WO2019227960A1 - 量子点发光二极管及其制备方法、显示面板 - Google Patents

量子点发光二极管及其制备方法、显示面板 Download PDF

Info

Publication number
WO2019227960A1
WO2019227960A1 PCT/CN2019/073683 CN2019073683W WO2019227960A1 WO 2019227960 A1 WO2019227960 A1 WO 2019227960A1 CN 2019073683 W CN2019073683 W CN 2019073683W WO 2019227960 A1 WO2019227960 A1 WO 2019227960A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
light emitting
layer
transport layer
emitting diode
Prior art date
Application number
PCT/CN2019/073683
Other languages
English (en)
French (fr)
Inventor
张欣
钟海政
常帅
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/617,891 priority Critical patent/US11462706B2/en
Publication of WO2019227960A1 publication Critical patent/WO2019227960A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • the present disclosure belongs to the field of display technology, and particularly relates to a quantum dot light emitting diode, a method for manufacturing the quantum dot light emitting diode, and a display panel.
  • Quantum dot light emitting diodes have the characteristics of low energy consumption, high brightness, high color purity, and easy flexibility, and are the core devices of next-generation display technology.
  • the cathode of an inverted structure QLED can be directly connected to the drain of a thin film transistor (Thin Film Transistor, TFT for short) as a control device, which is currently the most promising device structure for commercial use.
  • TFT Thin Film Transistor
  • the present disclosure provides a quantum dot light emitting diode, which includes a cathode, an electron transport layer, a light emitting layer, a hole transport layer, and an anode, which are arranged in a stack, wherein the electron transport layer includes a carrier capable of trapping
  • the substance capable of capturing carriers includes an N-type metal oxide and a quantum dot material containing a hydroxyl group in a surface ligand.
  • the N-type metal oxide is selected from any one or more of ZnO, ZnMgO, and TiO 2
  • the quantum dot material containing a hydroxyl group in the surface ligand is selected from a surface ligand of 6-mercapto Any one or more of CdSe-MCH, CdZnSeS, and CuInS 2 -MCH of hexanol.
  • the anode is made of a high-conductivity transparent conductive material
  • the high-conductivity transparent conductive material includes poly 3,4-ethylene dioxythiophene: polystyrene sulfonate (PEDOT: PSS) .
  • the present disclosure also provides a method for manufacturing the above-mentioned quantum dot light emitting diode, which includes the steps of forming a cathode, an electron transport layer, a light emitting layer, a hole transport layer, and an anode, wherein the electron transport layer includes a carrier capable of trapping carriers.
  • a substance capable of trapping a carrier comprising an N-type metal oxide and a quantum dot material containing a hydroxyl group in a surface ligand.
  • forming the electron transport layer includes the following steps:
  • An electron transport layer is formed by a solution process.
  • the N-type metal oxide is selected from any one or more of ZnO, ZnMgO, and TiO 2
  • the quantum dot material containing a hydroxyl group in the surface ligand is selected from a surface ligand of 6-mercapto Any one or more of CdSe-MCH, CdZnSeS, and CuInS 2 -MCH of hexanol.
  • the light emitting layer and the hole transport layer are formed by a solution process, including:
  • the light-emitting layer and the hole-transporting layer are formed by a solution process, respectively.
  • preparing the light-emitting layer precursor solution includes:
  • the quantum dot material is dispersed in an alcohol-based solvent to form the light-emitting layer precursor solution.
  • the quantum dot material used for preparing the light emitting layer is selected from any one or more of CdSe, CuInS 2 , and perovskite quantum dots.
  • preparing the hole transport layer precursor solution includes:
  • the P-type organic small molecule or P-type metal oxide is dispersed in a benzene-based solvent to form the hole transport layer precursor solution.
  • the P-type organic small molecule or the P-type metal oxide is selected from any one or more of PVK, Poly-TPD, TFB, and NiOx.
  • the benzene-based solvent is chlorobenzene.
  • the step of forming the anode includes:
  • the anode is formed by a solution process.
  • the high-conductivity transparent conductive material is poly 3,4-ethylene dioxythiophene: polystyrene sulfonate (PEDOT: PSS).
  • the preparation method further includes filtering the precursor solution of each layer separately before the solution process.
  • the solution process includes:
  • each precursor solution layer by any of a spin coating process, a transfer process, and an inkjet printing process;
  • Each precursor solution layer is annealed to form a corresponding layer structure.
  • the present disclosure further provides a display panel including the above-mentioned quantum dot light emitting diode.
  • FIG. 1 is a schematic structural diagram of a quantum dot light emitting diode according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a quantum dot light emitting diode test according to Embodiment 1 of the present disclosure
  • FIG. 3 (a) is a current density-brightness curve of the quantum dot light emitting diode according to Embodiment 1 of the present disclosure
  • FIG. 3 (b) is a current efficiency-current density curve of the quantum dot light emitting diode according to Embodiment 1 of the present disclosure
  • FIG. 4 is a schematic diagram of a manufacturing process of a quantum dot light emitting diode according to an embodiment of the present disclosure
  • FIG. 5 (a) is a current density-brightness curve of a quantum dot light emitting diode according to Embodiment 2 of the present disclosure
  • (B) of FIG. 5 is a current efficiency-current density curve of a quantum dot light emitting diode according to Embodiment 2 of the present disclosure.
  • the energy level barrier ( ⁇ 0.5eV) between the electron transport layer and the light emitting layer is lower than the potential barrier (> 1eV) between the hole transport layer and the light emitting layer. Due to the limitation of the energy barrier between layers, the current quantum dot light emitting diode devices generally have the problem that the electron injection speed is faster than the hole injection speed, which seriously restricts the improvement of the device's light emitting efficiency.
  • one is to add an insulating material polymethyl methacrylate (PMMA) between the electron transport layer and the light-emitting layer to slow the injection of electrons
  • PMMA polymethyl methacrylate
  • the other is to increase the Grade organic macromolecular materials serve as hole transport layers to reduce the hole injection barrier to speed up hole injection.
  • another layer is added on the basis of the original device, and the layer thickness is difficult to control and the repeatability is poor, which leads to a more complicated device manufacturing process and increases the device manufacturing cost.
  • the invention provides an inverted structure QLED with high luminous efficiency, which solves the above technical problems.
  • quantum dot light emitting diodes In order to enable those skilled in the art to better understand the technical solutions of the present disclosure, the quantum dot light emitting diodes, the method for manufacturing quantum dot light emitting diodes, and the display panel of the present disclosure will be described in further detail below with reference to the accompanying drawings and specific embodiments.
  • a quantum dot light emitting diode which includes a cathode, an electron transport layer, a light emitting layer, a hole transport layer, and an anode disposed in a stack, wherein the electron transport layer includes a substance capable of trapping carriers.
  • the substance capable of capturing carriers includes an N-type metal oxide and a quantum dot material containing a hydroxyl group in a surface ligand.
  • the quantum dot light emitting diode is a top-emitting inverted structure (or trans structure), which includes a cathode 1, an electron transport layer 2, and a light emitting layer which are sequentially stacked. 3.
  • the electron transport layer 2 contains a substance capable of trapping carriers, and the substance capable of trapping carriers includes an N-type metal oxide and a quantum dot material containing a hydroxyl group in a surface ligand. .
  • the N-type metal oxide is selected from any one or more of ZnO, ZnMgO, and TiO 2
  • the quantum dot material containing a hydroxyl group in the surface ligand is selected from CdSe- with a surface ligand of 6-mercaptohexanol. Any of MCH, CdZnSeS, and CuInS 2 -MCH.
  • the anode is made of a high-conductivity transparent conductive material, such as PEDOT: PSS PH1000.
  • Some embodiments of the present disclosure also provide a method of manufacturing the quantum dot light emitting diode, which includes a step of preparing an electron transport layer including a substance capable of trapping carriers.
  • the electron transport layer can be prepared by a solution process such as spin coating, transfer printing, inkjet printing, and the like.
  • the method includes the following steps:
  • Each layer structure is sequentially prepared from each precursor solution through a solution process.
  • step S1) a conductive metal such as ITO, FTO, or the like can be used as the cathode, and the pretreatment includes cleaning and plasma processing.
  • a conductive metal such as ITO, FTO, or the like can be used as the cathode, and the pretreatment includes cleaning and plasma processing.
  • step S2 the materials forming the electron transporting layer, the light emitting layer, the hole transporting layer, and the anode are pretreated respectively.
  • N-type metal oxides such as ZnO, ZnMgO, TiO 2 and other materials, or quantum dot materials that contain hydroxyl groups in surface ligands, such as CdSe-MCH, CuInS 2 -MCH and other materials with surface ligands of 6-mercaptohexanol To form an electron transport layer 2;
  • quantum dot materials such as CdSe, CuInS 2 , perovskite quantum dots, etc. to form the light emitting layer 3;
  • P-type organic small molecules or P-type metal oxides such as PVK, Poly-TPD, TFB, NiOx and other materials, are used to form the hole transport layer 4;
  • the anode 5 is formed by using a high-conductivity transparent conductive material such as PEDOT: PSS and the like.
  • the pretreatment of the material forming the electron transporting layer includes dissolving the quantum dot material containing hydroxyl groups in the N-type metal oxide and / or the surface ligand with a solvent, and sonicating, centrifuging, and filtering the resulting solution.
  • N-type metal oxide and 10-50mg of the quantum dot material containing hydroxyl groups in the surface ligand are dispersed in an appropriate amount of an alcohol solvent, and then the resulting solution is sonicated for 10min, and then centrifuged at a speed of 3000-7000rpm After processing for 3-5 minutes, the solution was filtered through a 0.22 ⁇ m filter to obtain a precursor solution for forming an electron transport layer.
  • Ultrasound and centrifugation ensure uniform dispersion of quantum dot materials in the solution. Filtration can remove large particles in the precursor solution that affect the quality of the electron transport layer.
  • the materials used to form the light emitting layer, the hole transport layer, and the anode may be pretreated using techniques known in the art.
  • the material forming the anode may be PEDOT: PSS.
  • 50-150 mg of the quantum dot material may be dispersed in an alcohol solvent such as ethanol; and then sonicated for 10-20 min. After the sonication is completed, the centrifugation is performed at a speed of 3000-7000 rpm -5min, to obtain a precursor solution for forming a light emitting layer. After the centrifugation process, filtering is performed by using a filter with a 0.22 ⁇ m filter head to ensure that large particles in the precursor solution that affect the quality of the light-emitting layer are filtered.
  • an alcohol solvent such as ethanol
  • P-type organic small molecules or P-type metal oxides can be dispersed in a benzene-based solvent such as chlorobenzene, and the P-type organic small molecules or P-type metal is oxidized
  • the material contains PVK, Poly-TPD, TFB, NiOx, etc., and then ultrasonic treatment or stirring treatment for 30-60min. After the end of the stirring treatment, the mixture was centrifuged at a speed of 3000-6000 rpm for 3-5 minutes to obtain a precursor solution for forming a hole transport layer. After the centrifugation process, filtering is performed by using a filter with a 0.22 ⁇ m filter head to ensure that large particles in the precursor solution that affect the quality of the hole transport layer are filtered.
  • PEG polyethylene glycol
  • PEDOT PEDOT: PSS PH1000
  • filtering is performed with a filter with a 0.45 ⁇ m filter head to ensure that large particles in the precursor solution that affect the quality of the anode are filtered.
  • each of the precursor solution layers is formed by any one of spin coating, transfer printing, and inkjet printing; and then, it is cured to form corresponding layers, thereby preparing the top emission quantum of the inverted structure.
  • Dot light emitting diode Dot light emitting diode.
  • the electron transport layer can be prepared by:
  • An appropriate amount of a precursor solution for forming an electron transporting layer is uniformly dropped on the substrate with a pipette and spin-coated.
  • the spin-coating speed is 2000-4000 rpm (for example, 3000 rpm), and the spin-coating time is 40-60s (for example, 50s).
  • an annealing treatment is performed, the annealing treatment temperature is 80-120 ° C (for example, 100 ° C), and the annealing treatment time is for 10-40 minutes (for example, 20min or 30min), thereby forming an electron transport layer.
  • the spin coating amount of the precursor solution depends on the substrate area and the coating thickness, and the coating thickness of the precursor solution is 30-200 nm (for example, 40 nm, 60 nm, 80 nm, 120 nm, 140 nm, 180 nm).
  • the light-emitting layer, the hole-transporting layer, and the anode can be prepared using techniques known in the art.
  • a pipette gun can be used to take an appropriate amount of the precursor solution used to form the light-emitting layer and drop it evenly on the substrate on which the electron transport layer has been formed, and then use a homogenizer to spin at a speed of 2000-5000 rpm. Spin coating for 30-60s; after the spin coating is completed, annealing treatment is performed at 70-90 ° C for 5-30min, thereby forming a light-emitting layer.
  • hole transport layer For the hole transport layer, use a pipette to take an appropriate amount of the precursor solution used to form the hole transport layer and drop it evenly on the substrate on which the electron transport layer and the light emitting layer have been formed.
  • Spin coating is performed at a speed of 4000-6000 rpm for 40-60s; after the spin coating is completed, an annealing treatment is performed at 100-180 ° C for 10-60min, thereby forming a hole transport layer.
  • the anode can be prepared by a spin coating process or a transfer process.
  • an appropriate amount of a precursor solution for forming an anode can be measured with a pipette and dropped uniformly on a substrate on which an electron transport layer, a light emitting layer and a hole transport layer have been formed, and then The homogenizer is spin-coated at a speed of 2000-7000 rpm for 30-60s; after the spin-coating is completed, an annealing treatment is performed at 100-200 ° C for 10-50min to form an anode.
  • the anode is prepared by the spin-coating process without post-treatment, the operation is simple, and the repeatability is high.
  • the anode layer can be transferred to the device through a PDMS intermediary.
  • the transfer process may include the following steps:
  • the PDMS medium spin-coated with the PEDOT: PSS layer is cut into a rectangle of 6-10mm and a width of 3-5mm to obtain the PEDOT: PSS anode layer, and then pressed with tweezers It is printed on the above-mentioned substrate on which each layer structure is formed.
  • the electron transport layer 2 contains one or more substances capable of trapping carriers, it can be improved by slowing electron transport or injection to achieve a balanced injection of electrons and holes.
  • Device luminous efficiency At the same time, high-conductivity PEDOT: PSS PH1000 is used as the transparent anode 5, avoiding the use of high vacuum coating machine, which saves the cost of device preparation.
  • the present disclosure also provides a display panel including the quantum dot light emitting diode.
  • the display panel may be a desktop computer, a tablet computer, a notebook computer, a mobile phone, a PDA, a GPS, a car display, a projection display, a video camera, a digital camera, an electronic watch, a calculator, an electronic instrument, a meter, an LCD panel, an electronic paper, a television Any product or component with display function, such as cameras, monitors, digital photo frames, navigators, etc., can be applied to many fields such as public display and unreal display.
  • a top-emitting quantum dot light-emitting diode is prepared by a full solution method.
  • the structure is as shown in FIG. 1, and the process is as follows:
  • Step S1) The substrate as the cathode is cleaned and plasma-treated.
  • the substrate is made of ITO. Wipe the surface of the substrate with absorbent cotton dipped in detergent, and then rinse the surface with deionized water. Then, soak the substrate in detergent water for 15 minutes, and then place it in order. Ionic water, acetone, and isopropyl alcohol were respectively sonicated for 15 minutes, and each cleaning step was performed twice. Finally, the cleaned substrate was soaked in isopropyl alcohol for use.
  • Plasma treatment The cleaned substrate is blown dry with nitrogen and placed face up in the plasma cleaning instrument chamber, and plasma treatment is performed for 5 minutes.
  • Step S23 pretreating the material forming the hole transport layer.
  • P-type organic small molecule TFB 80 mg was dispersed in 10 mL of chlorobenzene, and subjected to ultrasonic treatment or stirring treatment for 30 minutes. After the stirring treatment, the centrifuge solution was centrifuged at 3000 rpm for 5 minutes to obtain a hole transport layer precursor solution. After the centrifugation process, filtering is performed with a 0.22 ⁇ m filter to ensure that large particles in the hole transport layer film precursor solution that affect the film quality are filtered out.
  • Step S24 pretreating the material forming the anode thin film.
  • Step S3) The layer structure is sequentially prepared from the precursor solution forming each layer by a solution process.
  • the anode thin film prepared by a process such as spin coating as the anode 5 of the quantum dot light emitting diode does not require post-processing, is easy to operate, and has high repeatability.
  • the performance of the quantum dot light emitting diode is tested.
  • the test method is shown in Figure 2.
  • the device current can be measured from the DC voltage and the current through the diode.
  • the luminous efficiency of the diode is measured and calculated using a PR-655 luminance meter. The measurement results are shown in Figures (a) and (b).
  • FIG. 3 is a current density-brightness curve of a quantum dot light-emitting diode.
  • the ordinate is brightness and current density
  • the abscissa is voltage.
  • the triangle connection represents the current density and brightness change relationship of the quantum dot light-emitting diode doped with quantum dot material in the electron transport layer 2.
  • the box connection represents the current density-brightness change of the electron transport layer 2 without quantum dot material.
  • the curve can be obtained from Fig. 3 (a).
  • the current density of the quantum dot light emitting diode (triangular connection) after the quantum dot material is doped in the electron transport layer 2 is significantly lower than that of the quantum dot without the quantum dot material.
  • the quantum dot material doped in the electron transport layer 2 can effectively reduce electron injection, and the maximum brightness of the quantum-dot light-emitting diodes is significantly improved.
  • (B) in FIG. 3 is a current efficiency-current density curve of the quantum dot light-emitting diode.
  • the ordinate is the current efficiency
  • the abscissa is the current density. It can be seen that when the current density is the same, the current efficiency of a device doped with a quantum dot material in the electron transport layer 2 (triangular connection) is significantly higher than a device not doped with a quantum dot material in the electron transport layer 2 (frame connection), The highest efficiency of the former quantum dot light emitting diode is 10 times that of the latter.
  • the quantum dot light emitting diode of this embodiment by incorporating one or more kinds of substances capable of capturing carriers in the electron transport layer 2, the electron transmission or injection can be effectively reduced, and the light emission of the quantum dot light emitting diode is significantly improved. effectiveness;
  • PEDOT: PSS PH1000 with high conductivity is used as the transparent anode 5, and the entire structure is prepared by using the all-solution-processed method.
  • the use of a high vacuum coating machine is avoided, which saves the cost of device preparation.
  • Example 2 a PEDOT: PSS film is obtained by a spin coating method.
  • This embodiment uses a transfer technology to transfer the PEDOT: PSS film to the device through a PDMS intermediate medium. .
  • the solution process is used to prepare the electron transport layer 2, the light emitting layer 3, and
  • the hole transporting layer 4 can also refer to the specific implementation of Embodiment 2.
  • the transfer medium layer 7 is cured:
  • the transfer medium layer 7 serves as a transfer medium for the anode, and the material is polydimethylsiloxane PDMS.
  • Preparation of anode 5 Cut the above-mentioned cured transfer medium layer 7 into small squares of 20x20 to 30x30mm, and then paste them on a 25x25 to 35x35mm slide 6 (as shown in Figure 4), and place it on the suction cup of the homogenizer Using a pipette, take an appropriate amount (for example, 180 ⁇ L) of PEDOT: PSS PH1000 uniformly on the slide and spin-coat for 40 s at 1500 rpm, while treating the slide with plasma for 5 min to increase wettability.
  • PEDOT PEDOT: PSS PH1000 uniformly on the slide and spin-coat for 40 s at 1500 rpm
  • the PDMS spin-coated with PEDOT: PSS PH1000 was cut into a 6-10 mm rectangle with a width of 3-5 mm to form a PEDOT: PSS PH1000 anode layer.
  • a layer of silver paste to the edge of PEDOT: PSS PH1000 to facilitate the clamping during later testing.
  • a colloidal silver liquid Colloidal Silicone Liquid
  • (A) of FIG. 5 is a current density-brightness curve of a quantum dot light-emitting diode.
  • the ordinate is brightness and current density
  • the abscissa is voltage.
  • the triangle connection represents the current density and brightness change relationship of the quantum dot light-emitting diode doped with quantum dot material in the electron transport layer 2.
  • the box connection represents the current density-brightness change of the electron transport layer 2 without quantum dot material.
  • the curve can be obtained from (a) in FIG. 5.
  • the current density of the device (red line) after the quantum dot material is doped in the electron transport layer 2 is significantly lower than that of the quantum dot light-emitting diode (triangle) without the quantum dot material. connection)
  • the electron transport layer 2 can be seen incorporating quantum dot material can effectively reduce the electron injection, and the quantum dot light emitting diode is increased from a maximum luminance 1740cd / m 2 to 1980cd / m 2.
  • (B) of FIG. 5 is a current efficiency-current density curve of a quantum dot light-emitting diode.
  • the ordinate is current efficiency and the abscissa is current density. It can be seen that when the current density is the same, the device (delta connection) doped with quantum dot material in the electron transport layer 2 has a significantly higher current efficiency than the device (boxed connection) without quantum dot material in the electron transport layer 2, and The highest efficiency of the former quantum dot light emitting diode is 12 times that of the latter.
  • the quantum dot light emitting diode of this embodiment by incorporating one or more kinds of substances capable of trapping carriers in the electron transport layer 2, the electron injection can be effectively reduced, and the light emitting efficiency of the quantum dot light emitting diode is significantly improved. Easy to obtain high efficiency devices;
  • this embodiment uses high conductivity PEDOT: PSSPH1000 as the transparent anode 5, and uses the All-solution-processed method to prepare the whole.
  • the structure avoids the use of high-vacuum coating machine to vaporize the electrode, and the operation is simple and the cost is low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种量子点发光二极管及其制备方法、显示面板。该量子点发光二极管的制备方法,包括分别形成阴极(1)、电子传输层(2)、发光层(3)、空穴传输层(4)和阳极(5)的步骤,其中,所述电子传输层(2)包含能捕获载流子的物质,所述能捕获载流子的物质包括N型金属氧化物和表面配体中含有羟基的量子点材料。该量子点发光二极管,通过在电子传输层(2)中掺入能捕获载流子的物质,可以有效地降低电子传输或注入,显著提高量子点发光二极管的器件发光效率。同时,采用高电导率的聚3,4-乙烯二氧噻吩:聚苯乙烯磺酸盐作透明阳极,采用全溶液法来制备整体结构,避免采用高真空镀膜机,节省了器件制备成本。

Description

量子点发光二极管及其制备方法、显示面板
相关申请的交叉引用
本申请要求2018年5月31日提交的名称为“量子点发光二极管及其制备方法、显示面板”的中国专利申请No.201810551297.9的优先权,该申请的全部内容以引用的方式并入本文。
技术领域
本公开属于显示技术领域,具体涉及一种量子点发光二极管及量子点发光二极管制备方法、显示面板。
背景技术
量子点发光二极管(Quantum Dot Light Emitting Diodes,简称QLED)具有能耗低、亮度高、色纯度高、容易柔性化等特点,是下一代显示技术的核心器件。尤其是,倒置结构QLED的阴极可直接与作为控制器件的薄膜晶体管(Thin Film Transistor,简称TFT)的漏极相连接,是目前最有望实现商用的器件结构。
发明内容
本公开通过提供一种量子点发光二极管,所述量子点发光二极管包括层叠设置的阴极、电子传输层、发光层、空穴传输层和阳极,其中所述电子传输层中包含能捕获载流子的物质,所述能捕获载流子的物质包含N型金属氧化物和表面配体中含有羟基的量子点材料。
可选的是,所述N型金属氧化物选自ZnO、ZnMgO、TiO 2中的任意一种或多种,所述表面配体中含有羟基的量子点材料选自表面配体为6-巯基己醇的CdSe-MCH、CdZnSeS、CuInS 2-MCH中的任意一种或多种。
可选的是,所述阳极采用高电导率的透明导电材料制成,所述高电导率的透明导电材料包括聚3,4-乙烯二氧噻吩:聚苯乙烯磺 酸盐(PEDOT:PSS)。
本公开还提供了一种制备上述量子点发光二极管的方法,其包括形成阴极、电子传输层、发光层、空穴传输层和阳极的步骤,其中所述电子传输层包含能捕获载流子的物质,所述能捕获载流子的物质包含N型金属氧化物和表面配体中含有羟基的量子点材料。
可选的是,形成电子传输层包括以下步骤:
将N型金属氧化物和表面配体中含有羟基的量子点材料,分散于醇类溶剂中,制备电子传输层前驱体溶液;
通过溶液工艺形成电子传输层。
可选的是,所述N型金属氧化物选自ZnO、ZnMgO、TiO 2中的任意一种或多种,所述表面配体中含有羟基的量子点材料选自表面配体为6-巯基己醇的CdSe-MCH、CdZnSeS、CuInS 2-MCH中的任意一种或多种。
可选的是,所述发光层和所述空穴传输层采用溶液工艺形成,包括:
分别制备发光层前驱体溶液和空穴传输层前驱体溶液;
通过溶液工艺分别形成发光层和空穴传输层。
可选的是,制备所述发光层前驱体溶液包括:
将量子点材料分散于醇类溶剂中形成所述发光层前驱体溶液。
可选的是,用于制备发光层的量子点材料选自CdSe、CuInS 2、钙钛矿量子点中的任意一种或多种。
可选的是,制备所述空穴传输层前驱体溶液包括:
将P型有机小分子或P型金属氧化物分散于苯类溶剂中形成所述空穴传输层前驱体溶液。
可选的是,所述P型有机小分子或所述P型金属氧化物选自PVK、Poly-TPD、TFB、NiOx中的任意一种或多种。所述苯类溶剂为氯苯。
可选的是,形成阳极的步骤包括:
在高电导率的透明导电材料中加入聚乙二醇形成阳极前驱体溶液;以及
通过溶液工艺形成所述阳极。
可选的是,所述高电导率的透明导电材料为聚3,4-乙烯二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)。
可选的是,所述制备方法在溶液工艺之前还包括分别对各层前驱体溶液进行过滤。
可选的是,所述溶液工艺包括:
通过旋涂工艺、转印工艺、喷墨打印工艺中的任一种形成各前驱体溶液层;
退火处理各前驱体溶液层,形成相应的层结构。
本公开另提供一种显示面板,其包括上述的量子点发光二极管。
附图说明
图1为根据本公开一个实施方案的量子点发光二极管的结构示意图;
图2为本公开实施例1的量子点发光二极管的测试示意图;
图3中(a)为本公开实施例1的量子点发光二极管的电流密度-亮度变化曲线图;
图3中(b)为本公开实施例1的量子点发光二极管的电流效率-电流密度变化曲线图;
图4为根据本公开的一个实施方案的量子点发光二极管的制备流程示意图;
图5中(a)为本公开实施例2的为量子点发光二极管的电流密度-亮度变化曲线图;
图5中(b)为本公开实施例2的量子点发光二极管的电流效率-电流密度变化曲线图。
具体实施方式
目前量子点发光二极管中,电子传输层和发光层之间能级势垒(<0.5eV)低于空穴传输层与发光层之间的势垒(>1eV)。受层间能级势垒的限制,目前量子点发光二极管器件普遍存在电子注入速度大于空穴注入速度的问题,这严重制约了器件发光效率的提高。
目前改善这一问题有两种途径:一是在电子传输层和发光层之间加入绝缘物质聚甲基丙烯酸甲酯(PMMA)来减慢电子的注入,另一种是通过增加具有低HOMO能级的有机大分子材料作为空穴传输层来减小空穴注入势垒以加快空穴注入。这两种途径均是在原有器件的基础上增加另一层,而且层厚难以控制,可重复性差,导致器件制备工艺更复杂,增加了器件制备成本。
本发明提供了一种发光效率高的倒置结构QLED,解决了上述技术问题。
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开量子点发光二极管及量子点发光二极管制备方法、显示面板作进一步详细描述。
本公开的部分实施方案提供一种量子点发光二极管,其包括层叠设置的阴极、电子传输层、发光层、空穴传输层和阳极,其中所述电子传输层中包含能捕获载流子的物质,所述能捕获载流子的物质包含N型金属氧化物和表面配体中含有羟基的量子点材料。如图1所示,所述量子点发光二极管为顶发射(Top-emitting)的倒置结构(Inverted Structure,或说反式结构),其包括依次层叠设置的阴极1、电子传输层2、发光层3、空穴传输层4和阳极5。电子传输层2包含能捕获载流子的物质,所述能捕获载流子的物质包含N型金属氧化物和表面配体中含有羟基的量子点材料。。
所述N型金属氧化物选自ZnO、ZnMgO、TiO 2中的任一种或多种,所述表面配体中含有羟基的量子点材料选自表面配体为6-巯基己醇的CdSe-MCH、CdZnSeS、CuInS 2-MCH中的任一种。
所述阳极采用高电导率的透明导电材料制成,例如PEDOT:PSS PH1000。
本公开的部分实施方案还提供了制备所述量子点发光二极管的方法,其中包括制备包含能捕获载流子的物质的电子传输层的步骤。
所述电子传输层可以通过旋涂、转印、喷墨打印等溶液工艺制备。当采用全溶液法制备所述量子点发光二极管时,所述方法包括以下步骤:
S1):对作为阴极的基片进行预处理;
S2):对形成各层的材料进行预处理,得到制备各个层的前驱体溶液;
S3):通过溶液工艺由各前驱体溶液依次制备各层结构。
在步骤S1)中,可采用导电金属如ITO、FTO等作为阴极,所述预处理包括清洗和等离子体处理。
在步骤S2)中,分别对形成电子传输层、发光层、空穴传输层和阳极的材料进行预处理。
采用N型金属氧化物,如ZnO、ZnMgO、TiO 2等材料,或者表面配体中含有羟基的量子点材料,如表面配体为6-巯基己醇的CdSe-MCH、CuInS 2-MCH等材料,形成电子传输层2;
采用量子点材料,如CdSe、CuInS 2、钙钛矿量子点等材料,形成发光层3;
采用P型有机小分子或P型金属氧化物,如PVK、Poly-TPD、TFB、NiOx等材料,形成空穴传输层4;
采用高电导率的透明导电材料,如PEDOT:PSS等材料,形成阳极5。
对形成电子传输层的材料的预处理包括采用溶剂溶解N型金属氧化物和/或表面配体中含有羟基的量子点材料,以及对所得溶液进行超声处理、离心处理和过滤。
例如,将200-800mg N型金属氧化物和10-50mg表面配体中含有羟基的量子点材料分散于适量醇类溶剂中,然后对所得溶液进行超声处理10min,随后以3000-7000rpm的速度离心处理3-5min,最后用0.22μm滤头的过滤器进行过滤得到用于形成电子传 输层的前驱体溶液。
超声处理和离心处理保证了溶液中量子点材料的均匀分散。过滤可以除去所述前驱体溶液中影响电子传输层质量的大颗粒。
可以采用本领域已知的技术对用于形成发光层、空穴传输层和阳极的材料进行预处理。在一些实施方案中,形成阳极的材料可以为PEDOT:PSS。
例如,对于形成发光层的材料的预处理,可将50-150mg所述量子点材料分散于醇溶剂如乙醇中;然后超声处理10-20min,超声处理结束后以3000-7000rpm的速度离心处理3-5min,得到用于形成发光层的前驱体溶液。离心处理结束后用0.22μm的滤头的过滤器进行过滤,以保证滤去该前驱体溶液中影响发光层质量的大颗粒。
对于形成空穴传输层的材料的预处理,可将50-150mg P型有机小分子或P型金属氧化物分散于苯类溶剂如氯苯中,所述P型有机小分子或P型金属氧化物包含PVK、Poly-TPD、TFB、NiOx等,然后超声处理或搅拌处理30-60min。搅拌处理结束后以3000-6000rpm的速度离心处理3-5min,得到用于形成空穴传输层的前驱体溶液。离心处理结束后用0.22μm滤头的过滤器进行过滤,以保证滤去该前驱体溶液中影响空穴传输层质量的大颗粒。
对于形成阳极的材料的预处理,可以将20μL的聚乙二醇(PEG)加入4mL的PEDOT:PSS PH1000中,并搅拌24h,得到用于形成阳极的前驱体溶液。搅拌处理后用0.45μm滤头的过滤器进行过滤,以保证滤去该前驱体溶液中影响阳极质量的大颗粒。
在步骤S3)中,先通过旋涂、转印、喷墨打印等中的任一种工艺形成各前驱体溶液层;然后对其进行固化形成相应的各层,从而制备倒置结构的顶发射量子点发光二极管。
可以通过以下方式制备所述电子传输层:
用移液枪将适量用于形成电子传输层的前驱体溶液均匀滴于基片上并进行旋涂,旋涂转速为2000-4000rpm(例如3000rpm),旋涂时间为40-60s(例如50s)。然后进行退火处理,退火处理温 度为80-120℃(例如100℃),退火处理时间为10-40min(例如20min或30min),从而形成电子传输层。
所述前驱体溶液的旋涂量取决于基片面积和涂覆厚度,前驱体溶液的涂覆厚度为30-200nm(例如40nm、60nm、80nm、120nm、140nm、180nm)。
可以采用本领域已知的技术制备所述发光层、空穴传输层和阳极。
例如,对于发光层,可用移液枪量取适量用于形成发光层的前驱体溶液并将其均匀滴于已经形成有电子传输层的基片上,然后采用匀胶机旋以2000-5000rpm的转速旋涂30-60s;旋涂结束后在70-90℃下进行退火处理5-30min,从而形成发光层。
对于空穴传输层,可用移液枪量取适量用于形成空穴传输层的前驱体溶液并将其均匀滴于已经形成有电子传输层和发光层的基片上,然后采用匀胶机旋以4000-6000rpm的转速旋涂40-60s;旋涂结束后在100-180℃下进行退火处理10-60min,从而形成空穴传输层。
阳极可采用旋涂工艺或转印工艺制备。当采用旋涂工艺制备阳极时,可用移液枪量取适量用于形成阳极的前驱体溶液并将其均匀滴于已经形成有电子传输层、发光层和空穴传输层的基片上,然后采用匀胶机旋以2000-7000rpm的转速旋涂30-60s;旋涂结束后在100-200℃下进行退火处理10-50min,从而形成阳极。通过旋涂工艺制备阳极无需后处理,操作简单,可重复性高。
当采用转印工艺制备阳极时,可通过PDMS中间介质将阳极层转移至器件。具体地,所述转印工艺可包括以下步骤:
a)转印介质层的固化:将两种PDMS溶液以10∶1-20∶1的比例混合,混合均匀后采用真空干燥箱除泡20-40min;除泡结束后将PDMS混合溶液倒入塑料培养皿中达1-2μm的厚度,最后在100-150℃热台上加热60-120min从而得到固化的PDMS层;
b)阳极的制备:将上述固化的转印介质层切成20x20至30x30mm的小方块,然后贴到25x25至35x35mm载片6上(如图4所 示)。将载片放于匀胶机吸盘上,然后用移液枪取适量PEDOT:PSS均匀滴于载片上,均胶机以1000-2500rpm的转速旋涂25-60s。用等离子体处理旋涂有各层的基片3-10min,以增加各层的浸润性。旋涂结束后静置2-8min,将旋涂有PEDOT:PSS层的PDMS介质切成长为6-10mm,宽为3-5mm的长方形,即得到PEDOT:PSS阳极层,然后用镊子将其压印在上述形成有各层结构的基片上。
根据本公开的量子点发光二极管,由于其电子传输层2包含一种或几种可以捕获载流子的物质,因此其可以通过减慢电子传输或注入,达到电子和空穴的平衡注入来提高器件发光效率。同时,采用高电导的PEDOT:PSS PH1000作透明阳极5,避免采用高真空镀膜机,节省了器件制备成本。
本公开还提供一种显示面板,其包括所述量子点发光二极管。
所述显示面板可以为台式电脑、平板电脑、笔记本电脑、手机、PDA、GPS、车载显示、投影显示、摄像机、数码相机、电子手表、计算器、电子仪器、仪表、液晶面板、电子纸、电视机、显示器、数码相框、导航仪等任何具有显示功能的产品或部件,可应用于公共显示和虚幻显示等多个领域。
实施例1:
本实施例通过全溶液法制备顶发射的量子点发光二极管,其结构参考图1,过程如下:
步骤S1):对作为阴极的基片进行清洗和等离子体处理预处理。
清洗:基片由ITO制成,将基片采用脱脂棉蘸取洗洁精将表面擦拭干净,然后用去离子水冲洗,再将基片泡在洗洁精水中超声处理15min,之后依次放入去离子水、丙酮、异丙醇中分别超声处理15min,每个清洗环节进行两次,最后将清洗好的基片泡在异丙醇中备用。
等离子体处理:将清洗好的基片用氮气吹干后正面朝上放于等离子体清洗仪舱内,等离子体处理5min。
步骤S2):对形成各层的材料进行预处理,得到用于形成各层的前驱体溶液。
步骤S21):对形成电子传输层的材料的预处理。
将300mg N型金属氧化物ZnO和20mg表面配体中含有羟基的量子点材料CdSe-MCH分散于10mL乙醇中;然后超声处理10min,超声处理结束后以5000rpm的速度离心处理4min,得到电子传输层前驱体溶液。离心处理结束后用0.22μm滤头的过滤器进行过滤,以保证滤去电子传输层薄膜前驱体溶液中影响薄膜质量的大颗粒。
步骤S22):对形成发光层的材料的预处理。
将50mg量子点材料CdSe分散于5mL乙醇中;然后超声处理15min,超声处理结束后以5000rpm的速度离心处理4min,得到发光层前驱体溶液。离心处理结束后用0.22μm的滤头的过滤器进行过滤,以保证滤去发光层薄膜前驱体溶液中影响薄膜质量的大颗粒。
步骤S23):对形成空穴传输层的材料的预处理。
将80mg P型有机小分子TFB分散于10mL氯苯中,超声处理或搅拌处理30min,搅拌处理结束后以3000rpm的速度离心处理5min,得到空穴传输层前驱体溶液。离心处理结束后用0.22μm的滤头的过滤器进行过滤,以保证滤去空穴传输层薄膜前驱体溶液中影响薄膜质量的大颗粒。
步骤S24):对形成阳极薄膜的材料的预处理。
在4mL的PEDOT:PSS PH1000(购自武汉卓鑫科技有限公司)中加入20μL的聚乙二醇(PEG),并进行搅拌处理;搅拌处理24h,得到阳极薄膜前驱体溶液。搅拌处理后用0.45μm的滤头的过滤器进行过滤,以保证滤去阳极薄膜前驱体溶液中影响薄膜质量的大颗粒。
步骤S3):通过溶液工艺由形成各层的前驱体溶液依次制备各层结构。
步骤S31):电子传输层的制备。
将预处理后的基片放于匀胶机吸盘上,用移液枪量取100μL电子传输层前驱体溶液均匀滴于基片上并以3000rpm的转速旋涂50s;旋涂结束后在100℃下进行退火处理20min,从而形成电子传输层2。
步骤S32):发光层的制备。
将已经形成有电子传输层2的基片放于匀胶机吸盘上,用移液枪量取100μL发光层前驱体溶液均匀滴于基片上并以4000rpm的转速进行旋涂60s;旋涂结束后在80℃下进行退火处理10min,从而形成发光层3。
步骤S33):空穴传输层的制备。
将已经形成有电子传输层2和发光层3的基片放于匀胶机吸盘上,用移液枪量取80μL空穴传输层前驱体溶液均匀滴于基片上并以5000rpm的转速进行旋涂60s;旋涂结束后在150℃下进行退火处理30min,从而形成空穴传输层4。
步骤S34):阳极的制备。
将已经形成有电子传输层2、发光层3和空穴传输层4的基片放于匀胶机吸盘上,用移液枪量取180μL阳极前驱体溶液均匀滴于基片上并以5000rpm的转速进行旋涂60s;旋涂结束后在170℃下进行退火处理20min,从而形成阳极5。
通过旋涂等工艺制备阳极薄膜作为量子点发光二极管的阳极5无需后处理,操作简单,可重复性高。
至此,量子点发光二极管制备完毕。
在制备完成量子点发光二极管之后,对量子点发光二极管的性能进行测试。测试方法如图2所示,在像素点边缘与基板边缘(即基片的非显示区)刷一条银浆,便于测试时鱼嘴夹夹持,通过数字源表给器件加载0-10V电压,由直流电压和通过二极管的电流可以测知器件电流,采用PR-655亮度计测量并计算得到二极管的发光效率。测量结果见图3中(a)和(b)。
图3中(a)为量子点发光二极管的电流密度-亮度变化曲线图,纵坐标是亮度和电流密度,横坐标是电压。其中三角连线表 示电子传输层2中掺入量子点材料的量子点发光二极管的电流密度和亮度变化关系,方框连线为电子传输层2中未掺入量子点材料的电流密度-亮度变化曲线,由图3中(a)可得,相同电压下电子传输层2中掺入量子点材料后量子点发光二极管(三角连线)的电流密度明显低于未掺入量子点材料的量子点发光二极管(方框连线),可见电子传输层2中掺入量子点材料可有效降低电子注入,并且量子点发光二极管最大亮度明显提高。
图3中(b)为量子点发光二极管的电流效率-电流密度变化曲线图,纵坐标为电流效率,横坐标为电流密度。可见,当电流密度相同时电子传输层2中掺入量子点材料的器件(三角连线)电流效率明显高于电子传输层2中未掺入量子点材料的器件(方框连线),且前者量子点发光二极的最高效率为后者的10倍。
本实施例的量子点发光二极管,通过在在电子传输层2中掺入一种或几种可以捕获载流子的物质,可有效降低电子传输或注入,明显提高量子点发光二极的器件发光效率;
同时,采用高电导率的PEDOT:PSS PH1000作透明阳极5,采用全溶液法(All-solution-processed)来制备整体结构,避免采用高真空镀膜机,节省了器件制备成本。
实施例2:
本实施例与实施例1的区别在于阳极5制备的方法的不同,实施例2通过旋涂法得到PEDOT:PSS薄膜,本实施例采用转印技术通过PDMS中间介质将PEDOT:PSS薄膜转移至器件。
本实施例的量子点发光二极管的制备方法,对于基片的预处理、各层薄膜的材料进行预处理可参考实施例2的具体实施方式;采用溶液工艺制备电子传输层2、发光层3和空穴传输层4也可参考实施例2的具体实施方式。
如图4所示,在对阳极5的制备的过程中,包括:
对转印介质层7进行固化:转印介质层7作为阳极的转印介质,材料为聚二甲基硅氧烷PDMS。将PDMS的两种溶液以10∶1 的比例混合,混合均匀后采用真空干燥箱除泡30min,除泡结束后将PDMS溶液倒入塑料培养皿中至2μm厚,并将其置于热台上于120℃下加热80min,得到固化的PDMS。
阳极5的制备:将上述固化的转印介质层7切成20x20至30x30mm的小方块,然后贴到25x25至35x35mm载片6上(如图4所示),将其放在匀胶机吸盘上,用移液枪量取适量(例如180μL)PEDOT:PSS PH1000均匀滴于载片上并以1500rpm的转速进行旋涂40s,同时用等离子体处理载片5min,以增加浸润性。旋涂结束后静置4min,然后将上述旋涂有PEDOT:PSS PH1000的PDMS切成长为6-10mm,宽为3-5mm的长方形,即形成PEDOT:PSS PH1000阳极层,然后采用镊子压印于上述形成有各层结构的基片上。
在PEDOT:PSS PH1000边缘涂一层银浆便于后期测试时夹持。优选可在阳极的上方涂覆胶体银液体(Colloidal Siliver Liquid),以便于测试时夹持用。
通过数字源表给量子点发光二极管加载0--10V电压,以获得二极管电流,采用PR-655亮度测量仪测量量子点发光二极管的亮度,并计算发光效率。测量结果见图5中(a)和(b)。
图5中(a)为量子点发光二极管的电流密度-亮度变化曲线图,纵坐标为亮度和电流密度,横坐标为电压。其中三角连线表示电子传输层2中掺入量子点材料的量子点发光二极管的电流密度和亮度变化关系,方框连线为电子传输层2中未掺入量子点材料的电流密度-亮度变化曲线,由图5中(a)可得,相同电压下电子传输层2中掺入量子点材料后器件(红色线)的电流密度明显低于未掺入量子点材料的量子点发光二极管(三角连线),可见电子传输层2中掺入量子点材料可有效降低电子注入,并且量子点发光二极管最大亮度由1740cd/m 2提高至1980cd/m 2
图5中(b)为量子点发光二极管的电流效率-电流密度变化曲线图,纵坐标为电流效率,横坐标为电流密度。可见,当电流密度相同时电子传输层2中掺入量子点材料的器件(三角连线) 电流效率明显高于电子传输层2中未掺入量子点材料的器件(方框连线),且前者量子点发光二极的最高效率为后者的12倍。
本实施例的量子点发光二极管,通过在在电子传输层2中掺入一种或几种可以捕获载流子的物质,可有效降低电子注入,明显提高量子点发光二极的器件发光效率,易于获得高效率(High efficiency)的器件;
同时,与传统量子点发光二极管中常用的PEDOT:PSS 4083相比,本实施例采用高电导率的PEDOT:PSS PH1000作为透明阳极5制备,采用全溶液法(All-solution-processed)来制备整体结构,避免采用高真空镀膜机蒸镀电极,操作简单、成本低。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (16)

  1. 一种量子点发光二极管的制备方法,包括形成阴极、电子传输层、发光层、空穴传输层和阳极的步骤,其中,所述电子传输层包含能捕获载流子的物质,所述能捕获载流子的物质包含N型金属氧化物和表面配体中含有羟基的量子点材料。
  2. 根据权利要求1所述的制备方法,其中包括以下步骤:
    将N型金属氧化物和表面配体中含有羟基的量子点材料,分散于醇类溶剂中,制备电子传输层前驱体溶液;
    通过溶液工艺形成电子传输层。
  3. 根据权利要求2所述的制备方法,其中,所述N型金属氧化物选自ZnO、ZnMgO、TiO 2中的任意一种或多种,所述表面配体中含有羟基的量子点材料选自表面配体为6-巯基己醇的CdSe-MCH、CdZnSeS、CuInS 2-MCH中的任意一种或多种。
  4. 根据权利要求1所述的制备方法,其中,所述发光层和所述空穴传输层采用溶液工艺形成,包括:
    分别制备发光层前驱体溶液和空穴传输层前驱体溶液;
    通过溶液工艺分别形成发光层和空穴传输层。
  5. 根据权利要求4所述的制备方法,其中,制备所述发光层前驱体溶液为:
    将量子点材料分散于醇类溶剂中形成所述发光层前驱体溶液。
  6. 根据权利要求5所述的制备方法,其中,所述量子点材料选自CdSe、CuInS 2、钙钛矿量子点中的任意一种或多种。
  7. 根据权利要求4所述的制备方法,其中,制备所述空穴传输层前驱体溶液为:
    将P型有机小分子或P型金属氧化物分散于苯类溶剂中形成所述空穴传输层前驱体溶液。
  8. 根据权利要求7所述的制备方法,其中,所述P型有机小分子或所述P型金属氧化物选自PVK、Poly-TPD、TFB、NiOx中的任意一种或多种,苯类溶剂为氯苯。
  9. 根据权利要求1-8任一项所述的制备方法,其中,还包括形成阳极的步骤,包括:
    在高电导率的透明导电材料中加入聚乙二醇形成阳极前驱体溶液为;
    通过溶液工艺形成所述阳极。
  10. 根据权利要求9所述的制备方法,其中,所述高电导率的透明导电材料为聚3,4-乙烯二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)。
  11. 根据权利要求1-10任一项所述的制备方法,其中,在溶液工艺之前还包括,分别对用于形成各层前驱体溶液进行过滤。
  12. 根据权利要求1-10任一项所述的制备方法,其中,所述溶液工艺包括:
    通过旋涂工艺、转印工艺、喷墨打印工艺中的任一种形成各前驱体溶液层;
    退火处理各前驱体溶液层,形成相应层结构。
  13. 一种量子点发光二极管,包括层叠设置的阴极、电子传输层、发光层、空穴传输层和阳极,其中,所述电子传输层中包 括能捕获载流子的物质,所述能捕获载流子的物质包含N型金属氧化物和表面配体中含有羟基的量子点材料。
  14. 根据权利要求13所述的量子点发光二极管,其中,所述N型金属氧化物选自ZnO、ZnMgO、TiO 2中的任意一种或多种,所述表面配体中含有羟基的量子点材料选自表面配体为6-巯基己醇的CdSe-MCH、CdZnSeS、CuInS 2-MCH中的任意一种或多种。
  15. 根据权利要求13所述的量子点发光二极管,其中,所述阳极采用高电导率的透明导电材料制成,所述高电导率的透明导电材料为聚3,4-乙烯二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)。
  16. 一种显示面板,包括权利要求13-15任一项所述的量子点发光二极管。
PCT/CN2019/073683 2018-05-31 2019-01-29 量子点发光二极管及其制备方法、显示面板 WO2019227960A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/617,891 US11462706B2 (en) 2018-05-31 2019-01-29 Quantum dot light emitting diode and method for manufacturing the same, and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810551297.9 2018-05-31
CN201810551297.9A CN108767129B (zh) 2018-05-31 2018-05-31 量子点发光二极管及其制备方法、显示面板

Publications (1)

Publication Number Publication Date
WO2019227960A1 true WO2019227960A1 (zh) 2019-12-05

Family

ID=64001276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073683 WO2019227960A1 (zh) 2018-05-31 2019-01-29 量子点发光二极管及其制备方法、显示面板

Country Status (3)

Country Link
US (1) US11462706B2 (zh)
CN (1) CN108767129B (zh)
WO (1) WO2019227960A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767129B (zh) 2018-05-31 2021-01-26 京东方科技集团股份有限公司 量子点发光二极管及其制备方法、显示面板
CN109585698B (zh) * 2018-11-12 2020-11-27 天津理工大学 一种溶液法制备p-i-n结构的低压驱动有机发光二极管的方法
CN109768173A (zh) * 2018-12-25 2019-05-17 武汉理工大学 一种全喷墨打印倒置结构量子点发光二极管制备方法
CN111384304B (zh) 2018-12-29 2021-06-29 Tcl科技集团股份有限公司 量子点发光二极管的后处理方法
CN109768169A (zh) * 2019-01-15 2019-05-17 新疆交通建设集团股份有限公司 羟基铁量子点钙钛矿吸光层及其制备方法
CN110098341B (zh) * 2019-05-16 2022-04-12 京东方科技集团股份有限公司 一种量子点电致发光二极管、显示面板和制作方法
CN110330517B (zh) * 2019-05-22 2022-04-19 纳晶科技股份有限公司 醇溶性量子点及其制备方法、量子点膜、量子点光电器件
CN112410932B (zh) * 2019-08-20 2022-12-06 Tcl科技集团股份有限公司 纳米材料及其制备方法
CN113054120B (zh) * 2019-12-28 2022-05-31 Tcl科技集团股份有限公司 电子阻挡薄膜,量子点发光二极管及其制备方法
CN112289963A (zh) * 2020-10-23 2021-01-29 Tcl华星光电技术有限公司 一种oled显示面板及其制作方法
CN112420971B (zh) * 2020-11-25 2023-04-18 合肥福纳科技有限公司 一种优化发光二极管的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103730584A (zh) * 2013-12-27 2014-04-16 北京京东方光电科技有限公司 一种显示面板及显示装置
US20150076469A1 (en) * 2012-04-20 2015-03-19 Konica Minolta, Inc. Organic electroluminescent element
CN106098956A (zh) * 2016-07-14 2016-11-09 Tcl集团股份有限公司 一种qled及其制备方法
CN106450013A (zh) * 2016-10-11 2017-02-22 Tcl集团股份有限公司 Qled器件
CN107785496A (zh) * 2017-11-06 2018-03-09 深圳市华星光电半导体显示技术有限公司 一种白光量子点发光二极管及电子设备
CN108767129A (zh) * 2018-05-31 2018-11-06 京东方科技集团股份有限公司 量子点发光二极管及其制备方法、显示面板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8148891B2 (en) 2005-10-04 2012-04-03 Universal Display Corporation Electron impeding layer for high efficiency phosphorescent OLEDs
CN103904178B (zh) * 2014-04-11 2016-08-17 浙江大学 量子点发光器件
CN108291103B (zh) * 2015-11-12 2021-12-07 广州华睿光电材料有限公司 印刷组合物、包含其的电子器件及功能材料薄膜的制备方法
CN106159109A (zh) 2016-09-13 2016-11-23 Tcl集团股份有限公司 一种qled及其制备方法
CN106634948B (zh) * 2016-10-31 2019-03-12 纳晶科技股份有限公司 氧化锌纳米晶、其制备方法、氧化锌纳米晶墨水和电致发光器件
CN106654026B (zh) * 2016-11-22 2018-12-28 纳晶科技股份有限公司 量子点电致发光器件、具有其的显示装置及照明装置
KR101878341B1 (ko) * 2016-11-29 2018-07-13 울산과학기술원 양자점 발광 다이오드, 및 상기 양자점 발광 다이오드의 제조 방법
US10593902B2 (en) * 2017-09-29 2020-03-17 University Of Central Florida Research Foundation, Inc. Quantum dot light emitting devices (QLEDs) and method of manufacture
KR102395049B1 (ko) * 2017-10-25 2022-05-04 삼성전자주식회사 반도체 나노결정 입자 및 그의 제조 방법과 이를 포함하는 소자
CN108987601B (zh) * 2018-07-26 2020-11-03 京东方科技集团股份有限公司 二极管器件及其制造方法、二极管装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150076469A1 (en) * 2012-04-20 2015-03-19 Konica Minolta, Inc. Organic electroluminescent element
CN103730584A (zh) * 2013-12-27 2014-04-16 北京京东方光电科技有限公司 一种显示面板及显示装置
CN106098956A (zh) * 2016-07-14 2016-11-09 Tcl集团股份有限公司 一种qled及其制备方法
CN106450013A (zh) * 2016-10-11 2017-02-22 Tcl集团股份有限公司 Qled器件
CN107785496A (zh) * 2017-11-06 2018-03-09 深圳市华星光电半导体显示技术有限公司 一种白光量子点发光二极管及电子设备
CN108767129A (zh) * 2018-05-31 2018-11-06 京东方科技集团股份有限公司 量子点发光二极管及其制备方法、显示面板

Also Published As

Publication number Publication date
CN108767129A (zh) 2018-11-06
US20210359241A1 (en) 2021-11-18
CN108767129B (zh) 2021-01-26
US11462706B2 (en) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2019227960A1 (zh) 量子点发光二极管及其制备方法、显示面板
CN110459680B (zh) 一种钙钛矿太阳能电池及其制备方法
US10886485B2 (en) Quantum dot light emitting diode (QLED) and manufacture method thereof, display panel
CN104064690A (zh) 具有双层结构电子传输层的有机发光二极管及其制备方法
CN105140411B (zh) 不含ito的qled及其制备方法
CN105826483A (zh) 一种量子点发光二极管及其制备方法
CN108447995A (zh) 前驱体溶液及其制备方法,太阳能电池电子传输层的制备及太阳能电池
CN111740025A (zh) 一种基于钒掺杂氧化钼的qled器件及其制备方法
US20230074925A1 (en) Quamtum dot light emitting diode and method for manufacturing the same, display panel, and display device
CN111446378B (zh) 一种透明有机电致发光二极管的制作方法
CN104393175A (zh) 一种有机太阳能电池及制备方法
CN109449317A (zh) 一种低温柔性全无机qled器件及其制备方法
US9899597B2 (en) Manufacturing methods of electroluminescent devices
CN103280528B (zh) 一种聚合物太阳能电池
CN111952469B (zh) 基于Au等离子机元增强的叠层量子点发光二极管制备方法
CN105990534B (zh) 光电转换层结构的制备方法及应用该结构的光电器件
CN110729406B (zh) 一种混合空穴注入层qled器件及其制备方法
CN112687820A (zh) Qled器件、qled器件的制备方法及显示装置
CN109427978A (zh) 一种qled器件及其制备方法
WO2020077710A1 (zh) 一种聚合物-金属螯合物阴极界面材料及其应用
US20070236138A1 (en) Organic light-emitting diodes with nanostructure film electrode(s)
CN103972398A (zh) 一种有机无机杂化太阳能电池及其制备方法
TWI651345B (zh) 可撓式透明導電膜之製造方法及使用此方法所製造之可撓式透明導電膜、透明電極及有機發光二極體
CN111048674A (zh) 发光器件的制备方法
WO2020035004A1 (zh) 复合材料和量子点发光二极管及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03-05-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19812628

Country of ref document: EP

Kind code of ref document: A1