WO2019228538A1 - Rfid标签在高低温条件下的性能测试系统和测试方法 - Google Patents

Rfid标签在高低温条件下的性能测试系统和测试方法 Download PDF

Info

Publication number
WO2019228538A1
WO2019228538A1 PCT/CN2019/090992 CN2019090992W WO2019228538A1 WO 2019228538 A1 WO2019228538 A1 WO 2019228538A1 CN 2019090992 W CN2019090992 W CN 2019090992W WO 2019228538 A1 WO2019228538 A1 WO 2019228538A1
Authority
WO
WIPO (PCT)
Prior art keywords
low temperature
rfid tag
heat
performance
test system
Prior art date
Application number
PCT/CN2019/090992
Other languages
English (en)
French (fr)
Inventor
张东
陈燕宁
付振
张海峰
原义栋
李建强
Original Assignee
北京智芯微电子科技有限公司
国网信息通信产业集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京智芯微电子科技有限公司, 国网信息通信产业集团有限公司 filed Critical 北京智芯微电子科技有限公司
Publication of WO2019228538A1 publication Critical patent/WO2019228538A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/003Environmental or reliability tests

Definitions

  • the present application relates to the field of radio frequency identification chips, and in particular to a performance test system and test method for radio frequency identification (RFID, Radio Frequency Identification) tags under high and low temperature conditions.
  • RFID Radio Frequency Identification
  • RFID technology is an emerging automatic identification technology developed in the 1980s. It is a technology that uses radio frequency signals to achieve non-contact information transmission through spatial coupling (alternating magnetic field or electromagnetic field) and achieve identification purposes through the transmitted information. . In the past few years, RFID technology has been continuously developed. RFID technology has evolved from a specific application in the past to a technology commonly used by logistics companies, for example, for reading encrypted information in parcel tags or airport luggage tags.
  • the RFID tag performance test should at least include the sensitivity (or reading distance) test. Usually the sensitivity (or reading distance) test needs to be performed in a microwave dark room.
  • the RFID tag performance test did not consider the impact of the tag temperature on the tag performance in different application environments, and did not introduce a temperature factor. Therefore, the results of the RFID tag performance at different temperatures were not known, making RFID tags bring many problems in practical application.
  • An embodiment of the present application provides a performance test system for an RFID tag under high and low temperature conditions.
  • An embodiment of the present application provides a performance test system of an RFID tag under high and low temperature conditions, including: a heat flow hood high and low temperature device configured to heat or cool air; and a heat conduction device that is connected to the heat flow hood through a first duct and the heat flow hood.
  • the low temperature device is connected to transmit the hot and cold air generated by the high temperature and low temperature device of the heat flow hood; and the heat insulation device is connected to the heat conduction device through a second duct and configured to receive the RFID tag to perform the High or low temperature performance test.
  • the heat flow hood high and low temperature device includes: a compressed air source configured to provide compressed air at normal temperature; a drying and filtering device connected to the compressed air source to dry and filter the compressed air; a compressor, The heating and filtering device is connected to the drying and filtering device and configured to cool the dried and filtered compressed air; and the heating device is configured to heat the drying and filtering compressed air.
  • the heat flow hood high and low temperature device further includes a control unit configured to control a temperature value required for heating or cooling of the compressed air at normal temperature.
  • control unit also controls the compressor and the heating device, so that only one of the compressor and the heating device can work at the same time.
  • the heat conduction device includes a heat transfer pipe, a gas flow regulating valve, and a pressure relief pipe.
  • the heat insulation device includes a microwave dark room and a heat shield provided in the microwave dark room.
  • the heat shield is provided with a gas inlet, a gas outlet, and a heat insulation pad.
  • a tag holder is provided and configured to place an RFID tag.
  • the thermal insulation device further includes: a buffer plate provided at the gas inlet and the gas outlet.
  • the heat insulation device further includes a wave absorbing material disposed under the heat shield.
  • Another aspect of the embodiments of the present application provides a method for testing the performance of an RFID tag under high and low temperature conditions, including:
  • test the performance of the RFID tag at room temperature to obtain the test result R1; with the performance test system, test the RFID tag at room temperature Performance, obtain test result R2; use test result R1 and test result R2, calculate compensation result; test the performance of the RFID tag under high temperature or low temperature conditions obtained using the above performance test system, and obtain result R; use result R and compensation As a result, the performance of the final RFID tag at high or low temperature is calculated.
  • the performance test system of the RFID tag under high or low temperature conditions can test the performance of the RFID tag under high or low temperature conditions, and can effectively evaluate high or low temperature environments.
  • the impact on the performance of RFID tags has important guiding significance for production practice.
  • FIG. 1 is a schematic diagram of a performance test system for an RFID tag under high and low temperature conditions according to an embodiment of the present application.
  • FIG. 2 is a schematic plan view of a thermal insulation device according to an embodiment of the present application.
  • FIG. 3 is a schematic perspective view of a heat insulation device according to an embodiment of the present application.
  • FIG. 4 is a flowchart of a method for testing the performance of an RFID tag under high and low temperature conditions according to an embodiment of the present application.
  • 11- compressed air source 11- compressed air source, 12- drying filter device, 21- gas flow regulating valve, 22- heat pipe, 31- microwave anechoic chamber, 32- heat shield.
  • the performance test system of an RFID tag under high and low temperature conditions includes a high temperature and low temperature device of a heat flow hood, a heat conduction device, and a heat insulation device.
  • the heat flow hood high and low temperature device is configured to heat or cool air;
  • the heat conduction device is connected to the heat flow hood high and low temperature device through a first duct, and connects the cold air or hot air generated by the heat flow hood high and low temperature device.
  • Transmitting; the thermal insulation device is connected to the heat conduction device through a second conduit, and the thermal insulation device is configured to receive the RFID tag to perform a high temperature or low temperature performance test on the RFID tag.
  • the heat flow hood high and low temperature device includes: a compressed air source 11 configured to provide compressed air at normal temperature; and a drying and filtering device 12 connected to the compressed air source 11, Compressed air is dried and filtered; a compressor 13 is connected to the drying and filtering device 12 and configured to cool the compressed air after drying and filtering; and a heating device 14 is connected to the drying and filtering device 12 and is configured to Dry filtered air is heated.
  • the heat flow hood high and low temperature device further includes a control unit configured to control a temperature value for heating or cooling of the compressed air at normal temperature, and to control a supply speed of the compressed air.
  • the control unit further controls the compressor 13 and the heating device 14 so that only one of the compressor 13 and the heating device 14 can work at the same time. That is, when it is necessary to heat the compressed air, the compressor is turned off, the heating device 14 at the top of the heat flow hood is turned on, and the room temperature air passes through heat exchange to become hot air, and vice versa.
  • the temperature range for gas heating or cooling may be between minus 75 ° C. and 225 ° C.
  • the gas output flow rate is between 1.9 and 8.5 liters / second.
  • the heat conduction device includes a gas flow regulating valve 21, a heat conduction pipe 22, and a pressure relief pipe 23.
  • the heat conducting tube 22 passes the cold air or hot air generated by the high and low temperature device of the heat flow hood into the microwave dark room 31 to heat or cool the label. Because the space in the microwave anechoic chamber 31 is closed and small, the cold air or hot air entering the microwave anechoic chamber will cause the indoor air pressure to change abruptly. Therefore, a flow regulating valve 21 and a pressure relief pipe 23 are installed to ensure that the air pressure in the microwave anechoic chamber 31 does not change. Sudden change.
  • FIG. 2 is a schematic plan view of a thermal insulation device according to an embodiment of the present application.
  • FIG. 3 is a schematic perspective view of a heat insulation device according to an embodiment of the present application.
  • the heat insulation device includes a microwave dark room 31 and a heat shield 32 disposed in the microwave dark room 31.
  • the heat shield 32 is provided with a gas inlet 31 a, a gas outlet 31 b, and a heat insulation pad 34.
  • a tag jig 33 is provided in the heat shield 32 and is arranged to place an RFID tag.
  • the heat insulation device further includes: a buffer plate 35 provided at the gas inlet 31a and the gas outlet 31b.
  • the heat insulation device further includes a wave absorbing material 36 disposed under the heat shield.
  • the heated or cooled compressed air enters the dark microwave chamber 31 from the gas outlet 31a through the heat pipe 22, enters the heat shield 32, and flows out of the gas outlet 31b.
  • the RFID tag provided on the tag holder 33 is thus heated or cooled, thereby performing various performance tests.
  • the buffer plate 35 is configured to reduce the impact of the compressed gas on the RFID tag, and at the same time, ensure that the temperature in the heat shield is uniform.
  • the heat shield 32 is provided with a heat insulation pad 34 so as to reduce heat diffusion outside the RFID tag.
  • the material of the heat shield 32 is a composite of glass and polytetrafluoroethylene.
  • FIG. 4 is a flowchart of a method for testing the performance of an RFID tag under high and low temperature conditions according to an embodiment of the present application.
  • a method for testing the performance of an RFID tag under high and low temperature conditions uses the performance test system described above.
  • the test method includes the steps of: testing the performance of the RFID tag at room temperature without a performance test system as described above, and obtaining a test result R1; when the performance test system is provided, Test the performance of the RFID tag at room temperature to obtain the test result R2; use the test result R1 and the test result R2 to calculate the compensation result, and the compensation result is R1-R2. Due to the performance test system, especially when the RFID tag is placed in a sealed heat shield, its sensitivity (reading distance) will have some impact, so the compensation result is to calculate the impact of the heat shield .
  • the performance test system for RFID tags under high and low temperature conditions can effectively evaluate the impact of high and low temperature environments on the performance of RFID tags, and has important guiding significance for production practice.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种RFID标签在高低温条件下的性能测试系统和测试方法,所述性能测试系统包括:热流罩高低温装置,配置为对空气进行加热或制冷;热传导装置,通过第一导管与所述热流罩高低温装置相连接,将所述热流罩高低温装置产生的冷热空气进行传输;以及隔热装置,通过第二导管与所述热传导装置相连接,配置为容纳所述RFID标签以对其进行高温或低温性能测试。

Description

RFID标签在高低温条件下的性能测试系统和测试方法
相关申请的交叉引用
本申请基于申请号为201810522093.2、申请日为2018年05月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请关于一种射频识别芯片领域,特别关于一种射频识别(RFID,Radio Frequency Identification)标签在高低温条件下的性能测试系统和测试方法。
背景技术
RFID技术,是20世纪80年代发展起来的一种新兴自动识别技术,是一种利用射频信号通过空间耦合(交变磁场或电磁场)实现无接触信息传递并通过所传递的信息达到识别目的的技术。在过去的几年中,RFID技术一直在不断地发展。RFID技术已由过去的某个特定应用,衍变为一项为物流公司所普遍采用的技术,例如,用于包裹标签或机场行李标签中加密信息的读取。
RFID标签性能测试至少应包括灵敏度(或读距离)测试。通常灵敏度(或读距离)测试需要在微波暗室内进行。
相关技术中,RFID标签性能测试中没有考虑到标签在不同的应用环境下温度对标签性能的影响,没有引入温度因子,因此对于RFID标签各项指标性能在不同温度下的结果并不知晓,使得RFID标签在实际应用时带来很多问题。
公开于该背景技术部分的信息仅仅旨在增加对本申请的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本申请实施例提供一种RFID标签在高低温条件下的性能测试系统。
本申请实施例提供了一种RFID标签在高低温条件下的性能测试系统,包括:热流罩高低温装置,配置为对空气进行加热或制冷;热传导装置,通过第一导管与所述热流罩高低温装置相连接,将所述热流罩高低温装置产生的冷热空气进行传输;以及隔热装置,通过第二导管与所述热传导装置相连接,配置为容纳所述RFID标签以对所述进行高温或低温性能测试。
上述方案中,所述热流罩高低温装置包括:压缩空气源,配置为提供常温的压缩空气;干燥过滤装置,与所述压缩空气源相连接,对所述压缩空气进行干燥过滤;压缩机,与所述干燥过滤装置相连接,配置为对经过干燥过滤的压缩空气进行制冷;以及加热装置,配置为对经过干燥过滤的压缩空气进行加热。
上述方案中,所述热流罩高低温装置还包括控制单元,配置为对常温的压缩空气所需要加热或制冷的温度值进行控制。
上述方案中,所述控制单元还控制所述压缩机和加热装置,使所述压缩机和加热装置在同一时间下只能其中之一进行工作。
上述方案中,所述热传导装置包括导热管、气体流量调节阀和泄压管。
上述方案中,所述隔热装置包括:微波暗室、和设置在所述微波暗室内的隔热罩,所述隔热罩设有气体入口、气体出口和隔热垫,所述隔热罩内设置有标签夹具,配置为放置RFID标签。
上述方案中,所述隔热装置还包括:设置在气体入口处和气体出口处的缓冲板。
上述方案,所述隔热装置还包括设置在所述隔热罩下方的吸波材料。
本申请实施例的另一方面提供了一种RFID标签在高低温条件下的性能测试方法,包括:
在不设有上述的性能测试系统的情况下,在常温下测试所述RFID标签的性能,获取测试结果R1;在设有所述性能测试系统的情况下,在常温下测试所述RFID标签的性能,获取测试结果R2;利用测试结果R1及测试结果R2,计算补偿结果;在利用上述的性能测试系统下获得的高温或低温条件下测试RFID标签的性能,获取结果R;利用结果R和补偿结果,计算最终RFID标签的在高温或低温的性能。
与相关技术相比,根据本申请实施例的实施方式的RFID标签在高温或低温条件下的性能测试系统,能够对RFID标签在高温或低温条件下的性能进行测试,可以有效评测高温或低温环境对RFID标签性能的影响,对生产实践有重要的指导意义。
附图说明
图1是根据本申请一实施方式的RFID标签在高低温条件下的性能测试系统的示意图。
图2是根据本申请一实施方式的隔热装置的平面示意图。
图3是根据本申请一实施方式的隔热装置的立体示意图。
图4是根据本申请一实施方式的RFID标签在高低温条件下的性能测试方法的流程图。
主要附图标记说明:
11-压缩空气源,12-干燥过滤装置,21-气体流量调节阀,22-导热管,31-微波暗室,32-隔热罩。
具体实施方式
下面结合附图,对本申请实施例的具体实施方式进行详细描述,但应当理解本申请的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
本申请实施例提供的RFID标签在高低温条件下的性能测试系统,包括:热流罩高低温装置、热传导装置和隔热装置。所述热流罩高低温装置配置为对空气进行加热或制冷;所述热传导装置通过第一导管与所述热流罩高低温装置相连接,将所述热流罩高低温装置产生的冷空气或热空气进行传输;所述隔热装置通过第二导管与所述热传导装置相连接,该隔热装置配置为容纳所述RFID标签以对其进行高温或低温性能测试。
具体而言,如图1所示,所述热流罩高低温装置包括:压缩空气源11,配置为提供常温的压缩空气;干燥过滤装置12,与所述压缩空气源11相连接,对所述压缩空气进行干燥过滤;压缩机13,与所述干燥过滤装置12相连接,配置为对经过干燥过滤的压缩空气进行制冷;以及加热装置14,与所述干燥过滤装置12相连接,配置为对经过干燥过滤的压缩空气进行加热。
在一实施例中,所述热流罩高低温装置还包括控制单元,配置为对常温的压缩空气所需要加热或制冷的温度值进行控制,以及对压缩空气的供给速度进行控制。在一实施例中,所述控制单元还控制所述压缩机13和加热装置14,使该压缩机13和加热装置14在同一时间下只能其中之一进行工作。亦即,需要对压缩空气加热时,压缩机关闭,热流罩顶端的加热装置14开启,常温空气通过后通过热交换变为热空气,反之亦然。在一实施例中,气体加热或制冷的温度范围可以介于零下75℃至225℃之间,且气体输出流量介于1.9~8.5升/秒。
参考图1,在一实施例中,所述热传导装置包括气体流量调节阀21、导热管22和泄压管23。导热管22将热流罩高低温装置产生的冷空气或热空气通入微波暗室31内,对标签实现加热或制冷。由于微波暗室31内空间密闭且较小,冷空气或热空气进入该微波暗室内会造成按室内气压骤变,因此安装流量调节阀21和泄压管23,保证微波暗室31内的气压不会发生骤变。
图2是根据本申请一实施方式的隔热装置的平面示意图。图3是根据本申请一实施方式的隔热装置的立体示意图。参考图2和图3,所述隔热装置包括:微波暗室31和设置在该微波暗室31内的隔热罩32。所述隔热罩32设有气体入口31a、气体出口31b和隔热垫34。该隔热罩32内设置有标签夹具33,配置为放置RFID标签。在一实施方式中,所述隔热装置还包括:设置在气体入口31a处和气体出口31b处的缓冲板35。在一实施例中,所述隔热装置还包括设置在所述隔热罩下方的吸波材料36。在进行试验时,经过加热或制冷的压缩空气通过导热管22从气体出口31a进入到微波暗室31内,并进入到隔热罩32内,并从气体出口31b中流出。设置在标签夹具33上的RFID标签因此被加热或制冷,从而进行各种性能测试。
上述实施方式中,缓冲板35配置为减小压缩气体对RFID标签的冲击,同时确保隔热罩内温度均匀。同时,隔热罩32设有隔热垫34,从而减小热量在RFID标签外进行扩散。在一实施例中,隔热罩32的材质为玻璃和聚四氟乙烯的合成物。
图4是根据本申请一实施方式的RFID标签在高低温条件下的性能测试方法的流程图。在一实施方式中,一种RFID标签在高低温条件下的性能测试方法,其采用了如上所述的性能测试系统。所述测试方法包括如下步骤:在不设有上述的性能测试系统的情况下,在常温下测试所述RFID标签的性能,获取测试结果R1;在设有所述性能测试系统的情况下,在常温下测试 所述RFID标签的性能,获取测试结果R2;利用测试结果R1及测试结果R2,计算补偿结果,补偿结果为R1-R2。由于设置了性能测试系统,尤其是在将RFID标签设置在密封的隔热罩内,其灵敏度(读距离)会收到一些影响,因此该补偿结果即为计算出该隔热罩带来的影响。
接下来,在利用上述的性能测试系统下获得的高温或低温条件下测试RFID标签的性能,获取结果R;利用结果R和补偿结果,计算最终RFID标签的在高温或低温的性能,即在高温或低温的性能为:R+R1-R2。
综上所述,根据本申请实施例的实施方式的RFID标签在高低温条件下的性能测试系统,可以有效评测高低温环境对RFID标签性能的影响,对生产实践有重要的指导意义。
前述对本申请的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本申请限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本申请的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本申请的各种不同的示例性实施方案以及各种不同的选择和改变。本申请的范围意在由权利要求书及其等同形式所限定。

Claims (9)

  1. 一种RFID标签在高低温条件下的性能测试系统,包括:
    热流罩高低温装置,配置为对空气进行加热或制冷;
    热传导装置,通过第一导管与所述热流罩高低温装置相连接,配置为将所述热流罩高低温装置产生的冷热空气进行传输;以及
    隔热装置,通过第二导管与所述热传导装置相连接,配置为容纳所述RFID标签以对所述RFID进行高温或低温性能测试。
  2. 如权利要求1所述的RFID标签在高低温条件下的性能测试系统,其中,所述热流罩高低温装置包括:
    压缩空气源,配置为提供常温的压缩空气;
    干燥过滤装置,与所述压缩空气源相连接,对所述压缩空气进行干燥过滤;
    压缩机,与所述干燥过滤装置相连接,配置为对经过干燥过滤的压缩空气进行制冷;以及
    加热装置,与所述干燥过滤装置相连接,配置为对经过干燥过滤的压缩空气进行加热。
  3. 如权利要求2所述的RFID标签在高低温条件下的性能测试系统,其中,所述热流罩高低温装置还包括控制单元,配置为对常温的压缩空气所需要加热或制冷的温度值进行控制。
  4. 如权利要求3所述的RFID标签在高低温条件下的性能测试系统,其中,所述控制单元还配置为控制所述压缩机和加热装置,使所述压缩机和加热装置在同一时间下只能其中之一进行工作。
  5. 如权利要求1所述的RFID标签在高低温条件下的性能测试系统,其中,所述热传导装置包括导热管、气体流量调节阀和泄压管。
  6. 如权利要求1所述的RFID标签在高低温条件下的性能测试系统, 其中,所述隔热装置包括:
    微波暗室;和
    设置在所述微波暗室内的隔热罩,所述隔热罩设有气体入口、气体出口和隔热垫,所述隔热罩内设置有标签夹具,配置为放置RFID标签。
  7. 如权利要求6所述的RFID标签在高低温条件下的性能测试系统,其中,所述隔热装置还包括:设置在气体入口处和气体出口处的缓冲板。
  8. 如权利要求6所述的RFID标签在高低温条件下的性能测试系统,其中,所述隔热装置还包括设置在所述隔热罩下方的吸波材料。
  9. 一种RFID标签在高低温条件下的性能测试方法,包括:
    在不设有如权利要求1至8任一项所述的性能测试系统的情况下,在常温下测试所述RFID标签的性能,获取测试结果R1;
    在设有所述性能测试系统的情况下,在常温下测试所述RFID标签的性能,获取测试结果R2;
    利用测试结果R1及测试结果R2,计算补偿结果;
    在利用如权利要求所述的性能测试系统下获得的高温或低温条件下测试RFID标签的性能,获取结果R;
    利用结果R和补偿结果,计算最终RFID标签在高温或低温的性能。
PCT/CN2019/090992 2018-05-28 2019-06-12 Rfid标签在高低温条件下的性能测试系统和测试方法 WO2019228538A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810522093.2 2018-05-28
CN201810522093.2A CN108761236A (zh) 2018-05-28 2018-05-28 Rfid标签在高低温条件下的性能测试系统和测试方法

Publications (1)

Publication Number Publication Date
WO2019228538A1 true WO2019228538A1 (zh) 2019-12-05

Family

ID=64006275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090992 WO2019228538A1 (zh) 2018-05-28 2019-06-12 Rfid标签在高低温条件下的性能测试系统和测试方法

Country Status (2)

Country Link
CN (1) CN108761236A (zh)
WO (1) WO2019228538A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761236A (zh) * 2018-05-28 2018-11-06 北京智芯微电子科技有限公司 Rfid标签在高低温条件下的性能测试系统和测试方法
CN109596973A (zh) * 2018-12-29 2019-04-09 北京智芯微电子科技有限公司 不同温度下芯片参数的测试方法
CN110058102A (zh) * 2019-05-16 2019-07-26 黄先日 电子元器件温度检测装置
CN113640648A (zh) * 2021-07-31 2021-11-12 深圳市优界科技有限公司 一种芯片可靠性测试用高低温热流仪

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101592704A (zh) * 2008-05-28 2009-12-02 北京中食新华科技有限公司 电子标签rfid测试方法
JP2010026715A (ja) * 2008-07-17 2010-02-04 Sony Corp 温度制御装置、及び評価方法
JP2010231419A (ja) * 2009-03-26 2010-10-14 Kobe Steel Ltd 高温対応rfidタグ
CN104670523A (zh) * 2013-11-28 2015-06-03 中国航空工业集团公司航空动力控制系统研究所 一种高低温环境模拟试验设备
CN204807114U (zh) * 2015-06-10 2015-11-25 江苏省标准化研究院 一种用于rfid标签动态性能测试的温度控制系统
CN205982484U (zh) * 2016-08-30 2017-02-22 东莞市柯美检测设备有限公司 一种用于检测电子产品耐高低温强度的循环试验机
CN106644401A (zh) * 2015-11-04 2017-05-10 江苏飞格光电有限公司 一种半导体激光器的测试系统及测试方法
CN108761236A (zh) * 2018-05-28 2018-11-06 北京智芯微电子科技有限公司 Rfid标签在高低温条件下的性能测试系统和测试方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537400B2 (ja) * 2004-07-23 2010-09-01 株式会社アドバンテスト 電子部品ハンドリング装置の編成方法
KR100792731B1 (ko) * 2006-05-12 2008-01-08 미래산업 주식회사 반도체 소자 테스트 핸들러의 테스트 트레이 인식장치
CN101013075B (zh) * 2006-11-27 2010-09-01 联合汽车电子有限公司 冷热气流式高速高低温环境试验机
CN101655529A (zh) * 2008-08-22 2010-02-24 京元电子股份有限公司 可模拟系统测试的芯片测试分类机
CN101750547B (zh) * 2009-07-08 2011-11-30 中国科学院自动化研究所 一种读写器天线等功率线的测量系统及测量方法
CN202093533U (zh) * 2011-04-29 2011-12-28 永道无线射频标签(扬州)有限公司 电子标签反射灵敏度测试系统
CN203433522U (zh) * 2013-08-15 2014-02-12 上扬无线射频科技扬州有限公司 一种测试rfid标签灵敏度的装置
CN107643777B (zh) * 2016-07-20 2020-12-04 湖南中车时代电动汽车股份有限公司 用于电路板试验的环境温度调整方法及装置
CN205942759U (zh) * 2016-07-26 2017-02-08 武汉万集信息技术有限公司 一种测试rfid读写器性能参数的装置
CN207037026U (zh) * 2017-08-14 2018-02-23 北京智芯微电子科技有限公司 用于试验箱的隔热结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101592704A (zh) * 2008-05-28 2009-12-02 北京中食新华科技有限公司 电子标签rfid测试方法
JP2010026715A (ja) * 2008-07-17 2010-02-04 Sony Corp 温度制御装置、及び評価方法
JP2010231419A (ja) * 2009-03-26 2010-10-14 Kobe Steel Ltd 高温対応rfidタグ
CN104670523A (zh) * 2013-11-28 2015-06-03 中国航空工业集团公司航空动力控制系统研究所 一种高低温环境模拟试验设备
CN204807114U (zh) * 2015-06-10 2015-11-25 江苏省标准化研究院 一种用于rfid标签动态性能测试的温度控制系统
CN106644401A (zh) * 2015-11-04 2017-05-10 江苏飞格光电有限公司 一种半导体激光器的测试系统及测试方法
CN205982484U (zh) * 2016-08-30 2017-02-22 东莞市柯美检测设备有限公司 一种用于检测电子产品耐高低温强度的循环试验机
CN108761236A (zh) * 2018-05-28 2018-11-06 北京智芯微电子科技有限公司 Rfid标签在高低温条件下的性能测试系统和测试方法

Also Published As

Publication number Publication date
CN108761236A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
WO2019228538A1 (zh) Rfid标签在高低温条件下的性能测试系统和测试方法
US10788514B2 (en) Semiconductor test apparatus
US8950470B2 (en) Thermal diffusion chamber control device and method
TW201530079A (zh) 具貼設式均溫器及熱傳導流體之溫控系統及應用裝置
CN113203913B (zh) 小型快速冷热冲击测试装置
CN110410878B (zh) 空调系统及冷却方法
CN206610182U (zh) 一种控制高低温循环变化及恒温的装置
KR20190053386A (ko) 공력가열 평가 장치 열부하 손실 방지용 단열 소켓
CN103930743A (zh) 气体加热器/冷却器装置以及方法
CN110779748B (zh) 多温区运输制冷机组性能测试试验装置及测试方法
CN208607069U (zh) 一种低温材料力学性能测试保温装置
CN114428102B (zh) 测量各向异性材料高低温导热物性参数的装置及测试方法
CN115728344A (zh) 低热导率材料隔热性能考核用试验件及试验装置
CN104198148A (zh) 带有换热节能补偿的双控双隔离高低温冲击试验系统
CN105617827B (zh) 一种二价汞转化为零价汞的还原装置
CN212124151U (zh) 一种用于塑料管件热成型设备
CN114318300B (zh) 一种半导体加工设备及其反应腔室、工艺管路穿腔模块
CN208087686U (zh) 一种炉内红外测温用冷却套内冷却介质就地循环利用系统
CN208038304U (zh) 反射式退火炉
CN213514543U (zh) 一种蒸汽取样冷却装置
CN208671758U (zh) 一种核磁共振波谱仪检测系统的散热装置
JPH01274035A (ja) 冷熱衝撃試験装置
CN211926500U (zh) 一种小型高温加热炉
US20220136166A1 (en) Heat Exchange Exhaust System for Clothes Dryer
JPS5541333A (en) Ventilating and air-conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810161

Country of ref document: EP

Kind code of ref document: A1