WO2019224861A1 - シリンダライナ、及びその製造方法 - Google Patents

シリンダライナ、及びその製造方法 Download PDF

Info

Publication number
WO2019224861A1
WO2019224861A1 PCT/JP2018/019436 JP2018019436W WO2019224861A1 WO 2019224861 A1 WO2019224861 A1 WO 2019224861A1 JP 2018019436 W JP2018019436 W JP 2018019436W WO 2019224861 A1 WO2019224861 A1 WO 2019224861A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder liner
coating
chromium carbide
spraying
thermal
Prior art date
Application number
PCT/JP2018/019436
Other languages
English (en)
French (fr)
Inventor
弥生 伴
公一 畠山
Original Assignee
Tpr株式会社
Tpr工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tpr株式会社, Tpr工業株式会社 filed Critical Tpr株式会社
Priority to CN201880093631.9A priority Critical patent/CN112135919A/zh
Priority to JP2020520862A priority patent/JP6934567B2/ja
Priority to PCT/JP2018/019436 priority patent/WO2019224861A1/ja
Publication of WO2019224861A1 publication Critical patent/WO2019224861A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J10/00Engine or like cylinders; Features of hollow, e.g. cylindrical, bodies in general
    • F16J10/02Cylinders designed to receive moving pistons or plungers
    • F16J10/04Running faces; Liners

Definitions

  • the present invention relates to a cylinder liner, and relates to a cylinder liner having resistance to repeated heat cycles.
  • Patent Document 1 discloses a cylinder liner containing 1 to 10% by weight of carbon in a hard chrome plating film and having a film hardness of HV1100 to HV1600.
  • formic acid as a carbon source, it is possible to provide a hard chromium plating film having a high hardness and a high effect of preventing cavitation erosion.
  • a chromium plating film with high hardness can be obtained by partially depositing chromium carbide in the chromium plating film.
  • the cylinder liner is used in an environment where it is exposed to a high-temperature and low-temperature heat cycle between engine combustion and cooling.
  • This invention makes it a subject to provide the cylinder liner which has a film which does not produce a crack even if it is a case where it exposes to the severe heat cycle with a large temperature difference.
  • the present inventors have studied to solve the above problems, and found that the above problems can be solved by forming a thermal spray coating on the cylinder liner surface using a thermal spray material containing chromium carbide, thereby completing the present invention. It was.
  • One aspect of the present invention is a method for manufacturing a cylinder liner having a chromium carbide coating, comprising: a thermal spraying step of spraying a thermal spray material containing chromium carbide onto a surface of the cylinder liner.
  • the thermal spray material preferably further contains nickel, and the chromium carbide thermal spray coating preferably has a porosity of 1.0% to 2.5%, and the chromium carbide thermal spray coating has a hardness of 900HV0.
  • the thermal spraying step is high-speed flame spraying (HVOF: High Velocity Oxygen Fuel) or plasma spraying.
  • Another embodiment of the present invention is a cylinder liner having a chrome carbide coating, wherein the chrome carbide coating is a thermal spray coating.
  • the sprayed coating is preferably a high-speed flame sprayed coating or a plasma sprayed coating.
  • a cylinder liner having a coating that does not cause cracks even when exposed to a severe heat cycle with a large temperature difference it is possible to provide a cylinder liner having good cavitation erosion resistance in addition to the above crack resistance.
  • One embodiment of the present invention is a method of manufacturing a cylinder liner having a chrome carbide coating, and includes a thermal spraying step of spraying a thermal spray material containing chrome carbide onto the surface of the cylinder liner.
  • a chromium carbide spray coating is formed on the surface of the cylinder liner by the spraying step.
  • the chromium carbide sprayed coating formed by thermal spraying does not crack even when it is exposed to a severe heat cycle with a large temperature difference.
  • the thermal spray material for forming the chromium carbide coating is not particularly limited as long as it contains chromium carbide (Cr 3 C 2 ), and may contain components other than chromium carbide.
  • components other than chromium carbide include components that can be used as a coating on a cylinder liner, such as nickel, tungsten, aluminum, cobalt, titanium, and iron.
  • the amount of chromium carbide in the sprayed material is not particularly limited as long as a chromium carbide coating can be formed, but is usually 25% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more in the sprayed material. It may be wt% chromium carbide, may be 90 wt% or less, and may be 80 wt% or less.
  • nickel is contained in the thermal spray material, the content is not particularly limited, but is usually 10% by weight or more, preferably 15% by weight or more, more preferably 20% by weight or more, and usually 40% by weight in the thermal spray material. And may be up to 30% by weight.
  • the shape of the thermal spray material is not particularly limited, and examples thereof include a wire, a rod, and a powder.
  • a powder shape is preferable.
  • the thermal spray material is a spherical powder
  • the average particle size is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, and usually 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the average particle diameter can be measured by a laser diffraction / scattering method.
  • the term “spherical” means that the average circularity is 0.8 or more.
  • the thermal spraying method in the thermal spraying step is not particularly limited, and may be a gas type or an electric type.
  • high velocity flame spraying (HVOF) high velocity flame spraying (HVOF)
  • plasma spraying plasma spraying
  • arc spraying and the like can be mentioned.
  • High-speed flame spraying (HVOF) is a method in which a thermal spray material is melted by a high-speed combustion flame using oxygen and then sprayed onto the surface of an object to be processed to form a coating film.
  • the temperature of the combustion flame is not particularly limited, but is usually 2000 ° C. or higher, preferably 2500 ° C. or higher, and usually 3000 ° C. or lower.
  • high-speed flame spraying (HVAF) using air instead of oxygen is also included in high-speed flame spraying (HVOF) because air contains oxygen.
  • Arc spraying is a spraying method in which an arc is generated at the tip of the sprayed material to melt the material, and particles of the melted material are sprayed with compressed air, etc.
  • Plasma spraying melts the sprayed material with high-temperature plasma.
  • a thermal spraying method for forming a film Plasma spraying is a thermal spraying method that results in a higher temperature than other thermal spraying methods.
  • the chromium carbide spray coating formed by thermal spraying exhibits a lamellar structure when the surface is observed with an electron microscope. This is a structure different from the columnar structure produced by plating.
  • the thickness of the film to be formed is not particularly limited, but is usually 10 ⁇ m or more, preferably 50 ⁇ m or more, and usually 10 mm or less, preferably 5 mm or less, more preferably 1 mm or less.
  • the present manufacturing method may have other steps before and after the thermal spraying step.
  • Other steps include an undercut process, a blast process, an outer peripheral polishing process, and a sealing process for the formed coating on the cylinder liner surface.
  • the porosity of the chromium carbide sprayed coating is not limited, but is usually 0.5% or more, preferably 1% or more, and usually 3% or more, preferably 2.5% or less. By setting it as the above range, cavitation erosion resistance is improved.
  • the porosity of the film is, for example, an image processing system using a metal microscope (after taking a cross section of three continuous fields of view with a metal microscope, measure the porosity in the field of view with a dedicated program, and average the porosity of the three fields of view. To calculate).
  • the porosity of the coating can be adjusted to the above range by a sealing treatment after thermal spraying.
  • the hardness of the chromium carbide sprayed coating is not limited, but considering practical durability performance, it may be 300HV0.05 or more, preferably 800HV0.05 or more, more preferably 900HV0.05 or more, and usually 1500HV0.05 or less, Preferably it is 1200HV0.05 or less.
  • the coating hardness HV can be measured with a micro Vickers hardness meter.
  • Example 1 As a thermal spray material, 25% nickel chrome carbide (Cr 3 C 2 25 (NiCr), spherical, average particle size 32 to 35 ⁇ m) is used, and cast iron liner material by high-speed flame spraying (HVOF, combustion flame temperature about 2800 ° C.). A test piece 1 was obtained by forming a chromium carbide sprayed coating on the surface. The thickness of the sprayed coating on the liner material surface was 100 ⁇ m.
  • Example 2 Using 25% nickel chromium carbide (Cr 3 C 2 25 (NiCr), spherical, average particle diameter of 32 to 35 ⁇ m) as the thermal spray material, a chromium carbide thermal spray coating is formed on the surface of the cast iron liner by plasma spraying, Test piece 2 was obtained. The thickness of the sprayed coating on the liner material surface was 100 ⁇ m.
  • NiCr nickel chromium carbide
  • test pieces 1 and 3 each having the above coating were prepared, heated to 200 ° C., 400 ° C., and 600 ° C., and then rapidly cooled to 20 ° C. or lower for 20 cycles.
  • Two pieces of test piece 2 were prepared, heated to 200 ° C. and 400 ° C., respectively, and then rapidly cooled to 20 ° C. or lower for 20 cycles. Thereafter, the cross section of each test piece was observed with an electron microscope. The results are shown in FIGS. As shown in FIG. 1, the test piece 3 having chrome plating has many cracks, but the test piece 1 having chrome carbide spray coating (HVOF) did not show any cracks. Moreover, as shown in FIG. 2, the test piece 2 which has a chromium carbide spray coating (plasma) showed no crack.
  • HVOF chrome carbide spray coating
  • the hardness of each test piece was measured with a micro Vickers hardness tester.
  • the measurement measured 7 points
  • the test piece 3 having chrome plating decreases the hardness of the coating by repeating the temperature rise, but the test pieces 1 and 2 having the chromium carbide spray coating have a decrease in coating hardness. There were few.
  • ⁇ Erosion resistance test> Next, it was demonstrated that the chromium carbide sprayed coating has not only good crack resistance and heat resistance, but also erosion resistance.
  • the test pieces 1 and 3 were subjected to an erosion resistance test under the following conditions in accordance with ASTM G3210 (ultrasonic vibration type erosion test method). Circulating water: Tap water Circulating water temperature: 55 ° C Flow rate: 10L / min Test time: 28 hours The weight of the test piece before and after the test was measured, and the weight loss was calculated as the amount of erosion of the test piece. The results are shown in Table 1. For reference, the test results of untreated pieces are also shown.
  • ⁇ Corrosion resistance test> The surfaces of the test pieces 1 and 3 were masked, and the masking of the 10 mm ⁇ 10 mm portion at the center of the masking was removed to expose the coating.
  • the test piece with the coating exposed was immersed in 0.5 wt% sulfuric acid at 60 ° C. ⁇ 3 ° C. for 30 minutes. During the immersion, manual stirring was performed 3 times per minute.
  • the weight of the test piece before and after the test was measured, and the weight loss was calculated as the amount of erosion of the test piece. The results are shown in Table 2. For reference, the test results of untreated pieces are also shown.

Abstract

温度差が大きい過酷なヒートサイクルに晒された場合であっても、クラックが生じない被膜を有するシリンダライナを提供することを課題とする。クロムカーバイドを含む溶射材料を、シリンダライナの表面に溶射する溶射ステップ、を含む製造方法により課題を解決する。

Description

シリンダライナ、及びその製造方法
 本発明はシリンダライナに関し、繰り返しのヒートサイクルに対して耐性を有するシリンダライナに関する。
 シリンダライナの外周面の表面処理には、耐食性に優れた硬質クロムめっきが多用されてきた。例えば特許文献1には、硬質クロムめっき被膜中に炭素が1~10重量%含有され、該被膜硬さがHV1100~HV1600でなるシリンダライナが開示されており、サージェント浴によりクロムめっきをする際に、炭素源としてギ酸を含有させることで高硬度化させ、キャビテーションエロージョン防止効果が高い硬質クロムめっき被膜を提供できることが記載されている。
特開平1-152298号公報
 特許文献1のように、クロムめっき被膜中に炭化クロムを部分的に析出させることで、高硬度のクロムめっき被膜を得ることができる。
 一方でシリンダライナは、エンジン燃焼時と冷却時との間で高温低温のヒートサイクルに曝される環境で使用される。本発明者らが検討したところ、過酷な条件でのヒートサイクルにより、シリンダライナのクロムめっき被膜にクラックが生じる場合があることを見出した。
 本発明は、温度差が大きい過酷なヒートサイクルに晒された場合であっても、クラックが生じない被膜を有するシリンダライナを提供することを課題とする。
 本発明者らは、上記課題を解決すべく検討したところ、クロムカーバイドを含む溶射材料を用いてシリンダライナ表面に溶射被膜を形成することで、上記課題を解決できることを見出し、本発明を完成させた。
 本発明の一形態は、クロムカーバイドを含む溶射材料を、シリンダライナの表面に溶射する溶射ステップ、を含む、クロムカーバイド被膜を有するシリンダライナの製造方法である。
 前記溶射材料は、さらにニッケルを含むことが好ましく、前記クロムカーバイド溶射被膜は、気孔率が1.0%以上2.5%以下であることが好ましく、前記クロムカーバイド溶射被膜は、硬度が900HV0.05以上であることが好ましく、前記溶射ステップは、高速フレーム溶射(HVOF:High Velocity Oxygen Fuel)またはプラズマ溶射であることが好ましい。
 また、本発明の別の形態は、クロムカーバイド被膜を有するシリンダライナであって、前記クロムカーバイド被膜は溶射被膜である、シリンダライナである。
 前記溶射被膜は、高速フレーム溶射被膜またはプラズマ溶射被膜であることが好ましい。
 本発明により、温度差が大きい過酷なヒートサイクルに晒された場合であっても、クラックが生じない被膜を有するシリンダライナを提供することができる。また、本発明により、上記耐クラック性に加えて、耐キャビテーションエロージョン性も良好なシリンダライナを提供することができる。
耐熱性(耐クラック性)評価結果を示す電子顕微鏡画像である(図面代用写真)。 耐熱性(耐クラック性)評価結果を示す電子顕微鏡画像である(図面代用写真)。 耐熱性評価結果を示すグラフである。
 本発明の一実施形態は、クロムカーバイド被膜を有するシリンダライナの製造方法であり、クロムカーバイドを含む溶射材料を、シリンダライナの表面に溶射する溶射ステップを含む。該溶射ステップによりシリンダライナ表面にクロムカーバイド溶射被膜が形成される。溶射により形成されたクロムカーバイド溶射被膜は、温度差が大きい過酷なヒートサイクルに晒された場合であっても、クラックが生じない。
 クロムカーバイド被膜を形成するための溶射材料は、クロムカーバイド(Cr)を含むものであれば特段限定されず、クロムカーバイド以外の成分を含んでいてもよい。クロムカーバイド以外の成分としては、金属成分としては例えばニッケル、タングステン、アルミニウム、コバルト、チタン、鉄など、シリンダライナの被膜として使用され得る成分があげられる。
 溶射材料中のクロムカーバイドの量は、クロムカーバイド被膜を形成できる限り特段限定されないが、溶射材料中に通常25重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上であり、100重量%クロムカーバイドであってよく、90重量%以下であってよく、80重量%以下であってよい。
 溶射材料中にニッケルを含む場合、その含有量は特段限定されないが、溶射材料中に通常10重量%以上、好ましくは15重量%以上、より好ましくは20重量%以上であり、また通常40重量%以下であり、30重量%以下であってよい。
 溶射材料は、その形状は特段限定されず、線材、棒材、粉末などが挙げられるが、本実施形態では粉末形状であることが好ましい。粉末形状である場合、安定供給の観点から球状であることが好ましいが、その他の形状であってもよい。溶射材料が球状粉末である場合、その平均粒子径は通常5μm以上、好ましくは10μm以上、また通常100μm以下、好ましくは50μm以下である。平均粒子径は、レーザー回折・散乱法により測定することができる。なお、本明細書において球状とは、平均円形度が0.8以上のものをいう。
 溶射ステップにおける溶射法は特に限定されず、ガス式であっても電気式であってもよい。典型的には高速フレーム溶射(HVOF:High Velocity Oxygen Fuel)、プラズマ溶射、アーク溶射などがあげられる。
 高速フレーム溶射(HVOF)は、酸素を用いた高速燃焼炎により溶射材料を溶融させたうえで、被処理物の表面に吹き付けることで被膜を形成する方法である。燃焼炎の温度は特段限定されないが、通常2000℃以上、好ましくは2500℃以上、また通常3000℃以下である。なお、酸素に替えて空気を用いる高速フレーム溶射(HVAF)も、空気が酸素を含むため、高速フレーム溶射(HVOF)に含まれるものとする。
 アーク溶射は、溶射材料の先端でアークを発生させて材料を溶融させ、該溶融させた材料の粒子を圧縮空気などで吹き付ける溶射法であり、また、プラズマ溶射は、溶射材料を高温プラズマで溶融させて、被膜を形成する溶射法である。プラズマ溶射は、他の溶射法と比較して高温になる溶射法である。
 溶射によって形成するクロムカーバイド溶射被膜は、電子顕微鏡で表面を観察すると、ラメラ構造を呈する。これは、メッキにより生じる柱状構造とは異なる構造である。形成する被膜の膜厚は特段限定されないが、通常10μm以上、好ましくは50μm以上、また通常10mm以下、好ましくは5mm以下、より好ましくは1mm以下である。
 本製造方法では、溶射ステップの前後において、その他のステップを有してもよい。その他のステップとしては、シリンダライナ表面に対するアンダーカット処理、ブラスト処理、外周研磨処理、更には形成された被膜の封孔処理など、があげられる。
 クロムカーバイド溶射被膜の気孔率は限定されないが、通常0.5%以上、好ましくは1%以上、また通常3%以上、好ましくは2.5%以下である。上記範囲とすることで、耐キャビテーションエロージョン性が向上する。なお、被膜の気孔率は、例えば金属顕微鏡を用いた画像処理システム(金属顕微鏡により連続3視野の断面を撮影後、専用プログラムにより視野中の気孔率を測定、3視野の気孔率を平均して算出する)により測定することができる。また、被膜の気孔率は、溶射後の封孔処理などにより上記範囲に調整することができる。
 クロムカーバイド溶射被膜の硬度は限定されないが、実用的な耐久性能を考慮すると300HV0.05以上であってよく、好ましくは800HV0.05以上、より好ましくは900HV0.05以上、また通常1500HV0.05以下、好ましくは1200HV0.05以下である。なお、被膜の硬度HVは、マイクロビッカース硬度計により測定することができる。
 以下、実施例により本発明をより具体的に説明するが、以下の実施例により本発明の範囲が限定されないことはいうまでもない。
<実施例1>
 溶射材料として、25%ニッケルクロムカーバイド(Cr25(NiCr)、球状、平均粒子径32~35μm)を用い、高速フレーム溶射(HVOF、燃焼炎温度約2800℃)により、鋳鉄製ライナ材表面にクロムカーバイド溶射被膜を形成して、テストピース1を得た。ライナ材表面の溶射被膜の厚さは100μmとした。
<実施例2>
 溶射材料として、25%ニッケルクロムカーバイド(Cr25(NiCr)、球状、平均粒子径32~35μm)を用い、プラズマ溶射により、鋳鉄製ライナ材表面にクロムカーバイド溶射被膜を形成して、テストピース2を得た。ライナ材表面の溶射被膜の厚さは100μmとした。
<比較例1>
 鋳鉄製ライナ材を、クロムめっき浴に浸し、クロムめっきを有するテストピース3を得た。
<耐クラック性、耐熱性評価>
 上記被膜を有するテストピース1及び3を3ピースずつ準備し、それぞれ200℃、400℃、600℃に加熱し、その後20℃以下に急冷するサイクルを20サイクル行った。テストピース2については2ピース準備し、それぞれ200℃、400℃に加熱し、その後20℃以下に急冷するサイクルを20サイクル行った。その後、それぞれのテストピースの断面を電子顕微鏡で観察した。その結果を図1及び2に示す。
 図1に示すように、クロムめっきを有するテストピース3は、クラックが多数存在するが、クロムカーバイド溶射被膜(HVOF)を有するテストピース1はクラックが見られなかった。
 また、図2に示すように、クロムカーバイド溶射被膜(プラズマ)を有するテストピース2はクラックが見られなかった。
 また、それぞれのテストピースの硬度をマイクロビッカース硬度計により、測定した。なお、測定は、荷重0.05として7点測定を行い、そのうち中位5点の平均とした。その結果を図3に示す。
 図3に示すように、クロムめっきを有するテストピース3は、温度上昇を繰り返すことで、被膜の硬度が大きく低下するが、クロムカーバイド溶射被膜を有するテストピース1と2は被膜の硬度の低下が少なかった。
<耐エロージョン試験>
 次にクロムカーバイド溶射被膜が、良好な耐クラック性、耐熱性のみならず、耐エロージョン性を併せて有することを実証した。
 上記テストピース1及び3を、ASTM G3210(超音波振動式壊食試験法)に準じて、以下の条件で耐エロージョン試験を行った。
循環水:水道水
循環水温度:55℃
流量:10L/min
試験時間:28時間
 試験前後のテストピースの重量を測定し、重量減少分をテストピースの壊食量として算出した。結果を表1に示す。なお参考として、無処理のピースでの試験結果を併せて示す。
Figure JPOXMLDOC01-appb-T000001
<耐腐食試験>
 テストピース1及び3の表面をマスキングし、マスキングの中心部の10mm×10mm部分のマスキングを剥して、被膜を露出させた。
 被膜が露出したテストピースを、60℃±3℃の0.5wt%硫酸に30分間浸した。浸漬中は、1分間に3回手動で撹拌した。
 試験前後のテストピースの重量を測定し、重量減少分をテストピースの壊食量として算出した。結果を表2に示す。なお参考として、無処理のピースでの試験結果を併せて示す。
Figure JPOXMLDOC01-appb-T000002

Claims (7)

  1.  クロムカーバイドを含む溶射材料を、シリンダライナの表面に溶射する溶射ステップ、を含む、クロムカーバイド被膜を有するシリンダライナの製造方法。
  2.  前記溶射材料は、さらにニッケルを含む、請求項1に記載のシリンダライナの製造方法。
  3.  前記クロムカーバイド被膜は、気孔率が1.0%以上2.5%以下である、請求項1又は2に記載のシリンダライナの製造方法。
  4.  前記クロムカーバイド被膜は、硬度が900HV0.05以上である、請求項1~3のいずれか1項に記載のシリンダライナの製造方法。
  5.  前記溶射ステップは、高速フレーム溶射(HVOF:High Velocity Oxygen Fuel)またはプラズマ溶射である、請求項1~4のいずれか1項に記載のシリンダライナの製造方法。
  6.  クロムカーバイド被膜を有するシリンダライナであって、
     前記クロムカーバイド被膜は溶射被膜である、シリンダライナ。
  7.  前記溶射被膜は、高速フレーム溶射(HVOF:High Velocity Oxygen Fuel)被膜またはプラズマ溶射被膜である、請求項6に記載のシリンダライナ。
PCT/JP2018/019436 2018-05-21 2018-05-21 シリンダライナ、及びその製造方法 WO2019224861A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880093631.9A CN112135919A (zh) 2018-05-21 2018-05-21 气缸套及其制造方法
JP2020520862A JP6934567B2 (ja) 2018-05-21 2018-05-21 シリンダライナ、及びその製造方法
PCT/JP2018/019436 WO2019224861A1 (ja) 2018-05-21 2018-05-21 シリンダライナ、及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/019436 WO2019224861A1 (ja) 2018-05-21 2018-05-21 シリンダライナ、及びその製造方法

Publications (1)

Publication Number Publication Date
WO2019224861A1 true WO2019224861A1 (ja) 2019-11-28

Family

ID=68616652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019436 WO2019224861A1 (ja) 2018-05-21 2018-05-21 シリンダライナ、及びその製造方法

Country Status (3)

Country Link
JP (1) JP6934567B2 (ja)
CN (1) CN112135919A (ja)
WO (1) WO2019224861A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807820B (zh) * 2022-05-17 2023-05-23 中国科学院兰州化学物理研究所 一种具有空蚀发光功能的预警防护涂层及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616663A (en) * 1979-07-17 1981-02-17 Teikoku Piston Ring Co Ltd Member having formed cavitation resistant sprayed coat
JPS5740638U (ja) * 1980-08-20 1982-03-04
JPS5866131U (ja) * 1981-10-30 1983-05-06 帝国ピストンリング株式会社 シリンダライナ
JPH02159359A (ja) * 1988-12-12 1990-06-19 Babcock Hitachi Kk 高エネルギー溶射用クロム炭化物−メタル複合粉末
JPH1171664A (ja) * 1997-08-29 1999-03-16 Nippon Piston Ring Co Ltd 内燃機関用摺動部材
US20100139607A1 (en) * 2006-09-11 2010-06-10 Christian Herbst-Dederichs Wet cylinder sleeve having a cavitation-resistant surface
JP2012046798A (ja) * 2010-08-27 2012-03-08 Mazda Motor Corp 溶射皮膜

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562480B1 (en) * 2001-01-10 2003-05-13 Dana Corporation Wear resistant coating for piston rings
JP2003336742A (ja) * 2002-05-21 2003-11-28 Riken Corp ピストンリング及びその製造方法
US8906130B2 (en) * 2010-04-19 2014-12-09 Praxair S.T. Technology, Inc. Coatings and powders, methods of making same, and uses thereof
JP5948216B2 (ja) * 2011-10-25 2016-07-06 株式会社Ihi ピストンリングの製造方法
WO2014091831A1 (ja) * 2012-12-11 2014-06-19 株式会社リケン ピストンリング用溶射被膜、ピストンリング、及びピストンリング用溶射被膜の製造方法
CN106978581A (zh) * 2017-05-02 2017-07-25 安徽威龙再制造科技股份有限公司 一种硼铸铁气缸套刮碳环涂层及其制备和喷涂方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616663A (en) * 1979-07-17 1981-02-17 Teikoku Piston Ring Co Ltd Member having formed cavitation resistant sprayed coat
JPS5740638U (ja) * 1980-08-20 1982-03-04
JPS5866131U (ja) * 1981-10-30 1983-05-06 帝国ピストンリング株式会社 シリンダライナ
JPH02159359A (ja) * 1988-12-12 1990-06-19 Babcock Hitachi Kk 高エネルギー溶射用クロム炭化物−メタル複合粉末
JPH1171664A (ja) * 1997-08-29 1999-03-16 Nippon Piston Ring Co Ltd 内燃機関用摺動部材
US20100139607A1 (en) * 2006-09-11 2010-06-10 Christian Herbst-Dederichs Wet cylinder sleeve having a cavitation-resistant surface
JP2012046798A (ja) * 2010-08-27 2012-03-08 Mazda Motor Corp 溶射皮膜

Also Published As

Publication number Publication date
CN112135919A (zh) 2020-12-25
JPWO2019224861A1 (ja) 2021-01-07
JP6934567B2 (ja) 2021-09-15

Similar Documents

Publication Publication Date Title
JP6344422B2 (ja) 肉盛用合金粉末、およびこれを用いたエンジンバルブの製造方法
TW201446969A (zh) 用於高應力滑動系統之熱噴塗粉末
JP5755819B2 (ja) 耐高温腐食特性を備えたNi−Cr−Co系合金とそれを用いて表面改質したポペットバルブ
CN106191853A (zh) 一种热作模具钢的耐磨减摩金属陶瓷复合涂层工艺
Zhou et al. Microstructures and tribological properties of Fe-based amorphous metallic coatings deposited via supersonic plasma spraying
JP2012521526A (ja) 疲労腐食割れの生じた金属管の被覆
Swain et al. Microstructural evolution of NITINOL and their species formed by atmospheric plasma spraying
JP2008501073A (ja) 耐摩耗性合金粉末および被覆
CN108385053A (zh) 一种提高等离子喷涂涂层致密度的方法
JP2007016288A (ja) 軸受材被覆摺動部材の製造方法及び軸受材被覆摺動部材
WO2019224861A1 (ja) シリンダライナ、及びその製造方法
Wang et al. Microstructure and wear performance of Ni-10 wt.% Al coatings plasma sprayed on Ni-based superalloys with a sound field
Krishtal Effect of structure of aluminum-silicon alloys on the process of formation and characteristics of oxide layer in microarc oxidizing
JP2006291884A (ja) 内燃機関用部材及びその表面処理方法
JP2008008209A (ja) シリンダライナ
JP2012041617A (ja) 鉄系溶射皮膜用溶射ワイヤ
CN108203825B (zh) 监测柴油机缸盖表面损伤过程的抗热疲劳镍基复合涂层及其应用
JP5455149B2 (ja) 鉄系溶射被膜
JPH11131206A (ja) 溶射コーティング用粉末材料及びそれを用いた高温部材
CN107937860A (zh) 一种氩弧重熔Fe基耐磨层的制备方法
CN107904547A (zh) 一种钛合金耐磨耐高温涂层的制备方法
JP6411875B2 (ja) ピストンリング及びその製造方法
Priyan et al. Microstructure and Wear Analysis of FeBCr Based Coating Deposited by HVOF Method.
JPS63100027A (ja) ガラス成形用金型
JP2018165402A (ja) ピストンリング及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020520862

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919898

Country of ref document: EP

Kind code of ref document: A1