WO2019228104A1 - 半固化片、半固化片的制作方法、电路板及电子设备 - Google Patents

半固化片、半固化片的制作方法、电路板及电子设备 Download PDF

Info

Publication number
WO2019228104A1
WO2019228104A1 PCT/CN2019/083945 CN2019083945W WO2019228104A1 WO 2019228104 A1 WO2019228104 A1 WO 2019228104A1 CN 2019083945 W CN2019083945 W CN 2019083945W WO 2019228104 A1 WO2019228104 A1 WO 2019228104A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
prepreg
particles
metal
fibers
Prior art date
Application number
PCT/CN2019/083945
Other languages
English (en)
French (fr)
Inventor
李帅
Original Assignee
奇酷互联网络科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇酷互联网络科技(深圳)有限公司 filed Critical 奇酷互联网络科技(深圳)有限公司
Publication of WO2019228104A1 publication Critical patent/WO2019228104A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/029Woven fibrous reinforcement or textile

Definitions

  • the present invention relates to the technical field of electronic equipment, and in particular, to a prepreg, a method for manufacturing the prepreg, a circuit board, and an electronic device.
  • a printed circuit board is a substrate that carries electronic components. It is a specific bearing and physical embodiment of the interconnection relationship between electronic components. It is an important part of electronic products and the area of the entire electronic circuit. The largest device, and modern electronic circuit boards are becoming more and more integrated, and the heat is getting larger and larger. How to effectively dissipate heat is a major problem in current electronic design. Especially in battery-powered mobile devices, heat dissipation is a major problem.
  • the current heat dissipation of mobile electronic devices mainly uses a thermally conductive sheet (such as a graphite sheet) or a thermally conductive adhesive to conduct heat from a high temperature region to a low temperature region to achieve an even temperature of the entire circuit board.
  • the temperature equalization process mainly uses external materials to conduct heat, but does not use materials that use the circuit itself to conduct heat, especially the PCB with the largest area in the entire circuit is not used for heat conduction. The use of external materials for heat dissipation will occupy the PCB area. And increase the assembly process and assembly costs.
  • PCB its composition is mainly copper layer and dielectric layer PP (Pre-pregnant, PP), of which copper is a good conductor of heat, with a thermal conductivity of up to 377W / (m ⁇ k), while PP mainly has Epoxy resin and glass fiber cloth, these two materials are poor thermal conductors, of which the thermal conductivity of epoxy resin is about 0.2W / (m ⁇ k), the thermal conductivity of glass is 0.75W / (m ⁇ k), because in the composition of the PCB, the copper layer is generally very thin, while the PP dielectric layer is relatively thick. Therefore, the main reason why PCB cannot be used for heat conduction is that the overall heat conduction efficiency of PP is low. In the prior art, although there are some solutions for increasing the heat conduction efficiency of PP, the heat conduction efficiency cannot be effectively improved.
  • An object of the present invention is to provide a prepreg with high thermal conductivity.
  • a prepreg includes a substrate filler and an epoxy resin, and the substrate filler includes metal oxide fibers or metal nitride fibers.
  • the metal oxide fibers or metal nitride fibers have high thermal conductivity.
  • Materials, and metal oxide fibers or metal nitride fibers are fibrous, which can quickly conduct heat in the plane direction, which can effectively increase the thermal conductivity of the prepreg and improve the thermal conductivity.
  • prepreg provided according to the present invention may also have the following additional technical features:
  • the substrate filler includes alumina fibers or aluminum nitride fibers.
  • the proportion of the substrate filler is 5% to 40%, and the proportion of the epoxy resin is 60 to 95%.
  • the prepreg is doped with metal oxide particles or metal nitride particles.
  • the metal oxide particles are alumina particles
  • the metal nitride particles are aluminum nitride particles.
  • the proportion of the metal oxide particles or the metal nitride particles is 5% to 25% by weight percentage.
  • a particle diameter of the metal oxide particles or the metal nitride particles is 1 um to 10 um.
  • the substrate filler is doped with silicon dioxide.
  • the proportion of the silica in the substrate filler is 5% to 25% by weight percentage.
  • the metal oxide fibers or the metal nitride fibers are distributed in a warp and weft shape in the prepreg.
  • Another object of the present invention is to provide a method for manufacturing a prepreg, which includes:
  • the colloid is pressed into a sheet shape to make a prepreg.
  • the metal oxide fibers or metal nitride fibers are all substances with high thermal conductivity, and the metal oxide fibers or metal The nitride fibers are all fibrous and can conduct heat quickly in the plane direction, which can effectively increase the thermal conductivity of the prepreg and improve the thermal conductivity.
  • the metal oxide fiber is an alumina fiber
  • the metal nitride fiber is an aluminum nitride fiber.
  • the weight of the metal oxide fiber cloth or metal nitride fiber cloth is The proportion is 5% to 40%, and the proportion of the epoxy resin is 60 to 95%.
  • metal oxide particles or metal nitride particles are doped at the same time.
  • the metal oxide particles are alumina particles
  • the metal nitride particles are aluminum nitride particles.
  • the proportion of the metal oxide particles or the metal nitride particles is 5% to 25% by weight percentage.
  • a particle diameter of the metal oxide particles or the metal nitride particles is 1 um to 10 um.
  • silica is doped in the metal oxide fiber or the metal nitride fiber.
  • the proportion of the silica in the metal oxide fiber or the metal nitride fiber is 5% to 25% by weight percentage.
  • Another object of the present invention is to provide a circuit board including at least the above-mentioned prepreg.
  • Another object of the present invention is to provide an electronic device including at least the above-mentioned circuit board.
  • FIG. 1 is a flowchart of a method for preparing a prepreg according to a second embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an alumina fiber cloth in a method for preparing a prepreg according to a second embodiment of the present invention
  • FIG. 3 is a schematic diagram of a structure of an epoxy resin colloid in a method for preparing a prepreg according to a second embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a prepreg prepared by the method for preparing a prepreg according to the second embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a circuit board according to a third embodiment of the present invention.
  • the terms “installation”, “connected”, “connected”, “fixed” and other terms shall be understood in a broad sense unless otherwise specified and limited, for example, they may be fixed connections or removable connections , Or integrally connected; it can be mechanical or electrical; it can be directly connected, or it can be indirectly connected through an intermediate medium, and it can be the internal communication of two elements.
  • the specific meanings of the above terms in the present invention can be understood according to specific situations.
  • the term “and / or” as used herein includes any and all combinations of one or more of the associated listed items.
  • a first embodiment of the present invention provides a prepreg including a substrate filler and an epoxy resin, wherein the substrate filler includes metal oxide fibers or metal nitride fibers.
  • the substrate filler may include alumina fibers or aluminum nitride fibers.
  • the thermal conductivity of alumina is 30 W / (m ⁇ k), which is 40 times that of glass.
  • the thermal conductivity of aluminum nitride is 175 W / (m ⁇ k), which is 240 times that of glass.
  • alumina or aluminum nitride can be processed into a fibrous form using the preparation methods of related literature.
  • the proportion of the base material filler is 5% to 40%, and the proportion of the epoxy resin is 60 to 95% by weight.
  • the prepreg includes 5% substrate filler and 95% epoxy resin; or, the prepreg includes 35% substrate filler and 65% epoxy resin, or the prepreg includes 40% substrate filler and 60% epoxy resin.
  • the metal oxide fibers or metal nitride fibers have a thermal conductivity coefficient.
  • High material, and the metal oxide fiber or metal nitride fiber are fibrous, which can quickly conduct heat in the plane direction, which can effectively increase the thermal conductivity of the prepreg and improve the thermal conductivity.
  • the metal oxide fibers or metal nitride fibers are specifically distributed in the warp and weft shape in the prepreg, and have a regular warp and weft arrangement, which can further accelerate the conduction of heat in the plane direction.
  • the prepreg in this embodiment may be doped with metal oxide particles or metal nitride particles.
  • the metal oxide particles are alumina particles
  • the metal nitride particles are aluminum nitride particles, which are used to further increase the overall thermal conductivity of the prepreg, and at the same time can play a role in adjusting the consistency of the prepreg to adapt to different Application Environment.
  • Metal oxide particles or metal nitride particles may be dispersed in the epoxy resin.
  • the proportion of the metal oxide particles or metal nitride particles in the prepreg is 5% to 25% by weight percentage.
  • the particle diameter of the metal oxide particles or metal nitride particles is 1 um to 10 um.
  • different particle size combinations can also be used to increase the contact area and probability, and further increase the overall thermal conductivity.
  • aluminum nitride particles with a particle size of 1um and aluminum nitride particles with a particle size of 3um are combined and doped into a prepreg, or alumina particles with a particle size of 5um and alumina with a particle size of 10um
  • the particles are combined together and doped into the prepreg, and the specific proportion distribution can be adjusted according to the actual situation.
  • silicon dioxide can be doped into the substrate filler, and the doped silicon dioxide can stabilize the crystal phase and prevent the crystal grains from being too large to damage the fiber structure.
  • the proportion of the silica in the substrate filler is 5% to 25% by weight percentage.
  • a second embodiment of the present invention provides a method for preparing a prepreg, including:
  • the metal oxide fiber is an alumina fiber
  • the metal nitride fiber is an aluminum nitride fiber.
  • the alumina or aluminum nitride can be processed into a fibrous form using the preparation methods of related literatures to prepare alumina fibers or aluminum nitride fibers.
  • silicon oxide may be doped in the metal oxide fiber or the metal nitride fiber to stabilize the crystal phase and prevent the crystal grain from being too large to damage the fiber structure.
  • the proportion of the silica in the metal oxide fiber or the metal nitride fiber is 5% to 25% by weight percentage.
  • the processed metal oxide fiber or metal nitride fiber is kneaded and knitted using a weaving process to form a metal oxide fiber cloth or metal nitride fiber cloth with a certain thickness, as shown in FIG. 2, using alumina fibers
  • the prepared alumina fiber cloth includes warp yarns 10 and weft yarns 20.
  • the thickness and density of the cloth can be adjusted to a reasonable value by adjusting the density of warp and weft.
  • the thickness of the cloth can be between 10um and 1000um.
  • the metal oxide fiber cloth or metal nitride fiber cloth can be cut into a certain length after being processed and formed, and then mixed into a heat-curable epoxy resin material as a filler and stirred to make a colloid evenly.
  • a certain proportion of metal oxide fiber is added to it
  • Cloth or metal nitride fiber cloth can effectively increase the thermal conductivity of the colloid.
  • the proportion of the metal oxide fiber cloth or metal nitride fiber cloth added is 5% to 40%, and the proportion of the epoxy resin is 60 to 95% by weight percentage.
  • a certain proportion of metal oxide particles or metal nitride particles can be doped in the colloid to further increase the overall thermal conductivity of the colloid, and at the same time can play a role in adjusting the consistency of the prepreg.
  • the added metal oxide particles or metal nitride particles can be dispersed in the epoxy resin.
  • the metal oxide particles are alumina particles
  • the metal nitride particles are aluminum nitride particles.
  • the proportion of the metal oxide particles or metal nitride particles in the prepreg is 5% to 25% by weight percentage.
  • the particle diameter of the metal oxide particles or metal nitride particles is 1 um to 10 um.
  • different particle size combinations can also be used to increase the contact area and probability, and further increase the overall thermal conductivity.
  • aluminum nitride particles with a particle size of 1um and aluminum nitride particles with a particle size of 3um are combined and doped into a prepreg, or alumina particles with a particle size of 5um and alumina with a particle size of 10um
  • the particles are combined together and doped into the prepreg, and the specific proportion distribution can be adjusted according to the actual situation.
  • the produced epoxy colloid includes epoxy resin 30, metal oxide fiber cloth or metal nitride fiber cloth 40, and metal oxide particles or metal nitride particles 50.
  • the colloid is pressed into a sheet shape to form a prepreg.
  • the colloid is pressed into a thin sheet with a certain thickness, and the thickness can be determined according to the thickness of the existing prepreg.
  • the preparation of the prepreg is finally completed.
  • the structure of the prepared prepreg can be referred to FIG. 4.
  • FIG. 4 Taking alumina fibers and alumina particles as an example, the prepreg includes epoxy resin 60, alumina fiber cloth 70, alumina fibers 80 mixed with epoxy resin, and alumina particles 90.
  • metal oxide fibers or metal nitride fibers with high thermal conductivity have been woven into cloth with regular warp and weft arrangements, heat can be quickly conducted in a planar direction to ensure that the prepared prepreg has high thermal conductivity.
  • Metal oxide particles or metal nitride particles can be added thereto, and the metal oxide particles or metal nitride particles can be randomly distributed in the epoxy resin of the prepreg, further increasing the mutual contact probability of the thermally conductive material, and further Makes the overall heat conduction efficiency improved.
  • the metal oxide fibers or metal nitride fibers are both substances with high thermal conductivity, which is much higher than that of glass. System, and the metal oxide fibers or metal nitride fibers are fibrous, which can conduct heat quickly in the plane direction, which can effectively increase the thermal conductivity of the prepreg and improve the thermal conductivity.
  • metal oxide particles or metal nitride particles can also be added to it to disperse it in the epoxy resin, and the proportion of the epoxy resin in the epoxy resin can be adjusted so that they can effectively contact each other in the epoxy resin. It is more conducive to heat conduction and further improves heat conduction efficiency.
  • the fiber cloth in order to increase the contact between the metal oxide fiber cloth or the metal nitride fiber cloth and the copper skin in the circuit board to further improve the heat conduction efficiency, when making the fiber cloth in step S2, the fiber cloth can be adjusted. Unit density of warp and weft yarns, while adjusting the thickness of the fiber cloth to make it the same thickness or slightly larger than the thickness of the required dielectric layer; At the same time, adjust the concentration of the epoxy resin to reduce its viscosity as much as possible to make it easier to flow. Then, in the PCB processing process, the metal oxide fiber cloth or metal nitride fiber cloth impregnated with epoxy resin is sandwiched between the copper skins for compression bonding. Because the colloid is thinner, the excess glue will flow out. At the same time, because The thickness of the fiber cloth is the same as or slightly larger than the thickness of the required dielectric layer. After lamination, the fiber cloth will be in close contact with the copper surface, increasing the heat conduction area and improving the heat conduction efficiency.
  • step S13 when metal oxide particles or metal nitride particles are doped, metal oxide fibers or metal nitride fibers, and metal oxide fibers or metal nitrogen may be added at the same time.
  • the diameter and length of the compound fiber can be combined with different specifications to take advantage of its different hardness, increase its disorder in the colloid, and make it more likely to contact the fiber cloth.
  • a third embodiment of the present invention provides a circuit board.
  • the circuit board includes at least the prepreg described in Example 1 or the prepreg prepared in Example 2.
  • both sides of the prepreg can be covered with copper foil, and the prepreg is hardened by heating to generate a copper clad board for the PCB.
  • the copper clad board is subjected to pattern transfer, exposure development, lamination, and drilling according to a conventional PCB processing process.
  • a PCB is generated, as shown in FIG. 5, which includes a copper layer 101, a prepreg 102 and a heating chip 103.
  • SMT patching electronic circuits with certain circuit functions are generated. When the circuit is working, the devices on it, such as chips, generate heat. The heat conducts radiation through the copper layer on the surface layer.
  • the metal oxide fibers or metal nitride fibers of the prepreg sandwiched between the conductive circuit layers are in contact with the copper layer.
  • the metal oxide fiber or metal nitride fiber of the prepreg is in contact with the underlying copper layer at the same time, and has a regular planar extension structure. Therefore, the heat spreads in the horizontal direction at the same time as the dielectric layer, which is equivalent to increasing the cross-section of the overall thermal conductivity of the circuit board.
  • the area is conducive to the conduction of heat. Therefore, the circuit board using the prepreg has a higher thermal conductivity.
  • the circuit board of this embodiment is completely compatible with the existing circuit board processing technology and SMT placement technology, and can be compatible with high-order multilayer board technology.
  • the processing performance is good without increasing the thickness of the circuit board, and it can be applied to ultra-thin In the processing of boards, the cost is even lower.
  • a fourth embodiment of the present invention provides an electronic device, which includes at least the above-mentioned circuit board.
  • the electronic device may be a mobile phone, a tablet computer, a portable computer, a vehicle-mounted computer, a desktop computer, a smart TV, or a smart wearable device.
  • One of smart home devices may be a mobile phone, a tablet computer, a portable computer, a vehicle-mounted computer, a desktop computer, a smart TV, or a smart wearable device.
  • the heat dissipation performance of the electronic device is stronger, and the user experience is better.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明公开了一种半固化片,包括基材填充料和环氧树脂,所述基材填充料包括金属氧化物纤维或金属氮化物纤维。本发明提出的半固化片,由于向环氧树脂中加入了基材填充料,而基材填充料包括金属氧化物纤维或金属氮化物纤维,金属氧化物纤维或金属氮化物纤维都是导热系数高的物质,而且金属氧化物纤维或金属氮化物纤维都是纤维状,可以将热量在平面方向上快速传导,从而能够有效增加半固化片的导热效率,提升导热性能。本发明还公开了一种半固化片的制备方法、采用该半固化片的电路板以及采用该电路板的电子设备。

Description

半固化片、半固化片的制作方法、电路板及电子设备 【技术领域】
本发明涉及电子设备技术领域,特别是涉及一种半固化片、半固化片的制作方法、电路板及电子设备。
【背景技术】
PCB(Printed Circuit Board,印刷电路板,简称电路板)是承载电子元器件的基板,是电子元器件互连关系的具体承载及物理体现,是电子产品的重要组成部分,也是整个电子线路中面积最大的器件,而现代电子线路板的集成度越来越高,发热越来越大,如何进行有效的散热是当前电子设计中面临的一大难题。尤其是在由电池供电的移动设备中,散热更是一大难题。
现在的移动电子设备散热,主要是利用导热片(如石墨片)或导热胶,将热量从高温区域传导至低温区域,实现整个电路板的均温。该均温过程主要利用外加的材料进行导热,而没有用到使用到电路本身的材料进行导热,尤其是没有利用整个电路中面积最大的PCB进行导热,使用外加材料进行散热会占用PCB的面积,且增加了组装工序和组装成本。
由于PCB中,其组成成分主要是铜层和介质层PP(Pre-pregnant,半固化片,简称PP),其中铜是热的良导体,导热系数高达377W/(m·k),而PP主要是有环氧树脂和玻璃纤维布组成,这两种材料都是热的不良导体,其中,环氧树脂的导热系数约为0.2W/(m·k),玻璃的导热系数为0.75W/(m·k),由于在PCB的组成中,铜层一般都很薄,而PP介质层相对厚很多。因此,目前无法利用PCB进行导热的主要原因是PP整体的导热效率低。现有技术中,虽然有一些增加PP导热效率的解决方案,但导热效率无法得到有效提高。
【发明内容】
本发明的一个目的在于提出一种导热效率高的半固化片。
一种半固化片,包括基材填充料和环氧树脂,所述基材填充料包括金属氧化物纤维或金属氮化物纤维。
根据本发明提出的半固化片,由于向环氧树脂中加入了基材填充料,而基 材填充料包括金属氧化物纤维或金属氮化物纤维,金属氧化物纤维或金属氮化物纤维都是导热系数高的物质,而且金属氧化物纤维或金属氮化物纤维都是纤维状,可以将热量在平面方向上快速传导,从而能够有效增加半固化片的导热效率,提升导热性能。
另外,根据本发明提供的半固化片,还可以具有如下附加的技术特征:
进一步地,所述基材填充料包括氧化铝纤维或氮化铝纤维。
进一步地,按重量百分比,所述基材填充料的占比为5%~40%,所述环氧树脂的占比为60~95%。
进一步地,所述半固化片中掺杂有金属氧化物颗粒或金属氮化物颗粒。
进一步地,所述金属氧化物颗粒为氧化铝颗粒,所述金属氮化物颗粒为氮化铝颗粒。
进一步地,按重量百分比,所述金属氧化物颗粒或所述金属氮化物颗粒的占比为5%~25%。
进一步地,所述金属氧化物颗粒或所述金属氮化物颗粒的粒径为1um~10um。
进一步地,所述基材填充料中掺杂有二氧化硅。
进一步地,按重量百分比,所述二氧化硅在所述基材填充料中的占比为5%~25%。
进一步地,所述金属氧化物纤维或所述金属氮化物纤维在所述半固化片中呈经纬状分布。
本发明的另一个目的在于提出一种半固化片的制作方法,所述方法包括:
制备金属氧化物纤维或金属氮化物纤维;
将制备好的金属氧化物纤维或金属氮化物纤维揉纱,编织成金属氧化物纤维布或金属氮化物纤维布;
将所述金属氧化物纤维布或金属氮化物纤维布作为填料混入环氧树脂中,搅拌均匀制成胶体;
将所述胶体压合成薄片状,以制成半固化片。
采用上述方法制备出的半固化片,由于向环氧树脂中加入了金属氧化物纤维或金属氮化物纤维,金属氧化物纤维或金属氮化物纤维都是导热系数高的物质,而且金属氧化物纤维或金属氮化物纤维都是纤维状,可以将热量在平面方向上快速传导,从而能够有效增加半固化片的导热效率,提升导热性能。
进一步地,所所述金属氧化物纤维为氧化铝纤维,所述金属氮化物纤维为氮化铝纤维。
进一步地,所述将所述金属氧化物纤维布或金属氮化物纤维布作为填料混入环氧树脂中的步骤中,按重量百分比,加入的所述金属氧化物纤维布或金属氮化物纤维布的占比为5%~40%,所述环氧树脂的占比为60~95%。
进一步地,所述将所述金属氧化物纤维布或金属氮化物纤维布作为填料混入环氧树脂中的步骤中,同时掺杂金属氧化物颗粒或金属氮化物颗粒。
进一步地,所述金属氧化物颗粒为氧化铝颗粒,所述金属氮化物颗粒为氮化铝颗粒。
进一步地,按重量百分比,所述金属氧化物颗粒或所述金属氮化物颗粒的占比为5%~25%。
进一步地,所述金属氧化物颗粒或所述金属氮化物颗粒的粒径为1um~10um。
进一步地,所述制备金属氧化物纤维或金属氮化物纤维的步骤中,在所述金属氧化物纤维或所述金属氮化物纤维中掺杂二氧化硅。
进一步地,按重量百分比,所述二氧化硅在所述金属氧化物纤维或所述金属氮化物纤维中的占比为5%~25%。
本发明的另一个目的还在于提出一种电路板,该电路板至少包括上述的半固化片。
本发明的另一个目的还在于提出一种电子设备,该电子设备至少包括上述的电路板。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
【附图说明】
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明第二实施例提出的半固化片的制备方法的流程图;
图2是本发明第二实施例提出的半固化片的制备方法中氧化铝纤维布的结构示意图;
图3是本发明第二实施例提出的半固化片的制备方法中环氧树脂胶体的结 构示意图;
图4是本发明第二实施例提出的半固化片的制备方法制备出的半固化片的结构示意图;
图5是本发明第三实施例提出的电路板的结构示意图。
【具体实施方式】
为使本发明的目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
需要说明的是,当元件被称为“固设于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”、“上”、“下”以及类似的表述只是为了说明的目的,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例1
本发明的第一实施例提出一种半固化片,该半固化片包括基材填充料和环氧树脂,其中,所述基材填充料包括金属氧化物纤维或金属氮化物纤维。
具体的,优选的,基材填充料可以包括氧化铝纤维或氮化铝纤维。氧化铝的导热系数为30W/(m·k),是玻璃的40倍。氮化铝的导热系数为175W/(m·k),是玻璃的240倍,具体可以采用相关文献的制备方法将氧化铝或氮化铝加工成纤维状。
具体的,优选的,按重量百分比,所述基材填充料的占比为5%~40%,所 述环氧树脂的占比为60~95%。例如,半固化片包括5%的基材填充料和95%的环氧树脂;或者,半固化片包括35%的基材填充料和65%的环氧树脂,或者,半固化片包括40%的基材填充料和60%的环氧树脂。
根据本实施例提出的半固化片,由于向环氧树脂中加入了基材填充料,而基材填充料包括金属氧化物纤维或金属氮化物纤维,金属氧化物纤维或金属氮化物纤维都是导热系数高的物质,而且金属氧化物纤维或金属氮化物纤维都是纤维状,可以将热量在平面方向上快速传导,从而能够有效增加半固化片的导热效率,提升导热性能。
其中,金属氧化物纤维或金属氮化物纤维在半固化片中具体呈经纬状分布,具有规则的经纬排布,能够进一步加快热量在平面方向上的传导。
此外,作为一个具体示例,本实施例中的半固化片可以掺杂金属氧化物颗粒或金属氮化物颗粒。优选的,该金属氧化物颗粒为氧化铝颗粒,金属氮化物颗粒为氮化铝颗粒,用于进一步增大半固化整体的的导热系数,同时能够起到调节半固化片浓稠度的作用,以适应不同的应用环境。金属氧化物颗粒或金属氮化物颗粒可以分散在环氧树脂中。
优选的,按重量百分比,所述金属氧化物颗粒或金属氮化物颗粒在半固化片中的占比为5%~25%。
优选的,金属氧化物颗粒或金属氮化物颗粒的粒径为1um~10um。具体实施时,还可以采用不同的粒径组合,以增大接触面积和几率,进一步增加整体的导热效率。例如,将粒径为1um的氮化铝颗粒和粒径为3um的氮化铝颗粒组合在一起,掺杂到半固化片中,或者将粒径为5um的氧化铝颗粒和粒径为10um的氧化铝颗粒组合在一起,掺杂到半固化片中,具体的比例分配可以根据实际情况进行调节。
此外,具体一个具体示例,可以向基材填充料中掺杂二氧化硅,掺杂二氧化硅能够稳定晶相,防止晶粒过大而破坏纤维结构。
优选的,按重量百分比,所述二氧化硅在所述基材填充料中的占比为5%~25%。
实施例2
请参阅图1,本发明的第二实施例提出一种半固化片的制备方法,包括:
S11,制备金属氧化物纤维或金属氮化物纤维;
其中,优选的,金属氧化物纤维为氧化铝纤维,金属氮化物纤维为氮化铝 纤维。可以采用相关文献的制备方法将氧化铝或氮化铝加工成纤维状,以制备出氧化铝纤维或氮化铝纤维。
制备时,可以在所述金属氧化物纤维或所述金属氮化物纤维中掺杂二氧化硅,以稳定晶相,防止晶粒过大而破坏纤维结构。
优选的,按重量百分比,所述二氧化硅在所述金属氧化物纤维或所述金属氮化物纤维中的占比为5%~25%。
S12,将制备好的金属氧化物纤维或金属氮化物纤维揉纱,编织成金属氧化物纤维布或金属氮化物纤维布;
其中,将加工成型的金属氧化物纤维或金属氮化物纤维,揉纱,采用编制工艺编织成具有一定厚度的金属氧化物纤维布或金属氮化物纤维布,如图2所示,采用氧化铝纤维制备的氧化铝纤维布,其包括经纱10和纬纱20。可以通过调节经纱和纬纱的密度,使布的厚度和密度达到合理的数值,布的厚度可以在10um~1000um之间。
S13,将所述金属氧化物纤维布或金属氮化物纤维布作为填料混入环氧树脂中,搅拌均匀制成胶体;
其中,金属氧化物纤维布或金属氮化物纤维布加工成型后,可以先裁切成一定的长度,然后作为填料混入可热固化的环氧树脂材料中,搅拌均匀制成胶体。因环氧树脂的导热系数很低,为0.35W/(m·k),而金属氧化物纤维布或金属氮化物纤维布的导热系数很高,因此,在其中加入一定比例的金属氧化物纤维布或金属氮化物纤维布,可以有效的增大胶体的导热系数。优选的,按重量百分比,加入的所述金属氧化物纤维布或金属氮化物纤维布的占比为5%~40%,所述环氧树脂的占比为60~95%。
同时,在步骤中,还可以在胶体中可掺杂进一定比例的金属氧化物颗粒或金属氮化物颗粒,以进一步的增大胶体总体的导热系数,同时能够起到调节半固化片浓稠度的作用,以适应不同的应用环境,加入的金属氧化物颗粒或金属氮化物颗粒可以分散在环氧树脂中。
优选的,该金属氧化物颗粒为氧化铝颗粒,金属氮化物颗粒为氮化铝颗粒。
优选的,按重量百分比,所述金属氧化物颗粒或金属氮化物颗粒在半固化片中的占比为5%~25%。
优选的,金属氧化物颗粒或金属氮化物颗粒的粒径为1um~10um。具体实施 时,还可以采用不同的粒径组合,以增大接触面积和几率,进一步增加整体的导热效率。例如,将粒径为1um的氮化铝颗粒和粒径为3um的氮化铝颗粒组合在一起,掺杂到半固化片中,或者将粒径为5um的氧化铝颗粒和粒径为10um的氧化铝颗粒组合在一起,掺杂到半固化片中,具体的比例分配可以根据实际情况进行调节。制成的环氧树脂胶体,如图3所示,其中包括环氧树脂30、金属氧化物纤维布或金属氮化物纤维布40以及金属氧化物颗粒或金属氮化物颗粒50。
S14,将所述胶体压合成薄片状,以制成半固化片。
其中,将胶体压合成具有一定厚度的薄片状,厚度可以根据现有的半固化片的厚度来定,最终完成了半固化片的制备,制备出的半固化片的结构可以参阅图4,为了便于说明,图4中以氧化铝纤维和氧化铝颗粒为例进行说明,该半固化片包含了环氧树脂60、氧化铝纤维布70、混合在环氧树脂中的氧化铝纤维80以及氧化铝颗粒90。
由于导热效率高的金属氧化物纤维或金属氮化物纤维已经纺织为布,具有规则的经纬排布,因此,可以将热量在平面方向上快速传导,保证制备出的半固化片具有高的导热效率,此外,可以向其中加入金属氧化物颗粒或金属氮化物颗粒,金属氧化物颗粒或金属氮化物颗粒可以在半固化片的环氧树脂中无序分布,进一步的增大了导热材料的相互接触概率,进一步的使得整体的导热效率提升。
根据本实施例制备出的半固化片,由于向环氧树脂中加入了金属氧化物纤维或金属氮化物纤维,金属氧化物纤维或金属氮化物纤维都是导热系数高的物质,远高于玻璃的导热系统,而且金属氧化物纤维或金属氮化物纤维都是纤维状,可以将热量在平面方向上快速传导,从而能够有效增加半固化片的导热效率,提升导热性能。
此外,还可以向其中加入金属氧化物颗粒或金属氮化物颗粒,使其分散在环氧树脂中,调节其在环氧树脂中的比例,使得其在环氧树脂中彼此可以进行有效的接触,更加有利于热量的传导,进一步提升导热效率。
此外,作为一个具体示例,为了增大金属氧化物纤维布或金属氮化物纤维布和电路板中铜皮的接触,以进一步的提高导热效率,在步骤S2制作纤维布时,可以调节纤维布中经纱和纬纱的单位密度,同时调节纤维布的厚度,使其厚度与需要的介质层厚度相同或略大;同时,调节可以环氧树脂的浓度,尽量降低 其粘稠度,使其更加容易流动,然后在PCB加工过程中,将浸渍过环氧树脂的金属氧化物纤维布或金属氮化物纤维布夹在铜皮之间进行压合,由于胶体较稀,多余的胶将流出,同时,由于纤维布的厚度与需要的介质层厚度相同或略大,压合后,纤维布将与铜面紧密接触,增大导热面积,提高导热效率。
进一步的,作为一个具体示例,在步骤S13中,若掺杂金属氧化物颗粒或金属氮化物颗粒时,还可以同时加入金属氧化物纤维或者金属氮化物纤维,加入的金属氧化物纤维或者金属氮化物纤维的直径和长度,可采用不同规格的组合,以利用其不同的硬度,增加其在胶体中无序度,使其与纤维布的接触几率更大。
实施例3
本发明的第三实施例提出一种电路板,该电路板至少包括实施例1中所述的半固化片或实施例2制备出的半固化片。
具体的,可以将上述的半固化片的两面覆盖铜箔,加热使半固化片硬化后,即生成PCB的覆铜板,覆铜板按照常规的PCB加工工艺,经过图形转移,曝光显影,叠层,钻孔后,生成PCB,如图5所示,其中包括铜层101,半固化片102以及发热芯片103。然后经过SMT贴片后生成具有一定电路功能的电子线路。电路在工作时,其上的器件,如芯片等,产生热量,热量延表层铜皮传导辐射,同时,由于导电线路层中间夹的半固化片的金属氧化物纤维或金属氮化物纤维与铜皮接触,同时,半固化片的金属氧化物纤维或金属氮化物纤维同时与下方的铜层接触,具有规则的平面延伸结构,因此热量同时延介质层向水平方向传播,相当于增加了电路板整体导热的横截面积,有利于热量的传导。因此,采用上述半固化片的电路板具有较高的导热能力。此外,本实施例的电路板与现有的电路板加工工艺和SMT贴片工艺完全兼容,且可以兼容高阶多层板工艺,加工性能良好,不增加电路板的厚度,可应用于超薄板的加工中,成本更加低廉。
本发明的第四实施例提出一种电子设备,该电子设备至少包括上述的电路板,该电子设备可以是手机、平板电脑、便携式计算机、车载电脑、台式计算机、智能电视机、智能可穿戴设备、智能家居设备中的其中一种。
由于采用了上述电路板,因此该电子设备的散热性能更强,用户使用体验更好。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细, 但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种半固化片,包括基材填充料和环氧树脂,其中,所述基材填充料包括金属氧化物纤维或金属氮化物纤维。
  2. 根据权利要求1所述的半固化片,其中,所述基材填充料包括氧化铝纤维或氮化铝纤维。
  3. 根据权利要求1所述的半固化片,其中,按重量百分比,所述基材填充料的占比为5%~40%,所述环氧树脂的占比为60~95%。
  4. 根据权利要求1所述的半固化片,其中,所述半固化片中掺杂有金属氧化物颗粒或金属氮化物颗粒。
  5. 根据权利要求4所述的半固化片,其中,按重量百分比,所述金属氧化物颗粒或所述金属氮化物颗粒的占比为5%~25%。
  6. 根据权利要求4所述的半固化片,其中,所述金属氧化物颗粒为氧化铝颗粒,所述金属氮化物颗粒为氮化铝颗粒。
  7. 根据权利要求4所述的半固化片,其中,所述金属氧化物颗粒或所述金属氮化物颗粒的粒径为1um~10um。
  8. 根据权利要求1所述的半固化片,其中,所述金属氧化物纤维或所述金属氮化物纤维在所述半固化片中呈经纬状分布。
  9. 根据权利要求1所述的半固化片,其中,所述基材填充料中掺杂有二氧化硅。
  10. 根据权利要求1所述的半固化片,其中,按重量百分比,所述二氧化硅在所述基材填充料中的占比为5%~25%。
  11. 一种半固化片的制备方法,其中,包括:
    制备金属氧化物纤维或金属氮化物纤维;
    将制备好的金属氧化物纤维或金属氮化物纤维揉纱,编织成金属氧化物纤维布或金属氮化物纤维布;
    将所述金属氧化物纤维布或金属氮化物纤维布作为填料混入环氧树脂中,搅拌均匀制成胶体;
    将所述胶体压合成薄片状,以制成半固化片。
  12. 根据权利要求11所述的制备方法,其中,所述将所述金属氧化物纤维 布或金属氮化物纤维布作为填料混入环氧树脂中的步骤中,同时掺杂金属氧化物颗粒或金属氮化物颗粒。
  13. 根据权利要求12所述的制备方法,其中,所述金属氧化物颗粒为氧化铝颗粒,所述金属氮化物颗粒为氮化铝颗粒。
  14. 根据权利要求12所述的制备方法,其中,按重量百分比,所述金属氧化物颗粒或所述金属氮化物颗粒的占比为5%~25%;所述金属氧化物颗粒或所述金属氮化物颗粒的粒径为1um~10um。
  15. 根据权利要求11所述的制备方法,其中,所述制备金属氧化物纤维或金属氮化物纤维的步骤中,在所述金属氧化物纤维或所述金属氮化物纤维中掺杂二氧化硅。
  16. 根据权利要求15所述的制备方法,其中,按重量百分比,所述二氧化硅在所述金属氧化物纤维或所述金属氮化物纤维中的占比为5%~25%。
  17. 根据权利要求11所述的制备方法,其中,所述金属氧化物纤维为氧化铝纤维,所述金属氮化物纤维为氮化铝纤维。
  18. 根据权利要求11所述的制备方法,其中,所述将所述金属氧化物纤维布或金属氮化物纤维布作为填料混入环氧树脂中的步骤中,按重量百分比,加入的所述金属氧化物纤维布或金属氮化物纤维布的占比为5%~40%,所述环氧树脂的占比为60~95%。
  19. 一种电路板,其中,至少包括权利要求1至10任意一项所述的半固化片。
  20. 一种电子设备,其中,至少包括权利要求19所述的电路板。
PCT/CN2019/083945 2018-05-30 2019-04-23 半固化片、半固化片的制作方法、电路板及电子设备 WO2019228104A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810542362.1A CN108566726A (zh) 2018-05-30 2018-05-30 半固化片、半固化片的制作方法、电路板及电子设备
CN201810542362.1 2018-05-30

Publications (1)

Publication Number Publication Date
WO2019228104A1 true WO2019228104A1 (zh) 2019-12-05

Family

ID=63540331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083945 WO2019228104A1 (zh) 2018-05-30 2019-04-23 半固化片、半固化片的制作方法、电路板及电子设备

Country Status (2)

Country Link
CN (1) CN108566726A (zh)
WO (1) WO2019228104A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108566726A (zh) * 2018-05-30 2018-09-21 奇酷互联网络科技(深圳)有限公司 半固化片、半固化片的制作方法、电路板及电子设备
CN109195315B (zh) * 2018-09-28 2022-01-25 电子科技大学 一种散热结构、埋嵌/贴装印制电路板及制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104066265A (zh) * 2013-03-22 2014-09-24 叶云照 多层印刷电路板结构
CN104212130A (zh) * 2013-05-30 2014-12-17 三星电机株式会社 用于印刷电路板的绝缘树脂组合物、绝缘膜、半固化片和印刷电路板
US9427921B2 (en) * 2011-03-03 2016-08-30 Dai Nippon Printing Co., Ltd. Polydimethylsiloxane sheet, optical element incorporating the same, and manufacturing method thereof
CN106671548A (zh) * 2016-12-05 2017-05-17 山东金宝科创股份有限公司 一种cem‑1覆铜板的制备方法
CN108566726A (zh) * 2018-05-30 2018-09-21 奇酷互联网络科技(深圳)有限公司 半固化片、半固化片的制作方法、电路板及电子设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW319778B (zh) * 1995-04-24 1997-11-11 Sumitomo Chemical Co
TW389780B (en) * 1995-09-13 2000-05-11 Hitachi Chemical Co Ltd Prepreg for printed circuit board
US7220536B2 (en) * 2004-10-22 2007-05-22 Konica Minolta Medical & Graphic, Inc. Silver salt photothermographic dry imaging material, thermal development method of the same, and thermal development apparatus for the same
CN101481490B (zh) * 2009-01-19 2014-01-15 东莞联茂电子科技有限公司 一种热固性树脂组合物及应用
CN202711885U (zh) * 2012-05-29 2013-01-30 苏州巨峰电气绝缘系统股份有限公司 一种高导热高透气性少胶云母带
JP2014167053A (ja) * 2013-02-28 2014-09-11 3M Innovative Properties Co 高熱伝導性プリプレグ、プリプレグを用いた配線板および多層配線板、ならびに多層配線板を用いた半導体装置
US10682668B2 (en) * 2016-08-25 2020-06-16 Japan Matex Co., Ltd. Method of manufacturing a high-strength carbon fiber resin tape and the high-strength carbon fiber resin tape

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9427921B2 (en) * 2011-03-03 2016-08-30 Dai Nippon Printing Co., Ltd. Polydimethylsiloxane sheet, optical element incorporating the same, and manufacturing method thereof
CN104066265A (zh) * 2013-03-22 2014-09-24 叶云照 多层印刷电路板结构
CN104212130A (zh) * 2013-05-30 2014-12-17 三星电机株式会社 用于印刷电路板的绝缘树脂组合物、绝缘膜、半固化片和印刷电路板
CN106671548A (zh) * 2016-12-05 2017-05-17 山东金宝科创股份有限公司 一种cem‑1覆铜板的制备方法
CN108566726A (zh) * 2018-05-30 2018-09-21 奇酷互联网络科技(深圳)有限公司 半固化片、半固化片的制作方法、电路板及电子设备

Also Published As

Publication number Publication date
CN108566726A (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
KR101757229B1 (ko) 전자파 차폐 및 방열 기능 일체형 다층복합시트 및 이의 제조방법
KR101272397B1 (ko) 열확산, 전자파 차폐 및 충격흡수 기능을 갖는 복합기능 박막시트 및 이의 제조방법
US10736237B2 (en) Heat sink, preparation method therefor, and communications device
WO2011137756A2 (zh) 复合材料以及电子设备
WO2019228104A1 (zh) 半固化片、半固化片的制作方法、电路板及电子设备
JP2002069392A (ja) 熱伝導性接着フィルムおよびその製造方法ならびに電子部品
CN207460589U (zh) 一种石墨复合线路板
KR101796206B1 (ko) 그라파이트 점착제층 방열패드
CN103144377A (zh) 具有高导热效应的复合式电磁屏蔽铜箔基板及其制造方法
JP2009066817A (ja) 熱伝導性シート
WO2017045232A1 (zh) 一种天然石墨/铝复合散热片
CN104708869A (zh) 一种高导热铝基覆铜板及其制造方法
CN111826098A (zh) 导热复合垫片及其制备方法、电子元器件和电子产品
JP2007158193A (ja) 電子部品実装用基板、電子部品モジュール、電子部品実装構造体及びこれらの製造方法
CN207491321U (zh) 一种低介电玻璃纤维布的高频印制电路板
CN207692149U (zh) 一种具有导热结构的多层pcb板
JP2001160606A (ja) 放熱シートおよびその製造方法
JP2007084704A (ja) 樹脂組成物とこれを用いた回路基板およびパッケージ
KR20230059997A (ko) 세라믹화 산화알루미늄 분말과 탄소나노튜브를 이용한 동박적층판의 제조방법
TW201442609A (zh) 散熱片結構及其製作方法
JPH11298152A (ja) 多層プリント回路板
CN208781834U (zh) 散热结构
JPH0445591A (ja) プリント配線板用基材
TW202106498A (zh) 熱傳導片材及其製造方法
KR102591403B1 (ko) 복합 방열 하이브리드 시트

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812467

Country of ref document: EP

Kind code of ref document: A1