WO2019227332A1 - 过渡金属掺杂普鲁士蓝同系物及其制备方法和应用及二次离子电池 - Google Patents

过渡金属掺杂普鲁士蓝同系物及其制备方法和应用及二次离子电池 Download PDF

Info

Publication number
WO2019227332A1
WO2019227332A1 PCT/CN2018/088996 CN2018088996W WO2019227332A1 WO 2019227332 A1 WO2019227332 A1 WO 2019227332A1 CN 2018088996 W CN2018088996 W CN 2018088996W WO 2019227332 A1 WO2019227332 A1 WO 2019227332A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
prussian blue
doped
salt
sodium
Prior art date
Application number
PCT/CN2018/088996
Other languages
English (en)
French (fr)
Inventor
侴术雷
李维杰
李用成
李东祥
窦士学
Original Assignee
辽宁星空钠电电池有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 辽宁星空钠电电池有限公司 filed Critical 辽宁星空钠电电池有限公司
Priority to PCT/CN2018/088996 priority Critical patent/WO2019227332A1/zh
Priority to CN201880004531.4A priority patent/CN110199420A/zh
Publication of WO2019227332A1 publication Critical patent/WO2019227332A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/08Simple or complex cyanides of metals
    • C01C3/12Simple or complex iron cyanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of energy material preparation and electrochemistry, and particularly relates to a transition metal-doped Prussian blue homologue, a preparation method and application thereof, and a secondary ion battery.
  • sodium-ion batteries As a promising alternative to lithium-ion batteries, sodium-ion batteries have received widespread attention from researchers. However, due to the lack of suitable high-capacity and high-rate performance electrode materials, the commercial application of sodium ion batteries is still stagnant. As we all know, the energy density and production cost of a battery mainly depend on the theoretical capacity and price of the cathode material. Therefore, it is particularly important to research and explore a cathode material that is inexpensive, has a long cycle life, and has a high rate performance by using the existing sodium ion battery technology.
  • the sodium-rich Na 1.56 Fe [Fe (CN) 6 ] material has a specific capacity of up to 100 mAh g -1 and the capacity retention rate after 97 cycles is 97%. Although the capacity and cycle performance of Fe-containing Na x FeFe (CN) 6 have been improved, its energy density is still low because it only has a lower 3.0V voltage platform.
  • Ferrocyanide containing Mn, Na 1.72 MnFe (CN) 6 (NMHFC) has a specific capacity of up to 130mAh g -1 , an average charge-discharge platform of 3.5V, and an energy density of up to 455Wh Kg -1 .
  • this material has the disadvantage of poor cycle stability.
  • the research group improved the cycle stability by coating and doping multifunctional ClO 4- -PPy on the surface of Na 1.72 MnFe (CN) 6 (NMHFC).
  • NMHFC @ PPy material shows improved cycle performance (capacity retention rate after 200 cycles is 67%) and excellent rate performance. However, its cycle performance still does not meet the standards for commercial applications.
  • the introduction of conductive polymer PPy will also reduce the specific capacity of the electrode material.
  • the object of the present invention is to provide a novel transition metal-doped Prussian blue homologue, a preparation method and application thereof, and a secondary ion battery.
  • the transition metal-doped Prussian blue homologue can be prepared by a simple co-precipitation method.
  • the process of the invention is simple, the equipment investment is small, the degree of continuity is high, it is easy to be industrially scaled up, and the obtained product has uniform particles and high component purity.
  • a first aspect of the present invention provides a transition metal-doped Prussian blue homologue, which has a composition represented by the following chemical formula: A y T x M 1-x [N (CN) 6 ], where A is at least one Alkali metal elements, T, M, N are each independently at least one transition metal element, 0 ⁇ y ⁇ 2, 0 ⁇ x ⁇ 1.
  • T, M, and N may each represent one element, or may represent a plurality of elements.
  • T, M, and N are each independently at least one fourth period transition metal element; further preferably, T, M, and N are each independently selected from Fe, Co, Mn, V, Cr, Ni, and Zn At least one.
  • T is selected from at least one of Fe, Co, Mn, and Ni, M is Mn, and N is Fe.
  • the transition metal element doped Prussian blue homologue may be a monovalent transition metal element doped Prussian blue homologue, and a binary transition metal element doped Prussian blue homologue.
  • Compounds, ternary transition metal elements doped with Prussian blue homologues, quaternary transition metal elements doped with Prussian blue homologues, pentad transition metal elements doped with Prussian blue homologues, and hexavalent transition metal elements doped with Prussian blue homologues At least one.
  • transition metal element-doped Prussian blue homologues of the present invention include:
  • Double element doped Na y (T 1 + T 2 ) x Mn 1-x [Fe (CN) 6 ] (T 1 , T 2 Co, Fe, Ni, V, etc.).
  • a method for preparing the transition metal-doped Prussian blue homologue includes: a solution containing ions of the transition metal T and ions of the transition metal M, and a cyano compound A y N (CN).
  • the solution of 6 is mixed with an alkali metal salt solution, and a co-precipitation reaction is performed to obtain a transition metal element-doped Prussian blue homologue.
  • the alkali metal salt is at least one of a sodium salt, a lithium salt, and a potassium salt
  • the sodium salt is at least one of sodium chloride, sodium sulfate, sodium acetate, and sodium oxalate
  • the lithium The salt is at least one of lithium chloride, lithium sulfate, lithium acetate, and lithium oxalate
  • the potassium salt is at least one of potassium chloride, potassium sulfate, potassium acetate, and potassium oxalate.
  • the concentration of the alkali metal salt in the system is 0 to 5 mol / L.
  • the solution containing the ions of the transition metal T and the ions of the transition metal M is a solution containing at least one of an iron salt, a cobalt salt, a vanadium salt, and a nickel salt.
  • the iron salt is preferably at least one of chloride, sulfate, carbonate, oxalate, and acetate of iron.
  • the cobalt salt is preferably at least one of a chloride, a sulfate, a carbonate, an oxalate, and an acetate of cobalt.
  • the vanadium salt is preferably at least one of a chloride salt, a sulfate salt, a carbonate salt, an oxalate salt, and an acetate salt of vanadium.
  • the nickel salt is preferably at least one of a chloride, a sulfate, a carbonate, an oxalate, and an acetate of nickel.
  • the cyano compound A y N (CN) 6 is selected from at least one of sodium ferrocyanide, potassium ferricyanide, alkali manganese cyanide metal salt, and cobalt cyano alkali metal salt.
  • the co-precipitation reaction time is from 4 to 120 h, and the temperature is from 10 to 40 ° C, which can usually be performed at room temperature.
  • the transition metal-doped Prussian blue homologue can be obtained after separation and washing and vacuum drying.
  • a third invention of the present invention provides the use of the transition metal-doped Prussian blue homologue as a positive electrode material for a secondary ion battery.
  • a fourth aspect of the present invention provides a secondary ion battery using the transition metal-doped Prussian blue homologue as a positive electrode material.
  • the secondary ion battery is a sodium ion battery.
  • the multi-element (binary, ternary, quaternary) transition metal doped Prussian blue homologue provided by the present invention has the advantage that the preparation method of the material is very simple and does not require a reaction atmosphere and a reducing agent. Regulating and controlling, at room temperature, the types and proportions of metals in the Prussian blue homolog can be controlled, and at the same time, Prussian blue analogs with high alkali metal content can be synthesized.
  • the transition metal-doped Prussian blue homologue of the present invention as a positive electrode material of a secondary ion battery, especially a sodium ion battery, exhibits a high capacity, high voltage platform of 115 mAh g -1 and excellent cycle stability. Its low raw material cost is a very competitive new generation of sodium ion battery cathode material.
  • Figures 1 (a)-(c) are single element doped Na y T x Mn 1-x [Fe (CN) 6 ], and dual element doped Na y (T 1 + T 2 ) x Mn 1-x X-ray diffraction pattern of [Fe (CN) 6 ] and three-element doped Na y (T 1 + T 2 + T 3 ) x Mn 1-x [Fe (CN) 6 ],
  • Figure 1 (d) shows a single synthesis Material weight picture; in Figure 1 (a), V-doped (1 / 2V-1 / 2Mn), Co-doped (1 / 2Co-1 / 2Mn), Fe-doped (1 / 2Fe -1 / 2Mn), Ni-doped (1 / 2Ni-1 / 2Mn); in Figure 1 (b), Co-Ni-doped (1 / 3Co-1 / 3Ni-1 / 3Mn), Co-Fe doped (1 / 3Co-1 / 3Fe
  • Figures 2 (a)-2 (d) are SEM images of binary Fe-doped Mn Prussian blue homologs, where (a) 0.15Fe-doped, (b) 0.3Fe-doped, and (c) 0.5Fe Doped, (d) 0.65Fe doped.
  • Figures 3 are CV curves of binary Fe-doped Mn Prussian blue homologs, where (a) 0.15Fe-doped (0.15Fe-Mn-doping) and (b) 0.3Fe Doping (0.3Fe-Mn-doping), (c) 0.5Fe doping (0.5Fe-Mn-doping), (d) 0.65Fe doping (0.65Fe-Mn-doping).
  • Figures 4 (a)-4 (b) show the electrochemical performance of doped Prussian blue in a sodium ion battery, where (a) the charge-discharge curve and (b) the cycle performance.
  • the electrochemical performance of the Prussian blue homologue prepared in the examples of the present invention was tested according to the following method: the prepared doped Prussian blue homologue, carbon black, and polyvinylidene fluoride binder were used at a mass ratio of 80:10. : 10 mixed into a slurry and uniformly coated on an aluminum foil current collector to obtain a working electrode; a sodium metal foil was used as a counter electrode, and 1 mol / L NaClO 4 (solvent was 1: 1 by volume of ethylene carbonate and dimethyl carbonate) (Mixed solution) As an electrolyte, a button cell was assembled in an Ar-filled glove box.
  • the assembled button battery was tested for electrochemical performance on a LAND charge-discharge tester.
  • This embodiment is used to illustrate the preparation of a Prussian blue homologue doped with a one-element transition group metal.
  • transition metal ion (Co, Ni, Mn, Fe, V) 1: 1 (Co ion comes from cobalt chloride, Ni ion comes from nickel chloride, Mn ions come from manganese acetate, V ions come from vanadium chloride, Fe ions come from ferrous sulfate), and then add sodium chloride (0.5mol / L, 0.8mol / L, 1.0mol / L, 1.5mol / L, 2.0 mol / L, 2.5 mol / L, 3.0 mol / L, 3.5 mol / L, 4.0 mol / L, 4.5 mol / L, 5.0 mol / L) into water, and stir well for 4-24 hours. After completion of the reaction, separation and drying were performed to obtain a monovalent transition metal doped Prussian blue homologue (Na y T x Mn 1-x [Fe (CN) 6 ]).
  • X-ray diffraction (XRE; GBC MMA ray detector) was used to analyze the structure of the Prussian blue homologue doped with a single-element transition group metal. Blue homolog.
  • This example is used to illustrate the preparation of binary transition metal doped Prussian blue homologues.
  • sodium chloride (0.5 mol / L, 0.8 mol / L, 1.0 mol / L, 1.5 mol / L, 2.0 mol / L, 2.5 mol / L, 3.0 mol / L, 3.5 mol / L, 4.0 mol / L L, 4.5 mol / L, 5.0 mol / L) into water and stir well for 4-24 h. After the reaction was completed, the mixture was separated and dried to obtain a binary transition group metal-doped Prussian blue homologue (Na y (T 1 + T 2 ) x Mn 1-x [Fe (CN) 6 ]).
  • X-ray diffraction (XRD; GBC MMA ray detector) was used to analyze the structure of the binary transition metal-doped Prussian blue homologue. As shown in Figure 1 (b), there were no heteropeaks, indicating that a pure binary transition was obtained. Group metal doped Prussian blue homologues.
  • FESEM Field emission scanning electron microscopy
  • This example is used to illustrate the preparation of a ternary transition metal-doped Prussian blue homologue.
  • sodium chloride (0.5 mol / L, 0.8 mol / L, 1.0 mol / L, 1.5 mol / L, 2.0 mol / L, 2.5 mol / L, 3.0 mol / L, 3.5 mol / L, 4.0 mol / L L, 4.5 mol / L, 5.0 mol / L) into water and stir well for 4-24 h. After the reaction, the reaction was separated and dried to obtain a ternary transition metal doped Prussian blue homolog (Na y (T 1 + T 2 + T 3 ) x Mn 1-x [Fe (CN) 6 ]).
  • X-ray diffraction (XRD; GBC MMA ray detector) was used to analyze the structure of the ternary transition metal doped Prussian blue homolog. As shown in Figure 1c, there are no heteropeaks, indicating that a pure ternary transition metal doped Miscellaneous Prussian blue homologue.
  • This example is used to illustrate the preparation of a quaternary transition metal-doped Prussian blue homologue.
  • sodium chloride (0.5 mol / L, 0.8 mol / L, 1.0 mol / L, 1.5 mol / L, 2.0 mol / L, 2.5 mol / L, 3.0 mol / L, 3.5 mol / L, 4.0 mol / L L, 4.5 mol / L, 5.0 mol / L) into water and stir well for 4-24 h. After the reaction is completed, separation and drying are performed to obtain a quaternary transition metal-doped Prussian blue homologue.

Abstract

本发明涉及一种过渡金属掺杂普鲁士蓝同系物及其制备方法和应用及二次离子电池。本发明工艺流程简单、设备投入少、连续化程度高,易于工业放大,所得产品颗粒均一且成分纯度高。本发明所述的新型的普鲁士蓝同系物可以作为二次电池的正极材料,尤其是在钠离子储能方面表现出高的容量115mAh g -1,且循环性能好、原料成本低,是一种极有竞争力的新一代的钠离子电池正极材料。

Description

过渡金属掺杂普鲁士蓝同系物及其制备方法和应用及二次离子电池 技术领域
本发明属于能源材料制备和电化学领域,具体涉及一种过渡金属掺杂普鲁士蓝同系物及其制备方法和应用及二次离子电池。
背景技术
钠离子电池作为一种极具前景的锂离子电池替代品,已经广泛受到了研究者的关注。然而,由于缺少适合的高容量和高倍率性能的电极材料,钠离子电池的商业化应用仍然停滞不前。众所周知,电池的能量密度和生产成本主要取决于正极材料的理论容量和价格。因此,利用现有的钠离子电池技术研究发掘价格便宜、具有长的循环寿命、高倍率性能的正极材料变得尤为重要。
在众多钠离子电池正极材料中,普鲁士蓝类似物(A xMFe(CN) 6,0≤x<2;A=K,Na;M=Fe,Mn,Ni,Zn,Cu,etc.)成为了研究的焦点,其具有无毒性、价格低廉、电化学性能优异等诸多优点。含Fe的铁氰化物Na xFeFe(CN) 6已显示出优异的电化学性能。此外,本课题组通过合成一系列不同钠含量的Na 1+xFeFe(CN) 6样品,提高了Na xFeFe(CN) 6的比容量。结果发现,富钠Na 1.56Fe[Fe(CN) 6]材料拥有高达100mAh g -1的比容量,循环400次后容量保持率为97%。尽管含Fe的Na xFeFe(CN) 6的容量及循环性能得到提升,由于其仅具有较低的3.0V电压平台,因此导致其能量密度仍然较低。
含Mn的铁氰化物,Na 1.72MnFe(CN) 6(NMHFC),具有高达130mAh g -1的比容量,3.5V的平均充放电平台,能量密度高达455Wh Kg -1。然而这种材料的缺点在于较差的循环稳定性。之前,本课题组通过在Na 1.72MnFe(CN) 6(NMHFC)表面包覆掺杂多功能ClO 4--PPy,提高了其循环稳定性。 NMHFC@PPy材料显示出提高的循环性能(200次循环后容量保持率为67%)以及优异的倍率性能。然而,其循环性能仍然达不到商业化应用的标准。此外,导电聚合物PPy的引入也会降低电极材料的比容量。
发明内容
本发明的目的是提供一种新型的过渡金属掺杂普鲁士蓝同系物及其制备方法和应用及二次离子电池。所述过渡金属掺杂普鲁士蓝同系物通过简单的共沉淀法即可制备,本发明工艺流程简单、设备投入少、连续化程度高,易于工业放大,所得产品颗粒均一且成分纯度高。
本发明的第一方面提供一种过渡金属掺杂普鲁士蓝同系物,其具有如下化学式所示的组成:A yT xM 1-x[N(CN) 6],其中,A为至少一种碱金属元素,T、M、N各自独立地为至少一种过渡金属元素,0<y≤2,0<x<1。
本发明中,T、M、N均可表示一种元素,也可表示多种元素。优选地,T、M、N各自独立地为至少一种第四周期过渡金属元素;进一步优选地,T、M、N各自独立地选自Fe、Co、Mn、V、Cr、Ni和Zn中的至少一种。根据本发明一种具体实施方式,T选自Fe、Co、Mn和Ni中的至少一种,M为Mn,N为Fe。
本发明对掺杂的过渡金属数量没有特别的限定,因此,所述过渡金属元素掺杂普鲁士蓝同系物可以为一元过渡金属元素掺杂普鲁士蓝同系物、二元过渡金属元素掺杂普鲁士蓝同系物、三元过渡金属元素掺杂普鲁士蓝同系物、四元过渡金属元素掺杂普鲁士蓝同系物、五元过渡金属元素掺杂普鲁士蓝同系物和六元过渡金属元素掺杂普鲁士蓝同系物中的至少一种。
所述一元过渡金属元素掺杂又称单元素掺杂,例如为Na yT xM 1-x[N(CN) 6](T,M,N=Co,Fe,Ni,V等);二元过渡金属元素掺杂又称双元素掺杂,例如为Na y(T 1+T 2) xM 1-x[N(CN) 6](T 1,T 2,M,N=Co,Fe,Ni,V等);多元过渡金属元素掺杂又称多元素掺杂,例如, Na y(T 1+T 2+T 3+……+T n) xM 1-x[N(CN)6](T 1,T 2,T 3……T n,M,N=Co,Fe,Ni,V等),通过掺杂可优化普鲁士蓝同系物的结构稳定性。
更具体地,本发明的过渡金属元素掺杂普鲁士蓝同系物的示例包括:
单元素掺杂的Na yT xMn 1-x[Fe(CN) 6](T=Co,Fe,Ni,V等)。
双元素掺杂的Na y(T 1+T 2) xMn 1-x[Fe(CN) 6](T 1,T 2=Co,Fe,Ni,V等)。
三元素掺杂的Na y(T 1+T 2+T 3) xMn 1-x[Fe(CN) 6](T 1+T 2+T 3=Co,Fe,Ni,V等)。
多元素掺杂Na y(T 1+T 2+T 3+……+T n) xMn 1-x[Fe(CN) 6](T 1,T 2,T 3……T n=Co,Fe,Ni,V等)。
本发明的第二方面提供上述过渡金属掺杂普鲁士蓝同系物的制备方法,该制备方法包括:将含有过渡金属T的离子和过渡金属M的离子的溶液、氰基化合物A yN(CN) 6的溶液与碱金属盐溶液混合,经过共沉淀反应得到过渡金属元素掺杂普鲁士蓝同系物。
所述A、T、M、N的限定如前所述,在此不再赘述。
根据本发明,所述碱金属盐为钠盐、锂盐和钾盐中的至少一种,所述钠盐为氯化钠、硫酸钠、醋酸钠和草酸钠中的至少一种;所述锂盐为氯化锂、硫酸锂、醋酸锂和草酸锂中的至少一种;所述钾盐为氯化钾、硫酸钾、醋酸钾和草酸钾中的至少一种。所述碱金属盐的在体系中的浓度为0~5mol/L。
本发明中,优选地,所述含有过渡金属T的离子和过渡金属M的离子的溶液为含有铁盐、钴盐、钒盐和镍盐中的至少一种的溶液。
根据本发明的一种优选实施方式,所述铁盐优选为铁的氯化盐、硫酸盐、碳酸盐、草酸盐和醋酸盐中的至少一种。
根据本发明的一种优选实施方式,所述钴盐优选为钴的氯化盐、硫酸盐、碳酸盐、草酸盐和醋酸盐中的至少一种。
根据本发明的一种优选实施方式,所述钒盐优选为钒的氯化盐、硫酸 盐、碳酸盐、草酸盐和醋酸盐中的至少一种。
根据本发明的一种优选实施方式,所述镍盐优选为镍的氯化盐、硫酸盐、碳酸盐、草酸盐和醋酸盐中的至少一种。
根据本发明,优选地,所述氰基化合物A yN(CN) 6选自亚铁氰化钠、铁氰化钾、锰氰碱金属盐、钴氰碱金属盐中的至少一种。
根据本发明,优选地,所述共沉淀反应的时间为4~120h,温度为10-40℃,通常可在室温下进行。反应结束后,经分离洗涤,真空干燥即可获得所述过渡金属掺杂普鲁士蓝同系物。
本发明的第三发明提供上述过渡金属掺杂普鲁士蓝同系物作为二次离子电池正极材料的应用。
本发明的第四方面提供一种二次离子电池,所述二次离子电池以上述过渡金属掺杂普鲁士蓝同系物作为正极材料。
优选地,所述二次离子电池为钠离子电池。
与现有技术相比,本发明提供的多元(二元、三元、四元)过渡金属掺杂的普鲁士蓝同系物的优势在于:该材料的制备方法十分简易,无需反应气氛及还原剂的调控,在室温下,可以控制普鲁士蓝同系物中的金属种类及比例,同时能合成得到具有高碱金属含量的普鲁士蓝类似物。本发明的过渡金属掺杂普鲁士蓝同系物作为二次离子电池特别是钠离子电池的正极材料表现出115mAh g -1的高容量、高电压平台及优异的循环稳定性。其原料成本低,是一种极有竞争力的新一代的钠离子电池正极材料。
附图说明
通过结合附图对本发明示例性实施方式进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显。
图1(a)-图1(c)为单元素掺杂Na yT xMn 1-x[Fe(CN) 6],双元素掺杂Na y(T 1+T 2) xMn 1-x[Fe(CN) 6]和三元素掺杂Na y(T 1+T 2+T 3) xMn 1-x[Fe(CN) 6]的X 射线衍射图谱,图1(d)为一次合成材料的重量图片;图1(a)中,由下至上依次为V掺杂(1/2V-1/2Mn)、Co掺杂(1/2Co-1/2Mn)、Fe掺杂(1/2Fe-1/2Mn)、Ni掺杂(1/2Ni-1/2Mn);图1(b)中,由下至上依次为Co-Ni掺杂(1/3Co-1/3Ni-1/3Mn)、Co-Fe掺杂(1/3Co-1/3Fe-1/3Mn);图1(c)中,由下至上依次为Ni-Fe-Co掺杂(1/3Ni-1/3Fe-1/3Co-doping)、Ni-Fe-Co掺杂(1/4Ni-1/2Fe-1/4Co-doping)。
图2(a)-图2(d)为二元Fe掺杂Mn的普鲁士蓝同系物的SEM图,其中,(a)0.15Fe掺杂,(b)0.3Fe掺杂,(c)0.5Fe掺杂,(d)0.65Fe掺杂。
图3(a)-图3(d)为二元Fe掺杂Mn的普鲁士蓝同系物的CV曲线,其中,(a)0.15Fe掺杂(0.15Fe-Mn-doping),(b)0.3Fe掺杂(0.3Fe-Mn-doping),(c)0.5Fe掺杂(0.5Fe-Mn-doping),(d)0.65Fe掺杂(0.65Fe-Mn-doping)。
图4(a)-图4(b)示出了掺杂的普鲁士蓝在钠离子电池中的电化学性能,其中,(a)充放电曲线,(b)循环性能。
具体实施方式
下面将更详细地描述本发明的优选实施方式。虽然以下描述了本发明的优选实施方式,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。
本发明实施例制备的普鲁士蓝同系物的电化学性能均按照下述方法进行测试:将制备的掺杂的普鲁士蓝同系物、碳黑及聚偏二氟乙烯粘结剂以质量比80:10:10混合成浆料,均匀地涂覆在铝箔集流体上得到工作电极;以钠金属薄片作为对电极,1mol/L NaClO 4(溶剂为体积比1:1的碳酸乙烯酯和碳酸二甲酯混合液)作为电解液,在充满Ar的手套箱中装配扣式电池。
将上述装配的扣式电池在LAND充放电测试仪上进行电化学性能测试。
实施例1
本实施例用于说明一元过渡族金属掺杂的普鲁士蓝同系物的制备。
按Na 4Fe(CN) 6:过渡金属离子(Co,Ni,Mn,Fe,V)=1:1的摩尔分数称取各组分(Co离子来自氯化钴、Ni离子来自氯化镍、Mn离子来自醋酸锰,V离子来自氯化钒,Fe离子来自硫酸亚铁)加入水中,再加入氯化钠(0.5mol/L、0.8mol/L、1.0mol/L、1.5mol/L、2.0mol/L、2.5mol/L、3.0mol/L、3.5mol/L、4.0mol/L、4.5mol/L、5.0mol/L)到水中,充分搅拌4-24h。反应完毕,分离干燥,得到一元过渡族金属掺杂的普鲁士蓝同系物(Na yT xMn 1-x[Fe(CN) 6])。
利用X射线衍射(XRE;GBC MMA射线探测器)分析一元过渡族金属掺杂的普鲁士蓝同系物的结构,如图1(a)所示,不存在杂峰,说明得到纯的掺杂的普鲁士蓝同系物。
测试一元过渡族金属掺杂的普鲁士蓝同系物在钠离子电池中的电化学性能,如图4(a)-图4(b)所示。
实施例2
本实施例用于说明二元过渡族金属掺杂的普鲁士蓝同系物的制备。
按Na 4Fe(CN) 6:过渡金属离子(Co+Mn)、(V+Mn)、(Fe+Mn)=1:1的摩尔分数称取,其中Co在过渡族金属中的比例分别为0.15和0.3;Fe在过渡族金属中的比例分别为0.15、0.3、0.5、0.65;V在过渡族金属中的比例为0.5(Co离子来自氯化钴、Mn离子来自醋酸锰,V离子来自氯化钒,Fe离子来自硫酸亚铁)。然后,加入氯化钠(0.5mol/L、0.8mol/L、1.0mol/L、1.5mol/L、2.0mol/L、2.5mol/L、3.0mol/L、3.5mol/L、4.0mol/L、4.5mol/L、5.0mol/L)到水中,充分搅拌4-24h。反应完毕,分离干燥,得到二元过渡组金属掺杂普鲁士蓝同系物(Na y(T 1+T 2) xMn 1-x[Fe(CN) 6])。
利用X射线衍射(XRD;GBC MMA射线探测器)分析二元过渡族金 属掺杂的普鲁士蓝同系物的结构,如图1(b)所示,不存在杂峰,说明得到纯的二元过渡族金属掺杂的普鲁士蓝同系物。
利用场发射扫描电镜(FESEM,型号JEOL JSM-7500FA)分析二元过渡族金属掺杂的普鲁士蓝同系物的形貌,并配有能量散射X射线谱(EDS)分析,如图2(a)-图2(d)所示。
测定二元过渡族金属掺杂的普鲁士蓝同系物的CV曲线,如图3(a)-图3(d)所示。
测试二元过渡族金属掺杂的普鲁士蓝同系物在钠离子电池中的电化学性能,如图4(a)-图4(b)所示。
实施例3
本实施例用于说明三元过渡族金属掺杂的普鲁士蓝同系物的制备。
按Na 4Fe(CN) 6:过渡金属离子(Co+Mn+Ni)、(Co+Mn+Fe)=1:1的摩尔分数称取,其中在过渡族金属中,Co:Mn:Ni=1:1:1;Co:Mn:Fe=1:1:1(Co离子来自氯化钴、Ni离子来自氯化镍、Mn离子来自醋酸锰,Fe离子来自硫酸亚铁)。然后,加入氯化钠(0.5mol/L、0.8mol/L、1.0mol/L、1.5mol/L、2.0mol/L、2.5mol/L、3.0mol/L、3.5mol/L、4.0mol/L、4.5mol/L、5.0mol/L)到水中,充分搅拌4-24h。反应完毕,分离干燥,得到三元过渡族金属掺杂的普鲁士蓝同系物(Na y(T 1+T 2+T 3) xMn 1-x[Fe(CN) 6])。
利用X射线衍射(XRD;GBC MMA射线探测器)分析三元过渡族金属掺杂的普鲁士蓝同系物的结构,如图1c所示,不存在杂峰,说明得到纯的三元过渡族金属掺杂的普鲁士蓝同系物。
测试三元过渡族金属掺杂的普鲁士蓝同系物在钠离子电池中的电化学性能,如图4(a)-图4(b)所示。
实施例4
本实施例用于说明四元过渡族金属掺杂的普鲁士蓝同系物的制备。
按Na 4Fe(CN) 6:过渡金属离子(Co+Mn+Ni+Fe)=1:1的摩尔分数称取,其中在过渡族金属中Co:Mn:Ni:Fe=1:1:1:1和1:6:1:1(Co离子来自氯化钴、Ni离子来自氯化镍、Mn离子来自醋酸锰,Fe离子来自硫酸亚铁)。然后,加入氯化钠(0.5mol/L、0.8mol/L、1.0mol/L、1.5mol/L、2.0mol/L、2.5mol/L、3.0mol/L、3.5mol/L、4.0mol/L、4.5mol/L、5.0mol/L)到水中,充分搅拌4-24h。反应完毕,分离干燥,得到四元过渡族金属掺杂的普鲁士蓝同系物。
测试四元过渡族金属掺杂的普鲁士蓝同系物在钠离子电池中的电化学性能,如图4(a)-图4(b)所示。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。

Claims (13)

  1. 一种过渡金属掺杂普鲁士蓝同系物,其特征在于,其具有如下化学式所示的组成:A yT xM 1-x[N(CN) 6],其中,A为至少一种碱金属元素,T、M、N各自独立地为至少一种过渡金属元素,0<y≤2,0<x<1。
  2. 根据权利要求1所述的过渡金属掺杂普鲁士蓝同系物,其特征在于,T、M、N各自独立地为至少一种第四周期过渡金属元素。
  3. 根据权利要求2所述的过渡金属掺杂普鲁士蓝同系物,其特征在于,T、M、N各自独立地选自Fe、Co、Mn、V、Cr、Ni和Zn中的至少一种。
  4. 根据权利要求3所述的过渡金属掺杂普鲁士蓝同系物,其特征在于,T选自Fe、Co、Mn和Ni中的至少一种,M为Mn,N为Fe。
  5. 根据权利要求1-4中任意一项所述的过渡金属掺杂普鲁士蓝同系物,其特征在于,所述过渡金属元素掺杂普鲁士蓝同系物为一元过渡金属元素掺杂普鲁士蓝同系物、二元过渡金属元素掺杂普鲁士蓝同系物、三元过渡金属元素掺杂普鲁士蓝同系物、四元过渡金属元素掺杂普鲁士蓝同系物、五元过渡金属元素掺杂普鲁士蓝同系物和六元过渡金属元素掺杂普鲁士蓝同系物中的至少一种。
  6. 权利要求1-5中任意一项所述的过渡金属掺杂普鲁士蓝同系物的制备方法,其特征在于,该制备方法包括:将含有过渡金属T的离子和过渡金属M的离子的溶液、氰基化合物A yN(CN) 6的溶液与碱金属盐溶液混合,经过共沉淀反应得到过渡金属元素掺杂普鲁士蓝同系物。
  7. 根据权利要求6所述的制备方法,其特征在于,所述碱金属盐为钠盐、锂盐和钾盐中的至少一种,所述钠盐为氯化钠、硫酸钠、醋酸钠和草酸钠中的至少一种;所述锂盐为氯化锂、硫酸锂、醋酸锂和草酸锂中的至少一种;所述钾盐为氯化钾、硫酸钾、醋酸钾和草酸钾中的至少一种。
  8. 根据权利要求6所述的制备方法,其特征在于,所述含有过渡金属T的离子和过渡金属M的离子的溶液为含有铁盐、钴盐、钒盐和镍盐中的至少一种的溶液;
    所述铁盐优选为铁的氯化盐、硫酸盐、碳酸盐、草酸盐和醋酸盐中的至少一种;
    所述钴盐优选为钴的氯化盐、硫酸盐、碳酸盐、草酸盐和醋酸盐中的至少一种;
    所述钒盐优选为钒的氯化盐、硫酸盐、碳酸盐、草酸盐和醋酸盐中的至少一种;
    所述镍盐优选为镍的氯化盐、硫酸盐、碳酸盐、草酸盐和醋酸盐中的至少一种。
  9. 根据权利要求6所述的制备方法,其特征在于,所述氰基化合物A yN(CN) 6选自亚铁氰化钠、铁氰化钾、锰氰碱金属盐、钴氰碱金属盐中的至少一种。
  10. 根据权利要求6所述的制备方法,其特征在于,所述共沉淀反应的时间为4~120h,温度为10-40℃。
  11. 权利要求1-5中任意一项所述的过渡金属掺杂普鲁士蓝同系物作为 二次离子电池正极材料的应用。
  12. 一种二次离子电池,其特征在于,所述二次离子电池以权利要求1-5中任意一项所述的过渡金属掺杂普鲁士蓝同系物作为正极材料。
  13. 根据权利要求12所述的二次离子电池,其特征在于,所述二次离子电池为钠离子电池。
PCT/CN2018/088996 2018-05-30 2018-05-30 过渡金属掺杂普鲁士蓝同系物及其制备方法和应用及二次离子电池 WO2019227332A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/088996 WO2019227332A1 (zh) 2018-05-30 2018-05-30 过渡金属掺杂普鲁士蓝同系物及其制备方法和应用及二次离子电池
CN201880004531.4A CN110199420A (zh) 2018-05-30 2018-05-30 过渡金属掺杂普鲁士蓝同系物及其制备方法和应用及二次离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/088996 WO2019227332A1 (zh) 2018-05-30 2018-05-30 过渡金属掺杂普鲁士蓝同系物及其制备方法和应用及二次离子电池

Publications (1)

Publication Number Publication Date
WO2019227332A1 true WO2019227332A1 (zh) 2019-12-05

Family

ID=67751434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088996 WO2019227332A1 (zh) 2018-05-30 2018-05-30 过渡金属掺杂普鲁士蓝同系物及其制备方法和应用及二次离子电池

Country Status (2)

Country Link
CN (1) CN110199420A (zh)
WO (1) WO2019227332A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690433A (zh) * 2021-07-20 2021-11-23 浙江大学杭州国际科创中心 一种高熵普鲁士蓝类材料及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021168600A1 (zh) * 2020-02-24 2021-09-02 辽宁星空钠电电池有限公司 一种低水分含量的普鲁士蓝钠离子电池正极材料及其制备方法和钠离子电池
CN111600011A (zh) * 2020-04-24 2020-08-28 国网浙江省电力有限公司电力科学研究院 一种掺杂型普鲁士蓝类材料及其制备方法和应用
CN111559763B (zh) * 2020-04-30 2022-12-20 蜂巢能源科技有限公司 三元高镍立方体前驱体材料及其制备方法和应用
CN115347167A (zh) * 2022-08-01 2022-11-15 广东邦普循环科技有限公司 一种改性的普鲁士类衍生物及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103022577A (zh) * 2012-12-27 2013-04-03 武汉大学 一种水系可充钠离子电池
CN104701543A (zh) * 2015-02-05 2015-06-10 北京理工大学 一种钠离子电池普鲁士蓝类似物正极材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208628B (zh) * 2013-04-12 2015-08-26 中国科学院化学研究所 一类钠离子电池正极材料及其制备方法与应用
CN106252621A (zh) * 2016-08-24 2016-12-21 江西丰日电源有限公司 一种锂离子电池负极材料及其制备方法
CN106898743B (zh) * 2017-03-10 2019-08-02 华南师范大学 一种基于普鲁士蓝类框架材料的碳氮掺杂三元复合金属氧化物的制备方法及应用
CN106920964B (zh) * 2017-04-05 2020-04-10 浙江大学 一种普鲁士蓝类钠离子电池正极材料及其制备方法
CN107364875A (zh) * 2017-06-22 2017-11-21 全球能源互联网研究院 一种制备普鲁士蓝正极材料的方法及钠离子电池
CN107364874A (zh) * 2017-06-22 2017-11-21 全球能源互联网研究院 一种普鲁士蓝正极材料制备方法及钠离子电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103022577A (zh) * 2012-12-27 2013-04-03 武汉大学 一种水系可充钠离子电池
CN104701543A (zh) * 2015-02-05 2015-06-10 北京理工大学 一种钠离子电池普鲁士蓝类似物正极材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690433A (zh) * 2021-07-20 2021-11-23 浙江大学杭州国际科创中心 一种高熵普鲁士蓝类材料及其制备方法

Also Published As

Publication number Publication date
CN110199420A (zh) 2019-09-03

Similar Documents

Publication Publication Date Title
WO2019227332A1 (zh) 过渡金属掺杂普鲁士蓝同系物及其制备方法和应用及二次离子电池
EP2368851B1 (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
US6159636A (en) Mixtures of lithium manganese oxide spinel as cathode active material
CN107275633B (zh) 一种具有低晶格应力的梯度氟掺杂三元正极材料及其制备方法
EP2581343B1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
US8066915B2 (en) Composite carbonate and method for producing the same
CN107369846B (zh) 电极片及其制备方法和铝离子电池
CN109473657A (zh) 一种掺杂包覆的镍钴铝锰四元锂离子电池正极材料、制备方法及用途
KR102477330B1 (ko) 리튬 망간 리치 재료, 이의 제조 방법 및 응용
CN108134064B (zh) 一种正极材料前驱体及其制备方法和正极材料
CN111403729A (zh) 钠离子电池正极材料及其制备方法、钠离子电池
CN109244459B (zh) 一种共掺杂柔性钠离子电池正极材料及其制备方法
CN108821310A (zh) 一种类普鲁士白材料及其制备方法和应用
US6814894B2 (en) Lithium-manganese complex oxide, production method thereof and use thereof
CN109665570A (zh) 一种掺杂改性的高镍四元正极材料、制备方法及用途
CN114843469B (zh) 一种MgFe2O4改性的P2/O3型镍基层状钠离子电池正极材料及其制备方法
Shah et al. Solvothermal synthesis and electrochemical charge storage assessment of Mn 3 N 2
CN107331864B (zh) 一种氰基正极材料及其制备方法和应用
CN110380037B (zh) 一种反应熔渗改性的锂离子电池正极材料及制备方法
KR20140043320A (ko) 리튬전지용 2상 양극 물질 및 그의 합성방법
CN107265481B (zh) 一种氰基配位化合物及其制备方法和应用
CN116314739B (zh) 一种锰基层状氧化物正极材料及其制备方法和应用
CN113511691A (zh) 一种三元氰基框架材料及其制备方法和应用
Guo et al. The role of sulfate ions coming from source materials on the properties of Li1. 05Mn2O4 cathode for lithium ion batteries
CN113611850B (zh) 一种正极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920885

Country of ref document: EP

Kind code of ref document: A1