WO2019214033A1 - 一种太阳能组件 - Google Patents

一种太阳能组件 Download PDF

Info

Publication number
WO2019214033A1
WO2019214033A1 PCT/CN2018/094444 CN2018094444W WO2019214033A1 WO 2019214033 A1 WO2019214033 A1 WO 2019214033A1 CN 2018094444 W CN2018094444 W CN 2018094444W WO 2019214033 A1 WO2019214033 A1 WO 2019214033A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
refractive index
index material
solar module
light transmissive
Prior art date
Application number
PCT/CN2018/094444
Other languages
English (en)
French (fr)
Inventor
武振羽
陶利松
万军鹏
闫燚
杨世忠
方振雷
Original Assignee
北京汉能光伏投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京汉能光伏投资有限公司 filed Critical 北京汉能光伏投资有限公司
Priority to EP18186875.3A priority Critical patent/EP3567635A1/en
Priority to US16/051,623 priority patent/US20190348555A1/en
Publication of WO2019214033A1 publication Critical patent/WO2019214033A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to, but is not limited to, the field of solar energy technology, and in particular to a solar module.
  • the solar modules applied to buildings are mainly black and not aesthetically pleasing.
  • the appearance should be more humanized and more suitable for the environment.
  • the integration of photovoltaics with buildings and the environment is more urgent for aesthetics.
  • photovoltaic products as building materials people hope to demonstrate the personality of the building.
  • At least one embodiment of the present disclosure provides a solar module comprising a front plate, a film, a solar cell and a back plate which are sequentially disposed, or a front plate, a film, a solar cell, a film and a back plate which are sequentially disposed, the front
  • the board is a color transparent front panel.
  • the solar component may be a planar component, a profiled component, or may be a combination of a planar component and a profiled component.
  • the profiled component may be a folded component or a curved component, or the solar component may be a combination of at least two differently shaped shaped components.
  • the color light transmissive front plate may be a color light transmissive coating plate or a light transmissive original film coloring plate, and the color light transmissive coating plate may include a light transmissive substrate and the light transmissive substrate. The upper layer.
  • the film layer when the color transparent front plate is a color transparent coating plate, the film layer may be an all-dielectric film, and the film layer may include at least one high-refractive-index material film.
  • the refractive index of the high refractive index material film is higher than the refractive index of the light transmissive substrate.
  • the refractive index of the high refractive index material film at a wavelength of 550 nm may be in the range of 1.92 to 2.60.
  • the high refractive index material film may include a barium titanate film, a titanium dioxide film, a trititanium pentoxide film, a tantalum pentoxide film, a tantalum pentoxide film, a zirconium dioxide film, or these films. At least two of the composite films formed.
  • the film layer may further include at least one film of a low refractive index material having a refractive index lower than a refractive index of the light transmissive substrate;
  • the high refractive index material film and the low refractive index material film are respectively a plurality of layers, a plurality of the high refractive index material film and the plurality of the low refractive index material films may be alternately laminated on the light transmissive substrate on.
  • the film layer may include two layers of the high refractive index material film and two layers of the low refractive index material film, two layers of the high refractive index material film and two layers of the low refractive index
  • the rate material films are alternately stacked on the side of the light-transmitting substrate, and the light-transmitting substrate is adjacent to the high refractive index material film.
  • the film layer may include three layers of the high refractive index material film and two layers of the low refractive index material film, three layers of the high refractive index material film, and two layers of the low refractive index.
  • the rate material films are alternately stacked on the side of the light-transmitting substrate, and the light-transmitting substrate is adjacent to the high refractive index material film.
  • the film layer may include three layers of the high refractive index material film and three layers of the low refractive index material film, three layers of the high refractive index material film, and three layers of the low refractive index.
  • the rate material films are alternately stacked on the side of the light-transmitting substrate, and the light-transmitting substrate is adjacent to the high refractive index material film.
  • the refractive index of the low refractive index material film at a wavelength of 550 nm may be in the range of 1.35 to 1.50.
  • the low refractive index material film may include a silicon dioxide film, a magnesium fluoride film, or a composite film of a silicon dioxide film and a magnesium fluoride film.
  • the light transmissive substrate may be a glass substrate or a light transmissive polymer material substrate.
  • the film layer may be a color glaze film layer.
  • the color transparent front panel may have a color of blue, purple, gold, yellow, red, terracotta, gray, orange, or green.
  • the back plate may be a color light transmissive coated plate or a light transmissive original colored plate.
  • the film may be a polyvinyl butyral (PVB) flexible film or an Ethylene Vinyl Acetate (EVA) flexible film.
  • PVB polyvinyl butyral
  • EVA Ethylene Vinyl Acetate
  • the solar cell comprises a crystalline silicon thin film solar cell, an amorphous silicon thin film solar cell, a gallium arsenide thin film solar cell, a copper indium gallium selenide thin film solar cell, a copper indium selenide thin film solar cell, and a silicon germanium Cadmium thin film solar cells, or organic polymer thin film solar cells.
  • FIG. 1 is a graph showing transmittance of a color light-transmissive coated plate according to an embodiment of the present disclosure
  • FIG. 2 is a graph showing transmittance of a color light-transmissive coated plate according to another embodiment of the present disclosure
  • FIG. 3 is a graph showing transmittance of a color light-transmissive coated plate according to still another embodiment of the present disclosure.
  • FIG. 5 is a schematic structural view of a solar module according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural view of a solar module according to another embodiment of the present disclosure.
  • FIG. 7 is a schematic structural view of a solar module according to still another embodiment of the present disclosure.
  • FIG. 8 is a schematic structural view of a solar module according to still another embodiment of the present disclosure.
  • Embodiments of the present disclosure provide a solar energy module with good power generation effect and good color effect.
  • Embodiments of the present disclosure provide a solar module including a front plate, a film, a solar cell, and a back plate which are sequentially disposed, or a front plate, a film, a solar cell, a film, and a back plate which are sequentially disposed, and the front plate is Color transparent front panel.
  • the solar component can be a planar component, or a profiled component, or a combination of a planar component and a profiled component. It is therefore possible to select the shape of the matching solar module according to the shape of the building.
  • the profiled component can be a combination of any one or more of a facet component, a curved component, and other shaped profiled components.
  • the facet assembly can be a combination of a facet component or a plurality of facet components.
  • a surface component can be a combination of a surface component or more.
  • the color transparent front plate may be a color light transmissive plate or a light transmissive original plate, and the color translucent plate includes a light transmissive substrate and a film layer disposed on the light transmissive substrate.
  • the film layer may be an all-dielectric film, and the film layer may include at least one film of a high refractive index material having a refractive index higher than a refractive index of the light-transmitting substrate.
  • the all-dielectric film can display color under the illumination of sunlight, and the film design can be performed on the all-dielectric film as needed to display a desired color.
  • the transmittance of the all-dielectric film in the infrared band is high, so that the average transmittance in the power generation wavelength range of the solar module, particularly in the 380 nm to 1100 nm band, is greatly improved, and the power generation efficiency of the solar module can be remarkably improved.
  • the all-dielectric film is selected as the film layer on the color transparent front plate without using the metal film layer, the problem that the metal film layer is oxidized is avoided, and the metal protective layer is not required to be disposed, thereby saving cost.
  • the high refractive index material film may be formed of a material having a refractive index of 1.92 to 2.60 at a wavelength of 550 nm.
  • the use of such a high refractive index material film can increase the average transmittance of the color transparent front plate in the power generation wavelength range of the solar module to a greater extent, thereby improving the power generation effect of the solar module.
  • the high refractive index material film may be selected from a barium titanate film, a titanium dioxide film, a pentoxide film, a tantalum pentoxide film, a tantalum pentoxide film, a zirconium dioxide film, or a composite film formed of at least two of these films. .
  • the use of such a high refractive index material film can increase the average transmittance of the color transparent front plate in the power generation wavelength range of the solar module to a greater extent, thereby improving the power generation effect of the solar module.
  • the solar module of the present disclosure when the high refractive index material film is selected from any one of a barium titanate film, a titanium dioxide film, a trititanium pentoxide film, a tantalum pentoxide film, a tantalum pentoxide film, and a zirconium dioxide film
  • a barium titanate film a titanium dioxide film
  • a trititanium pentoxide film a tantalum pentoxide film
  • a tantalum pentoxide film a zirconium dioxide film
  • the all-dielectric film of the solar module of the embodiment of the present disclosure may further include at least one film of a low refractive index material having a refractive index lower than a refractive index of the transparent substrate, at least one film of the high refractive index material, and at least A layer of low refractive index material film is alternately disposed on the light transmissive substrate.
  • the all-dielectric film includes a film of a low refractive index material, the all-dielectric film can obtain a more diverse film structure design structure, thereby ensuring that the solar module can obtain more colors under the premise of having a good power generation effect.
  • the low refractive index material film may be formed of a material having a refractive index of 1.35 to 1.50 at a wavelength of 550 nm.
  • the use of the low refractive index material film can increase the average transmittance of the color transparent front plate in the power generation wavelength range of the solar module to a greater extent, thereby improving the power generation effect of the solar module.
  • the low refractive index material film is selected from a silica film, a magnesium fluoride film, or a composite film of a silicon dioxide film and a magnesium fluoride film.
  • the use of such a low refractive index material film can increase the average transmittance of the color transparent front plate in the wavelength range of the solar module's power generation wavelength to a greater extent, thereby improving the power generation effect of the solar module.
  • the low refractive index material film is selected from any one of a silicon dioxide film and a magnesium fluoride film, the solar module of the present disclosure has a better power generation effect, and the production process is simpler.
  • the color light transmissive coating plate may include a light transmissive substrate and a high refractive index material film which are sequentially disposed.
  • the color light-transmissive coated plate may include a light-transmitting substrate, a high refractive index material film, a low refractive index material film, a high refractive index material film, and a low refractive index material film which are sequentially disposed.
  • the color light-transmissive coated plate may include a light-transmitting substrate, a high refractive index material film, a low refractive index material film, a high refractive index material film, a low refractive index material film, and a high refractive index material film which are sequentially disposed.
  • the color light-transmissive coated plate may include a light-transmitting substrate, a high refractive index material film, a low refractive index material film, a high refractive index material film, a low refractive index material film, a high refractive index material film, and a low refractive index material film which are sequentially disposed.
  • the color light transmissive coating plate may include a light transmissive substrate, a low refractive index material film, and a high refractive index material film which are sequentially disposed.
  • the light transmissive substrate may be a glass substrate or a light transmissive polymer material substrate.
  • the glass substrate may be ultra-white float glass, ordinary float glass, bulk colored glass or optical glass.
  • the light-transmitting polymer material substrate may be a light-transmitting resin substrate, such as a polycarbonate (PC) substrate or a light-transmitting substrate such as a polymethyl methacrylate (PMMA) substrate.
  • the thickness of the glass substrate may be from 3.2 mm to 8 mm. Therefore, the thickness of the transparent substrate and the transparent substrate of a suitable type can be selected according to different applications and requirements, such as flexibility, light transmittance, and the like.
  • the film layer may also be a color glaze film layer. Therefore, it is possible to select a color as needed and form a colored film layer on the light-transmitting substrate by means of a colored glaze.
  • the back plate may be a colored light-transmissive coated plate or a light-transmissive original colored plate.
  • the backsheet has a decorative effect to make the appearance of the solar module of the present disclosure more aesthetically pleasing.
  • the color of the color transparent front panel can be blue, purple, gold, yellow, red, terracotta, gray, orange or green.
  • the solar module of the present disclosure can ensure different colors according to requirements under the premise of having a high average transmittance in the power generation wavelength range of the solar module, satisfying various color requirements, and being more beautiful after being combined with the building.
  • a color light-transmissive coated plate containing a full-dielectric film wherein the light-transmissive substrate is an ultra-white float glass having a thickness of 3.2 mm to 8 mm, and the colored light-transmissive coated plate is a color coating. glass.
  • Ti 3 O 5 (1) represents that the first layer on the light-transmitting substrate is a high refractive index material Ti 3 O 5
  • SiO 2 (2) represents a second layer is a low refractive index material SiO 2 , and so on.
  • Air/transparent substrate / Ti 3 O 5 (1) / SiO 2 (2) / Ti 3 O 5 (3) / SiO 2 (4) / Air refers to the coated plate Only the light-transmitting substrate, the Ti 3 O 5 film, the SiO 2 film, the Ti 3 O 5 film, the SiO 2 film, which are sequentially stacked, and the “Air/transparent substrate” are referred to as the light-transmitting substrate and the Ti 3 O 5
  • the side of the membrane contact is in direct contact with air, and so on.
  • the blue coated glass may comprise a 4-layer all-dielectric film, and the film-based design structure may be in the following forms:
  • a.Air/transparent substrate/Ti 3 O 5 (1)/SiO 2 (2)/Ti 3 O 5 (3)/SiO 2 (4)/Air wherein the thickness of Ti 3 O 5 (1) is 33.48 nm ⁇ 20 nm, the thickness of SiO 2 (2) is 51.96 nm ⁇ 20 nm, the thickness of Ti 3 O 5 (3) is 82.86 nm ⁇ 20 nm, and the thickness of SiO 2 (4) is 117.36 nm ⁇ 20 nm;
  • Nb 2 O 5 (1) is 33.41 nm ⁇ 20 nm
  • the thickness of SiO 2 (2) is 51.96 nm ⁇ 20 nm
  • the thickness of Nb 2 O 5 (3) is 82.68 nm ⁇ 20 nm
  • the thickness of SiO 2 (4) is 117.36 nm ⁇ 20 nm.
  • the golden coated glass may comprise a 5-layer all-dielectric film, and the film-based design structure may be in the following forms:
  • Nb 2 O 5 (1) has a thickness of 91.46 nm ⁇ 20 nm
  • SiO 2 (2) has a thickness of 35.31 nm ⁇ 20 nm
  • Nb 2 O 5 (3) has a thickness of 58.56 nm ⁇ 20 nm
  • SiO 2 (4) has a thickness of 18.45 nm.
  • the thickness of ⁇ 20 nm and Nb 2 O 5 (5) is 17.71 nm ⁇ 20 nm.
  • the red coated glass may comprise a 6-layer all-dielectric film, and the film-based design structure may be in the following forms:
  • Ti 3 O 5 (1) has a thickness of 86.16 nm ⁇ 20 nm
  • SiO 2 (2) has a thickness of 120.43 nm ⁇ 20 nm
  • Ti 3 O 5 (3) has a thickness of 72.95 nm ⁇ 20 nm
  • SiO 2 ( 4) has a thickness of 125.76 nm ⁇ 20 nm
  • a thickness of Ti 3 O 5 (5) is 68.70 nm ⁇ 20 nm
  • a thickness of SiO 2 (6) is 63.09 nm ⁇ 20 nm;
  • Ta 2 O 5 (1) has a thickness of 90.83 nm ⁇ 20 nm
  • SiO 2 (2) has a thickness of 117.22 nm ⁇ 20 nm
  • Ta 2 O 5 (3) has a thickness of 76.76 nm ⁇ 20 nm
  • SiO 2 ( 4) has a thickness of 123.06 nm ⁇ 20 nm
  • Ta 2 O 5 (5) has a thickness of 69.84 nm ⁇ 20 nm
  • SiO 2 (6) has a thickness of 61.50 nm ⁇ 20 nm;
  • Nb 2 O 5 (1) has a thickness of 85.26 nm ⁇ 20 nm
  • SiO 2 (2) has a thickness of 120.06 nm ⁇ 20 nm
  • Nb 2 O 5 (3) has a thickness of 72.44 nm ⁇ 20 nm
  • SiO 2 ( 4) has a thickness of 125.56 nm ⁇ 20 nm
  • Nb 2 O 5 (5) has a thickness of 68.66 nm ⁇ 20 nm
  • SiO 2 (6) has a thickness of 63.22 nm ⁇ 20 nm.
  • the gray coated glass may include a 1-layer all-dielectric film, and the film-based design structure may be in the following forms:
  • Ti 3 O 5 (1) has a thickness of 23 nm ⁇ 20 nm;
  • the color light-transmissive coated plate of the embodiment of the present disclosure has a low transmittance in the visible light region, but has a high transmittance in the infrared light region, particularly in the range of 380 nm to 1100 nm.
  • the average transmission rate is high. It can be used as a color transparent front plate of a solar module to obtain a better power generation effect.
  • the same color can be obtained by increasing or decreasing the number of coating layers and adjusting the thickness of each film, for example, thickening or reducing the thickness of the film.
  • Light transmissive front plate Moreover, the spectrum of the color-transparent front panels of the same color prepared using different film-system design structures is almost the same. However, in the design of the membrane system, as many layers as possible should be used to reduce the cost.
  • the solar module includes a color transparent front plate 1, a film 2, a solar cell 3, and a back sheet 4 which are sequentially disposed.
  • a junction box 5 electrically connected to the solar cell 3 is disposed below or on one side of the backboard 4.
  • the color transparent front plate 1 can adopt any of the color light-transmitting coating plates shown in FIGS. 1-4.
  • the solar module of the present embodiment is a planar component.
  • the solar module may include a color transparent front plate 1, a film 2, a solar cell 3, a film 2, and a back sheet 4 which are sequentially disposed.
  • a junction box 5 electrically connected to the solar cell 3 is disposed below or on one side of the backboard 4.
  • the color transparent front plate 1 may be selected from a light-transmissive original coloring plate or a glazed glass including a colored glaze film layer.
  • the solar module of the present embodiment is a planar component.
  • the solar module may include a color transparent front plate 1, a film 2, a solar cell 3, and a back plate 4 which are sequentially disposed.
  • a junction box 5 electrically connected to the solar cell 3 is disposed below or on one side of the backboard 4.
  • the color transparent front plate 1 can adopt any of the color light-transmitting coating plates shown in FIGS. 1-4.
  • the solar module of the present embodiment is a curved component.
  • the solar module includes a color transparent front plate 1, a film 2, a solar cell 3, a film 2, and a back sheet 4 which are sequentially disposed.
  • a junction box 5 electrically connected to the solar cell 3 is disposed below or on one side of the backboard 4.
  • the color transparent front plate 1 can adopt any of the color light-transmitting coating plates shown in FIGS. 1-4.
  • the solar module of the present embodiment is a curved component.
  • the color light-transmitting front plate of the solar module of the embodiment of the present invention has a high transmittance in the infrared band, so that the average transmittance in the power generation wavelength range of the solar module, especially in the 380 nm to 1100 nm band, is greatly improved, so that The power generation efficiency of the solar module of the disclosed embodiment is significantly improved.
  • the color transparent coating plate in the solar module of the embodiment of the present disclosure can be made into different colors according to requirements, can meet various color requirements, and is more beautiful after being combined with the building.
  • the solar module of the embodiment of the present disclosure can be made flat and/or profiled according to the needs of use, for example, a folded surface, a curved surface or other shaped shapes, extending the range of use.
  • the solar cell may be a crystalline silicon thin film solar cell, an amorphous silicon thin film solar cell, a gallium arsenide thin film solar cell, or a copper indium gallium selenide thin film solar energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Photovoltaic Devices (AREA)
  • Optical Filters (AREA)

Abstract

提供了一种太阳能组件,包括依次设置的前板、胶片、太阳能电池和背板,或者,包括依次设置的前板、胶片、太阳能电池、胶片和背板,前板为彩色透光前板。太阳能组件为平面组件、异型组件,或者为平面组件与异型组件的结合。

Description

一种太阳能组件 技术领域
本公开涉及但不限于太阳能技术领域,尤其是一种太阳能组件。
背景技术
目前,应用于建筑上的太阳能组件主要是黑色的,不够美观。为适应光伏市场更苛刻的需求,在不断提高组件转换效率的同时,外观方面要更加人性化,更加贴合环境的需要。尤其是光伏与建筑、环境一体化对美学需求更加迫切,对于作为建筑材料的光伏产品,人们希望能够彰显建筑的个性。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开至少一实施例提供了一种太阳能组件,包括依次设置的前板、胶片、太阳能电池和背板,或者,包括依次设置的前板、胶片、太阳能电池、胶片和背板,所述前板为彩色透光前板。
本公开的一实施例中,所述太阳能组件可以为平面组件、异型组件,或者可以为平面组件与异型组件的结合。
本公开的一实施例中,所述异型组件可以为折面组件或者曲面组件,或者所述太阳能组件可以为至少两种不同形状的异形组件的结合。
本公开的一实施例中,所述彩色透光前板可以为彩色透光镀膜板或透光原片着色板,所述彩色透光镀膜板可以包括透光基板和设置在所述透光基板上的膜层。
本公开的一实施例中,当所述彩色透光前板为彩色透光镀膜板时,所述膜层可以为全介质膜,所述膜层可以包括至少一层高折射率材料膜,所述高折射率材料膜的折射率高于所述透光基板的折射率。
本公开的一实施例中,所述高折射率材料膜在550nm波长下的折射率 可以在1.92至2.60的范围内。
本公开的一实施例中,所述高折射率材料膜可以包括钛酸镧膜、二氧化钛膜、五氧化三钛膜、五氧化二铌膜、五氧化二钽膜、二氧化锆膜或这些膜中的至少两种形成的复合膜。
本公开的一实施例中,所述膜层还可以包括至少一层低折射率材料膜,所述低折射率材料膜的折射率低于所述透光基板的折射率;
当所述高折射率材料膜和所述低折射率材料膜分别为多层时,多层所述高折射率材料膜和多层所述低折射率材料膜可以交替层叠在所述透光基板上。
本公开的一实施例中,所述膜层可以包括两层所述高折射率材料膜和两层所述低折射率材料膜,两层所述高折射率材料膜和两层所述低折射率材料膜在所述透光基板一侧交替层叠设置,且所述透光基板与所述高折射率材料膜相邻。
本公开的一实施例中,所述膜层可以包括三层所述高折射率材料膜和两层所述低折射率材料膜,三层所述高折射率材料膜和两层所述低折射率材料膜在所述透光基板一侧交替层叠设置,且所述透光基板与所述高折射率材料膜相邻。
本公开的一实施例中,所述膜层可以包括三层所述高折射率材料膜和三层所述低折射率材料膜,三层所述高折射率材料膜和三层所述低折射率材料膜在所述透光基板一侧交替层叠设置,且所述透光基板与所述高折射率材料膜相邻。
本公开的一实施例中,所述低折射率材料膜在550nm波长下的折射率可以在1.35至1.50的范围内。
本公开的一实施例中,所述低折射率材料膜可以包括二氧化硅膜、氟化镁膜、或二氧化硅膜与氟化镁膜的复合膜。
本公开的一实施例中,所述透光基板可以为玻璃基板或透光高分子材料基板。
本公开的一实施例中,所述膜层可以为彩釉膜层。
本公开的一实施例中,所述彩色透光前板的颜色可以为蓝色、紫色、金黄色、黄色、红色、陶土色、灰色、橙色或绿色。
本公开的一实施例中,所述背板可以为彩色透光镀膜板或透光原片着色板。
本公开的一实施例中,所述胶片可以为聚乙烯醇缩丁醛(Polyvinyl Butyral,PVB)柔性胶片或乙烯醋酸乙烯酯(Ethylene Vinyl Acetate,EVA)柔性胶片。
本公开的一实施例中,所述太阳能电池包括晶硅薄膜太阳能电池、非晶硅薄膜太阳能电池、砷化镓薄膜太阳能电池、铜铟镓硒薄膜太阳能电池、铜铟硒薄膜太阳能电池、碲化镉薄膜太阳能电池、或有机聚合物薄膜太阳能电池。
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得清楚明白,或者通过实施本公开而了解。本公开的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为根据本公开其一实施例的彩色透光镀膜板的透过率曲线图;
图2为根据本公开另一实施例的彩色透光镀膜板的透过率曲线图;
图3为根据本公开又一实施例的彩色透光镀膜板的透过率曲线图;
图4为根据本公开再一实施例的彩色透光镀膜板的透过率曲线图;
图5为根据本公开一实施例的太阳能组件的结构示意图;
图6为根据本公开另一实施例的太阳能组件的结构示意图;
图7为根据本公开又一实施例的太阳能组件的结构示意图;
图8为根据本公开再一实施例的太阳能组件的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
本公开实施例提供了一种发电效果好并且彩色效果好的太阳能组件。
本公开实施例提供了一种太阳能组件,太阳能组件包括依次设置的前板、胶片、太阳能电池和背板,或者,包括依次设置的前板、胶片、太阳能电池、胶片和背板,前板为彩色透光前板。
太阳能组件可以为平面组件、或异型组件、或平面组件与异型组件的结合。因此可以根据建筑物的形状选择相匹配的太阳能组件的形状。
异型组件可以为折面组件、曲面组件和其它形状的异型组件中的任意一种或更多种的结合。
折面组件可以为一种折面组件或更多种折面组件的组合。
曲面组件可以为一种曲面组件或更多种曲面组件的组合。
彩色透光前板可以为彩色透光镀膜板或透光原片着色板,彩色透光镀膜板包括透光基板和设置在透光基板上的膜层。
膜层可以为全介质膜,膜层可以包括至少一层高折射率材料膜,高折射率材料膜的折射率高于透光基板的折射率。全介质膜在太阳光的照射下可以显示出颜色,可以根据需要对全介质膜进行膜系设计从而使其显示出期望的颜色。此外,全介质膜在红外波段的透过率高,使得在太阳能组件的发电波长范围内、尤其是在380nm至1100nm波段的平均透过率大大提高,可以使太阳能组件的发电效率得到显著提高。并且,选择全介质膜作为彩色透光前板上的膜层而不采用金属膜层时,避免了金属膜层被氧化的问题,而且无需再设置金属保护层,节约了成本。
高折射率材料膜可以由在550nm波长下的折射率为1.92至2.60的材料形成。选用这种高折射率材料膜可以使彩色透光前板在太阳能组件的发电波长范围内的平均透过率在更大程度上得到提高,从而提高太阳能组件的发电 效果。
高折射率材料膜可以选自钛酸镧膜、二氧化钛膜、五氧化三钛膜、五氧化二铌膜、五氧化二钽膜、二氧化锆膜或这些膜中的至少两种形成的复合膜。选用这种高折射率材料膜可以使彩色透光前板在太阳能组件的发电波长范围内的平均透过率在更大程度上得到提高,从而提高太阳能组件的发电效果。当高折射率材料膜选自钛酸镧膜、二氧化钛膜、五氧化三钛膜、五氧化二铌膜、五氧化二钽膜和二氧化锆膜中的任意一种时,本公开的太阳能组件的发电效果较佳,而且生产工艺较简单。
本公开实施例的太阳能组件的全介质膜还可以包括至少一层低折射率材料膜,低折射率材料膜的折射率低于透光基板的折射率,至少一层高折射率材料膜和至少一层低折射率材料膜交替设置在透光基板上。当全介质膜包括低折射率材料膜时,可以使全介质膜获得更加多样化的膜系设计结构,从而保证太阳能组件在具有良好的发电效果的前提下,能够获得更多的颜色。
低折射率材料膜可以由在550nm波长下的折射率为1.35至1.50的材料形成。选用这种低折射率材料膜可以使彩色透光前板在太阳能组件的发电波长范围内的平均透过率在更大程度上得到提高,从而提高太阳能组件的发电效果。
低折射率材料膜选自二氧化硅膜、氟化镁膜、或二氧化硅膜与氟化镁膜的复合膜。选用这种低折射率材料膜可以使彩色透光前板在太阳能组件的发电波长范围内波段的平均透过率在更大程度上得到提高,从而提高太阳能组件的发电效果。当低折射率材料膜选自二氧化硅膜和氟化镁膜中的任意一种时,本公开的太阳能组件的发电效果较佳,而且生产工艺较简单。
彩色透光镀膜板可以包括依次设置的透光基板和高折射率材料膜。
彩色透光镀膜板可以包括依次设置的透光基板、高折射率材料膜、低折射率材料膜、高折射率材料膜和低折射率材料膜。
彩色透光镀膜板可以包括依次设置的透光基板、高折射率材料膜、低折射率材料膜、高折射率材料膜、低折射率材料膜和高折射率材料膜。
彩色透光镀膜板可以包括依次设置的透光基板、高折射率材料膜、低折 射率材料膜、高折射率材料膜、低折射率材料膜、高折射率材料膜和低折射率材料膜。
彩色透光镀膜板可以包括依次设置的透光基板、低折射率材料膜和高折射率材料膜。
透光基板可以为玻璃基板或透光高分子材料基板。玻璃基板可以为超白浮法玻璃、普通浮法玻璃、本体着色玻璃或光学玻璃等。透光高分子材料基板可以为透光树脂基板,例如聚碳酸酯(Polycarbonate,PC)基板或聚甲基丙烯酸甲酯(Polymethyl Methacrylate,PMMA)基板等透光基板。玻璃基板的厚度可以为3.2mm至8mm。因此可以根据不同的使用场合和要求,例如柔韧性、透光率等要求来选择合适类型的透光基板和透光基板的厚度。
膜层还可以为彩釉膜层。因此,可以根据需要选择颜色并通过彩釉的方式在透光基板上形成带有颜色的膜层。
背板可以为彩色透光镀膜板或透光原片着色板。该背板具有装饰作用,使得本公开的太阳能组件的外观更加美观。
根据不同的膜层设计,彩色透光前板的颜色可以呈现为蓝色、紫色、金黄色、黄色、红色、陶土色、灰色、橙色或绿色。本公开的太阳能组件能够保证在太阳能组件的发电波长范围内具有较高的平均透过率的前提下根据需求制成不同的颜色,满足了丰富多彩的颜色需求,而且与建筑结合后更加美观。
以下列举了一些含有全介质膜的彩色透光镀膜板的实施方案,其中所采用的透光基板为厚度为3.2mm至8mm的超白浮法玻璃,此时的彩色透光镀膜板为彩色镀膜玻璃。其中,Ti 3O 5(1)代表透光基板上的第一层为高折射率材料Ti 3O 5,SiO 2(2)代表第二层为低折射率材料SiO 2,以此类推。其中,以“Air/透光基板/Ti 3O 5(1)/SiO 2(2)/Ti 3O 5(3)/SiO 2(4)/Air”为例,其指的是该镀膜板仅包括依次层叠设置的透光基板、Ti 3O 5膜、SiO 2膜、Ti 3O 5膜、SiO 2膜,且“Air/透光基板”指的是透光基板未与Ti 3O 5膜接触的一侧直接与空气接触,以此类推。
本公开一实施方案提供了一种蓝色的镀膜玻璃,该蓝色的镀膜玻璃的透过率曲线如图1所示。该蓝色的镀膜玻璃可以包括4层全介质膜,其膜系设计结构可以为以下几种形式:
a.Air/透光基板/Ti 3O 5(1)/SiO 2(2)/Ti 3O 5(3)/SiO 2(4)/Air,其中,Ti 3O 5(1)的厚度为33.48nm±20nm,SiO 2(2)的厚度为51.96nm±20nm,Ti 3O 5(3)的厚度为82.86nm±20nm,SiO 2(4)的厚度为117.36nm±20nm;或者
b.Air/透光基板/Ta 2O 5(1)/SiO 2(2)/Ta 2O 5(3)/SiO 2(4)/Air,其中,Ta 2O 5(1)的厚度为32.81nm±20nm,SiO 2(2)的厚度为55.97nm±20nm,Ta 2O 5(3)的厚度为78.81nm±20nm,SiO 2(4)的厚度为117.11nm±20nm;或者
c.Air/透光基板/Nb 2O 5(1)/SiO 2(2)/Nb 2O 5(3)/SiO 2(4)/Air,其中,Nb 2O 5(1)的厚度为33.41nm±20nm,SiO 2(2)的厚度为51.96nm±20nm,Nb 2O 5(3)的厚度为82.68nm±20nm,SiO 2(4)的厚度为117.36nm±20nm。
本公开另一实施方案提供了一种金黄色的镀膜玻璃,该金黄色的镀膜玻璃的透过率曲线如图2所示。该金黄色的镀膜玻璃可以包括5层全介质膜,其膜系设计结构可以为以下几种形式:
a.Air/透光基板/Ti 3O 5(1)/SiO 2(2)/Ti 3O 5(3)/SiO 2(4)/Ti 3O 5(5)/Air,其中,Ti 3O 5(1)的厚度为91.66nm±20nm,SiO 2(2)的厚度为35.17nm±20nm,Ti 3O 5(3)的厚度为66.32nm±20nm,SiO 2(4)的厚度为17.03nm±20nm,Ti 3O 5(5)的厚度为15.07nm±20nm;或者
b.Air/透光基板/Ta 2O 5(1)/SiO 2(2)/Ta 2O 5(3)/SiO 2(4)/Ta 2O 5(5)/Air,其中,Ta 2O 5(1)的厚度为94.35nm±20nm,SiO 2(2)的厚度为44.22nm±20nm,Ta 2O 5(3)的厚度为63.02nm±20nm,SiO 2(4)的厚度为15.74nm±20nm,Ta 2O 5(5)的厚度为19.76nm±20nm;或者
c.Air/透光基板/Nb 2O 5(1)/SiO 2(2)/Nb 2O 5(3)/SiO 2(4)Nb 2O 5(5)/Air,其中,Nb 2O 5(1)的厚度为91.46nm±20nm,SiO 2(2)的厚度为35.31nm ±20nm,Nb 2O 5(3)的厚度为58.56nm±20nm,SiO 2(4)的厚度为18.45nm±20nm,Nb 2O 5(5)的厚度为17.71nm±20nm。
本公开又一实施方案提供了一种红色的镀膜玻璃,该红色的镀膜玻璃的透过率曲线如图3所示。该红色的镀膜玻璃可以包括6层全介质膜,其膜系设计结构可以为以下几种形式:
a.Air/透光基板/Ti 3O 5(1)/SiO 2(2)/Ti 3O 5(3)/SiO 2(4)/Ti 3O 5(5)/SiO 2(6)/Air,其中,Ti 3O 5(1)的厚度为86.16nm±20nm,SiO 2(2)的厚度为120.43nm±20nm,Ti 3O 5(3)的厚度为72.95nm±20nm,SiO 2(4)的厚度为125.76nm±20nm,Ti 3O 5(5)的厚度为68.70nm±20nm,SiO 2(6)的厚度为63.09nm±20nm;或者
b.Air/透光基板/Ta 2O 5(1)/SiO 2(2)/Ta 2O 5(3)/SiO 2(4)/Ta 2O 5(5)/SiO 2(6)/Air,其中,Ta 2O 5(1)的厚度为90.83nm±20nm,SiO 2(2)的厚度为117.22nm±20nm,Ta 2O 5(3)的厚度为76.76nm±20nm,SiO 2(4)的厚度为123.06nm±20nm,Ta 2O 5(5)的厚度为69.84nm±20nm,SiO 2(6)的厚度为61.50nm±20nm;或者
c.Air/透光基板/Nb 2O 5(1)/SiO 2(2)/Nb 2O 5(3)/SiO 2(4)/Nb 2O 5(5)/SiO 2(6)/Air,其中,Nb 2O 5(1)的厚度为85.26nm±20nm,SiO 2(2)的厚度为120.06nm±20nm,Nb 2O 5(3)的厚度为72.44nm±20nm,SiO 2(4)的厚度为125.56nm±20nm,Nb 2O 5(5)的厚度为68.66nm±20nm,SiO 2(6)的厚度为63.22nm±20nm。
本公开再一实施方案提供了一种灰色的镀膜玻璃,该灰色的镀膜玻璃的透过率曲线如图4所示。该灰色的镀膜玻璃可以包括1层全介质膜,其膜系设计结构可以为以下几种形式:
a.Air/透光基板/Ti 3O 5(1)/Air,其中Ti 3O 5(1)的厚度为23nm±20nm;或者
b.Air/透光基板/Ta 2O 5(1)/Air,其中,Ta 2O 5(1)的厚度为30nm±20nm; 或者
c.Air/透光基板/Nb 2O 5(1)/Air,其中,Nb 2O 5(1)的厚度为22.66nm±20nm。
从图1-4可以看出,本公开实施方案的彩色透光镀膜板虽然在可见光区域的透过率偏低,但在红外光区域的透过率高,尤其是在380nm至1100nm波段范围内的平均透过率高。将其用作太阳能组件的彩色透光前板,会获得较佳的发电效果。
此外,可理解,使用同样的高折射率材料和低折射率材料,通过增减镀膜层数及调整每一层膜的厚度,例如加厚或减薄膜的厚度,也可以制得同样颜色的彩色透光前板。而且,采用不同膜系设计结构制备的同样颜色的彩色透光前板的光谱几乎相同。但是在膜系设计时应尽量采用较少层数的膜,以降低成本。
以下列举了一些太阳能组件的实施方案。
如图5所示,在一个实施方案中,太阳能组件包括依次设置的彩色透光前板1、胶片2、太阳能电池3和背板4。背板4的下方或一侧设置有与太阳能电池3电连接的接线盒5。彩色透光前板1可以采用图1-4所示的任意一种彩色透光镀膜板。本实施方案的太阳能组件为平面组件。
如图6所示,在另一个实施方案中,太阳能组件可以包括依次设置的彩色透光前板1、胶片2、太阳能电池3、胶片2和背板4。背板4的下方或一侧设置有与太阳能电池3电连接的接线盒5。彩色透光前板1可以选择透光原片着色板或包括彩釉膜层的彩釉玻璃。本实施方案的太阳能组件为平面组件。
如图7所示,在又一个实施方案中,太阳能组件可以包括依次设置的彩色透光前板1、胶片2、太阳能电池3和背板4。背板4的下方或一侧设置有 与太阳能电池3电连接的接线盒5。彩色透光前板1可以采用图1-4所示的任意一种彩色透光镀膜板。本实施方案的太阳能组件为曲面组件。
如图8所示,在再一个实施方案中,太阳能组件包括依次设置的彩色透光前板1、胶片2、太阳能电池3、胶片2和背板4。背板4的下方或一侧设置有与太阳能电池3电连接的接线盒5。彩色透光前板1可以采用图1-4所示的任意一种彩色透光镀膜板。本实施方案的太阳能组件为曲面组件。
本公开实施方案的太阳能组件采用的彩色透光前板在红外波段的透过率高,使得在太阳能组件的发电波长范围内、尤其是在380nm至1100nm波段的平均透过率大大提高,使得本公开实施方案的太阳能组件的发电效率得到了显著提高。同时本公开实施方案的太阳能组件中的彩色透光镀膜板可根据需求制成不同的颜色,能够满足丰富多彩的颜色需求,而且与建筑结合后更加美观。
而且,当采用含有彩釉膜层或全介质膜的彩色透光镀膜板作为前板时,由于不采用金属膜层,避免了金属膜层被氧化的问题,而且无需再设置金属保护层,节约了成本。
此外,本公开实施方案的太阳能组件可根据使用场合需要制成平面的和/或异型的,例如,折面的、曲面的或其他异型形状的,扩展了使用场合的范围。
应理解,本公开的太阳能电池的具体类型不限,本公开实施例中,太阳能电池可以选用晶硅薄膜太阳能电池、非晶硅薄膜太阳能电池、砷化镓薄膜太阳能电池、铜铟镓硒薄膜太阳能电池、铜铟硒薄膜太阳能电池、碲化镉薄膜太阳能电池、或有机聚合物薄膜太阳能电池等。
本公开内容是本公开实施例的原则的示例,并非对本公开作出任何形式上或实质上的限定,或将本公开限定到具体的实施方案。对本领域的技术人员而言,很显然本公开实施例的技术方案的要素、方法和系统等,可以进行变动、改变、改动、演变,而不背离如上的本公开的实施例、技术方案的, 如权利要求中所定义的原理、精神和范围。这些变动、改变、改动、演变的实施方案均包括在本公开的等同实施例内,这些等同实施例均包括在本公开的由权利要求界定的范围内。虽然可以许多不同形式来使本公开实施例具体化,但此处详细描述的是本公开的一些实施方案。此外,本公开的实施例包括此处的各种实施方案的一些或全部的任意可能的组合,也包括在本公开的由权利要求界定的范围内。在本公开中或在任一个引用的专利、引用的专利申请或其它引用的资料中任何地方所提及的所有专利、专利申请和其它引用资料据此通过引用以其整体并入。
以上公开内容规定为说明性的而不是穷尽性的。对于本领域技术人员来说,本说明书会暗示许多变化和可选择方案。所有这些可选择方案和变化旨在被包括在本权利要求的范围内,其中术语“包括”意思是“包括,但不限于”。
在此完成了对本公开可选择的实施方案的描述。本领域技术人员可认识到此处的实施方案的其它等效变换,这些等效变换也为由附于本文的权利要求所包括。

Claims (19)

  1. 一种太阳能组件,包括依次设置的前板、胶片、太阳能电池和背板,或者,包括依次设置的前板、胶片、太阳能电池、胶片和背板,所述前板为彩色透光前板。
  2. 根据权利要求1所述的太阳能组件,其中,所述太阳能组件为平面组件、异型组件,或者为平面组件与异型组件的结合。
  3. 根据权利要求2所述的太阳能组件,其中,所述异型组件为折面组件或者曲面组件,或者所述太阳能组件为至少两种不同形状的异形组件的结合。
  4. 根据权利要求1-3中任一项所述的太阳能组件,其中,所述彩色透光前板为彩色透光镀膜板或透光原片着色板,所述彩色透光镀膜板包括透光基板和设置在所述透光基板上的膜层。
  5. 根据权利要求4所述的太阳能组件,其中,当所述彩色透光前板为彩色透光镀膜板时,所述膜层为全介质膜,所述膜层包括至少一层高折射率材料膜,所述高折射率材料膜的折射率高于所述透光基板的折射率。
  6. 根据权利要求5所述的太阳能组件,其中,所述高折射率材料膜在550nm波长下的折射率在1.92至2.60的范围内。
  7. 根据权利要求5或6所述的太阳能组件,其中,所述高折射率材料膜包括钛酸镧膜、二氧化钛膜、五氧化三钛膜、五氧化二铌膜、五氧化二钽膜、二氧化锆膜或这些膜中的至少两种形成的复合膜。
  8. 根据权利要求5-7中任一项所述的太阳能组件,其中,所述膜层还包括至少一层低折射率材料膜,所述低折射率材料膜的折射率低于所述透光基板的折射率;
    当所述高折射率材料膜和所述低折射率材料膜分别为多层时,多层所述高折射率材料膜和多层所述低折射率材料膜交替层叠在所述透光基板上。
  9. 根据权利要求8所述的太阳能组件,其中,所述膜层包括两层所述高折射率材料膜和两层所述低折射率材料膜,两层所述高折射率材料膜 和两层所述低折射率材料膜在所述透光基板一侧交替层叠设置,且所述透光基板与所述高折射率材料膜相邻。
  10. 根据权利要求8所述的太阳能组件,其中,所述膜层包括三层所述高折射率材料膜和两层所述低折射率材料膜,三层所述高折射率材料膜和两层所述低折射率材料膜在所述透光基板一侧交替层叠设置,且所述透光基板与所述高折射率材料膜相邻。
  11. 根据权利要求8所述的太阳能组件,其中,所述膜层包括三层所述高折射率材料膜和三层所述低折射率材料膜,三层所述高折射率材料膜和三层所述低折射率材料膜在所述透光基板一侧交替层叠设置,且所述透光基板与所述高折射率材料膜相邻。
  12. 根据权利要求8-11任一项所述的太阳能组件,其中,所述低折射率材料膜在550nm波长下的折射率在1.35至1.50的范围内。
  13. 根据权利要求8-12任一项所述的太阳能组件,其中,所述低折射率材料膜包括二氧化硅膜、氟化镁膜,或二氧化硅膜与氟化镁膜的复合膜。
  14. 根据权利要求4-13中任一项所述的太阳能组件,其中,所述透光基板为玻璃基板或透光高分子材料基板。
  15. 根据权利要求4中任一项所述的太阳能组件,其中,所述膜层为彩釉膜层。
  16. 根据权利要求1-15中任一项所述的太阳能组件,其中,所述彩色透光前板的颜色为蓝色、紫色、金黄色、黄色、红色、陶土色、灰色、橙色或绿色。
  17. 根据权利要求1-16中任一项所述的太阳能组件,其中,所述背板为彩色透光镀膜板或透光原片着色板。
  18. 根据权利要求1-17中任一项所述的太阳能组件,其中,所述胶片为聚乙烯醇缩丁醛柔性胶片或乙烯醋酸乙烯酯柔性胶片。
  19. 根据权利要求1-18中任一项所述的太阳能组件,其中,所述太阳能电池包括晶硅薄膜太阳能电池、非晶硅薄膜太阳能电池、砷化镓薄膜太阳能电池、铜铟镓硒薄膜太阳能电池、铜铟硒薄膜太阳能电池、碲化镉薄 膜太阳能电池、或有机聚合物薄膜太阳能电池。
PCT/CN2018/094444 2018-05-08 2018-07-04 一种太阳能组件 WO2019214033A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18186875.3A EP3567635A1 (en) 2018-05-08 2018-08-01 Solar module
US16/051,623 US20190348555A1 (en) 2018-05-08 2018-08-01 Solar module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201820679745.9U CN208336244U (zh) 2018-05-08 2018-05-08 一种太阳能组件
CN201820679745.9 2018-05-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/051,623 Continuation US20190348555A1 (en) 2018-05-08 2018-08-01 Solar module

Publications (1)

Publication Number Publication Date
WO2019214033A1 true WO2019214033A1 (zh) 2019-11-14

Family

ID=64776245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094444 WO2019214033A1 (zh) 2018-05-08 2018-07-04 一种太阳能组件

Country Status (6)

Country Link
JP (1) JP2019197880A (zh)
KR (1) KR20190128541A (zh)
CN (1) CN208336244U (zh)
AU (1) AU2018220161A1 (zh)
BR (1) BR202018070387U2 (zh)
WO (1) WO2019214033A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018202A (zh) * 2019-05-30 2020-12-01 汉能移动能源控股集团有限公司 一种柔性太阳能组件
JPWO2021246197A1 (zh) * 2020-06-04 2021-12-09
CN115458613A (zh) * 2022-11-09 2022-12-09 浙江爱旭太阳能科技有限公司 彩色太阳能电池片、彩色电池组件和光伏系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707223A (zh) * 2009-10-29 2010-05-12 中山大学 光谱下转移彩色电池组件
KR20140012226A (ko) * 2012-07-18 2014-02-03 엘지전자 주식회사 태양전지 모듈
CN203536452U (zh) * 2013-10-23 2014-04-09 无锡市大禾高分子材料有限公司 一种彩色太阳能电池组件
CN107068791A (zh) * 2017-04-01 2017-08-18 广州达天计算机科技有限公司 太阳能板及其制造安装方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11284216A (ja) * 1998-02-02 1999-10-15 Canon Inc 光起電力素子、太陽電池モジュ―ル、その製造方法、施工方法及び太陽光発電システム
JP3717369B2 (ja) * 2000-04-21 2005-11-16 シャープ株式会社 太陽電池モジュール及びその製造方法
US8058549B2 (en) * 2007-10-19 2011-11-15 Qualcomm Mems Technologies, Inc. Photovoltaic devices with integrated color interferometric film stacks
US8404967B2 (en) * 2008-01-08 2013-03-26 Certainteed Corporation Photovoltaic module
JP5327286B2 (ja) * 2011-06-20 2013-10-30 株式会社日野樹脂 多機能性モニュメント構造体の設置構造
DK2897795T3 (da) * 2012-09-20 2020-07-20 Swissinso Sa Lamineret glasplade med farvet reflektion og høj soltransmittans, som er egnet til solenergisystemer
EP2898534B1 (en) * 2012-09-20 2021-11-24 École Polytechnique Fédérale de Lausanne (EPFL) Interference filter with angular independent orange colour of reflection and high solar transmittance, suitable for roof-integration of solar energy systems
JP6917123B2 (ja) * 2015-09-30 2021-08-11 大日本印刷株式会社 太陽電池モジュール用の保護シート、及び、それを用いた太陽電池モジュール
WO2017090056A1 (en) * 2015-11-24 2017-06-01 Indian Institute Of Technology Bombay Solar module with selective colored coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707223A (zh) * 2009-10-29 2010-05-12 中山大学 光谱下转移彩色电池组件
KR20140012226A (ko) * 2012-07-18 2014-02-03 엘지전자 주식회사 태양전지 모듈
CN203536452U (zh) * 2013-10-23 2014-04-09 无锡市大禾高分子材料有限公司 一种彩色太阳能电池组件
CN107068791A (zh) * 2017-04-01 2017-08-18 广州达天计算机科技有限公司 太阳能板及其制造安装方法

Also Published As

Publication number Publication date
AU2018220161A1 (en) 2019-11-28
BR202018070387U2 (pt) 2019-12-24
JP2019197880A (ja) 2019-11-14
CN208336244U (zh) 2019-01-04
KR20190128541A (ko) 2019-11-18

Similar Documents

Publication Publication Date Title
WO2019214036A1 (zh) 一种镀膜板及其制备方法和一种太阳能组件
EP3129810B1 (en) Solar photovoltaic module
WO2019214037A1 (zh) 一种曲面镀膜板及其制备方法和一种太阳能组件
EP3129811B1 (en) Infrared transmitting cover sheet
WO2019214033A1 (zh) 一种太阳能组件
US20090165849A1 (en) Transparent solar cell module
CN104736338A (zh) 适于太阳能系统的具有彩色反射和高日光透射率的层压玻璃窗
CN101651157A (zh) 具有色彩调制的太阳能电池及其制造方法
US20190348555A1 (en) Solar module
CN112047642A (zh) 光伏建筑一体化用黄色盖板玻璃及其制备方法
US20090277500A1 (en) Transparent solar cell module
JP2003197937A (ja) 太陽電池および太陽電池モジュールおよび太陽電池色彩制御方法
CN210607294U (zh) 一种用于bipv的铜铟镓硒太阳能电池
US20150288322A1 (en) Building envelope element having a first glass layer and a second photovoltaic layer
WO2014180019A1 (zh) 太阳能模块
EP2806464B1 (en) Colored solar cells and panels containing the same
US11745473B2 (en) Laminated glazing with coloured reflection and high solar transmittance, and solar energy systems employing the same
WO2019214059A1 (zh) 太阳能组件和太阳能发电装置
TWM440530U (en) Light transmission tunable photovoltaic panel and photovoltaic panel array
CN111960680A (zh) 一种彩色玻璃及光伏组件
CN114864728B (zh) 一种高透光咖色玻璃以及咖色太阳能组件
CN205004341U (zh) 金色结晶硅太阳能电池及其面板
KR20220164902A (ko) 태양광 투과도가 향상된 유리를 이용한 컬러 태양광 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 10/03/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18917992

Country of ref document: EP

Kind code of ref document: A1