーブルを介して通信する。通信規格はRS485等が例示されるが、これに限定されない。
 なお、第1の処理装置10、第2の処理装置20及びケーブルは、屋外設置等を考慮し、耐水・耐塵(例:IP67)構造としてもよい。
 第2の処理装置20は、「第1の処理装置10から受信した判定結果を第3の処理装置30に送信する処理」及び「第1の処理装置10から受信した測定データ及び/又は加工データに基づき監視対象の設備40の異常の有無を判定し、その判定結果を第3の処理装置30に送信する処理」の少なくとも一方を実行する。
 第3の処理装置30は、監視対象の設備40、第1の処理装置10及び第2の処理装置20から比較的離れた位置に設置される。第3の処理装置30は、例えば、事務所や監視センター等に設置される。第2の処理装置20と第3の処理装置30との距離は、50m以上、好ましくは100m以上である。第3の処理装置30を監視対象の設備40から離すほど、例えば第3の処理装置30を操作するオペレータの安全性が確保される等のメリットが得られる。このように第2の処理装置20と第3の処理装置30とは比較的離れる傾向となるので、無線で通信する。第2の処理装置20と第3の処理装置30との間の無線通信の周波数は400MHz以上5.3GHz以下(例:920MHz)である。
 第3の処理装置30は、第2の処理装置20から受信した判定結果を、出力装置を介して出力する。例えば、第3の処理装置30は、当該判定結果をディスプレイに表示する。オペレータは、第3の処理装置30から出力された情報に基づき、監視対象の設備40の状態を監視する。また、第3の処理装置30は第2の処理装置20から受信した判定結果を記憶装置に記憶させてもよい。
 次に、本実施形態の装置のハードウエア構成の一例について説明する。本実施形態の各装置(第1の処理装置10、第2の処理装置20及び第3の処理装置30各々)が備える各機能部は、任意のコンピュータのCPU(Central Processing Unit)、メモリ、メモリにロードされるプログラム、そのプログラムを格納するハードディスク等の記憶ユニット(あらかじめ装置を出荷する段階から格納されているプログラムのほか、CD(Compact Disc)等の記憶媒体やインターネット上のサーバ等からダウンロードされたプログラムをも格納できる)、ネットワーク接続用インターフェイスを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。
 図2は、本実施形態の各装置のハードウエア構成を例示するブロック図である。図1に示すように、各装置は、プロセッサ1A、メモリ2A、入出力インターフェイス3A、周辺回路4A、バス5Aを有する。周辺回路4Aには、様々なモジュールが含まれる。処理装置は周辺回路4Aを有さなくてもよい。
 バス5Aは、プロセッサ1A、メモリ2A、周辺回路4A及び入出力インターフェイス3Aが相互にデータを伝送するためのデータ伝送路である。プロセッサ1Aは、例えばCPU、GPU(Graphics Processing Unit)などの演算処理装置である。メモリ2Aは、例えばRAM(Random Access Memory)やROM(Read Only Memory)などのメモリである。入出力インターフェイス3Aは、入力装置、外部装置、外部サーバ、センサ等から情報を取得するためのインターフェイスや、出力装置、外部装置、外部サーバ等に情報を出力するためのインターフェイスなどを含む。入力装置は、例えばキーボード、マウス、マイク等である。出力装置は、例えばディスプレイ、スピーカ、プリンター、メーラ等である。プロセッサ1Aは、各モジュールに指令を出し、それらの演算結果をもとに演算を行うことができる。
 以上、本実施形態の監視システムによれば、監視対象の設備40に取り付けた振動センサの測定データに基づき、監視対象の設備40における異常の有無を監視することができる。このため、信頼度の高い監視が実現される。
 また、本実施形態の監視システムによれば、オペレータは、監視対象の設備40から比較的離れた位置に設置された第3の処理装置30を介して、監視対象の設備40における異常の有無を監視することができる。このため、オペレータは、監視対象の設備40から離れた安全な場所で、監視を行うことができる。
 また、本実施形態の監視システムによれば、監視対象の設備40に取り付けられた第1の処理装置10及び/又はその近傍に設置された第2の処理装置20が、振動センサの測定データ及び/又は加工データに基づき監視対象の設備40の異常の有無を判定する。そして、判定結果のみが第3の処理装置30に送信される。
 すなわち、測定データ及び/又は加工データのように比較的データ量が多いデータの伝送は、比較的距離が短い第1の処理装置10及び第2の処理装置20間で行われる。そして、比較的距離が長い第2の処理装置20及び第3の処理装置30間では、判定結果のように比較的データ量が少ないデータの伝送が行われる。本実施形態の監視システムでは、比較的データ量が多いデータが、比較的距離が長い装置間で伝送される必要がない。このような本実施形態の監視システムによれば、通信遅延等の通信トラブルが生じる不都合を軽減できる。
 また、本実施形態の監視システムによれば、測定データ及び/又は加工データのように比較的データ量が多いデータの伝送は、ケーブルを介して行う。このため、通信遅延等の通信トラブルが生じる不都合を軽減できる。
 また、本実施形態によれば、比較的距離が長い2つの装置間(第2の処理装置20と第3の処理装置30との間)の通信は無線で行う。このため、長いケーブルを介して通信を行う場合に生じ得る配線の問題を回避できる。なお、第2の処理装置20と第3の処理装置30との間で伝送されるデータは判定結果であり、比較的データ量が少ない。このため、無線通信であっても、通信トラブルを起こすことなくデータの伝送を行うことができる。
 このように、本実施形態の監視システムは、データ伝送距離が長くなる設備の監視に適したデータ伝送の仕組みを備える監視システムである。
<第2の実施形態>
 図3に本実施形態の監視システムの機能ブロック図の一例を示す。図示するように、本実施形態の監視システムは、接続ボックス50を有する点で、第1の実施形態の監視システムと異なる。本実施形態の監視システムのその他の構成は、第1の実施形態の監視システムと同様である。
 接続ボックス50は、複数の第1の処理装置10各々から受信した情報を第2の処理装置20に送信する中継機器である。接続ボックス50は第2の処理装置20に近接して設置される。複数の第1の処理装置10各々と接続ボックス50とは、ケーブルを介して通信する。通信規格はRS485等が例示されるが、これに限定されない。第2の処理装置20と接続ボックス50とは、無線で通信してもよいし、ケーブルを介して通信してもよい。接続ボックス50は、屋外設置等を考慮し、耐水・耐塵(例:IP67)構造としてもよい。
 本実施形態の監視システムによれば、第1の実施形態の監視システムと同様な作用効果を実現できる。また、接続ボックス50を備えることで、複数の第1の処理装置10と第2の処理装置20との間のデータの伝送を円滑に行うことができる。
<第3の実施形態>
 本実施形態の監視システムは、第2の実施形態(図3参照)と同様の構成を有し、構成がより具体化される。なお、第1の実施形態(図1参照)と同様な構成を有してもよい。
 まず、本実施形態の監視対象の設備40及び第1の処理装置10の取り付け方法を説明する。図4に示すように、監視対象の設備40はベルトコンベアである。そして、複数のプーリ60の一部又は全部に第1の処理装置10が取り付けられる。なお、監視対象の設備40及び第1の処理装置10の取り付け位置はあくまで一例であり、その他の構成とすることもできる。
 次に、第1の処理装置10及び第2の処理装置20の機能ブロック図を説明する。
 図5に、第1の処理装置10の機能ブロック図の一例を示す。図示するように、第1の処理装置10は、センサ部11と、第1のデータ処理部12と、第1の送信部13と、第1のモード管理部14と、第1の受信部15とを有する。
 図6に、第2の処理装置20の機能ブロック図の一例を示す。図示するように、第2の処理装置20は、第2の受信部21と、判断部22と、第2のデータ処理部23と、第2-2の送信部24と、第2のモード管理部25と、第2-1の送信部26とを有する。
 本実施形態の監視システムは、第1のモード及び第2のモードを有する。監視システムは、第1のモード及び第2のモードのいずれかのモードとなり、それらモードを交互に切り替えることができる。
 第1のモード時の監視システムは、第2のモード時に比べて簡易な異常有無判定を行う。第1のモード時には、複数の第1の処理装置10各々が異常有無判定を行う。第2のモード時の監視システムは、第1のモード時に比べて詳細な異常有無判定を行う。第2のモード時には、第2の処理装置20が異常有無判定を行う。
 以下、図5及び図6の機能ブロック図を用いて、「第1のモード時の第1の処理装置10及び第2の処理装置20の処理内容」、「第2のモード時の第1の処理装置10及び第2の処理装置20の処理内容」及び「モードの決定方法」をこの順に説明する。
「第1のモード時の第1の処理装置10及び第2の処理装置20の処理内容」
 まず、図5を用いて、第1のモード時の第1の処理装置10の処理内容を説明する。
 センサ部11は、第1の実施形態で説明した振動センサを有する。第1のモードの間、センサ部11は、振動センサによる測定を継続する。
 第1のデータ処理部12は、振動センサの測定データに基づき監視対象の設備40の異常の有無を判定する。第1のモードの間、第1のデータ処理部12は、所定時間毎に、最新の測定データに基づく上記判定を繰り返し行う。
 ここで、第1のデータ処理部12による判定の方法を説明する。まず、監視対象の設備40に異常が生じている時に測定データや加工データに現れる特徴量(以下、「異常時特徴量」という)がデータベースに登録されている。そして、測定データや加工データから異常時特徴量が抽出された場合、第1のデータ処理部12は、監視対象の設備40に異常が生じていると判定する。一方、測定データや加工データから異常時特徴量が抽出されていない場合、第1のデータ処理部12は、監視対象の設備40に異常が生じていないと判定する。
 異常時特徴量は、ある時点の特徴であってもよいし、時系列な変化の特徴であってもよい。また、異常時特徴量は一つの種類の値で定義されてもよいし、複数の種類の値の組合せで定義されてもよい。
 測定データから抽出される値としては、時間軸に対する所定の軸方向の振動の大きさを示す波形において所定時間枠の中に現れるピークの値、当該波形において当該所定時間枠の中に現れる複数のピークの値の加算平均値、当該加算平均値に対する任意のピークの値の大きさ(ピーク値/加算平均値)、当該波形において当該所定時間枠の中で観察された振動の大きさの積算値、当該積算値に対する任意のピークの値の大きさ(ピーク値/積算値)、S/N比等が例示される。
 また、加工データとしては、測定データ(時間軸に対する所定の軸方向の振動の大きさを示す波形)をフーリエ変換して得られたデータが例示される。そして、このような加工データから抽出される値としては、高次波等の特定の周波数における値の加算平均値、部分積算値等が例示される。また、加工データとしては、測定データ(時間軸に対する所定の軸方向の振動の大きさを示す波形)と基準データとの差分データ等が例示される。
 第1の送信部13は、第1のデータ処理部12の判定結果(監視対象の設備40における異常の有無)を第2の処理装置20に送信する。第1のモードの間、第1の送信部13は、所定時間毎に、最新の判定結果の送信を繰り返し行う。
 なお、第1の送信部13は、第1のモードの間、測定データ及び/又は加工データを第2の処理装置20に送信する。例えば、第1の送信部13は、所定時間毎に、所定時間分の測定データ及び/又は加工データを第2の処理装置20に送信する。
 次に、図6を用いて、第1のモード時の第2の処理装置20の処理内容を説明する。
 第2の受信部21は、複数の第1の処理装置10各々から、第1の処理装置10の判定結果と、測定データ及び/又は加工データを受信する。
 判断部22は、第1の処理装置10の判定結果が「監視対象の設備40に異常有」を示すか、「監視対象の設備40に異常無」を示すかを判断する。
 第1の処理装置10の判定結果が異常無を示す場合、第2-2の送信部24は、その第1の処理装置10の判定結果を第3の処理装置30に送信する。
 一方、第1の処理装置10の判定結果が異常有を示す場合、第2のデータ処理部23は、その第1の処理装置10から受信した測定データ又は加工データに基づき監視対象の設備40の異常の有無を判定する。そして、第2-2の送信部24は、第2の処理装置20の判定結果を第3の処理装置30に送信する。なお、第2-2の送信部24は、第2の処理装置20の判定結果に加えて、第1の処理装置10の判定結果を第3の処理装置30に送信してもよい。
 ここで、第2のデータ処理部23による判定の方法を説明する。第2のデータ処理部23は、第1のデータ処理部12よりも精度の高い判定を行う。第2のデータ処理部23の判定方法は当該条件を満たすように設計される。例えば、第2のデータ処理部23は、第1のデータ処理部12による判定と同様な方法で、監視対象の設備40の異常の有無を判定することができる。この場合に、第1のデータ処理部12よりも精度の高い判定を実現する手段は様々であるが、例えばサンプリングレートを異ならせる等の手段で実現してもよい。その他、第2のデータ処理部23は、第1のデータ処理部12による判定と異なる方法で、監視対象の設備40の異常の有無を判定してもよい。具体的には、機械学習(例:ディープラーニング)の技術を利用して、監視対象の設備40の異常の有無を判定する方法などが例示される。
「第2のモード時の第1の処理装置10及び第2の処理装置20の処理内容」
 まず、図5を用いて、第2のモード時の第1の処理装置10の処理内容を説明する。
 センサ部11は、第2のモードの間、振動センサによる測定を継続する。
 第2のモードの間、第1のデータ処理部12は、監視対象の設備40の異常の有無の判定を行わない。なお、第1のデータ処理部12は、測定データを加工して加工データを生成する処理は実行してもよい。
 第1の送信部13は、測定データ及び/又は加工データを第2の処理装置20に送信する。第2のモードの間、第1の送信部13は、所定時間毎に、所定時間分の測定データ及び/又は加工データを第2の処理装置20に送信する。なお、第2のモードの間、第1の送信部13は、第1の処理装置10の判定結果を第2の処理装置20に送信しない。
 次に、図6を用いて、第2のモード時の第2の処理装置20の処理内容を説明する。
 第2の受信部21は、複数の第1の処理装置10各々から、測定データ及び/又は加工データを受信する。第2のデータ処理部23は、測定データ又は加工データに基づき監視対象の設備40の異常の有無を判定する。そして、第2-2の送信部24は、第2の処理装置20の判定結果を第3の処理装置30に送信する。第2のデータ処理部23による判定の方法は、「第1のモード時の第1の処理装置10及び第2の処理装置20の処理内容」で説明したものと同様である。
「モードの決定方法」
 まず、図6の機能ブロック図を用いて、第2の処理装置20の処理内容を説明する。
 第2のモード管理部25は、第1の処理装置10から受信した測定データ及び/又は加工データに基づき、監視対象の設備40の状態を推定する。そして、第2のモード管理部25は、推定した監視対象の設備40の状態に基づきモードを決定する。
 本実施形態の場合、第2のモード管理部25は、測定データ又は加工データに基づきプーリ60の回転速度を推定する。例えば、測定データや加工データに繰り返し現れる特徴の出現時間間隔(先に出現してから次に出現するまでの時間間隔)を、プーリ60が1周するのに要する時間として、回転速度を算出してもよい。
 そして、推定した回転速度が基準値以下の場合、第2のモード管理部25は第2のモードを決定する。一方、推定した回転速度が基準値より大の場合、第2のモード管理部25は第1のモードを決定する。
 このように、本実施形態の監視システムは、プーリ60の回転状態(ベルトコンベアの速度)に応じて、簡易判定を行う第1のモード及び詳細判定を行う第2のモードを切り換えることができる。
 第2の処理装置20は、現在のモードを示す情報を自記憶装置内に記憶しておく。そして、第2のモード管理部25は、決定内容に基づき、自記憶装置内に記憶されている現在のモードを示す情報を更新する。
 第1のモード時及び第2のモード時いずれであっても、第2のモード管理部25は、所定の時間間隔で繰り返し、上述したモードを決定する処理を実行することができる。
 第2-1の送信部26は、第2のモード管理部25が決定したモードを複数の第1の処理装置10各々に通知する。なお、第2-1の送信部26は、第2のモード管理部25が決定したモードがその時の現在のモードと異なる場合(すなわち、モードが切り替わる場合)に、複数の第1の処理装置10各々に通知してもよい。そして、第2のモード管理部25が決定したモードがその時の現在のモードと同じである場合(すなわち、モードが切り替わらない場合)には、複数の第1の処理装置10各々に通知しなくてもよい。
 次に、図5の機能ブロック図を用いて、第1の処理装置10の処理内容を説明する。
 第1の受信部15は、第2の処理装置20からモードの通知を受信する。第1の処理装置10は、現在のモードを示す情報を自記憶装置内に記憶しておく。そして、第1のモード管理部14は、第1の受信部15が第2の処理装置20から受信した通知内容に基づき、自記憶装置内に記憶されている現在のモードを示す情報を更新する。
 次に、図7のフローチャートを用いて、第1の処理装置10の処理の流れの一例を説明する。第1の処理装置10のセンサ部11は、振動センサによる測定を継続している。そして、第1の処理装置10は、所定時間毎にS11乃至S14の処理を実行する。
 S10では、第1の処理装置10は所定の処理を実行するタイミングになったか判断する。実行タイミングになった場合(S10のYes)、第1のモード管理部14は現在のモードを確認する(S11)。
 現在のモードが第1のモードである場合(S11の第1のモード)、第1のデータ処理部12は測定データ及び/又は加工データに基づき監視対象の設備40の異常の有無を判定する(S12)。そして、第1の送信部13は、第1のデータ処理部12の判定結果と、その判定に用いた測定データ及び/又は加工データとを第2の処理装置20に送信する(S13)。
 一方、現在のモードが第2のモードである場合(S11の第2のモード)、第1の送信部13は、測定データ及び/又は加工データを第2の処理装置20に送信する(S14)。
 以降、第1の処理装置10は、処理を終了する入力がなければ(S15のNo)、同様の処理を継続する。
 次に、図8のフローチャートを用いて、第2の処理装置20の処理の流れの一例を説明する。
 第2の受信部21が第1の処理装置10から情報を受信すると(S30のYes)、第2のモード管理部25は現在のモードを確認する(S31)。
 現在のモードが第1のモードである場合(S31の第1のモード)、第2の受信部21が第1の処理装置10から受信した情報の中に、第1の処理装置10の判定結果が含まれる。判断部22は、当該判定結果が「監視対象の設備40に異常有」を示すか、「監視対象の設備40に異常無」を示すかを判断する。
 第1の処理装置10の判定結果が異常無を示す場合(S34の異常無)、第2-2の送信部24は、第2の受信部21が受信した第1の処理装置10の判定結果を第3の処理装置30に送信する(S35)。
 一方、第1の処理装置10の判定結果が異常有を示す場合(S34の異常有)、また、現在のモードが第2のモードである場合(S31の第2のモード)、第2のデータ処理部23は第2の受信部21が受信した情報に含まれる測定データ及び/又は加工データに基づき、監視対象の設備40の異常の有無を判定する(S32)。そして、第2-2の送信部24は、第2の処理装置20の判定結果を第3の処理装置30に送信する(S33)。
 以降、第2の処理装置20は、処理を終了する入力がなければ(S36のNo)、同様の処理を継続する。
 次に、図9のフローチャートを用いて、第2の処理装置20の処理の流れの他の一例を説明する。
 第2の受信部21が第1の処理装置10から測定データ及び/又は加工データを受信すると(S50のYes)、第2のモード管理部25は、プーリ60の回転速度を推定する(S51)。そして、推定した回転速度が基準値以下である場合(S52のYes)、第2のモード管理部25は第2のモードを決定する(S53)。一方、回転速度が基準値以下でない場合(S52のNo)、第2のモード管理部25は第1のモードを決定する(S54)。
 そして、新たに決定されたモードがその時の現在のモードと異なる場合、すなわちモードが切り替わる場合(S55のYes)、第2のモード管理部25は自記憶措置に記憶されている現在のモードを示す情報を更新する(S56)。また、第2-1の送信部26は、複数の第1の処理装置10に新たに決定されたモードを通知する(S56)。一方、新たに決定されたモードがその時の現在のモードと同じである場合、すなわちモードが切り替わらない場合(S55のNo)、S56の処理は実行されない。
 以降、第2の処理装置20は、処理を終了する入力がなければ(S57のNo)、同様の処理を継続する。
 以上、本実施形態の監視システムによれば第1及び第2の実施形態の監視システムと同様な作用効果を実現できる。
 また、本実施形態の監視システムによれば、第2の処理装置20による詳細な異常有無の判定は必要な場合のみに抑え、その他の場合は第1の処理装置10による簡易な異常有無の判定とすることができる。このため、常時詳細な異常有無の判定を行う場合に比べて、監視システムの処理負担を軽減できる。また、必要な場合には詳細な異常有無の判定を行うので、信頼度の高い監視システムが実現される。
 なお、必要な場合は、例えば第1の処理装置10により異常有と判定された場合である。監視対象の設備40に異常が有る場合、監視対象の設備40の動作を停止させる等の処置がとられる。監視対象の設備40の動作の停止は、多大な損害が発生する為、極力避けたいアクションである。そこで、第1の処理装置10による簡易な判定で異常有と判定された場合には、第2の処理装置20による詳細な判定を行い、第2の処理装置20の判定結果を出力する。これにより、監視システムから出力される「異常有の判定結果」の信頼度を高めることができる。結果、誤った「異常有」の判定により不要に監視対象の設備40の動作を停止してしまう不都合等を抑制できる。
 その他、必要な場合、プーリ60の回転速度が基準値以下の場合である。この場合、監視対象の設備40に伝搬する振動エネルギーが小さいため、異常を示す特徴を見落としてしまう恐れがある。このような場合に第2の処理装置20による詳細な異常有無の判定を行うことで、小さい予兆も見落とさない信頼度の高い監視システムが実現される。
<第4の実施形態>
 本実施形態の監視システムは、第3の実施形態(図3参照)と同様の構成を有し、第3の実施形態で説明しなかった付加機能をさらに有する。
 第1の処理装置10の機能ブロック図の一例は、第3の実施形態同様、図5で示される。第2の処理装置20の機能ブロック図の一例は、図10で示される。本実施形態の第2の処理装置20は、照合部27を有する点で、第3の実施形態の第2の処理装置20と異なる。なお、図5及び図10で示される照合部27以外のその他の機能部は、第3の実施形態で説明した構成を有する。
 図5に示す第1の処理装置10の第1の送信部13は、第1のモードの間、予め定められたタイミングで、測定データを第2の処理装置20に送信する。第1の送信部13は、予め定められた時間間隔で、測定データを第2の処理装置20に繰り返し送信する。
 図10に示す第2の処理装置20の第2の受信部21は、上記測定データを受信する。第2のデータ処理部23は、必要に応じて測定データを加工し、測定データ及び/又は加工データに基づき、監視対象の設備40の異常の有無を判定する。
 照合部27は、第2の受信部21が受信した第1の処理装置10の判定結果と、第2のデータ処理部23の判定結果とを照合し、一致するか否かを判断する。そして、第2-2の送信部24は、照合部27による照合の結果を第3の処理装置30に送信する。
 次に、図11のフローチャートを用いて、第1の処理装置10の処理の流れの一例を説明する。第1の処理装置10は、第1のモードの間、当該処理を所定時間毎に繰り返す。当該処理を繰り返す時間間隔は、図7のS11乃至S14の処理を繰り返す時間間隔よりも大きい。
 S20では、第1の処理装置10は所定の処理を実行するタイミングになったか判断する。実行タイミングになった場合(S20のYes)、第1の送信部13は測定データを第2の処理装置20に送信する(S21)。
 以降、第1の処理装置10は、処理を終了する入力又は第2のモードへのモード変更がなければ(S22のNo)、同様の処理を継続する。
 次に、図12のフローチャートを用いて、第2の処理装置20の処理の流れの一例を説明する。第2の処理装置20は、第1のモードの間、当該処理を所定時間毎に繰り返す。
 第2の受信部21が第1の処理装置10から測定データを受信すると(S40のYes)、第2のデータ処理部23は第2の受信部21が受信した測定データに基づき監視対象の設備40の異常の有無を判定する(S41)。
 次いで、照合部27は、第1の処理装置10の判定結果(例えば、最新の判定結果)と、S41における第2のデータ処理部23の判定結果とを照合する(S42)。
 そして、第2-2の送信部24、照合部27による照合結果(一致するか否か)を第3の処理装置30に送信する(S43)。
 以降、第2の処理装置20は、処理を終了する入力又は第2のモードへのモード変更がなければ(S44のNo)、同様の処理を継続する。
 以上、本実施形態の監視システムによれば第1乃至第3の実施形態の監視システムと同様な作用効果を実現できる。
 また、本実施形態の監視システムによれば、第1のモードが継続し、第1の処理装置10による判定が継続している間も、所定時間毎に第2の処理装置20が判定を行い、第1の処理装置10の判定結果と第2の処理装置20の判定結果との照合結果を第3の処理装置30に送信することができる。このように定期的なチェックで、第1の処理装置10に発生した異常を検出することができる。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限定されない。
1. 監視対象の設備に取り付けられ、各々が振動センサを有する複数の第1の処理装置と、
 複数の前記第1の処理装置各々とケーブルを介して通信する第2の処理装置と、
 前記第2の処理装置と無線で通信する第3の処理装置と、
を有し、
 前記第1の処理装置と前記第2の処理装置との距離は1m以上100m以下であり、
 前記第2の処理装置と前記第3の処理装置との距離は50m以上であり、
 前記第2の処理装置と前記第3の処理装置との間の無線通信の周波数は400MHz以上5.3GHz以下である監視システム。
2. 1に記載の監視システムにおいて、
 前記第1の処理装置と前記第2の処理装置との間では、前記振動センサの測定データ及び/又は前記測定データの加工データが伝送され、
 前記第2の処理装置と前記第3の処理装置との間では、前記振動センサの測定データに基づいた判定結果が伝送され、前記測定データ及び前記加工データの伝送は行われない監視システム。
3. 1又は2に記載の監視システムにおいて、
 前記監視システムは複数のモードを有し、
 第1のモード時に、
  前記第1の処理装置が、
  前記振動センサの測定データに基づき前記設備の異常の有無を判定し、
  前記第1の処理装置の判定結果と、前記測定データ及び/又は前記測定データの加工データとを前記第2の処理装置に送信し、
  前記第2の処理装置が、
   前記第1の処理装置の判定結果が異常無を示す場合、前記第1の処理装置の判定結果を前記第3の処理装置に送信し、
   前記第1の処理装置の判定結果が異常有を示す場合、前記測定データ又は前記加工データに基づき前記設備の異常の有無を判定し、前記第2の処理装置の判定結果を前記第3の処理装置に送信する監視システム。
4. 1から3のいずれかに記載の監視システムにおいて、
 前記監視システムは複数のモードを有し、
 第2のモード時に、
  前記第1の処理装置が、前記振動センサの測定データ又は前記測定データの加工データを前記第2の処理装置に送信し、
  前記第2の処理装置が、前記測定データ又は前記加工データに基づき前記設備の異常の有無を判定し、前記第2の処理装置の判定結果を前記第3の処理装置に送信する監視システム。
5. 3又は4に記載の監視システムにおいて、
 前記第2の処理装置が、モードを決定し、複数の前記第1の処理装置に通知する監視システム。
6. 5に記載の監視システムにおいて、
 前記第2の処理装置は、前記測定データ及び/又は前記加工データに基づき、前記設備の状態を推定し、推定した前記設備の状態に基づきモードを決定する監視システム。
7. 6に記載の監視システムにおいて、
 前記設備はベルトコンベアであり、
 複数のプーリの一部又は全部に前記第1の処理装置が取り付けられ、
 前記第2の処理装置は、前記測定データ又は前記加工データに基づき前記プーリの回転速度を推定し、推定した前記回転速度が基準値以下の場合は前記第2のモードを決定し、推定した前記回転速度が基準値より大の場合は前記第1のモードを決定する監視システム。
8. 1から7のいずれかに記載の監視システムにおいて、
 前記第1の処理装置は、予め定められたタイミングで、前記測定データを前記第2の処理装置に送信し、
 前記第2の処理装置は、前記測定データに基づき前記設備の異常の有無を判定し、前記第1の処理装置の判定結果と照合することで、前記第1の処理装置の状態を判定する監視システム。
9. 1から8のいずれかに記載の監視システムにおいて、
 前記設備はベルトコンベアであり、
 複数のプーリの一部又は全部に前記第1の処理装置が取り付けられている監視システム。
10. 各々が振動センサを有する複数の第1の処理装置を監視対象の設備に取り付け、
 前記第1の処理装置との距離が1m以上100m以下である第2の処理装置と、複数の前記第1の処理装置各々とをケーブルを介して通信させ、
 前記第2の処理装置との距離が50m以上である第3の処理装置と、前記第2の処理装置とを無線で通信させ、無線通信の周波数は400MHz以上5.3GHz以下である監視方法。
 以上、実施形態(及び実施例)を参照して本願発明を説明したが、本願発明は上記実施形態(及び実施例)に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2018年5月31日に出願された日本出願特願2018-104943号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (10)

  1.  監視対象の設備に取り付けられ、各々が振動センサを有する複数の第1の処理装置と、
     複数の前記第1の処理装置各々とケーブルを介して通信する第2の処理装置と、
     前記第2の処理装置と無線で通信する第3の処理装置と、
    を有し、
     前記第1の処理装置と前記第2の処理装置との距離は1m以上100m以下であり、
     前記第2の処理装置と前記第3の処理装置との距離は50m以上であり、
     前記第2の処理装置と前記第3の処理装置との間の無線通信の周波数は400MHz以上5.3GHz以下である監視システム。
  2.  請求項1に記載の監視システムにおいて、
     前記第1の処理装置と前記第2の処理装置との間では、前記振動センサの測定データ及び/又は前記測定データの加工データが伝送され、
     前記第2の処理装置と前記第3の処理装置との間では、前記振動センサの測定データに基づいた判定結果が伝送され、前記測定データ及び前記加工データの伝送は行われない監視システム。
  3.  請求項1又は2に記載の監視システムにおいて、
     前記監視システムは複数のモードを有し、
     第1のモード時に、
      前記第1の処理装置が、
      前記振動センサの測定データに基づき前記設備の異常の有無を判定し、
      前記第1の処理装置の判定結果と、前記測定データ及び/又は前記測定データの加工データとを前記第2の処理装置に送信し、
      前記第2の処理装置が、
       前記第1の処理装置の判定結果が異常無を示す場合、前記第1の処理装置の判定結果を前記第3の処理装置に送信し、
       前記第1の処理装置の判定結果が異常有を示す場合、前記測定データ又は前記加工データに基づき前記設備の異常の有無を判定し、前記第2の処理装置の判定結果を前記第3の処理装置に送信する監視システム。
  4.  請求項1から3のいずれか1項に記載の監視システムにおいて、
     前記監視システムは複数のモードを有し、
     第2のモード時に、
      前記第1の処理装置が、前記振動センサの測定データ又は前記測定データの加工データを前記第2の処理装置に送信し、
      前記第2の処理装置が、前記測定データ又は前記加工データに基づき前記設備の異常の有無を判定し、前記第2の処理装置の判定結果を前記第3の処理装置に送信する監視システム。
  5.  請求項3又は4に記載の監視システムにおいて、
     前記第2の処理装置が、モードを決定し、複数の前記第1の処理装置に通知する監視システム。
  6.  請求項5に記載の監視システムにおいて、
     前記第2の処理装置は、前記測定データ及び/又は前記加工データに基づき、前記設備の状態を推定し、推定した前記設備の状態に基づきモードを決定する監視システム。
  7.  請求項6に記載の監視システムにおいて、
     前記設備はベルトコンベアであり、
     複数のプーリの一部又は全部に前記第1の処理装置が取り付けられ、
     前記第2の処理装置は、前記測定データ又は前記加工データに基づき前記プーリの回転速度を推定し、推定した前記回転速度が基準値以下の場合は前記第2のモードを決定し、推定した前記回転速度が基準値より大の場合は前記第1のモードを決定する監視システム。
  8.  請求項1から7のいずれか1項に記載の監視システムにおいて、
     前記第1の処理装置は、予め定められたタイミングで、前記測定データを前記第2の処理装置に送信し、
     前記第2の処理装置は、前記測定データに基づき前記設備の異常の有無を判定し、前記第1の処理装置の判定結果と照合することで、前記第1の処理装置の状態を判定する監視システム。
  9.  請求項1から8のいずれか1項に記載の監視システムにおいて、
     前記設備はベルトコンベアであり、
     複数のプーリの一部又は全部に前記第1の処理装置が取り付けられている監視システム。
  10.  各々が振動センサを有する複数の第1の処理装置を監視対象の設備に取り付け、
     前記第1の処理装置との距離が1m以上100m以下である第2の処理装置と、複数の前記第1の処理装置各々とをケーブルを介して通信させ、
     前記第2の処理装置との距離が50m以上である第3の処理装置と、前記第2の処理装置とを無線で通信させ、無線通信の周波数は400MHz以上5.3GHz以下である監視方法。
PCT/JP2019/007452 2018-05-31 2019-02-27 監視システム及び監視方法 WO2019230088A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207033479A KR102464187B1 (ko) 2018-05-31 2019-02-27 감시 시스템 및 감시 방법
JP2020521706A JP6981547B2 (ja) 2018-05-31 2019-02-27 監視システム及び監視方法
CN201980035065.0A CN112204371B (zh) 2018-05-31 2019-02-27 监视系统和监视方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-104943 2018-05-31
JP2018104943 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019230088A1 true WO2019230088A1 (ja) 2019-12-05

Family

ID=68698063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007452 WO2019230088A1 (ja) 2018-05-31 2019-02-27 監視システム及び監視方法

Country Status (4)

Country Link
JP (1) JP6981547B2 (ja)
KR (1) KR102464187B1 (ja)
CN (1) CN112204371B (ja)
WO (1) WO2019230088A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140911A1 (ja) * 2020-01-08 2021-07-15 日本電気株式会社 振動処理装置、振動処理方法、及びプログラム
WO2021157232A1 (ja) * 2020-02-03 2021-08-12 日本電気株式会社 振動処理装置、振動処理方法、及びプログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134182A (ja) * 2006-11-29 2008-06-12 Kyoto Institute Of Technology 構造物の損傷の診断システムおよび方法
US20100238027A1 (en) * 2007-11-16 2010-09-23 Filippo Bastianini Device for monitoring the health status of structures
JP2010208850A (ja) * 2009-03-12 2010-09-24 Nippon Steel Corp ベルトコンベア状態監視システム、データ収集装置、ベルトコンベアの運転状態判定方法及びプログラム
JP2015045584A (ja) * 2013-08-28 2015-03-12 大阪瓦斯株式会社 振動信号取得装置及び振動監視システム
JP2015203393A (ja) * 2014-04-16 2015-11-16 Ntn株式会社 状態監視システム
US20160041068A1 (en) * 2014-08-05 2016-02-11 01dB-METRAVIB, Société par Actions Simplifiée Wireless Collection and Analysis of Machine Data
JP2017201299A (ja) * 2016-03-15 2017-11-09 アシュワース・ブロス・インク 低速で回転しているベアリングの破損を予測するシステム及び方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295020A (ja) * 2006-04-20 2007-11-08 Toshiba Elevator Co Ltd 遠隔監視システム
KR100767065B1 (ko) * 2007-03-26 2007-10-17 (주)홈시큐넷 원격 보호관찰 시스템 및 방법
JP5161645B2 (ja) 2008-04-30 2013-03-13 株式会社東芝 時系列データ監視システム
US8049637B2 (en) * 2008-10-07 2011-11-01 General Electric Company Systems and methods for sensor-level machine monitoring
CN102589681A (zh) * 2012-04-05 2012-07-18 邓昌建 一种高可靠旋转设备状态监测的无线振动测量方法与装置
JP5879214B2 (ja) 2012-06-27 2016-03-08 株式会社日立製作所 異常診断方法、異常診断装置および異常診断装置を備えた乗客コンベア
CN104023211B (zh) * 2014-06-12 2019-02-15 杭州潇楠科技有限公司 基于无线网络的分布式监视系统设计方法
JP6164182B2 (ja) 2014-09-16 2017-07-19 Jfeスチール株式会社 ベルトコンベアの異常検知方法
JP2018051721A (ja) * 2016-09-30 2018-04-05 キヤノン株式会社 異常検出装置、異常検出方法及びプログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134182A (ja) * 2006-11-29 2008-06-12 Kyoto Institute Of Technology 構造物の損傷の診断システムおよび方法
US20100238027A1 (en) * 2007-11-16 2010-09-23 Filippo Bastianini Device for monitoring the health status of structures
JP2010208850A (ja) * 2009-03-12 2010-09-24 Nippon Steel Corp ベルトコンベア状態監視システム、データ収集装置、ベルトコンベアの運転状態判定方法及びプログラム
JP2015045584A (ja) * 2013-08-28 2015-03-12 大阪瓦斯株式会社 振動信号取得装置及び振動監視システム
JP2015203393A (ja) * 2014-04-16 2015-11-16 Ntn株式会社 状態監視システム
US20160041068A1 (en) * 2014-08-05 2016-02-11 01dB-METRAVIB, Société par Actions Simplifiée Wireless Collection and Analysis of Machine Data
JP2017201299A (ja) * 2016-03-15 2017-11-09 アシュワース・ブロス・インク 低速で回転しているベアリングの破損を予測するシステム及び方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140911A1 (ja) * 2020-01-08 2021-07-15 日本電気株式会社 振動処理装置、振動処理方法、及びプログラム
JPWO2021140911A1 (ja) * 2020-01-08 2021-07-15
WO2021157232A1 (ja) * 2020-02-03 2021-08-12 日本電気株式会社 振動処理装置、振動処理方法、及びプログラム
JPWO2021157232A1 (ja) * 2020-02-03 2021-08-12
JP7322979B2 (ja) 2020-02-03 2023-08-08 日本電気株式会社 振動処理装置、振動処理方法、及びプログラム
US11874194B2 (en) 2020-02-03 2024-01-16 Nec Corporation Vibration processing apparatus, vibration processing method, and non-transitory computer-readable storage medium

Also Published As

Publication number Publication date
KR20210003841A (ko) 2021-01-12
JPWO2019230088A1 (ja) 2021-05-20
JP6981547B2 (ja) 2021-12-15
CN112204371A (zh) 2021-01-08
CN112204371B (zh) 2022-10-14
KR102464187B1 (ko) 2022-11-07

Similar Documents

Publication Publication Date Title
US11226607B2 (en) Abnormality determination system, data transmitter-receptor, motor controller, and method for determining abnormality
WO2019230088A1 (ja) 監視システム及び監視方法
WO2020116030A1 (ja) 道路監視システム、道路監視装置、道路監視方法、及び非一時的なコンピュータ可読媒体
US20090045940A1 (en) Wireless preprocessing sensor
JP6542096B2 (ja) 故障診断システム
EP3547190B1 (en) Attack detection device, attack detection method, and attack detection program
JP6824732B2 (ja) 収集装置、収集方法、プログラム及び収集システム
WO2020075809A1 (ja) 情報処理装置、データ分析方法及びプログラム
CN110678821B (zh) 处理装置、处理方法和程序
US20210048792A1 (en) Diagnostic apparatus, system, diagnostic method, and program
US20150294552A1 (en) Sensor hub comprising a rotation encoder
JP2009133810A (ja) 振動監視装置
JP2009258063A (ja) 損傷監視システム、測定装置
JP2018006583A (ja) 部品実装機及び部品実装システム
JP7373803B2 (ja) 情報送信装置、サーバ、及び、情報送信方法
WO2021157232A1 (ja) 振動処理装置、振動処理方法、及びプログラム
JP6743553B2 (ja) 異常検知システム及び異常検知方法
JP2022166404A (ja) 異常検出装置、異常検出方法、及びプログラム
KR20220135971A (ko) 진동센서모듈 및 이를 포함하는 풍력발전기 고장예측 시스템
US8896437B2 (en) Asset-specific equipment health monitoring (EHM) for industrial equipment using standardized asset models
JP6574708B2 (ja) 列車のデータ送信方法
US20100023281A1 (en) Apparatus for monitoring rotating components
JP2022039132A (ja) 通信装置、故障予兆検知システム、故障予兆検知方法およびプログラム
US20190285590A1 (en) Detection system, wheel, and detection method
WO2019054433A1 (ja) 診断装置、診断方法及びプログラム記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521706

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207033479

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810733

Country of ref document: EP

Kind code of ref document: A1