WO2019214037A1 - 一种曲面镀膜板及其制备方法和一种太阳能组件 - Google Patents

一种曲面镀膜板及其制备方法和一种太阳能组件 Download PDF

Info

Publication number
WO2019214037A1
WO2019214037A1 PCT/CN2018/094691 CN2018094691W WO2019214037A1 WO 2019214037 A1 WO2019214037 A1 WO 2019214037A1 CN 2018094691 W CN2018094691 W CN 2018094691W WO 2019214037 A1 WO2019214037 A1 WO 2019214037A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
film
index material
material film
curved
Prior art date
Application number
PCT/CN2018/094691
Other languages
English (en)
French (fr)
Inventor
武振羽
万军鹏
陶利松
闫燚
杨世忠
方振雷
Original Assignee
北京汉能光伏投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京汉能光伏投资有限公司 filed Critical 北京汉能光伏投资有限公司
Priority to JP2018145399A priority Critical patent/JP2019197202A/ja
Publication of WO2019214037A1 publication Critical patent/WO2019214037A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02165Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors using interference filters, e.g. multilayer dielectric filters
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • G02B5/282Interference filters designed for the infrared light reflecting for infrared and transparent for visible light, e.g. heat reflectors, laser protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present disclosure relates to, but is not limited to, the field of solar energy technology, and in particular, to a curved coated plate, a method for preparing the same, and a solar module including the same.
  • the solar power generation component can use color coated glass as the front plate, in order to improve the heat reflection in the infrared band and achieve low radiation.
  • the film layer of conventional coated glass mainly contains a metal layer, and this solar power generation component is mainly used in buildings.
  • the roofs of some buildings are not flat.
  • many Chinese buildings use traditional ridged roofs, which are more suitable for setting up solar power components with curved surfaces, so there is a need to develop curved solar power components.
  • At least one embodiment of the present disclosure provides a curved coated plate comprising a curved transparent substrate and a film layer disposed on a side of the curved transparent substrate, the film being an all-dielectric film,
  • the film layer includes a film of a high refractive index material having a refractive index higher than a refractive index of the curved substrate.
  • the film layer may further include a low refractive index material film laminated on the high refractive index material film, wherein the low refractive index material film has a lower refractive index than the curved transparent substrate Refractive index.
  • the high refractive index material film and the low refractive index material film may each be a plurality of layers, and the plurality of the high refractive index material film and the plurality of the low refractive index material film are in a The curved transparent substrate is alternately stacked.
  • the high refractive index material film may be three layers, and the low refractive index material film may be two layers, and the curved transparent substrate is adjacent to the high refractive index material film.
  • the high refractive index material film may be five layers, and the low refractive index material film may be four layers, and the curved transparent substrate is adjacent to the high refractive index material film.
  • the high refractive index material film may be four layers, and the low refractive index material film may be three layers, and the curved transparent substrate is adjacent to the high refractive index material film.
  • the film layer may include a first layer of a high refractive index material film, a low refractive index material film, and a second high refractive index material film disposed in sequence on the curved transparent substrate side.
  • the high refractive index material film and the low refractive index material film may have a heat resistance temperature of not less than 650 °C.
  • the refractive index of the high refractive index material film at a wavelength of 550 nm may be in the range of 1.92 to 2.60.
  • the refractive index of the low refractive index material film at a wavelength of 550 nm may be in the range of 1.35 to 1.50.
  • the high refractive index material film may include a barium titanate film, a titanium dioxide film, a trititanium pentoxide film, a tantalum pentoxide film, a tantalum pentoxide film or a zirconium dioxide film, or these A composite film formed of at least two of the films.
  • the low refractive index material film may include a silicon dioxide film or a magnesium fluoride film, or a composite film of a silicon dioxide film and a magnesium fluoride film.
  • the materials of the plurality of high refractive index material films may be the same, or at least two layers of the high refractive index material film.
  • the materials can vary.
  • the materials of the plurality of layers of the low refractive index material may be the same, or at least two layers of the film of the low refractive index material The materials can vary.
  • the curved coated plate may have a color of blue, purple, gold, yellow, red, terracotta, gray, orange, or green.
  • At least one embodiment of the present disclosure provides a method of preparing a curved coated plate, the method comprising the steps of:
  • the film layer is an all-dielectric film, the film layer comprising a high refractive index material film, and the high refractive index material film has a higher refractive index than a refractive index of the planar light transmissive substrate;
  • the flat coating plate is subjected to thermal bending treatment to obtain a curved coating plate.
  • the step of forming a film layer on one side surface of the planar light-transmitting substrate may include:
  • the step of forming a film layer on one side surface of the planar light-transmitting substrate may include:
  • the high refractive index material film and the low refractive index material film may be formed on the planar light transmissive substrate by an evaporation coating method or a magnetron sputtering method in a vacuum state.
  • the degree of vacuum in the vacuum state may be maintained in a range of 1.0 ⁇ 10 ⁇ 4 Pa to 1.0 ⁇ 10 ⁇ 3 Pa before melting or pre-sputtering the coating material; and in melting or splashing When the film material is sprayed, the degree of vacuum in the vacuum state can be maintained in the range of 3.0 ⁇ 10 -2 Pa to 8.0 ⁇ 10 -2 Pa.
  • the temperature of the heat bending treatment may be in the range of 650 ° C to 750 ° C, and the time may be not less than 20 minutes.
  • At least one embodiment of the present disclosure provides a solar module, the front panel of which includes a curved coated panel provided in accordance with any of the embodiments of the present disclosure.
  • the solar module may further include a film, a solar cell, and a back plate disposed in sequence on one side of the front plate.
  • the solar module may further include a film, a solar cell, a film, and a back sheet which are sequentially disposed on one side of the front panel.
  • 1 is a comparison diagram of transmittance curves of a conventional low-emission coated glass and an uncoated blank glass
  • FIG. 2 is a graph showing transmittance of a curved coated plate according to an embodiment of the present disclosure
  • FIG. 3 is a graph showing transmittance of a curved coated plate according to an embodiment of the present disclosure
  • FIG. 5 is a graph showing transmittance of a curved coated plate according to an embodiment of the present disclosure
  • FIG. 6 is a graph showing transmittance of a curved coated plate according to an embodiment of the present disclosure.
  • FIG. 7 is a process flow diagram of preparing a curved coated plate according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural view of a solar module according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a structure of a solar module according to another embodiment of the present disclosure.
  • the film layer of the conventional coated glass mainly contains a metal layer, and the film forming process mainly adopts a magnetron sputtering method.
  • Both heat-reflective coated glass and low-emission coated glass are the front-coated glass of common solar modules.
  • Heat-reflective coated glass also known as solar-controlled coated glass, is a product that is coated with a layer of metal or metal compound on the surface of the glass to achieve the desired shading effect and produce the desired reflection color by controlling the transmittance of sunlight on demand. High reflection in the infrared band and low transmission.
  • Low-emission coated glass also known as Low-E glass
  • Low-E glass is a film of a metal or compound combination with low radiation function on the surface of the glass, so that the surface of the glass has a very high far-infrared reflectance, thereby achieving the purpose of heat preservation.
  • the common low-emission coated glass is: single silver low-emission coated glass, double-silver low-emission coated glass and three-silver low-emission coated glass.
  • Figure 1 is a transmission curve of single silver low-emission coated glass, double-silver low-emission coated glass, three-silver low-emission coated glass, and uncoated blank glass.
  • conventional color coated glass is mainly used in the field of building energy conservation, mainly reflecting infrared light, and the infrared band (780-1100 nm) exhibits high reflection and low transmission, but in the wavelength range of power generation of solar modules, such as copper indium gallium selenide ( CuIn x Ga (1-x) Se 2 , CIGS) thin-film solar cells and crystalline silicon solar cells have a power generation wavelength range of 380 nm to 1100 nm. As can be seen from Fig. 1, the average color coated glass has a lower average transmittance. Therefore, it is not conducive to solar power generation components.
  • the film structure contains a metal film layer, the cost of the metal film layer itself is high, and the metal film layer is unstable, and is easily oxidized.
  • a metal protective layer is required to prevent the metal film layer from being oxidized, and the production cost is greatly increased.
  • the photovoltaic modules currently used in buildings are mainly black, not aesthetically pleasing, and the solar modules of other colors have high solar reflectance and low solar transmittance, resulting in poor solar power generation.
  • the embodiment of the present disclosure provides a curved coated plate which can withstand high temperature, has a good film layer, has a high average transmittance in a power generation wavelength range of a solar module, and can improve the power generation effect of the solar module and has a good color effect.
  • the curved coating plate as a solar module prepared by the front plate has better power generation effect.
  • the embodiment of the present disclosure provides a curved coating plate, which comprises a curved transparent substrate and a film layer disposed on one side of the curved transparent substrate, wherein the film layer is an all-dielectric film, and the film layer comprises a high refractive index material film, which is high.
  • the refractive index of the refractive index material film is higher than the refractive index of the curved transparent substrate.
  • the film layer may further include a low refractive index material film laminated with the high refractive index material film, and the refractive index of the low refractive index material film is lower than the refractive index of the curved transparent substrate.
  • the high refractive index material film and the low refractive index material film may be a plurality of layers, and the multilayer high refractive index material film and the multilayer low refractive index material film are alternately laminated on the curved transparent substrate.
  • the curved coated plate may include a curved transparent substrate, a high refractive index material film, a low refractive index material film, a high refractive index material film, a low refractive index material film, and a high refractive index material film which are sequentially stacked.
  • the curved coated plate may include a curved transparent substrate, a high refractive index material film, a low refractive index material film, a high refractive index material film, a low refractive index material film, a high refractive index material film, a low refractive index material film, and a high refractive index material film, which are sequentially stacked.
  • a high refractive index material film, a low refractive index material film, and a high refractive index material film are sequentially stacked.
  • the curved coated plate may include a curved transparent substrate, a high refractive index material film, a low refractive index material film, and a high refractive index material film which are sequentially stacked.
  • the curved coated plate may include a curved transparent substrate and a high refractive index material film which are sequentially stacked.
  • the curved coated plate may include a curved transparent substrate, a high refractive index material film, a low refractive index material film, a high refractive index material film, a low refractive index material film, a high refractive index material film, a low refractive index material film, and a laminated film. High refractive index material film.
  • the curved coated plate may include a curved transparent substrate, a low refractive index material film, and a high refractive index material film which are sequentially stacked.
  • the film directly laminated on the curved transparent substrate may be a high refractive index material film or a low refractive index material film.
  • the heat resistant temperature of the high refractive index material and the low refractive index material may be not less than 650 °C.
  • the heat resistant temperature of the high refractive index material and the low refractive index material may be 750 °C.
  • the temperature at which the high refractive index material and the low refractive index material can withstand determines whether the film layer formed of the high refractive index material and the low refractive index material remains intact during the subsequent heat treatment.
  • the high refractive index material film may have a refractive index of 1.92 to 2.60 at a wavelength of 550 nm.
  • the use of such a high refractive index material film can increase the average transmittance of the curved coated plate in the power generation wavelength range of the solar module to a greater extent, thereby improving the power generation effect of the solar module prepared by using the curved coated plate.
  • the high refractive index material film may include a barium titanate film, a titanium dioxide film, a trititanium pentoxide film, a tantalum pentoxide film, a tantalum pentoxide film or a zirconium dioxide film, or a composite film formed of at least two of these films. .
  • the high refractive index material film includes any one of a barium titanate film, a titanium dioxide film, a trititanium pentoxide film, a tantalum pentoxide film, a tantalum pentoxide film, and a zirconium dioxide film
  • high refractive energy can be formed
  • the rate material film remains intact during the subsequent heat treatment, and the average transmittance of the curved coating plate in the power generation wavelength range of the solar module is improved to a greater extent, thereby improving the solar module prepared by using the curved plate. Power generation effect.
  • the low refractive index material film may have a refractive index of 1.35 to 1.50 at a wavelength of 550 nm.
  • the use of such a low-rate material film can increase the average transmittance of the curved coating plate in the power generation wavelength range of the solar module to a greater extent, thereby improving the power generation effect of the solar module prepared by using the curved plate.
  • the low refractive index material film may include a silicon dioxide film or a magnesium fluoride film, or a composite film of a silicon dioxide film and a magnesium fluoride film.
  • the low refractive index material film is silicon dioxide or magnesium fluoride
  • the formed low refractive index material film can be kept intact during the subsequent heat treatment, and the average surface of the curved coating plate in the power generation wavelength range of the solar module can be made transparent.
  • the over-rate is improved to a greater extent, thereby improving the power generation effect of the solar module prepared using the curved coating plate.
  • the film layer comprises a plurality of layers of high refractive index material film
  • the plurality of layers of high refractive index material film may be the same or not identical.
  • the film layer comprises a plurality of films of low refractive index material
  • the plurality of layers of low refractive index material may be the same or not identical.
  • the difference in the multilayer high refractive index material film or the multilayer low refractive index material film may include, but is not limited to, differences in properties such as material, thickness, shape, area, and the like.
  • the curved coating can be colored, ie colored.
  • the color of the curved plate can be blue, purple, gold, yellow, red, terracotta, gray, orange or green. Therefore, the curved coated plate of the embodiment of the present disclosure can ensure different colors according to requirements under the premise of having a high average transmittance in the power generation wavelength range of the solar module, satisfying various color requirements, and combining with the building. It is more aesthetically pleasing, and the curved coated plate of the embodiment of the present disclosure can also be applied to a cover plate having a decorative effect requirement.
  • the film design structure of the curved coated plate can be designed according to the desired color of the curved coated plate, using the film design software, for example, using the membrane design software such as Essential Macleod, TFCacl or OptiLayer.
  • the membrane design software such as Essential Macleod, TFCacl or OptiLayer.
  • H represents a high refractive index material
  • L represents a low refractive index material SiO 2
  • Sub represents a light transmissive substrate, such as ultra white float glass
  • Air represents air
  • Air/Sub represents The side of the light-transmitting substrate that is not in contact with the film layer is in direct contact with the air.
  • H(1) represents that the first layer on the light-transmissive substrate is a high refractive index material
  • L(2) represents that the second layer is a low refractive index material
  • Air/Sub/H(1)/L(2)/H(3)/L(4)/H(5)/Air means that the coated plate only includes the light-transmitting substrate which is sequentially stacked, and the first layer is high.
  • An embodiment of the present disclosure provides an orange curved coating plate, which may include a 5-layer all-dielectric film, and the film-based design structure may be:
  • the thickness of H(1) is 91.42 nm ⁇ 20 nm
  • the thickness of L(2) is 43.67 nm ⁇ 20 nm
  • the thickness of H(3) is 43.85 nm ⁇ 20 nm
  • the thickness of L(4) is 19.97 nm ⁇ 20 nm.
  • the thickness of H(5) is 27.53 nm ⁇ 20 nm;
  • H may be ZrO 2 , Nb 2 O 5 , Ti 3 O 5 or Ta 2 O 5 .
  • An embodiment of the present disclosure provides a green curved coating plate, which may include a 9-layer all-dielectric film, and the film-based design structure may be:
  • the thickness of H(1) is 54.63 nm ⁇ 20 nm
  • the thickness of L(2) is 12.36 nm ⁇ 20 nm
  • the thickness of H(3) is 38.39 nm ⁇ 20 nm
  • the thickness of L(4) is 35.92 nm ⁇ 20 nm.
  • the thickness of H(5) is 51.45 nm ⁇ 20 nm
  • the thickness of L(6) is 31.36 nm ⁇ 20 nm
  • the thickness of H(7) is 45.53 nm ⁇ 20 nm
  • the thickness of L(8) is 33.32 nm ⁇ 20 nm
  • H( 9) has a thickness of 23.29 nm ⁇ 20 nm;
  • H may be ZrO 2 , Nb 2 O 5 , Ti 3 O 5 or Ta 2 O 5 .
  • An embodiment of the present disclosure provides a clay-colored curved coating plate, which may include a 3-layer all-dielectric film, and the film-based design structure may be:
  • the thickness of H(1) is 233.30 nm ⁇ 20 nm
  • the thickness of L(2) is 332.52 nm ⁇ 20 nm
  • the thickness of H(3) is 92.10 nm ⁇ 20 nm
  • H may be ZrO 2 , Nb 2 O 5 , Ti 3 O 5 or Ta 2 O 5 .
  • An embodiment of the present disclosure provides a gray curved coating plate, which may include a 1-layer all-dielectric film, and the film-based design structure may be:
  • the thickness of H(1) is 26.00 nm ⁇ 20 nm;
  • H may be ZrO 2 , Nb 2 O 5 , Ti 3 O 5 or Ta 2 O 5 .
  • An embodiment of the present disclosure provides a purple curved coated plate, which may include a 7-layer all-dielectric film, and the film-based design structure may be:
  • the thickness of H(1) is 17.38 nm ⁇ 20 nm
  • the thickness of L(2) is 61.14 nm ⁇ 20 nm
  • the thickness of H(3) is 34.78 nm ⁇ 20 nm
  • the thickness of L(4) is 61.14 nm ⁇ 20 nm.
  • the thickness of H(5) is 34.78 nm ⁇ 20 nm
  • the thickness of L(6) is 61.14 nm ⁇ 20 nm
  • the thickness of H(7) is 17.38 nm ⁇ 20 nm;
  • the thickness of H(1) is 26.00 nm ⁇ 20 nm;
  • H may be ZrO 2 , Nb 2 O 5 , Ti 3 O 5 or Ta 2 O 5 .
  • the color curved coated plate of the embodiment of the present disclosure has a low transmittance in the visible light region, but has a high transmittance in the infrared light region, thereby making it within the power generation wavelength range of the solar module.
  • the average transmittance in the range of 380 nm to 1100 nm is high. Using it as the front plate of a color solar module will achieve better power generation.
  • the curved coated plate of the embodiment of the present disclosure can be made into different colors according to requirements, can meet various color requirements, and is more beautiful after being combined with the building.
  • the same color surface can be obtained by increasing or decreasing the number of coating layers and adjusting the thickness of each film, for example, by thickening or reducing the thickness of the film. Coating plate.
  • the spectra of the same color curved coated sheets prepared using different film design structures were tested to be almost identical. However, in the design of the membrane system, as many layers as possible should be used to reduce the cost.
  • the embodiment of the present disclosure further provides a method for preparing a curved plate as above, the method comprising the following steps:
  • the film layer is an all-dielectric film, the film layer comprises a high refractive index material film, and the refractive index of the high refractive index material film is higher than that of the planar light-transmitting substrate rate;
  • the curved coating plate is subjected to thermal bending treatment to obtain a curved coating plate.
  • the planar light-transmitting substrate has a constant refractive index before and after the bending deformation.
  • the step of forming a film layer on one side surface of the planar light-transmitting substrate may include:
  • a laminated high refractive index material film and a low refractive index material film are formed on one surface of the planar light-transmitting substrate, and the refractive index of the low refractive index material film is lower than that of the planar light-transmitting substrate.
  • the step of forming a film layer on one side surface of the planar light-transmitting substrate may include:
  • a plurality of layers of a high refractive index material film and a plurality of layers of a low refractive index material are alternately disposed on one surface of the planar light-transmitting substrate, and the planar light-transmitting substrate is adjacent to the high refractive index material film.
  • the high refractive index material film and the low refractive index material film are formed on the planar light-transmitting substrate by a vapor deposition method or a magnetron sputtering method under vacuum.
  • the vacuum coating method may be an evaporation coating method or a magnetron sputtering method.
  • the evaporation coating method may be an electron gun evaporation coating method, and at least one high refractive index material film and optionally at least one layer may be deposited on the surface of the planar light transmissive substrate of the present disclosure by a vacuum coating method in which an optical field is formed on an optical glass.
  • a film of a low refractive index material for example, a vacuum coating method using a film coated on an optical glass of a camera lens.
  • the method can include the following steps:
  • Step S1 cleaning and drying the planar light-transmitting substrate
  • Step S2 placing the dried planar light-transmissive substrate into a vacuum chamber of the coating device, and pumping the vacuum chamber to a vacuum state;
  • Step S3 melting or pre-sputtering the coating material
  • Step S4 introducing the film system design into the coating process
  • Step S5 depositing a molten or pre-sputtered coating material on the surface of the planar light-transmissive substrate by an evaporation coating method or a magnetron sputtering method to form at least one high refractive index material film and optionally at least one low refractive index Material film to obtain a flat coating plate;
  • Step S6 breaking the vacuum and taking out the flat coating plate
  • Step S7 testing the flat coating plate, and passing the qualified flat coating plate into the heat treatment equipment; performing hot bending or bending treatment on the qualified flat coating plate to obtain a curved coating plate;
  • Step S8 testing the curved coating plate, and packaging the qualified product.
  • the vacuum degree of the vacuum chamber can be maintained in the range of 1.0 ⁇ 10 -4 Pa to 1.0 ⁇ 10 -3 Pa; in depositing a film of high refractive index material or a material of low refractive index At the time of film, the vacuum degree of the vacuum chamber can be maintained in the range of 3.0 ⁇ 10 -2 Pa to 8.0 ⁇ 10 -2 Pa.
  • the vacuum degree of the vacuum chamber is controlled within a range of 3.0 ⁇ 10 ⁇ 2 Pa to 8.0 ⁇ 10 ⁇ 2 Pa, and the purity and hardness are more easily obtained.
  • a suitable film layer is controlled within a range of 3.0 ⁇ 10 ⁇ 2 Pa to 8.0 ⁇ 10 ⁇ 2 Pa, and the purity and hardness are more easily obtained.
  • the temperature of the heat bending treatment may be 650 ° C to 750 ° C, and the time may be not less than 20 minutes.
  • the planar light transmissive substrate may be a flat glass substrate or a planar light transmissive polymer material substrate.
  • the flat glass substrate may be a translucent glass such as a planar ultra-white float glass, a flat ordinary float glass, a flat body colored glass or a flat optical glass.
  • the planar light transmissive polymer material substrate may be a planar light transmissive resin substrate.
  • the planar light-transmissive resin substrate may be a flat polycarbonate (Polycarbonate, PC) substrate or a polymethyl methacrylate (PMMA) substrate or the like.
  • the curved coating plate of the embodiment of the present disclosure adopts an all-dielectric film, and the film layer can withstand the high temperature in the subsequent heat treatment process by optimizing the coating material and adjusting the film structure, for example, the high temperature of 650 ° C, and the film layer can remain intact after the heat treatment. Therefore, the coated planar substrate can be heat-treated into various curved shapes according to the use occasion.
  • the material film in the curved coated plate of the embodiment of the present disclosure adopts an all-dielectric film, and improves the transmittance of the curved coated plate in the infrared band, thereby improving the surface of the curved coated plate in the power generation wavelength range of the solar module, especially in The average transmittance of the 380 nm to 1100 nm band makes the power generation efficiency of the solar module prepared by using the curved coating plate significantly improved.
  • the curved coated plate of the embodiment of the present disclosure does not use the metal film layer, the problem that the metal film layer is oxidized is avoided, and the metal protective layer is not required to be disposed, which saves cost.
  • the embodiment of the present disclosure further provides a solar energy component, which can adopt the curved coating plate provided by any embodiment of the present disclosure as the front plate. Since the curved coated plate provided by the embodiment of the present disclosure has a higher average transmittance in the power generation wavelength range of the solar module, the power generation effect of the solar module is better.
  • the solar module may include a front plate 1, an adhesive layer 2, a solar cell 3, and a back plate 4, which are sequentially disposed, and a junction box 5 electrically connected to the solar cell 3 is disposed below or one side of the back plate 4.
  • the front plate 1 is a curved coated plate provided by an embodiment of the present disclosure.
  • the solar module may include a front plate 1, an adhesive layer 2, a solar cell 3, an adhesive layer 2, and a back plate 4, which are disposed in sequence, and a solar cell 3 is disposed under or on one side of the back plate 4.
  • Connected junction box 5 The front plate 1 is a curved coated plate provided by an embodiment of the present disclosure.
  • the adhesive layer may be formed of a viscous polymer-based material, for example, formed of polyvinyl butyral (PVB) or ethylene vinyl acetate (EVA);
  • PVB polyvinyl butyral
  • EVA ethylene vinyl acetate
  • the solar cell may be various types of flexible thin film solar cells or flexible crystalline silicon solar cells, for example, a flexible copper indium gallium selenide (CuIn x Ga (1-x) Se 2 , CIGS) thin film solar cell.
  • flexible thin film solar cells or flexible crystalline silicon solar cells, for example, a flexible copper indium gallium selenide (CuIn x Ga (1-x) Se 2 , CIGS) thin film solar cell.
  • the solar modules of the embodiments of the present disclosure can be prepared by methods commonly used in the art for preparing solar modules.
  • the specific structure, adhesive layer and type of solar cell of the solar module of the present disclosure can be selected according to requirements, so that the solar module of the present disclosure can be used in more occasions.
  • the curved plate front plate of the present disclosure has a particularly high average transmittance in a power generation wavelength range of 380 nm to 1100 nm of a CIGS thin film solar cell or a crystalline silicon solar cell, when a solar cell selects a CIGS thin film solar cell or a crystalline silicon solar cell, Solar modules have better power generation.
  • the curved coated plate of the embodiments of the present disclosure can also be applied to a cover plate having a decorative effect requirement, such as a mobile phone back plate, a refrigerator panel, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Ceramic Engineering (AREA)

Abstract

一种曲面镀膜板,曲面镀膜板包括曲面透光基板和设置在曲面透光基板一侧的膜层,膜层为全介质膜,膜层包括高折射率材料膜,高折射率材料膜的折射率高于曲面透光基板的折射率。还提供了曲面镀膜板的制备方法和包含其的太阳能组件。

Description

一种曲面镀膜板及其制备方法和一种太阳能组件 技术领域
本公开涉及但不限于太阳能技术领域,尤其涉及一种曲面镀膜板及其制备方法和包含其的太阳能组件。
背景技术
太阳能发电组件可以采用彩色镀膜玻璃作为前板,目的是为了提高红外波段的热反射及达到低辐射。目前,常规镀膜玻璃的膜层主要含金属层,这种太阳能发电组件主要用在建筑上。
有些建筑的屋顶不是平的,例如,很多中式建筑采用传统的起脊屋顶,这些屋顶上更适于设置曲面的太阳能发电组件,因此存在开发曲面太阳能发电组件的需求。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开至少一实施方案提供了一种曲面镀膜板,所述曲面镀膜板包括曲面透光基板和设置在所述曲面透光基板一侧的膜层,所述膜层为全介质膜,所述膜层包括高折射率材料膜,所述高折射率材料膜的折射率高于所述曲面透光基板的折射率。
本公开的一实施例中,所述膜层还可以包括与所述高折射率材料膜层叠设置的低折射率材料膜,所述低折射率材料膜的折射率低于所述曲面透光基板的折射率。
本公开的一实施例中,所述高折射率材料膜和所述低折射率材料膜可以分别为多层,多层所述高折射率材料膜和多层所述低折射率材料膜在所述曲面透光基板上交替层叠设置。
本公开的一实施例中,所述高折射率材料膜可以为三层,所述低折射 率材料膜可以为两层,所述曲面透光基板与所述高折射率材料膜相邻。
本公开的一实施例中,所述高折射率材料膜可以为五层,所述低折射率材料膜可以为四层,所述曲面透光基板与所述高折射率材料膜相邻。
本公开的一实施例中,所述高折射率材料膜可以为四层,所述低折射率材料膜可以为三层,所述曲面透光基板与所述高折射率材料膜相邻。
本公开的一实施例中,所述膜层可以包括在所述曲面透光基板一侧依次设置的第一层高折射率材料膜、低折射率材料膜和第二层高折射率材料膜。
本公开的一实施例中,所述高折射率材料膜和所述低折射率材料膜的耐热温度可以不小于650℃。
本公开的一实施例中,所述高折射率材料膜在550nm波长下的折射率可以在1.92至2.60的范围内。
本公开的一实施例中,所述低折射率材料膜在550nm波长下的折射率可以在1.35至1.50的范围内。
本公开的一实施例中,所述高折射率材料膜可以包括钛酸镧膜、二氧化钛膜、五氧化三钛膜、五氧化二铌膜、五氧化二钽膜或二氧化锆膜,或这些膜中的至少两种形成的复合膜。
本公开的一实施例中,所述低折射率材料膜可以包括二氧化硅膜或氟化镁膜,或二氧化硅膜和氟化镁膜的复合膜。
本公开的一实施例中,当所述膜层包含多层高折射率材料膜时,多层所述高折射率材料膜的材料可以相同,或者,至少两层所述高折射率材料膜的材料可以不同。
本公开的一实施例中,当所述膜层包含多层低折射率材料膜时,多层所述低折射率材料膜的材料可以相同,或者,至少两层所述低折射率材料膜的材料可以不同。
本公开的一实施例中,所述曲面镀膜板的颜色可以为蓝色、紫色、金黄色、黄色、红色、陶土色、灰色、橙色或绿色。
本公开至少一实施方案提供了一种曲面镀膜板的制备方法,所述方法 包括下述步骤:
在平面透光基板的一侧表面形成膜层,得到平面镀膜板;所述膜层为全介质膜,所述膜层包括高折射率材料膜,所述高折射率材料膜的折射率高于所述平面透光基板的折射率;
对所述平面镀膜板进行热弯曲处理,得到曲面镀膜板。
本公开的一实施例中,所述在平面透光基板的一侧表面形成膜层的步骤可以包括:
在所述平面透光基板的一侧表面形成层叠设置的所述高折射率材料膜和低折射率材料膜,所述低折射率材料膜的折射率低于所述平面透光基板的折射率。
本公开的一实施例中,所述在平面透光基板的一侧表面形成膜层的步骤可以包括:
在所述平面透光基板的一侧表面形成交替设置的多层所述高折射率材料膜和多层所述低折射率材料膜,且所述平面透光基板与所述高折射率材料膜相邻。
本公开的一实施例中,所述高折射率材料膜和所述低折射率材料膜可以是在真空状态下采用蒸发镀膜法或磁控溅射法形成在所述平面透光基板上。
本公开的一实施例中,在熔融或预溅射镀膜材料之前,所述真空状态的真空度可以保持在1.0×10 -4Pa至1.0×10 -3Pa的范围内;并且在熔融或溅射镀膜材料时,所述真空状态的真空度可以保持在3.0×10 -2Pa至8.0×10 -2Pa的范围内。
本公开的一实施例中,所述热弯曲处理的温度可以在650℃至750℃的范围内,时间可以不低于20分钟。
本公开至少一实施方案提供了一种太阳能组件,所述太阳能组件的前板包括根据本公开任一实施方案提供的曲面镀膜板。
本公开的一实施例中,所述太阳能组件还可以包括在所述前板一侧依次设置的胶片、太阳能电池和背板。
本公开的一实施例中,所述太阳能组件还可以包括在所述前板一侧依次设置的胶片、太阳能电池、胶片和背板。
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得清楚明白,或者通过实施本公开而了解。本公开的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为常规低辐射镀膜玻璃和未镀膜的空白玻璃的透过率曲线对比图;
图2为根据本公开一实施例的曲面镀膜板的透过率曲线图;
图3为根据本公开一实施例的曲面镀膜板的透过率曲线图;
图4为根据本公开一实施例的曲面镀膜板的透过率曲线图;
图5为根据本公开一实施例的曲面镀膜板的透过率曲线图;
图6为根据本公开一实施例的曲面镀膜板的透过率曲线图;
图7为根据本公开实施例的制备曲面镀膜板的工艺流程图;
图8为根据本公开实施例的太阳能组件的结构示意图;
图9为根据本公开另一实施例的太阳能组件的结构的示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
常规镀膜玻璃的膜层主要含金属层,成膜工艺主要采用磁控溅射法。热反射镀膜玻璃和低辐射镀膜玻璃都是常见的太阳能组件的前板镀膜玻璃。热反射镀膜玻璃又称阳光控制镀膜玻璃,是在玻璃表面镀制一层金属或金属化 合物组合膜层的产品,通过按需控制阳光透过率来达到理想的遮阳效果并产生需要的反射颜色,实现红外波段的高反射,低透过。低辐射镀膜玻璃,又称Low-E玻璃,是在玻璃表面镀制一层具有低辐射功能的金属或化合物组合的薄膜,使玻璃表面具有极高的远红外线反射率,从而达到保温的目的。目前常见的低辐射镀膜玻璃有:单银低辐射镀膜玻璃、双银低辐射镀膜玻璃和三银低辐射镀膜玻璃。图1为单银低辐射镀膜玻璃、双银低辐射镀膜玻璃、三银低辐射镀膜玻璃和未镀膜的空白玻璃的透过率曲线。
目前开发出的曲面太阳能发电组件及其曲面镀膜板前板很少。这是因为:一方面,在曲面基板上直接镀膜难度较大,而且整个基板内的膜厚分布难以调试均匀且成本高昂;另一方面,若在平面基板上镀膜后再弯成曲面形状,由于膜层耐温性等问题,膜层会有一定程度的脱落,甚至出现膜层断裂或完全脱落的现象。此外,常规彩色镀膜玻璃主要应用于建筑节能领域,主要是反射红外光,红外波段(780-1100nm)呈现高反射,低透过,但在太阳能组件的发电波长范围内,例如铜铟镓硒(CuIn xGa (1-x)Se 2,CIGS)薄膜太阳能电池和晶硅太阳能电池的380nm至1100nm的发电波长范围内,从图1可以看出,常规彩色镀膜玻璃的平均透过率较低,因此不利于太阳能发电组件发电。而且膜系结构含有金属膜层,金属膜层本身的成本就高,且金属膜层不稳定,极易被氧化,需要做金属保护层以避免金属膜层被氧化,又大大增加了生产成本。此外,目前应用于建筑上的光伏组件主要是黑色的,不够美观,其他颜色的光伏组件的阳光反射率高,阳光透过率较低,导致太阳能发电效果不佳。
本公开实施例提供了一种能耐高温、膜层完好、在太阳能组件的发电波长范围内的平均透过率较高、从而能够提高太阳能组件的发电效果并且彩色效果好的曲面镀膜板,采用该曲面镀膜板作为前板制备的太阳能组件具有较佳的发电效果。
本公开实施例提供了一种曲面镀膜板,曲面镀膜板包括曲面透光基板和设置在曲面透光基板一侧的膜层,膜层为全介质膜,膜层包括高折射率材料膜,高折射率材料膜的折射率高于曲面透光基板的折射率。
膜层还可以包括与高折射率材料膜层叠设置的低折射率材料膜,低折 射率材料膜的折射率低于曲面透光基板的折射率。
高折射率材料膜和低折射率材料膜可以分别为多层,多层高折射率材料膜和多层低折射率材料膜在曲面透光基板上交替层叠设置。
曲面镀膜板可以包括依次层叠设置的曲面透光基板、高折射率材料膜、低折射率材料膜、高折射率材料膜、低折射率材料膜和高折射率材料膜。
曲面镀膜板可以包括依次层叠设置的曲面透光基板、高折射率材料膜、低折射率材料膜、高折射率材料膜、低折射率材料膜、高折射率材料膜、低折射率材料膜、高折射率材料膜、低折射率材料膜和高折射率材料膜。
曲面镀膜板可以包括依次层叠设置的曲面透光基板、高折射率材料膜、低折射率材料膜和高折射率材料膜。
曲面镀膜板可以包括依次层叠设置的曲面透光基板和高折射率材料膜。
曲面镀膜板可以包括依次层叠设置的曲面透光基板、高折射率材料膜、低折射率材料膜、高折射率材料膜、低折射率材料膜、高折射率材料膜、低折射率材料膜和高折射率材料膜。
曲面镀膜板可以包括依次层叠设置的曲面透光基板、低折射率材料膜和高折射率材料膜。
直接层叠于曲面透光基板上方的既可以是高折射率材料膜,也可以是低折射率材料膜。
高折射率材料和低折射率材料的耐热温度可以不小于650℃的温度。高折射率材料和低折射率材料的耐热温度可以为750℃的温度。高折射率材料和低折射率材料可以承受的温度决定了在后续的热处理过程中由高折射率材料和低折射率材料形成的膜层是否能保持完好。当本公开在650℃下进行热弯处理时,要求高折射率材料和低折射率材料能够耐650℃的温度。当本公开在750℃下进行热弯处理时,要求高折射率材料和低折射率材料能够耐750℃的温度。
高折射率材料膜在550nm波长下的折射率可以为1.92至2.60。采用这样的高折射率材料膜可以使曲面镀膜板在太阳能组件的发电波长范围内的平均透过率在更大程度上得到提高,从而提高利用该曲面镀膜板制备的太阳能 组件的发电效果。
高折射率材料膜可以包括钛酸镧膜、二氧化钛膜、五氧化三钛膜、五氧化二铌膜、五氧化二钽膜或二氧化锆膜,或这些膜中的至少两种形成的复合膜。当高折射率材料膜包括钛酸镧膜、二氧化钛膜、五氧化三钛膜、五氧化二铌膜、五氧化二钽膜和二氧化锆膜中的任意一种时,可以使形成的高折射率材料膜在后续的热处理过程中保持完好,并且使曲面镀膜板在太阳能组件的发电波长范围内的平均透过率获得在更大程度上得到提高,从而提高利用该曲面镀膜板制备的太阳能组件的发电效果。
低折射率材料膜在550nm波长下的折射率可以为1.35至1.50的材料。采用这样的低着率材料膜可以使曲面镀膜板在太阳能组件的发电波长范围内的平均透过率在更大程度上得到提高,从而提高利用该曲面镀膜板制备的太阳能组件的发电效果。
低折射率材料膜可以包括二氧化硅膜或氟化镁膜,或二氧化硅膜和氟化镁膜的复合膜。当低折射率材料膜为二氧化硅或氟化镁时,可以使形成的低折射率材料膜在后续的热处理过程中保持完好,并且使曲面镀膜板在太阳能组件的发电波长范围内的平均透过率获得在更大程度上得到提高,从而提高利用该曲面镀膜板制备的太阳能组件的发电效果。
当膜层包含多层高折射率材料膜时,多层高折射率材料膜可以是相同的或不完全相同的。
当膜层包含多层低折射率材料膜时,多层低折射率材料膜可以是相同的或不完全相同的。
多层高折射率材料膜或多层低折射率材料膜的不同可以包括但不限于材料、厚度、形状、面积等性质的不同。
曲面镀膜板可以为彩色的,即具有颜色的。根据膜层的不同设计,曲面镀膜板的颜色可以为蓝色、紫色、金黄色、黄色、红色、陶土色、灰色、橙色或绿色等。因此本公开实施例的曲面镀膜板能够保证在太阳能组件的发电波长范围内具有较高的平均透过率的前提下根据需求制成不同的颜色,满足了丰富多彩的颜色需求,而且与建筑结合后更加美观,并且使得本公开实施例的曲面镀膜板还可以应用于有装饰效果需求的盖板上。
曲面镀膜板的膜系设计结构可以根据曲面镀膜板的期望颜色,采用膜系设计软件进行设计,例如,采用Essential Macleod、TFCacl或OptiLayer等膜系设计软件。通过膜系设计可以优化镀膜板的结构,选择出可以承受后续热处理过程中的高温从而保持膜层完好的膜系结构,并且还可以在满足不同颜色需求的情况下选择出成本较低、制备工艺较简单的膜系设计结构。
以下列举了一些曲面镀膜板的实施例,其中,H代表高折射率材料,L代表低折射率材料SiO 2,Sub代表透光基板,例如超白浮法玻璃,Air代表空气,Air/Sub代表透光基板未与膜层接触的一侧直接与空气接触。H(1)代表透光基板上的第一层为高折射率材料,L(2)代表第二层为低折射率材料,以此类推。“Air/Sub/H(1)/L(2)/H(3)/L(4)/H(5)/Air”代表该镀膜板仅包括依次层叠设置的透光基板、第一层高折射率材料膜、第二层低折射率材料膜、第三层高折射率材料膜、第四层低折射率材料膜,以此类推。
本公开一实施方案提供了一种橙色的曲面镀膜板,该橙色的曲面镀膜板可以包括5层全介质膜,其膜系设计结构可以为:
Air/Sub/H(1)/L(2)/H(3)/L(4)/H(5)/Air;
其中,H(1)的厚度为91.42nm±20nm,L(2)的厚度为43.67nm±20nm,H(3)的厚度为43.85nm±20nm,L(4)的厚度为19.97nm±20nm,H(5)的厚度为27.53nm±20nm;
H可以为ZrO 2、Nb 2O 5、Ti 3O 5或Ta 2O 5
该橙色的曲面镀膜板的透过率曲线请见图2。
本公开一实施方案提供了一种绿色的曲面镀膜板,该绿色的曲面镀膜板可以包括9层全介质膜,其膜系设计结构可以为:
Air/Sub/H(1)/L(2)/H(3)/L(4)/H(5)/L(6)/H(7)/L(8)/H(9)/Air;
其中,H(1)的厚度为54.63nm±20nm,L(2)的厚度为12.36nm±20nm, H(3)的厚度为38.39nm±20nm,L(4)的厚度为35.92nm±20nm,H(5)的厚度为51.45nm±20nm,L(6)的厚度为31.36nm±20nm,H(7)的厚度为45.53nm±20nm,L(8)的厚度为33.32nm±20nm,H(9)的厚度为23.29nm±20nm;
H可以为ZrO 2、Nb 2O 5、Ti 3O 5或Ta 2O 5
该绿色的曲面镀膜板的透过率曲线请见图3。
本公开一实施方案提供了一种陶土色的曲面镀膜板,该陶土色的曲面镀膜板可以包括3层全介质膜,其膜系设计结构可以为:
Air/Sub/H(1)/L(2)/H(3)/Air;
其中,H(1)的厚度为233.30nm±20nm,L(2)的厚度为332.52nm±20nm,H(3)的厚度为92.10nm±20nm;
H可以为ZrO 2、Nb 2O 5、Ti 3O 5或Ta 2O 5
该陶土色的曲面镀膜板的透过率曲线请见图4。
本公开一实施方案提供了一种灰色的曲面镀膜板,该灰色的曲面镀膜板可以包括1层全介质膜,其膜系设计结构可以为:
Air/Sub/H(1)/Air;
其中,H(1)的厚度为26.00nm±20nm;
H可以为ZrO 2、Nb 2O 5、Ti 3O 5或Ta 2O 5
该灰色的曲面镀膜板的透过率曲线请见图5。
本公开一实施方案提供了一种紫色的曲面镀膜板,该紫色的曲面镀膜板可以包括7层全介质膜,其膜系设计结构可以为:
Air/Sub/H(1)/L(2)/H(3)/L(4)/H(5)/L(6)/H(7)/Air;
其中,H(1)的厚度为17.38nm±20nm,L(2)的厚度为61.14nm±20nm,H(3)的厚度为34.78nm±20nm,L(4)的厚度为61.14nm±20nm,H(5) 的厚度为34.78nm±20nm,L(6)的厚度为61.14nm±20nm,H(7)的厚度为17.38nm±20nm;
其中,H(1)的厚度为26.00nm±20nm;
H可以为ZrO 2、Nb 2O 5、Ti 3O 5或Ta 2O 5
该紫色的曲面镀膜板的透过率曲线请见图6。
从图2-6可以看出,本公开实施例的彩色曲面镀膜板虽然在可见光区域的透过率偏低,但在红外光区域的透过率高,从而使得在太阳能组件的发电波长范围内、尤其是在380nm至1100nm波段范围内的平均透过率高。将其用作彩色太阳能组件的前板,会获得较佳的发电效果。
本公开实施例的曲面镀膜板可根据需求制成不同的颜色,能够满足丰富多彩的颜色需求,而且与建筑结合后更加美观。
此外,应理解,使用同样的高折射率材料和低折射率材料,通过增减镀膜层数及调整每一层膜的厚度,例如加厚或减薄膜的厚度,也可以制得同样颜色的曲面镀膜板。而且,经测试,采用不同膜系设计结构制备的同样颜色的曲面镀膜板的光谱几乎相同。但是在膜系设计时应尽量采用较少层数的膜,以降低成本。
本公开实施例还提供了如上曲面镀膜板的制备方法,该方法包括下述步骤:
在平面透光基板的一侧表面形成膜层,得到平面镀膜板;膜层为全介质膜,膜层包括高折射率材料膜,高折射率材料膜的折射率高于平面透光基板的折射率;
对平面镀膜板进行热弯曲处理,得到曲面镀膜板。
其中,平面透光基板在弯曲变形前后,折射率不变。
在平面透光基板的一侧表面形成膜层的步骤可以包括:
在平面透光基板的一侧表面形成层叠设置的高折射率材料膜和低折 射率材料膜,低折射率材料膜的折射率低于平面透光基板的折射率。
在平面透光基板的一侧表面形成膜层的步骤可以包括:
在平面透光基板的一侧表面形成交替设置的多层高折射率材料膜和多层低折射率材料膜,且平面透光基板与高折射率材料膜相邻。
高折射率材料膜和低折射率材料膜是在真空状态下采用蒸发镀膜法或磁控溅射法形成在平面透光基板上。
真空镀膜法可以为蒸发镀膜法或磁控溅射法。蒸发镀膜法可以为电子枪蒸发镀膜法,可以采用光学领域在光学玻璃上成膜的真空镀膜法在本公开的平面透光基板表面上沉积至少一层高折射率材料膜和可选地至少一层低折射率材料膜,例如,采用在摄像机镜头的光学玻璃上镀膜的真空镀膜法。
如图7所示,在示例性实施例中该方法可以包括下述步骤:
步骤S1:清洗并干燥平面透光基板;
步骤S2:将干燥后的平面透光基板放入镀膜设备的真空腔体内,将真空腔体抽至真空状态;
步骤S3:熔融或预溅射镀膜材料;
步骤S4:将膜系设计导入镀膜制程程序;
步骤S5:采用蒸发镀膜法或磁控溅射法将熔融或预溅射的镀膜材料沉积在平面透光基板表面上以形成至少一层高折射率材料膜和可选地至少一层低折射率材料膜,得到平面镀膜板;
步骤S6:破真空,取出平面镀膜板;
步骤S7:对平面镀膜板进行检测,合格的平面镀膜板周转进入热处理设备;对合格的平面镀膜板进行热弯或弯钢处理,得到曲面镀膜板;
步骤S8:对曲面镀膜板进行检测,合格的产品进行包装。
其中,在熔融或预溅射镀膜材料之前,真空腔体的真空度可以保持在1.0×10 -4Pa至1.0×10 -3Pa的范围内;在沉积高折射率材料膜或低折射率材料膜时,真空腔体的真空度可以保持在3.0×10 -2Pa至8.0×10 -2Pa的范围内。本公开在沉积高折射率材料膜或低折射率材料膜时,将真空腔体的真空度控制 在3.0×10 -2Pa至8.0×10 -2Pa的范围内,更容易得到纯度高、硬度合适的膜层。
热弯曲处理的温度可以为650℃至750℃,时间可以不低于20分钟。
平面透光基板可以为平面玻璃基板或平面透光高分子材料基板。
平面玻璃基板可以为平面超白浮法玻璃、平面普通浮法玻璃、平面本体着色玻璃或平面光学玻璃等透光的玻璃。
平面透光高分子材料基板可以为平面透光树脂基板。
平面透光树脂基板可以为平面的聚碳酸酯(Polycarbonate,PC)基板或聚甲基丙烯酸甲酯(Polymethyl Methacrylate,PMMA)基板等透光基板。
本公开实施例的曲面镀膜板采用全介质膜,通过优化选择镀膜材料及调整膜系结构,使得膜层可以承受后续热处理过程中的高温,例如650℃的高温,热处理后,膜层能够保持完好,从而使镀膜后的平面基板可根据使用场合需要热处理成各种曲面形状。另外,本公开实施例的曲面镀膜板中的材料膜采用全介质膜,通过提高曲面镀膜板在红外波段的透过率,从而提高了曲面镀膜板在太阳能组件的发电波长范围内、尤其是在380nm至1100nm波段的平均透过率,使得采用该曲面镀膜板制备的太阳能组件的发电效率得到了显著提高。此外,由于本公开实施例的曲面镀膜板不采用金属膜层,避免了金属膜层被氧化的问题,而且无需再设置金属保护层,节约了成本。
本公开实施例还提供了一种太阳能组件,该太阳能组件可以采用本公开任一实施例提供的曲面镀膜板作为前板。由于本公开实施例提供的曲面镀膜板在太阳能组件的发电波长范围内的平均透过率较高,因此太阳能组件的发电效果较好。
如图8所示,太阳能组件可以包括依次设置的前板1、胶粘层2、太阳能电池3和背板4,背板4的下方或一侧设置有与太阳能电池3电连接的接线盒5。前板1为本公开实施例提供的曲面镀膜板。
如图9所示,太阳能组件可以包括依次设置的前板1、胶粘层2、太阳能电池3、胶粘层2和背板4,背板4的下方或一侧设置有与太阳能电池3电连 接的接线盒5。前板1为本公开实施例提供的曲面镀膜板。
其中,胶粘层可以由具有粘性的聚合物类材料形成,例如,由聚乙烯醇缩丁醛(Polyvinyl Butyral,PVB)或乙烯醋酸乙烯酯(Ethylene Vinyl Acetate,EVA)形成;
太阳能电池可以为各类型的柔性薄膜太阳能电池或柔性晶硅太阳能电池,例如,为柔性铜铟镓硒(CuIn xGa (1-x)Se 2,CIGS)薄膜太阳能电池。
应理解,本公开实施例的太阳能组件可以采用本领域中常用的制备太阳能组件的方法制备得到。
因此,可以根据需求选择本公开的太阳能组件的具体结构、胶粘层和太阳能电池的类型,从而使得本公开的太阳能组件可以在更多场合下使用。由于本公开的曲面镀膜板前板在CIGS薄膜太阳能电池或晶硅太阳能电池的发电波长范围380nm-1100nm内的平均透过率尤其高,因此当太阳能电池选择CIGS薄膜太阳能电池或晶硅太阳能电池时,太阳能组件的发电效果更好。
此外,除了应用于建筑上,本公开实施例的曲面镀膜板还可以应用于有装饰效果需求的盖板上,如手机背板、冰箱面板等等。
本公开内容是本公开实施例的原则的示例,并非对本公开作出任何形式上或实质上的限定,或将本公开限定到具体的实施方案。对本领域的技术人员而言,很显然本公开实施例的技术方案的要素、方法和系统等,可以进行变动、改变、改动、演变,而不背离如上的本公开的实施例、技术方案的,如权利要求中所定义的原理、精神和范围。这些变动、改变、改动、演变的实施方案均包括在本公开的等同实施例内,这些等同实施例均包括在本公开的由权利要求界定的范围内。虽然可以许多不同形式来使本公开实施例具体化,但此处详细描述的是本公开的一些实施方案。此外,本公开的实施例包括此处的各种实施方案的一些或全部的任意可能的组合,也包括在本公开的由权利要求界定的范围内。在本公开中或在任一个引用的专利、引用的专利申请或其它引用的资料中任何地方所提及的所有专利、专利申请和其它引用资料据此通过引用以其整体并入。
以上公开内容规定为说明性的而不是穷尽性的。对于本领域技术人员来说,本说明书会暗示许多变化和可选择方案。所有这些可选择方案和变化旨在被包括在本权利要求的范围内,其中术语“包括”意思是“包括,但不限于”。
在此完成了对本公开可选择的实施方案的描述。本领域技术人员可认识到此处的实施方案的其它等效变换,这些等效变换也为由附于本文的权利要求所包括。

Claims (21)

  1. 一种曲面镀膜板,所述曲面镀膜板包括曲面透光基板和设置在所述曲面透光基板一侧的膜层,所述膜层为全介质膜,所述膜层包括高折射率材料膜,所述高折射率材料膜的折射率高于所述曲面透光基板的折射率。
  2. 根据权利要求1所述的曲面镀膜板,其中,所述膜层还包括与所述高折射率材料膜层叠设置的低折射率材料膜,所述低折射率材料膜的折射率低于所述曲面透光基板的折射率。
  3. 根据权利要求2所述的曲面镀膜板,其中,所述高折射率材料膜和所述低折射率材料膜分别为多层,多层所述高折射率材料膜和多层所述低折射率材料膜在所述曲面透光基板上交替层叠设置。
  4. 根据权利要求3所述的曲面镀膜板,其中,
    所述高折射率材料膜为三层,所述低折射率材料膜为两层,所述曲面透光基板与所述高折射率材料膜相邻;或
    所述高折射率材料膜为五层,所述低折射率材料膜为四层,所述曲面透光基板与所述高折射率材料膜相邻;或
    所述高折射率材料膜为四层,所述低折射率材料膜为三层,所述曲面透光基板与所述高折射率材料膜相邻。
  5. 根据权利要求2所述的曲面镀膜板,其中,所述膜层包括在所述曲面透光基板一侧依次设置的第一层高折射率材料膜、低折射率材料膜和第二层高折射率材料膜。
  6. 根据权利要求2-5任一项所述的曲面镀膜板,其中,所述高折射率材料膜和所述低折射率材料膜的耐热温度不小于650℃。
  7. 根据权利要求1-5任一项所述的曲面镀膜板,其中,所述高折射率材料膜在550nm波长下的折射率在1.92至2.60的范围内。
  8. 根据权利要求2-5任一项所述的曲面镀膜板,其中,所述低折射率材料膜在550nm波长下的折射率在1.35至1.50的范围内。
  9. 根据权利要求1-8中任一项所述的曲面镀膜板,其中,所述高折射 率材料膜包括钛酸镧膜、二氧化钛膜、五氧化三钛膜、五氧化二铌膜、五氧化二钽膜、或二氧化锆膜,或这些膜中的至少两种形成的复合膜。
  10. 根据权利要求2-8中任一项所述的曲面镀膜板,其中,所述低折射率材料膜包括二氧化硅膜、氟化镁膜,或二氧化硅膜和氟化镁膜的复合膜。
  11. 根据权利要求2-10中任一项所述的曲面镀膜板,其中,
    当所述膜层包含多层高折射率材料膜时,多层所述高折射率材料膜的材料相同,或者,至少两层所述高折射率材料膜的材料不同;
    当所述膜层包含多层低折射率材料膜时,多层所述低折射率材料膜的材料相同,或者,至少两层所述低折射率材料膜的材料不同。
  12. 根据权利要求1-11中任一项所述的曲面镀膜板,其中,所述曲面镀膜板的颜色为蓝色、紫色、金黄色、黄色、红色、陶土色、灰色、橙色或绿色。
  13. 一种曲面镀膜板的制备方法,所述方法包括下述步骤:
    在平面透光基板的一侧表面形成膜层,得到平面镀膜板;所述膜层为全介质膜,所述膜层包括高折射率材料膜,所述高折射率材料膜的折射率高于所述平面透光基板的折射率;
    对所述平面镀膜板进行热弯曲处理,得到曲面镀膜板。
  14. 根据权利要求13所述的方法,其中,所述在平面透光基板的一侧表面形成膜层的步骤包括:
    在所述平面透光基板的一侧表面形成层叠设置的所述高折射率材料膜和低折射率材料膜,所述低折射率材料膜的折射率低于所述平面透光基板的折射率。
  15. 根据权利要求13所述的方法,其中,所述在平面透光基板的一侧表面形成膜层的步骤包括:
    在所述平面透光基板的一侧表面形成交替设置的多层所述高折射率材料膜和多层所述低折射率材料膜,且所述平面透光基板与所述高折射率材料膜相邻。
  16. 根据权利要求14或15所述的方法,其中,所述高折射率材料膜和所述低折射率材料膜是在真空状态下采用蒸发镀膜法或磁控溅射法形成在所述平面透光基板上。
  17. 根据权利要求16所述的方法,其中,在熔融或预溅射镀膜材料之前,所述真空状态的真空度保持在1.0×10 -4Pa至1.0×10 -3Pa的范围内;并且在熔融或溅射镀膜材料时,所述真空状态的真空度保持在3.0×10 -2Pa至8.0×10 -2Pa的范围内。
  18. 根据权利要求13-17任一项所述的方法,其中,所述热弯曲处理的温度在650℃至750℃的范围内,时间不低于20分钟。
  19. 一种太阳能组件,所述太阳能组件的前板包括根据权利要求1-12中任一项所述的曲面镀膜板。
  20. 根据权利要求19所述的太阳能组件,其中,所述太阳能组件还包括在所述前板一侧依次设置的胶片、太阳能电池和背板。
  21. 根据权利要求19所述的太阳能组件,其中,所述太阳能组件还包括在所述前板一侧依次设置的胶片、太阳能电池、胶片和背板。
PCT/CN2018/094691 2018-05-08 2018-07-05 一种曲面镀膜板及其制备方法和一种太阳能组件 WO2019214037A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018145399A JP2019197202A (ja) 2018-05-08 2018-08-01 曲面コーティングパネル及びその製造方法、ソーラーモジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810434302.8A CN108642447A (zh) 2018-05-08 2018-05-08 一种曲面镀膜板及其制备方法和包含其的太阳能组件
CN201810434302.8 2018-05-08

Publications (1)

Publication Number Publication Date
WO2019214037A1 true WO2019214037A1 (zh) 2019-11-14

Family

ID=63294072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094691 WO2019214037A1 (zh) 2018-05-08 2018-07-05 一种曲面镀膜板及其制备方法和一种太阳能组件

Country Status (8)

Country Link
US (1) US20190348547A1 (zh)
EP (1) EP3567638A1 (zh)
JP (1) JP2019197202A (zh)
KR (1) KR20190128544A (zh)
CN (1) CN108642447A (zh)
AU (1) AU2018220077A1 (zh)
BR (1) BR102018070378A2 (zh)
WO (1) WO2019214037A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208753333U (zh) * 2018-06-11 2019-04-16 汉能移动能源控股集团有限公司 一种太阳能发电瓦用基底以及太阳能发电瓦
CN109239820A (zh) * 2018-10-19 2019-01-18 布勒莱宝光学设备(北京)有限公司 可透光用于植物生长的聚光太阳能反射镜
CN109437582A (zh) * 2018-12-03 2019-03-08 仙游县元生智汇科技有限公司 一种具有抗眩光的3d玻璃的制作方法
CN110556434B (zh) * 2019-09-19 2021-06-25 金陵科技学院 一种渐变彩色太阳能电池组件及其镀膜装置和方法
CN111123567B (zh) * 2020-01-16 2020-09-15 深圳市乐华数码科技有限公司 一种显示器屏幕曲面镀膜工艺及应用该工艺制成的显示器
CN111253081B (zh) * 2020-03-20 2021-02-26 山东大学 一种彩色玻璃及其制备方法
CN111559151B (zh) * 2020-04-01 2022-05-17 维达力实业(赤壁)有限公司 3d复合板材及其制备方法
CN111584652A (zh) * 2020-06-01 2020-08-25 北京金茂绿建科技有限公司 一种光伏组件用绿色前板玻璃及其制备的绿色光伏组件
CN111477710A (zh) * 2020-06-01 2020-07-31 北京金茂绿建科技有限公司 一种光伏组件用蓝色前板玻璃及其制备的蓝色光伏组件
CN111584653A (zh) * 2020-06-04 2020-08-25 北京金茂绿建科技有限公司 一种光伏组件用仿low-e玻璃幕墙颜色前板玻璃及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149351A (en) * 1988-05-24 1992-09-22 Asahi Glass Company Ltd. Method for making a curved solar panel for an automobile
US20030005954A1 (en) * 2001-07-04 2003-01-09 Makiko Emoto Solar cell module and method of manufacturing the same
CN101241196A (zh) * 2007-02-07 2008-08-13 株式会社日立制作所 光学构件
DE102011005736B4 (de) * 2011-03-17 2013-11-14 Von Ardenne Anlagentechnik Gmbh Verfahren zur Herstellung eines gebogenen Spiegels
CN103443662A (zh) * 2011-03-18 2013-12-11 富士胶片株式会社 光学部件及其制造方法
TW201403837A (zh) * 2012-07-04 2014-01-16 Chip City Science And Technology Co Ltd 利用熱成形之曲面太陽能板製造方法
CN103703400A (zh) * 2011-07-26 2014-04-02 柯尼卡美能达株式会社 太阳光聚光用反射镜及具有该太阳光聚光用反射镜的太阳能热发电系统
US20170075045A1 (en) * 2015-09-16 2017-03-16 Ppg Industries Ohio, Inc. Solar mirrors and methods of making solar mirrors having improved properties

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0343628B1 (en) * 1988-05-24 1993-12-08 Asahi Glass Company Ltd. Method for producing a glass substrate for a solar cell
JP4129275B2 (ja) * 1999-12-22 2008-08-06 株式会社きもと 透視可能な透過型スクリーン
WO2006080502A1 (ja) * 2005-01-31 2006-08-03 Asahi Glass Company, Limited 反射防止膜付き基体
WO2007020792A1 (ja) * 2005-08-16 2007-02-22 Asahi Glass Company, Limited 赤外線反射ガラス板および車両窓用合わせガラス
JP4820152B2 (ja) * 2005-11-18 2011-11-24 ケイミュー株式会社 複合被膜構造及び塗装外装材
CN101446648B (zh) * 2007-11-27 2010-06-02 鸿富锦精密工业(深圳)有限公司 分光镜及其分光膜层
JP2015166287A (ja) * 2012-07-09 2015-09-24 旭硝子株式会社 積層体の製造方法および積層体
CN103000728B (zh) * 2012-12-03 2016-04-20 3M材料技术(合肥)有限公司 太阳能电池背板组件和太阳能电池组件
US10287207B2 (en) * 2013-02-20 2019-05-14 Saint-Gobain Glass France Pane with thermal radiation reflecting coating
CN103395247B (zh) * 2013-07-30 2015-05-13 深圳欧菲光科技股份有限公司 盖板玻璃及其制备方法
JP2016225225A (ja) * 2015-06-02 2016-12-28 旭硝子株式会社 表示装置用の導光板
CN106853706A (zh) * 2016-12-21 2017-06-16 蚌埠玻璃工业设计研究院 一种高透过高反射隔热膜
CN107757495B (zh) * 2017-09-27 2023-05-05 信义光伏产业(安徽)控股有限公司 汽车后视镜用蓝镜及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149351A (en) * 1988-05-24 1992-09-22 Asahi Glass Company Ltd. Method for making a curved solar panel for an automobile
US20030005954A1 (en) * 2001-07-04 2003-01-09 Makiko Emoto Solar cell module and method of manufacturing the same
CN101241196A (zh) * 2007-02-07 2008-08-13 株式会社日立制作所 光学构件
DE102011005736B4 (de) * 2011-03-17 2013-11-14 Von Ardenne Anlagentechnik Gmbh Verfahren zur Herstellung eines gebogenen Spiegels
CN103443662A (zh) * 2011-03-18 2013-12-11 富士胶片株式会社 光学部件及其制造方法
CN103703400A (zh) * 2011-07-26 2014-04-02 柯尼卡美能达株式会社 太阳光聚光用反射镜及具有该太阳光聚光用反射镜的太阳能热发电系统
TW201403837A (zh) * 2012-07-04 2014-01-16 Chip City Science And Technology Co Ltd 利用熱成形之曲面太陽能板製造方法
US20170075045A1 (en) * 2015-09-16 2017-03-16 Ppg Industries Ohio, Inc. Solar mirrors and methods of making solar mirrors having improved properties

Also Published As

Publication number Publication date
CN108642447A (zh) 2018-10-12
EP3567638A1 (en) 2019-11-13
US20190348547A1 (en) 2019-11-14
BR102018070378A2 (pt) 2019-11-26
JP2019197202A (ja) 2019-11-14
KR20190128544A (ko) 2019-11-18
AU2018220077A1 (en) 2019-11-28

Similar Documents

Publication Publication Date Title
WO2019214037A1 (zh) 一种曲面镀膜板及其制备方法和一种太阳能组件
WO2019214036A1 (zh) 一种镀膜板及其制备方法和一种太阳能组件
KR101194257B1 (ko) 광대역 반사방지 다층코팅을 갖는 태양전지용 투명 기판 및 그 제조방법
CN101244898B (zh) 金色低辐射镀膜玻璃及其制作方法
JP2015508372A (ja) 太陽光制御板ガラスユニット
KR20160004280A (ko) 열 특성을 갖는 스택이 제공된 기판
CN112811828B (zh) 渐变色太阳能前板及制造方法和太阳能组件封装结构
CN112047642A (zh) 光伏建筑一体化用黄色盖板玻璃及其制备方法
CN111925129A (zh) 防蓝光、高透过率镀膜前板及防蓝光太阳能电池组件
CN104153698A (zh) 热致变色窗及其制造方法
WO2019214033A1 (zh) 一种太阳能组件
KR101194258B1 (ko) 광대역 반사방지 다층코팅을 갖는 태양전지용 투명 기판 및 그 제조방법
CN103137717A (zh) 铜掺杂氧化锡透明导电薄膜及其制备方法
US20190348555A1 (en) Solar module
CN216890665U (zh) 一种中透可钢化三银低辐射镀膜玻璃
KR20130114483A (ko) 반사방지 코팅층을 가지는 투명기판 및 그 제조방법
CN202157011U (zh) 一种三银低辐射镀膜玻璃
CN111960680A (zh) 一种彩色玻璃及光伏组件
KR102261133B1 (ko) 반사방지 코팅층을 가지는 투명기판 및 그 제조방법
WO2019237923A1 (zh) 一种太阳能发电瓦及其基底和它们的制备方法
CN210506095U (zh) 一种低辐射阳光控制镀膜玻璃
CN212246777U (zh) 防蓝光、高透过率镀膜前板及防蓝光太阳能电池组件
KR20150002517A (ko) 반사방지 코팅층을 가지는 투명기판 및 그 제조방법
CN115706179A (zh) 盖板玻璃及中空玻璃组件
CN115974423A (zh) 减反射镀铝膜玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/03/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18917884

Country of ref document: EP

Kind code of ref document: A1