WO2019214036A1 - 一种镀膜板及其制备方法和一种太阳能组件 - Google Patents

一种镀膜板及其制备方法和一种太阳能组件 Download PDF

Info

Publication number
WO2019214036A1
WO2019214036A1 PCT/CN2018/094690 CN2018094690W WO2019214036A1 WO 2019214036 A1 WO2019214036 A1 WO 2019214036A1 CN 2018094690 W CN2018094690 W CN 2018094690W WO 2019214036 A1 WO2019214036 A1 WO 2019214036A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
film
index material
material film
high refractive
Prior art date
Application number
PCT/CN2018/094690
Other languages
English (en)
French (fr)
Inventor
武振羽
陶利松
万军鹏
闫燚
杨世忠
方振雷
Original Assignee
北京汉能光伏投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京汉能光伏投资有限公司 filed Critical 北京汉能光伏投资有限公司
Publication of WO2019214036A1 publication Critical patent/WO2019214036A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • H02J3/383
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/26Building materials integrated with PV modules, e.g. façade elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present disclosure relates to, but is not limited to, the field of solar energy technology, and in particular, to a coated plate, a method for preparing the same, and a solar module.
  • the solar thin film photovoltaic module can use color coated glass as the front plate for the purpose of improving the heat reflection in the infrared band and achieving low radiation.
  • the film layer of the coated glass mainly contains a metal layer, and the film forming process mainly adopts a magnetron sputtering method.
  • solar thin film photovoltaic modules prepared by using coated glass containing a metal layer are mainly used in construction. Both heat-reflective coated glass and low-emission coated glass are the front-coated glass of common solar modules.
  • At least one embodiment of the present disclosure provides a coated plate comprising a light transmissive substrate and a film layer disposed on a side of the light transmissive substrate, the film layer being an all dielectric film, the film layer comprising a high refractive index material film The refractive index of the high refractive index material film is higher than the refractive index of the light transmissive substrate.
  • the film layer may further include a low refractive index material film laminated on the high refractive index material film, the low refractive index material film having a lower refractive index than the light transmissive substrate Refractive index.
  • the high refractive index material film and the low refractive index material film may each be a plurality of layers, and the plurality of the high refractive index material film and the plurality of the low refractive index material film are in a layer
  • the light-transmissive substrates are alternately stacked.
  • the film layer may include two layers of the high refractive index material film and two layers of the low refractive index material film, two layers of the high refractive index material film and two layers of the low refractive index
  • the rate material films are alternately stacked on the side of the light-transmitting substrate, and the light-transmitting substrate is adjacent to the high refractive index material film.
  • the film layer may include three layers of the high refractive index material film and two layers of the low refractive index material film, three layers of the high refractive index material film, and two layers of the low refractive index.
  • the rate material films are alternately stacked on the side of the light-transmitting substrate, and the light-transmitting substrate is adjacent to the high refractive index material film.
  • the film layer may include three layers of the high refractive index material film and three layers of the low refractive index material film, three layers of the high refractive index material film, and three layers of the low refractive index.
  • the rate material films are alternately stacked on the side of the light-transmitting substrate, and the light-transmitting substrate is adjacent to the high refractive index material film.
  • the refractive index of the high refractive index material film at a wavelength of 550 nm may be in the range of 1.92 to 2.60.
  • the refractive index of the low refractive index material film at a wavelength of 550 nm may be in the range of 1.35 to 1.50.
  • the high refractive index material film may be selected from a barium titanate film, a titanium dioxide film, a titanium pentoxide film, a tantalum pentoxide film, a tantalum pentoxide film or a zirconium dioxide film, or A composite film formed by at least two of these films.
  • the material of the low refractive index material film may be a silicon dioxide film, a magnesium fluoride film, or a composite film of a silicon dioxide film and a magnesium fluoride film.
  • the materials of the plurality of high refractive index material films may be the same, or at least two layers of the high refractive index material film.
  • the materials can vary.
  • the materials of the plurality of layers of the low refractive index material may be the same, or at least two layers of the film of the low refractive index material The materials can vary.
  • the color of the coating plate may be blue, purple, gold, yellow, red, terracotta, gray, orange or green.
  • the light transmissive substrate may be a glass substrate or a light transmissive polymer material substrate.
  • At least one embodiment of the present disclosure provides a method of preparing a coated plate, the method comprising:
  • a high refractive index material film is formed on a surface of one side of the light transmissive substrate, and a refractive index of the high refractive index material film is higher than a refractive index of the light transmissive substrate.
  • the method may further include: forming a low refractive index material film laminated with the high refractive index material film, the low refractive index material film having a lower refractive index than the transparent substrate Refractive index.
  • the method may specifically include:
  • the high refractive index material film and the low refractive index material film may be formed on the light transmissive substrate by an evaporation coating method or a magnetron sputtering method in a vacuum state.
  • the vacuum degree in the vacuum state may be maintained in a range of 1.0 ⁇ 10 -4 Pa to 1.0 ⁇ 10 -3 Pa before melting or sputtering the plating material; and in melting or sputtering When the material is coated, the degree of vacuum in the vacuum state can be maintained in the range of 3.0 ⁇ 10 -2 Pa to 8.0 ⁇ 10 -2 Pa.
  • At least one embodiment of the present disclosure provides a solar module, the front panel of the solar module comprising the coated plate, the original colored plate or the colored glaze obtained by the colored glaze on the original sheet.
  • the solar module may further include a film, a solar cell, and a back sheet disposed in sequence on one side of the front panel.
  • the solar module may further include a film, a solar cell, a film, and a back sheet disposed in sequence on one side of the front panel.
  • Figure 1 is a comparison of transmittance curves of conventional low-emission coated glass and uncoated blank glass.
  • FIG. 2 is a graph showing the transmittance of a coated plate according to an embodiment of the present disclosure.
  • Fig. 3 is a graph showing the transmittance of a coated plate according to an embodiment of the present disclosure.
  • FIG 4 is a graph showing the transmittance of a coated plate according to an embodiment of the present disclosure.
  • Fig. 5 is a graph showing the transmittance of a coated plate according to an embodiment of the present disclosure.
  • FIG. 6 is a flow chart of a method for preparing a coated plate according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural view of a solar module according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a structure of a solar module according to another embodiment of the present disclosure.
  • Conventional heat-reflecting coated glass also known as solar-controlled coated glass
  • solar-controlled coated glass is a product that is coated with a layer of metal or metal compound on the surface of the glass to achieve the desired shading effect and produce the desired reflection by controlling the transmittance of sunlight as needed. Color, high reflection in the infrared range, low transmission.
  • Conventional low-emission coated glass also known as Low-E glass
  • Low-E glass is a thin film of a metal or compound combination with low radiation function on the surface of the glass, so that the glass surface has a very high far-infrared reflectance, thereby achieving thermal insulation. purpose.
  • the common low-emission coated glass is: single silver low-emission coated glass, double-silver low-emission coated glass and three-silver low-emission coated glass.
  • the film layer of single silver low-emission coated glass is usually 5 layers, and the film thickness is >50 nm; the film layer of double-silver low-emission coated glass is usually 10 layers, and the film thickness is >100 nm; the film layer of three-silver low-emission coated glass is usually It is 15 layers and the film thickness is >180 nm.
  • the film structure of single silver low-emission coated glass is set as air/glass/cushion/metal compound/bonding layer/metal silver layer/silver layer protective layer/barrier material/protective layer/metal compound/diamond-like material/air Cascade.
  • Double silver coated glass, film structure is set to air / glass / bedding / metal compound / bonding layer / metal silver layer 1 / silver layer protective layer 1 / barrier material / protective layer / metal compound / diamond-like material / air in turn Cascade.
  • Three silver coated glass, film structure is set to air / glass / bedding / metal compound / bonding layer / metal silver layer 1 / silver layer protective layer 1 / barrier material / intermediate optical interference layer 1 / metal silver layer 2 / silver Layer protection layer 2 / barrier material / intermediate optical interference layer 2 / metal silver layer 3 / silver layer protection layer 3 / barrier material / protective layer / metal compound / diamond-like material / air are laminated in sequence.
  • air/glass means that one side of the glass is directly in contact with air, and so on.
  • Figure 1 is a comparison of transmittance curves of single silver low-emission coated glass, double-silver low-emission coated glass, three-silver low-emission coated glass, and uncoated blank glass. Since conventional color coated glass is mainly used in the field of building energy conservation, it mainly reflects infrared light, and the infrared band (780-1100 nm) exhibits high reflection and low transmission.
  • the conventional color coated glass has a low average transmittance, which is disadvantageous for the solar module to generate electricity.
  • the film structure contains a metal film layer, the cost of the metal film layer itself is high, and the metal film layer is unstable, and is easily oxidized, and a metal protective layer is needed to prevent the metal film layer from being oxidized, thereby greatly increasing the production cost.
  • the photovoltaic modules currently used in buildings are mainly black, not aesthetically pleasing, and the solar modules of other colors have high solar reflectance and low solar transmittance, resulting in poor solar power generation.
  • Embodiments of the present disclosure provide a coating plate including a light-transmitting substrate and a film layer disposed on one side of the light-transmitting substrate, the film layer being an all-dielectric film, the film layer including a high refractive index material film, and a high refractive index material film The refractive index is higher than the refractive index of the transparent substrate.
  • the film layer may further include a low refractive index material film laminated with the high refractive index material film, and the low refractive index material film has a lower refractive index than the light transmissive substrate.
  • the high refractive index material film and the low refractive index material film may each be a plurality of layers, and the multilayer high refractive index material film and the multilayer low refractive index material film may be alternately laminated on the light transmissive substrate.
  • the coating plate may include a light transmissive substrate and a high refractive index material film which are sequentially disposed.
  • the coating plate may include a light transmissive substrate, a high refractive index material film, a low refractive index material film, a high refractive index material film, and a low refractive index material film which are sequentially disposed.
  • the coating plate may include a light transmissive substrate, a high refractive index material film, a low refractive index material film, a high refractive index material film, a low refractive index material film, and a high refractive index material film which are sequentially disposed.
  • the coating plate may include a light transmitting substrate, a high refractive index material film, a low refractive index material film, a high refractive index material film, a low refractive index material film, a high refractive index material film, and a low refractive index material film which are sequentially disposed.
  • the coating plate may include a light transmissive substrate, a low refractive index material film, and a high refractive index material film which are sequentially disposed.
  • the material film directly laminated on the light-transmitting substrate may be either a high refractive index material film or a low refractive index material film.
  • the high refractive index material may be a material having a refractive index of 1.92 to 2.60 at a wavelength of 550 nm.
  • the use of such a material to form a high refractive index material film allows the average transmittance of the coated plate in the power generation wavelength range of the solar module to be more It is improved to a large extent, thereby improving the power generation effect of the solar module prepared by using the coated plate.
  • the high refractive index material film may be selected from a barium titanate film, a titanium dioxide film, a pentoxide film, a tantalum pentoxide film, a tantalum pentoxide film, and a zirconium dioxide film, or at least two of these films.
  • the coating plate can be made The average transmittance in the power generation wavelength range of the solar module is obtained to a greater extent, thereby improving the power generation effect of the solar module prepared by using the coating plate.
  • the low refractive index material may be a material having a refractive index of 1.35 to 1.50 at a wavelength of 550 nm.
  • the use of such a material to form a low refractive index material film allows the average transmittance of the coated plate in the power generation wavelength range of the solar module to be more It is improved to a large extent, thereby improving the power generation effect of the solar module prepared by using the coated plate.
  • the low refractive index material film may be a silicon dioxide film, a magnesium fluoride film, or a composite film of silicon dioxide and magnesium fluoride.
  • the low refractive index material film is a silicon dioxide film or a magnesium fluoride film, the average transmittance of the coated plate in the power generation wavelength range of the solar module can be improved to a greater extent, thereby improving the preparation by using the coating plate. The power generation effect of solar modules.
  • the film layer comprises a plurality of layers of high refractive index material film
  • the plurality of layers of high refractive index material film may be the same or not identical.
  • the film layer comprises a plurality of films of low refractive index material
  • the plurality of layers of low refractive index material may be the same or not identical.
  • the difference in the multilayer high refractive index material film or the multilayer low refractive index material film may include, but is not limited to, differences in properties such as material, thickness, shape, area, and the like.
  • the coated plate can be colored, and the color can be blue, purple, golden yellow, yellow, red, terracotta, gray, orange or green depending on the film layer. Therefore, the coated plate of the present disclosure can ensure different colors according to requirements under the premise of having a high average transmittance in the power generation wavelength range of the solar module, satisfying various color requirements, and being more beautiful after being combined with the building. And the coated plate of the present disclosure can also be applied to a cover plate having a decorative effect requirement.
  • the film design structure of the coated plate can be designed according to the desired color of the coated plate using the film design software.
  • the membrane design software such as Essential Macleod, TFCacl or OptiLayer can be used to optimize the structure of the coating plate through the membrane system design, and the membrane system design structure with lower cost and simple preparation process can be selected under the condition of satisfying different color requirements.
  • the light transmissive substrate may be a glass substrate or a light transmissive polymer material substrate.
  • the glass substrate may be ultra-white float glass, ordinary float glass, bulk colored glass or optical glass.
  • the light-transmitting polymer material substrate may be a light-transmitting resin substrate.
  • the light-transmitting resin substrate may be a transparent substrate such as a polycarbonate (PC) substrate or a polymethyl methacrylate (PMMA) substrate.
  • the thickness of the glass substrate may be from 3.2 mm to 8 mm. Therefore, those skilled in the art can select a suitable type of the transparent substrate and the thickness of the transparent substrate according to different applications and requirements, such as flexibility, light transmittance and the like.
  • the light transmissive substrate used is an ultra-white float glass having a thickness of 3.2 mm to 8 mm.
  • Ti 3 O 5 (1) represents that the first layer on the light-transmitting substrate is a high refractive index material Ti 3 O 5
  • SiO 2 (2) represents a second layer is a low refractive index material SiO 2 , and so on.
  • Air/transparent substrate / Ti 3 O 5 (1) / SiO 2 (2) / Ti 3 O 5 (3) / SiO 2 (4) / Air refers to the coated plate Only the light-transmissive substrate, Ti 3 O 5 , SiO 2 , Ti 3 O 5 , SiO 2 , which are sequentially stacked, and the “Air/transparent substrate” are referred to, the transparent substrate is not in contact with the Ti 3 O 5 film layer. One side is in direct contact with the air, and so on.
  • the blue coated glass may comprise a 4-layer all-dielectric film, and the film-based design structure may be in the following forms:
  • a.Air/transparent substrate/Ti 3 O 5 (1)/SiO 2 (2)/Ti 3 O 5 (3)/SiO 2 (4)/Air wherein the thickness of Ti 3 O 5 (1) is 33.48 nm ⁇ 20 nm, the thickness of SiO 2 (2) is 51.96 nm ⁇ 20 nm, the thickness of Ti 3 O 5 (3) is 82.86 nm ⁇ 20 nm, and the thickness of SiO 2 (4) is 117.36 nm ⁇ 20 nm;
  • Nb 2 O 5 (1) is 33.41 nm ⁇ 20 nm
  • the thickness of SiO 2 (2) is 51.96 nm ⁇ 20 nm
  • the thickness of Nb 2 O 5 (3) is 82.68 nm ⁇ 20 nm
  • the thickness of SiO 2 (4) is 117.36 nm ⁇ 20 nm.
  • An embodiment of the present disclosure provides a golden yellow coated glass having a transmittance curve as shown in FIG.
  • the golden coated glass may comprise a 5-layer all-dielectric film, and the film-based design structure may be in the following forms:
  • Nb 2 O 5 (1) has a thickness of 91.46 nm ⁇ 20 nm
  • SiO 2 (2) has a thickness of 35.31 nm ⁇ 20 nm
  • Nb 2 O 5 (3) has a thickness of 58.56 nm ⁇ 20 nm
  • SiO 2 (4) has a thickness of 18.45 nm.
  • the thickness of ⁇ 20 nm and Nb 2 O 5 (5) is 17.71 nm ⁇ 20 nm.
  • the red coated glass may comprise a 6-layer all-dielectric film, and the film-based design structure may be in the following forms:
  • Ti 3 O 5 (1) has a thickness of 86.16 nm ⁇ 20 nm
  • SiO 2 (2) has a thickness of 120.43 nm ⁇ 20 nm
  • Ti 3 O 5 (3) has a thickness of 72.95 nm ⁇ 20 nm
  • SiO 2 ( 4) has a thickness of 125.76 nm ⁇ 20 nm
  • a thickness of Ti 3 O 5 (5) is 68.70 nm ⁇ 20 nm
  • a thickness of SiO 2 (6) is 63.09 nm ⁇ 20 nm;
  • Ta 2 O 5 (1) has a thickness of 90.83 nm ⁇ 20 nm
  • SiO 2 (2) has a thickness of 117.22 nm ⁇ 20 nm
  • Ta 2 O 5 (3) has a thickness of 76.76 nm ⁇ 20 nm
  • SiO 2 ( 4) has a thickness of 123.06 nm ⁇ 20 nm
  • Ta 2 O 5 (5) has a thickness of 69.84 nm ⁇ 20 nm
  • SiO 2 (6) has a thickness of 61.50 nm ⁇ 20 nm;
  • Nb 2 O 5 (1) has a thickness of 85.26 nm ⁇ 20 nm
  • SiO 2 (2) has a thickness of 120.06 nm ⁇ 20 nm
  • Nb 2 O 5 (3) has a thickness of 72.44 nm ⁇ 20 nm
  • SiO 2 ( 4) has a thickness of 125.56 nm ⁇ 20 nm
  • Nb 2 O 5 (5) has a thickness of 68.66 nm ⁇ 20 nm
  • SiO 2 (6) has a thickness of 63.22 nm ⁇ 20 nm.
  • An embodiment of the present disclosure provides a gray coated glass having a transmittance curve as shown in FIG.
  • the gray coated glass may include a 1-layer all-dielectric film, and the film-based design structure may be in the following forms:
  • Ti 3 O 5 (1) has a thickness of 23 nm ⁇ 20 nm;
  • the color plated plate of the embodiment of the present disclosure has a low transmittance in the visible light region, the transmittance in the infrared light region is high, so that in the power generation wavelength range of the solar module, In particular, the average transmittance in the range of 380 nm to 1100 nm is high. Using it as the front plate of a solar module will achieve better power generation.
  • the same color coated glass can be obtained by increasing or decreasing the number of coating layers and adjusting the thickness of each film, for example, thickening or reducing the film thickness. .
  • the spectra of coated glass of the same color prepared using different film design structures are almost identical. However, in the design of the membrane system, as many layers as possible should be used to reduce the cost.
  • the film layer may include two layers of a high refractive index material film and two layers of a low refractive index material film, the two layers of the high refractive index material film being the same, and the two layers of the low refractive index material The film is also the same. It should be understood that when the film layer comprises two films of high refractive index material, the two layers of high refractive index material film may use a film of a high refractive index material of different materials; and when the film layer comprises two films of low refractive index material, two A low refractive index material film of a different material may also be used for the layer of the low refractive index material film.
  • the coated plate of the present disclosure adopts an all-dielectric film, and improves the transmittance of the coated plate in the infrared band, thereby improving the average transmittance of the coated plate in the power generation wavelength range of the solar module, especially in the wavelength band of 380 nm to 1100 nm,
  • the power generation efficiency of the solar module of the present disclosure by using the coated plate is significantly improved.
  • the coated plate of the present disclosure does not use a metal film layer, the problem that the metal film layer is oxidized is avoided, and the metal protective layer is not required to be disposed, which saves cost.
  • coated plate of the present disclosure can be made into different colors according to requirements, can meet various color requirements, and is more beautiful after being combined with the building.
  • the coated plate of the present disclosure can also be applied to a cover plate having a decorative effect requirement, such as a mobile phone back plate, a refrigerator panel, and the like.
  • the embodiment of the present disclosure further provides a method for preparing a coated plate, comprising: forming a high refractive index material film on a surface of one side of the transparent substrate, wherein the refractive index of the high refractive index material film is higher than the refractive index of the transparent substrate rate.
  • the method may further include: forming a low refractive index material film laminated with the high refractive index material film, the low refractive index material film having a lower refractive index than the light transmissive substrate.
  • the method may specifically include forming a plurality of layers of a high refractive index material film and a plurality of layers of a low refractive index material alternately disposed on one surface of the light transmissive substrate, and the light transmissive substrate is adjacent to the high refractive index material film.
  • the high refractive index material film and the low refractive index material film are formed on the light transmissive substrate by an evaporation coating method or a magnetron sputtering method under vacuum.
  • the method can include:
  • Step S1 washing and drying the transparent substrate
  • Step S2 placing the dried transparent substrate into a vacuum chamber of the coating device, and pumping the vacuum chamber to a vacuum state;
  • Step S3 melting or pre-sputtering the coating material
  • Step S4 introducing the film system design into the coating process program
  • Step S5 depositing a molten or pre-sputtered coating material on the surface of the light-transmitting substrate by an evaporation coating method or a magnetron sputtering method to form at least one high refractive index material film and optionally at least one low refractive index material.
  • membrane depositing a molten or pre-sputtered coating material on the surface of the light-transmitting substrate by an evaporation coating method or a magnetron sputtering method to form at least one high refractive index material film and optionally at least one low refractive index material.
  • Step S6 breaking the vacuum and taking out the coating plate
  • Step S7 The coated plate is tested, and the qualified product is packaged.
  • the vacuum degree of the vacuum chamber can be maintained in the range of 1.0 ⁇ 10 -4 Pa to 1.0 ⁇ 10 -3 Pa; in depositing a film of high refractive index material or a material of low refractive index At the time of film, the vacuum degree of the vacuum chamber can be maintained in the range of 3.0 ⁇ 10 -2 Pa to 8.0 ⁇ 10 -2 Pa. Therefore, in the deposition of the high refractive index material film or the low refractive index material film, the vacuum degree of the vacuum chamber is controlled in the range of 3.0 ⁇ 10 ⁇ 2 Pa to 8.0 ⁇ 10 ⁇ 2 Pa, and the purity is more easily obtained. A film with a suitable hardness.
  • Embodiments of the present disclosure also provide a solar module that can be used as a front plate by using a coated plate, an original colored plate, or a colored glaze obtained by coloring a glaze on the original sheet. Since the coating plate provided by the embodiment of the present disclosure has a higher average transmittance in the power generation wavelength range of the solar module, the power generation effect of the solar module is better.
  • the solar module may include a front plate 1, a film 2, a solar cell 3, and a back plate 4, which are sequentially disposed, and a junction box 5 electrically connected to the solar cell 3.
  • the front panel 1 is a coated panel provided by an embodiment of the present disclosure.
  • the solar module may include a front plate 1, a film 2, a solar cell 3, a film 2, and a back plate 4, which are sequentially disposed, and a junction box 5 electrically connected to the solar cell 3.
  • the front panel 1 is an original slab or a glaze panel obtained by glazing on the original sheet.
  • the film may be a polyvinyl butyral (PVB) flexible film or an Ethylene Vinyl Acetate (EVA) flexible film.
  • PVB polyvinyl butyral
  • EVA Ethylene Vinyl Acetate
  • the specific type of the solar cell is not limited, and may be, for example, a CIGS thin film solar cell or a crystalline silicon solar cell. Therefore, the specific structure of the solar module of the present disclosure, the type of film and the solar cell can be selected according to requirements, so that the solar module of the present disclosure can be used in more occasions.
  • the average transmittance of the coated plate front plate of the present disclosure in the power generation wavelength range of 380 nm to 1100 nm of the CIGS thin film solar cell or the crystalline silicon solar cell is particularly high, when the solar cell selects a CIGS thin film solar cell or a crystalline silicon solar cell, the solar energy The power generation of the components is particularly good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种镀膜板,包括透光基板和透光基板一侧的膜层,膜层为全介质膜,膜层包括高折射率材料膜,高折射率材料膜的折射率高于透光基板的折射率。还公开了一种镀膜板的制备方法和一种太阳能组件。

Description

一种镀膜板及其制备方法和一种太阳能组件 技术领域
本公开涉及但不限于太阳能技术领域,尤其涉及一种镀膜板及其制备方法和一种太阳能组件。
背景技术
太阳能薄膜光伏组件可以采用彩色镀膜玻璃作为前板,目的是为了提高红外波段的热反射及达到低辐射。镀膜玻璃的膜层主要含金属层,成膜工艺主要采用磁控溅射法。目前,利用含有金属层的镀膜玻璃制备的太阳能薄膜光伏组件主要用在建筑上。热反射镀膜玻璃和低辐射镀膜玻璃都是常见的太阳能组件的前板镀膜玻璃。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开至少一实施方案提供了一种镀膜板,包括透光基板和设置在所述透光基板一侧的膜层,所述膜层为全介质膜,所述膜层包括高折射率材料膜,所述高折射率材料膜的折射率高于所述透光基板的折射率。
本公开的一实施方案中,所述膜层还可以包括与所述高折射率材料膜层叠设置的低折射率材料膜,所述低折射率材料膜的折射率低于所述透光基板的折射率。
本公开的一实施方案中,所述高折射率材料膜和所述低折射率材料膜可以分别为多层,多层所述高折射率材料膜和多层所述低折射率材料膜在所述透光基板上交替层叠设置。
本公开的一实施方案中,所述膜层可以包括两层所述高折射率材料膜和两层所述低折射率材料膜,两层所述高折射率材料膜和两层所述低折射率材料膜在所述透光基板一侧交替层叠设置,且所述透光基板与所述高折 射率材料膜相邻。
本公开的一实施方案中,所述膜层可以包括三层所述高折射率材料膜和两层所述低折射率材料膜,三层所述高折射率材料膜和两层所述低折射率材料膜在所述透光基板一侧交替层叠设置,且所述透光基板与所述高折射率材料膜相邻。
本公开的一实施方案中,所述膜层可以包括三层所述高折射率材料膜和三层所述低折射率材料膜,三层所述高折射率材料膜和三层所述低折射率材料膜在所述透光基板一侧交替层叠设置,且所述透光基板与所述高折射率材料膜相邻。
本公开的一实施方案中,所述高折射率材料膜在550nm波长下的折射率可以在1.92至2.60的范围内。
本公开的一实施方案中,所述低折射率材料膜在550nm波长下的折射率可以在1.35至1.50的范围内。
本公开的一实施方案中,所述高折射率材料膜可以选自钛酸镧膜、二氧化钛膜、五氧化三钛膜、五氧化二铌膜、五氧化二钽膜或二氧化锆膜,或这些膜中的至少两种形成的复合膜。
本公开的一实施方案中,所述低折射率材料膜的材料可以为二氧化硅膜、氟化镁膜,或二氧化硅膜和氟化镁膜的复合膜。
本公开的一实施方案中,当所述膜层包含多层高折射率材料膜时,多层所述高折射率材料膜的材料可以相同,或者,至少两层所述高折射率材料膜的材料可以不同。
本公开的一实施方案中,当所述膜层包含多层低折射率材料膜时,多层所述低折射率材料膜的材料可以相同,或者,至少两层所述低折射率材料膜的材料可以不同。
本公开的一实施方案中,所述镀膜板的颜色可以为蓝色、紫色、金黄色、黄色、红色、陶土色、灰色、橙色或绿色。
本公开的一实施方案中,所述透光基板可以为玻璃基板或透光高分子材料基板。
本公开至少一实施方案提供了一种镀膜板的制备方法,所述方法包括:
在透光基板的一侧的表面上形成高折射率材料膜,所述高折射率材料膜的折射率高于所述透光基板的折射率。
本公开的一实施方案中,所述方法还可以包括:形成与所述高折射率材料膜层叠设置的低折射率材料膜,所述低折射率材料膜的折射率低于所述透光基板的折射率。
本公开的一实施方案中,所述方法具体可以包括:
在所述透光基板的一侧表面形成交替设置的多层所述高折射率材料膜和多层所述低折射率材料膜,且所述透光基板与所述高折射率材料膜相邻。
本公开的一实施方案中,所述高折射率材料膜和所述低折射率材料膜可以是在真空状态下采用蒸发镀膜法或磁控溅射法形成在所述透光基板上。
本公开的一实施方案中,在熔融或溅射镀膜材料之前,所述真空状态的真空度可以保持在1.0×10 -4Pa至1.0×10 -3Pa的范围内;并且在熔融或溅射镀膜材料时,所述真空状态的真空度可以保持在3.0×10 -2Pa至8.0×10 -2Pa的范围内。
本公开至少一实施方案提供了一种太阳能组件,所述太阳能组件的前板包括本公开实施方案提供的所述镀膜板、原片着色板或在原片板上彩釉得到的彩釉板。
本公开的一实施方案中,所述太阳能组件还可以包括在所述前板一侧依次设置的胶片、太阳能电池和背板。
本公开的一实施方案中,所述太阳能组件还可以包括在所述前板一侧依次设置的胶片、太阳能电池、胶片和背板。
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得清楚明白,或者通过实施本公开而了解。本公开的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为常规低辐射镀膜玻璃和未镀膜的空白玻璃的透过率曲线对比图。
图2为本公开一实施方案的镀膜板的透过率曲线图。
图3为本公开一实施方案的镀膜板的透过率曲线图。
图4为本公开一实施方案的镀膜板的透过率曲线图。
图5为本公开一实施方案的镀膜板的透过率曲线图。
图6为根据本公开一实施方案的镀膜板制备方法流程图。
图7为根据本公开一实施方案的太阳能组件的结构示意图。
图8为根据本公开另一实施方案的太阳能组件的结构的示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
常规的热反射镀膜玻璃又称阳光控制镀膜玻璃,是在玻璃表面镀制一层金属或金属化合物组合膜层的产品,通过按需控制阳光透过率来达到理想的遮阳效果并产生需要的反射颜色,实现红外波段的高反射,低透过。常规的低辐射镀膜玻璃,又称Low-E玻璃,是在玻璃表面镀制一层具有低辐射功能的金属或化合物组合的薄膜,使玻璃表面具有极高的远红外线反射率,从而达到保温的目的。目前常见的低辐射镀膜玻璃有:单银低辐射镀膜玻璃、双银低辐射镀膜玻璃和三银低辐射镀膜玻璃。单银低辐射镀膜玻璃的膜层通常为5层,膜层厚度>50nm;双银低辐射镀膜玻璃的膜层通常为10层,膜层厚度>100nm;三银低辐射镀膜玻璃的膜层通常为15层,膜层厚度>180nm。
单银低辐射镀膜玻璃的膜系结构设置为空气/玻璃/铺垫层/金属化合物/ 粘接层/金属银层/银层保护层/阻隔材料/保护层/金属化合物/类金刚石材料/空气依次层叠。双银镀膜玻璃,膜系结构设置为空气/玻璃/铺垫层/金属化合物/粘接层/金属银层1/银层保护层1/阻隔材料/保护层/金属化合物/类金刚石材料/空气依次层叠。三银镀膜玻璃,膜系结构设置为空气/玻璃/铺垫层/金属化合物/粘接层/金属银层1/银层保护层1/阻隔材料/中间光学干涉层1/金属银层2/银层保护层2/阻隔材料/中间光学干涉层2/金属银层3/银层保护层3/阻隔材料/保护层/金属化合物/类金刚石材料/空气依次层叠。其中,“空气/玻璃”指的是玻璃的一侧直接与空气接触,依次类推。
图1为单银低辐射镀膜玻璃、双银低辐射镀膜玻璃、三银低辐射镀膜玻璃和未镀膜的空白玻璃的透过率曲线对比图。由于常规彩色镀膜玻璃主要应用于建筑节能领域,其主要是反射红外光,红外波段(780-1100nm)呈现高反射,低透过。但在太阳能组件的发电波长范围内,例如铜铟镓硒(CuIn xGa (1-x)Se 2,CIGS)薄膜太阳能电池和晶硅太阳能电池的380nm至1100nm的发电波长范围内,从图1可以看出,常规彩色镀膜玻璃的平均透过率较低,因此不利于太阳能组件发电。而且该膜系结构含有金属膜层,金属膜层本身的成本就高,且金属膜层不稳定,极易被氧化,需要做金属保护层以避免金属膜层被氧化,又大大增加了生产成本。此外,目前应用于建筑上的光伏组件主要是黑色的,不够美观,其他颜色的光伏组件的阳光反射率高,阳光透过率较低,导致太阳能发电效果不佳。
本公开实施例提供了一种镀膜板,镀膜板包括透光基板和设置在透光基板一侧的膜层,膜层为全介质膜,膜层包括高折射率材料膜,高折射率材料膜的折射率高于透光基板的折射率。
膜层还可以包括与高折射率材料膜层叠设置的低折射率材料膜,低折射率材料膜的折射率低于透光基板的折射率。
高折射率材料膜和低折射率材料膜可以分别为多层,多层高折射率材料膜和多层低折射率材料膜在透光基板上可以交替层叠设置。
镀膜板可以包括依次设置的透光基板和高折射率材料膜。
镀膜板可以包括依次设置的透光基板、高折射率材料膜、低折射率材料膜、高折射率材料膜和低折射率材料膜。
镀膜板可以包括依次设置的透光基板、高折射率材料膜、低折射率材料膜、高折射率材料膜、低折射率材料膜和高折射率材料膜。
镀膜板可以包括依次设置的透光基板、高折射率材料膜、低折射率材料膜、高折射率材料膜、低折射率材料膜、高折射率材料膜和低折射率材料膜。
镀膜板可以包括依次设置的透光基板、低折射率材料膜和高折射率材料膜。
直接层叠于透光基板上方的材料膜既可以是高折射率材料膜,也可以是低折射率材料膜。
高折射率材料可以为在550nm波长下的折射率为1.92至2.60的材料,采用这样的材料制成高折射率材料膜可以使镀膜板在太阳能组件的发电波长范围内的平均透过率在更大程度上得到提高,从而提高利用该镀膜板制备的太阳能组件的发电效果。
高折射率材料膜可以选自钛酸镧膜、二氧化钛膜、五氧化三钛膜、五氧化二铌膜、五氧化二钽膜和二氧化锆膜中的任意一种或这些膜中的至少两种形成的复合膜。当高折射率材料膜选自钛酸镧膜、二氧化钛膜、五氧化三钛膜、五氧化二铌膜、五氧化二钽膜和二氧化锆膜中的任意一种时,可以使镀膜板在太阳能组件的发电波长范围内的平均透过率获得在更大程度上得到提高,从而提高利用该镀膜板制备的太阳能组件的发电效果。
低折射率材料可以为在550nm波长下的折射率为1.35至1.50的材料,采用这样的材料制成低折射率材料膜可以使镀膜板在太阳能组件的发电波长范围内的平均透过率在更大程度上得到提高,从而提高利用该镀膜板制备的太阳能组件的发电效果。
低折射率材料膜可以为二氧化硅膜、氟化镁膜,或二氧化硅和氟化镁的复合膜。当低折射率材料膜为二氧化硅膜或氟化镁膜时,可以使镀膜板在太阳能组件的发电波长范围内的平均透过率在更大程度上得到提高,从而提高利用该镀膜板制备的太阳能组件的发电效果。
当膜层包含多层高折射率材料膜时,多层高折射率材料膜可以是相同的或不完全相同的。
当膜层包含多层低折射率材料膜时,多层低折射率材料膜可以是相同的或不完全相同的。
多层高折射率材料膜或多层低折射率材料膜的不同可以包括但不限于材料、厚度、形状、面积等性质的不同。
镀膜板可以为彩色的,根据膜层的不同设计,其颜色可以为蓝色、紫色、金黄色、黄色、红色、陶土色、灰色、橙色或绿色等。因此本公开的镀膜板能够保证在太阳能组件的发电波长范围内具有较高的平均透过率的前提下根据需求制成不同的颜色,满足了丰富多彩的颜色需求,而且与建筑结合后更加美观,并且使得本公开的镀膜板还可以应用于有装饰效果需求的盖板上。
镀膜板的膜系设计结构可以根据镀膜板的期望颜色,采用膜系设计软件进行设计。例如,采用Essential Macleod、TFCacl或OptiLayer等膜系设计软件,通过膜系设计可以优化镀膜板的结构,在满足不同颜色需求的情况下选择出成本较低、制备工艺较简单的膜系设计结构。
透光基板可以为玻璃基板或透光高分子材料基板。玻璃基板可以为超白浮法玻璃、普通浮法玻璃、本体着色玻璃或光学玻璃等。透光高分子材料基板可以为透光树脂基板。透光树脂基板可以为聚碳酸酯(Polycarbonate,PC)基板或聚甲基丙烯酸甲酯(Polymethyl Methacrylate,PMMA)基板等透光基板。玻璃基板的厚度可以为3.2mm至8mm。因此,本领域技术人员可以根据不同的使用场合和要求,例如柔韧性、透光率等要求来选择合适类型的透光基板和透光基板的厚度。
以下列举了一些镀膜板的实施方案,其中所采用的透光基板为厚度为3.2mm至8mm的超白浮法玻璃。其中,Ti 3O 5(1)代表透光基板上的第一层为高折射率材料Ti 3O 5,SiO 2(2)代表第二层为低折射率材料SiO 2,以此类推。其中,以“Air/透光基板/Ti 3O 5(1)/SiO 2(2)/Ti 3O 5(3)/SiO 2(4)/Air”为例,其指的是该镀膜板仅包括依次层叠设置的透光基板、Ti 3O 5、SiO 2、Ti 3O 5、SiO 2,且“Air/透光基板”指的是透光基板未与Ti 3O 5膜层接触的一侧直接与空气接触,以此类推。
本公开一实施方案提供了一种蓝色的镀膜玻璃,该蓝色的镀膜玻璃的透 过率曲线如图2所示。该蓝色的镀膜玻璃可以包括4层全介质膜,其膜系设计结构可以为以下几种形式:
a.Air/透光基板/Ti 3O 5(1)/SiO 2(2)/Ti 3O 5(3)/SiO 2(4)/Air,其中,Ti 3O 5(1)的厚度为33.48nm±20nm,SiO2(2)的厚度为51.96nm±20nm,Ti 3O 5(3)的厚度为82.86nm±20nm,SiO2(4)的厚度为117.36nm±20nm;或者
b.Air/透光基板/Ta 2O 5(1)/SiO 2(2)/Ta 2O 5(3)/SiO 2(4)/Air,其中,Ta 2O 5(1)的厚度为32.81nm±20nm,SiO 2(2)的厚度为55.97nm±20nm,Ta 2O 5(3)的厚度为78.81nm±20nm,SiO 2(4)的厚度为117.11nm±20nm;或者
c.Air/透光基板/Nb 2O 5(1)/SiO 2(2)/Nb 2O 5(3)/SiO 2(4)/Air,其中,Nb 2O 5(1)的厚度为33.41nm±20nm,SiO 2(2)的厚度为51.96nm±20nm,Nb 2O 5(3)的厚度为82.68nm±20nm,SiO 2(4)的厚度为117.36nm±20nm。
本公开一实施方案提供了一种金黄色的镀膜玻璃,该金黄色的镀膜玻璃的透过率曲线如图3所示。该金黄色的镀膜玻璃可以包括5层全介质膜,其膜系设计结构可以为以下几种形式:
a.Air/透光基板/Ti 3O 5(1)/SiO 2(2)/Ti 3O 5(3)/SiO 2(4)/Ti 3O 5(5)/Air,其中,Ti 3O 5(1)的厚度为91.66nm±20nm,SiO 2(2)的厚度为35.17nm±20nm,Ti 3O 5(3)的厚度为66.32nm±20nm,SiO 2(4)的厚度为17.03nm±20nm,Ti 3O 5(5)的厚度为15.07nm±20nm;或者
b.Air/透光基板/Ta 2O 5(1)/SiO 2(2)/Ta 2O 5(3)/SiO 2(4)/Ta 2O 5(5)/Air,其中,Ta 2O 5(1)的厚度为94.35nm±20nm,SiO 2(2)的厚度为44.22nm±20nm,Ta 2O 5(3)的厚度为63.02nm±20nm,SiO 2(4)的厚度为15.74nm±20nm,Ta 2O 5(5)的厚度为19.76nm±20nm;或者
c.Air/透光基板/Nb 2O 5(1)/SiO 2(2)/Nb 2O 5(3)/SiO 2(4)Nb 2O 5(5)/Air,其中,Nb 2O 5(1)的厚度为91.46nm±20nm,SiO 2(2)的厚度为35.31nm±20nm,Nb 2O 5(3)的厚度为58.56nm±20nm,SiO 2(4)的厚度为18.45nm ±20nm,Nb 2O 5(5)的厚度为17.71nm±20nm。
本公开一实施方案提供了一种红色的镀膜玻璃,该红色的镀膜玻璃的透过率曲线如图4所示。该红色的镀膜玻璃可以包括6层全介质膜,其膜系设计结构可以为以下几种形式:
a.Air/透光基板/Ti 3O 5(1)/SiO 2(2)/Ti 3O 5(3)/SiO 2(4)/Ti 3O 5(5)/SiO 2(6)/Air,其中,Ti 3O 5(1)的厚度为86.16nm±20nm,SiO 2(2)的厚度为120.43nm±20nm,Ti 3O 5(3)的厚度为72.95nm±20nm,SiO 2(4)的厚度为125.76nm±20nm,Ti 3O 5(5)的厚度为68.70nm±20nm,SiO 2(6)的厚度为63.09nm±20nm;或者
b.Air/透光基板/Ta 2O 5(1)/SiO 2(2)/Ta 2O 5(3)/SiO 2(4)/Ta 2O 5(5)/SiO 2(6)/Air,其中,Ta 2O 5(1)的厚度为90.83nm±20nm,SiO 2(2)的厚度为117.22nm±20nm,Ta 2O 5(3)的厚度为76.76nm±20nm,SiO 2(4)的厚度为123.06nm±20nm,Ta 2O 5(5)的厚度为69.84nm±20nm,SiO 2(6)的厚度为61.50nm±20nm;或者
c.Air/透光基板/Nb 2O 5(1)/SiO 2(2)/Nb 2O 5(3)/SiO 2(4)/Nb 2O 5(5)/SiO 2(6)/Air,其中,Nb 2O 5(1)的厚度为85.26nm±20nm,SiO 2(2)的厚度为120.06nm±20nm,Nb 2O 5(3)的厚度为72.44nm±20nm,SiO 2(4)的厚度为125.56nm±20nm,Nb 2O 5(5)的厚度为68.66nm±20nm,SiO 2(6)的厚度为63.22nm±20nm。
本公开一实施方案提供了一种灰色的镀膜玻璃,该灰色的镀膜玻璃的透过率曲线如图5所示。该灰色的镀膜玻璃可以包括1层全介质膜,其膜系设计结构可以为以下几种形式:
a.Air/透光基板/Ti 3O 5(1)/Air,其中Ti 3O 5(1)的厚度为23nm±20nm;或者
b.Air/透光基板/Ta 2O 5(1)/Air,其中,Ta 2O 5(1)的厚度为30nm±20nm;或者
c.Air/透光基板/Nb 2O 5(1)/Air,其中,Nb 2O 5(1)的厚度为22.66nm±20nm。
从图2-5可以看出,本公开实施方案的彩色镀膜板虽然在可见光区域的透过率偏低,但在红外光区域的透过率高,从而使得在太阳能组件的发电波长范围内、尤其是在380nm至1100nm波段范围内的平均透过率高。将其用作太阳能组件的前板,会获得较佳的发电效果。
此外,应该理解,使用同样的高折射率材料和低折射率材料,通过增减镀膜层数及调整每一层膜的厚度,例如加厚或减薄膜厚,也可以制得同样颜色的镀膜玻璃。而且,采用不同膜系设计结构制备的同样颜色的镀膜玻璃的光谱几乎相同。但是在膜系设计时应尽量采用较少层数的膜,以降低成本。
上述实施方案仅为示例性实施方案。以上述蓝色的镀膜玻璃为例,膜层可以包含两层高折射率材料膜和两层低折射率材料膜,该两层高折射率材料膜是相同的,且该两层低折射率材料膜也是相同的。应该理解,当膜层包含两层高折射率材料膜时,这两层高折射率材料膜可以使用不同材料的高折射率材料膜;并且当膜层包含两层低折射率材料膜时,两层低折射率材料膜也可以使用不同的材料的低折射率材料膜。
本公开的镀膜板采用全介质膜,通过提高镀膜板在红外波段的透过率,从而提高了镀膜板在太阳能组件的发电波长范围内、尤其是在380nm至1100nm波段的平均透过率,使得采用该镀膜板制备本公开的太阳能组件的发电效率得到了显著提高。另外,由于本公开的镀膜板不采用金属膜层,避免了金属膜层被氧化的问题,而且无需再设置金属保护层,节约了成本。
而且,本公开的镀膜板可根据需求制成不同的颜色,能够满足丰富多彩的颜色需求,而且与建筑结合后更加美观。
此外,除了应用于建筑上,本公开的镀膜板还可以应用于有装饰效果需求的盖板上,如手机背板、冰箱面板等等。
本公开实施方案还提供了一种镀膜板的制备方法,方法包括:在透光 基板的一侧的表面上形成高折射率材料膜,高折射率材料膜的折射率高于透光基板的折射率。
该方法还可以包括:形成与高折射率材料膜层叠设置的低折射率材料膜,低折射率材料膜的折射率低于透光基板的折射率。
该方法可以具体包括:在透光基板的一侧表面形成交替设置的多层高折射率材料膜和多层低折射率材料膜,且透光基板与高折射率材料膜相邻。
其中,高折射率材料膜和低折射率材料膜是在真空状态下采用蒸发镀膜法或磁控溅射法形成在透光基板上。
如图6所示,在示例性实施方案中,该方法可以包括:
步骤S1:清洗并干燥透光基板;
步骤S2:将干燥后的透光基板放入镀膜设备的真空腔体内,将真空腔体抽至真空状态;
步骤S3:熔融或预溅射镀膜材料;
步骤S4:将膜系设计导入镀膜制程程序,
步骤S5:采用蒸发镀膜法或磁控溅射法将熔融或预溅射的镀膜材料沉积在透光基板表面上以形成至少一层高折射率材料膜和可选地至少一层低折射率材料膜;
步骤S6:破真空,取出镀膜板;
步骤S7:对镀膜板进行检测,合格的产品进行包装。
其中,在熔融或预溅射镀膜材料之前,真空腔体的真空度可以保持在1.0×10 -4Pa至1.0×10 -3Pa的范围内;在沉积高折射率材料膜或低折射率材料膜时,真空腔体的真空度可以保持在3.0×10 -2Pa至8.0×10 -2Pa的范围内。因此,本公开在沉积高折射率材料膜或低折射率材料膜时,将真空腔体的真空度控制在3.0×10 -2Pa至8.0×10 -2Pa的范围内,更容易得到纯度高、硬度合适的膜层。
本公开实施方案还提供了一种太阳能组件,该太阳能组件可以采用本公 开实施方案提供的镀膜板、原片着色板或在原片板上彩釉得到的彩釉板作为前板。由于本公开实施方案提供的镀膜板在太阳能组件的发电波长范围内的平均透过率较高,因此太阳能组件的发电效果较好。
如图7所示,太阳能组件可以包括依次设置的前板1、胶片2、太阳能电池3和背板4,以及与太阳能电池3电连接的接线盒5。前板1为本公开实施方案提供的镀膜板。
如图8所示,太阳能组件可以包括依次设置的前板1、胶片2、太阳能电池3、胶片2和背板4,以及与太阳能电池3电连接的接线盒5。前板1为原片着色板或在原片板上彩釉得到的彩釉板。
其中,胶片可以为聚乙烯醇缩丁醛(Polyvinyl Butyral,PVB)柔性胶片或乙烯醋酸乙烯酯(Ethylene Vinyl Acetate,EVA)柔性胶片。太阳能电池的具体类型不限,例如可以为CIGS薄膜太阳能电池或晶硅太阳能电池等。因此,可以根据需求选择本公开的太阳能组件的具体结构、胶片和太阳能电池的类型,从而使得本公开的太阳能组件可以在更多场合下使用。由于本公开的镀膜板前板在CIGS薄膜太阳能电池或晶硅太阳能电池的发电波长范围380nm-1100nm内的平均透过率尤其高,因此当太阳能电池选择CIGS薄膜太阳能电池或晶硅太阳能电池时,太阳能组件的发电效果尤其好。
本公开内容是本公开实施例的原则的示例,并非对本公开作出任何形式上或实质上的限定,或将本公开限定到具体的实施方案。对本领域的技术人员而言,很显然本公开实施例的技术方案的要素、方法和系统等,可以进行变动、改变、改动、演变,而不背离如上的本公开的实施例、技术方案的,如权利要求中所定义的原理、精神和范围。这些变动、改变、改动、演变的实施方案均包括在本公开的等同实施例内,这些等同实施例均包括在本公开的由权利要求界定的范围内。虽然可以许多不同形式来使本公开实施例具体化,但此处详细描述的是本公开的一些实施方案。此外,本公开的实施例包括此处的各种实施方案的一些或全部的任意可能的组合,也包括在本公开的由权利要求界定的范围内。在本公开中或在任一个引用的专利、引用的专利申请或其它引用的资料中任何地方所提及的所有专利、专利申请和其它引用 资料据此通过引用以其整体并入。
以上公开内容规定为说明性的而不是穷尽性的。对于本领域技术人员来说,本说明书会暗示许多变化和可选择方案。所有这些可选择方案和变化旨在被包括在本权利要求的范围内,其中术语“包括”意思是“包括,但不限于”。
在此完成了对本公开可选择的实施方案的描述。本领域技术人员可认识到此处的实施方案的其它等效变换,这些等效变换也为由附于本文的权利要求所包括。

Claims (19)

  1. 一种镀膜板,所述镀膜板包括透光基板和设置在所述透光基板一侧的膜层,所述膜层为全介质膜,所述膜层包括高折射率材料膜,所述高折射率材料膜的折射率高于所述透光基板的折射率。
  2. 根据权利要求1所述的镀膜板,其中,所述膜层还包括与所述高折射率材料膜层叠设置的低折射率材料膜,所述低折射率材料膜的折射率低于所述透光基板的折射率。
  3. 根据权利要求2所述的镀膜板,其中,所述高折射率材料膜和所述低折射率材料膜分别为多层,多层所述高折射率材料膜和多层所述低折射率材料膜在所述透光基板上交替层叠设置。
  4. 根据权利要求3所述的镀膜板,其中,所述膜层包括两层所述高折射率材料膜和两层所述低折射率材料膜,两层所述高折射率材料膜和两层所述低折射率材料膜在所述透光基板一侧交替层叠设置,且所述透光基板与所述高折射率材料膜相邻;或
    所述膜层包括三层所述高折射率材料膜和两层所述低折射率材料膜,三层所述高折射率材料膜和两层所述低折射率材料膜在所述透光基板一侧交替层叠设置,且所述透光基板与所述高折射率材料膜相邻;或
    所述膜层包括三层所述高折射率材料膜和三层所述低折射率材料膜,三层所述高折射率材料膜和三层所述低折射率材料膜在所述透光基板一侧交替层叠设置,且所述透光基板与所述高折射率材料膜相邻。
  5. 根据权利要求1-4中任一项所述的镀膜板,其中,所述高折射率材料膜在550nm波长下的折射率在1.92至2.60的范围内。
  6. 根据权利要求2-4中任一项所述的镀膜板,其中,所述低折射率材料膜在550nm波长下的折射率在1.35至1.50的范围内。
  7. 根据权利要求1-4中任一项所述的镀膜板,其中,所述高折射率材料膜选自钛酸镧膜、二氧化钛膜、五氧化三钛膜、五氧化二铌膜、五氧化二钽膜或二氧化锆膜,或这些膜中的至少两种形成的复合膜。
  8. 根据权利要求2-4中任一项所述的镀膜板,其中,所述低折射率材 料膜的材料为二氧化硅膜、氟化镁膜,或二氧化硅膜和氟化镁膜的复合膜。
  9. 根据权利要求2-4中任一项所述的镀膜板,其中,
    当所述膜层包含多层高折射率材料膜时,多层所述高折射率材料膜的材料相同,或者,至少两层所述高折射率材料膜的材料不同;
    当所述膜层包含多层低折射率材料膜时,多层所述低折射率材料膜的材料相同,或者,至少两层所述低折射率材料膜的材料不同。
  10. 根据权利要求1-9中任一项所述的镀膜板,其中,所述镀膜板的颜色为蓝色、紫色、金黄色、黄色、红色、陶土色、灰色、橙色或绿色。
  11. 根据权利要求1-10中任一项所述的镀膜板,其中,所述透光基板为玻璃基板或透光高分子材料基板。
  12. 一种镀膜板的制备方法,所述方法包括:
    在透光基板的一侧的表面上形成高折射率材料膜,所述高折射率材料膜的折射率高于所述透光基板的折射率。
  13. 根据权利要求12所述的方法,其中,所述方法还包括:形成与所述高折射率材料膜层叠设置的低折射率材料膜,所述低折射率材料膜的折射率低于所述透光基板的折射率。
  14. 根据权利要求13所述的方法,其中,所述方法具体包括:
    在所述透光基板的一侧表面形成交替设置的多层所述高折射率材料膜和多层所述低折射率材料膜,且所述透光基板与所述高折射率材料膜相邻。
  15. 根据权利要求13或14所述的方法,其中,所述高折射率材料膜和所述低折射率材料膜是在真空状态下采用蒸发镀膜法或磁控溅射法形成在所述透光基板上。
  16. 根据权利要求15中任一项所述的方法,其中,在熔融或溅射镀膜材料之前,所述真空状态的真空度保持在1.0×10 -4Pa至1.0×10 -3Pa的范围内;并且在熔融或溅射镀膜材料时,所述真空状态的真空度保持在3.0×10 -2Pa至8.0×10 -2Pa的范围内。
  17. 一种太阳能组件,所述太阳能组件的前板包括根据权利要求1-11中任一项所述的镀膜板、原片着色板或在原片板上彩釉得到的彩釉板。
  18. 根据权利要求17所述的太阳能组件,其中,所述太阳能组件还包括在所述前板一侧依次设置的胶片、太阳能电池和背板。
  19. 根据权利要求17所述的太阳能组件,其中,所述太阳能组件还包括在所述前板一侧依次设置的胶片、太阳能电池、胶片和背板。
PCT/CN2018/094690 2018-05-08 2018-07-05 一种镀膜板及其制备方法和一种太阳能组件 WO2019214036A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810434303.2 2018-05-08
CN201810434303.2A CN108706889A (zh) 2018-05-08 2018-05-08 一种镀膜板及其制备方法和一种太阳能组件

Publications (1)

Publication Number Publication Date
WO2019214036A1 true WO2019214036A1 (zh) 2019-11-14

Family

ID=63404992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094690 WO2019214036A1 (zh) 2018-05-08 2018-07-05 一种镀膜板及其制备方法和一种太阳能组件

Country Status (8)

Country Link
US (1) US20190348557A1 (zh)
EP (1) EP3567636A1 (zh)
JP (1) JP2019197877A (zh)
KR (1) KR20190128540A (zh)
CN (1) CN108706889A (zh)
AU (1) AU2018220915A1 (zh)
BR (1) BR102018070369A2 (zh)
WO (1) WO2019214036A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109650740A (zh) * 2018-12-17 2019-04-19 佛山市易晟达科技有限公司 一种盖板
CN111960680A (zh) * 2019-05-20 2020-11-20 汉能移动能源控股集团有限公司 一种彩色玻璃及光伏组件
CN112018202A (zh) * 2019-05-30 2020-12-01 汉能移动能源控股集团有限公司 一种柔性太阳能组件
CN112366238A (zh) * 2019-07-26 2021-02-12 汉能移动能源控股集团有限公司 一种太阳能发电组件前板的制作方法和太阳能电池
CN110333561B (zh) * 2019-07-30 2024-02-20 威海世高光电子有限公司 减反射膜及其制备方法、微型投影系统
CN110937821A (zh) * 2019-12-30 2020-03-31 青岛锦绣前程节能玻璃有限公司 一种可钢化阳光控制镀膜玻璃及制备方法
CN111217536A (zh) * 2020-01-06 2020-06-02 青岛锦绣前程节能玻璃有限公司 一种炫彩阳光控制镀膜玻璃及其制备方法
CN111253081B (zh) * 2020-03-20 2021-02-26 山东大学 一种彩色玻璃及其制备方法
CN111477708A (zh) * 2020-05-08 2020-07-31 北京金茂绿建科技有限公司 一种光伏组件用灰色前板玻璃及其制备的灰色光伏组件
CN111584647A (zh) * 2020-05-26 2020-08-25 北京金茂绿建科技有限公司 一种光伏组件用黄色前板玻璃及其制备的黄色光伏组件
CN111584648A (zh) * 2020-05-26 2020-08-25 北京金茂绿建科技有限公司 一种光伏组件用仿铝板前板玻璃及制备的仿铝板光伏组件
CN111584652A (zh) * 2020-06-01 2020-08-25 北京金茂绿建科技有限公司 一种光伏组件用绿色前板玻璃及其制备的绿色光伏组件
CN111477710A (zh) * 2020-06-01 2020-07-31 北京金茂绿建科技有限公司 一种光伏组件用蓝色前板玻璃及其制备的蓝色光伏组件
CN111584651A (zh) * 2020-06-01 2020-08-25 北京金茂绿建科技有限公司 一种光伏组件用蓝绿色前板玻璃及其制备的蓝绿色光伏组件
CN111584653A (zh) * 2020-06-04 2020-08-25 北京金茂绿建科技有限公司 一种光伏组件用仿low-e玻璃幕墙颜色前板玻璃及其制备方法
CN111948746B (zh) * 2020-08-11 2022-07-15 瑞之路(厦门)眼镜科技有限公司 一种蓝光防护多层光学薄膜
CN111925129A (zh) * 2020-09-04 2020-11-13 安徽天柱绿色能源科技有限公司 防蓝光、高透过率镀膜前板及防蓝光太阳能电池组件
CN112321142B (zh) * 2020-10-26 2022-08-26 蓝思科技(长沙)有限公司 一种玻璃加工方法
CN112811828B (zh) * 2020-12-31 2023-02-21 安徽天柱绿色能源科技有限公司 渐变色太阳能前板及制造方法和太阳能组件封装结构
CN112919825A (zh) * 2021-02-08 2021-06-08 海控三鑫(蚌埠)新能源材料有限公司 一种双层镀膜光伏玻璃的在线降温装置
CN113149458B (zh) * 2021-02-26 2023-08-22 中建材玻璃新材料研究院集团有限公司 一种彩色光伏组件盖板玻璃及其制备方法
CN113594022A (zh) * 2021-07-26 2021-11-02 杭州美迪凯光电科技股份有限公司 一种光学镀膜半导体晶圆嫁接方法及光学镀膜半导体
CN114409271A (zh) * 2022-01-17 2022-04-29 郴州旗滨光伏光电玻璃有限公司 双层镀膜光伏玻璃及其生产方法和生产产线
CN116332527A (zh) * 2023-03-31 2023-06-27 中建材玻璃新材料研究院集团有限公司 一种光伏组件用全向反射纯绿色玻璃

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008158036A (ja) * 2006-12-21 2008-07-10 Olympus Corp 光学素子および光学機器
CN101464534A (zh) * 2007-12-17 2009-06-24 日本电波工业株式会社 光学多层膜滤波器及其制造方法
CN203164459U (zh) * 2013-02-19 2013-08-28 东莞五方光电科技有限公司 一种增透滤光片
CN105511004A (zh) * 2014-10-14 2016-04-20 岩崎电气株式会社 波长选择滤光器及光照射装置
CN206096525U (zh) * 2016-09-28 2017-04-12 美德瑞光电科技(上海)有限公司 一种带有耐磨层的红外截止滤光片
CN206804895U (zh) * 2017-04-02 2017-12-26 广东诚卓光电科技有限公司 一种可见光半透半反玻璃

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148172A (ja) * 1984-01-12 1985-08-05 Seikosha Co Ltd 色つき太陽電池
JP2942707B2 (ja) * 1994-08-09 1999-08-30 鹿島建設株式会社 太陽電池
US7342716B2 (en) * 2005-10-11 2008-03-11 Cardinal Cg Company Multiple cavity low-emissivity coatings
JP2008260654A (ja) * 2007-04-12 2008-10-30 Aomoriken Kogyo Gijutsu Kyoiku Shinkokai 高い太陽光透過性能を有するガラス
US20090032098A1 (en) * 2007-08-03 2009-02-05 Guardian Industries Corp. Photovoltaic device having multilayer antireflective layer supported by front substrate
CN101446648B (zh) * 2007-11-27 2010-06-02 鸿富锦精密工业(深圳)有限公司 分光镜及其分光膜层
FR2928461B1 (fr) * 2008-03-10 2011-04-01 Saint Gobain Substrat transparent comportant un revetement antireflet
US8668961B2 (en) * 2008-07-31 2014-03-11 Guardian Industries Corp. Titania coating and method of making same
EP2302688A1 (de) * 2009-09-23 2011-03-30 Robert Bosch GmbH Verfahren zur Herstellung eines Substrats mit einer farbigen Interferenzfilterschicht, dieses Substrat, enthaltend eine farbige Interferenzfilterschicht, die Verwendung dieses Substrats als farbige Solarzelle oder als farbiges Solarmodul oder als Bestandteil hiervon sowie ein Array, umfassend mindestens zwei dieser Substrate
CN103000728B (zh) * 2012-12-03 2016-04-20 3M材料技术(合肥)有限公司 太阳能电池背板组件和太阳能电池组件
CN103395247B (zh) * 2013-07-30 2015-05-13 深圳欧菲光科技股份有限公司 盖板玻璃及其制备方法
CN106415334B (zh) * 2014-04-10 2019-09-17 瑞士Csem电子显微技术研发中心 太阳能光伏组件
JP2017105643A (ja) * 2014-04-24 2017-06-15 旭硝子株式会社 被膜付きガラス基板および被膜付きガラス基板の製造方法
JP6879933B2 (ja) * 2015-12-02 2021-06-02 Agc株式会社 波長選択透過性ガラス物品
CN106853706A (zh) * 2016-12-21 2017-06-16 蚌埠玻璃工业设计研究院 一种高透过高反射隔热膜
CN107757495B (zh) * 2017-09-27 2023-05-05 信义光伏产业(安徽)控股有限公司 汽车后视镜用蓝镜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008158036A (ja) * 2006-12-21 2008-07-10 Olympus Corp 光学素子および光学機器
CN101464534A (zh) * 2007-12-17 2009-06-24 日本电波工业株式会社 光学多层膜滤波器及其制造方法
CN203164459U (zh) * 2013-02-19 2013-08-28 东莞五方光电科技有限公司 一种增透滤光片
CN105511004A (zh) * 2014-10-14 2016-04-20 岩崎电气株式会社 波长选择滤光器及光照射装置
CN206096525U (zh) * 2016-09-28 2017-04-12 美德瑞光电科技(上海)有限公司 一种带有耐磨层的红外截止滤光片
CN206804895U (zh) * 2017-04-02 2017-12-26 广东诚卓光电科技有限公司 一种可见光半透半反玻璃

Also Published As

Publication number Publication date
US20190348557A1 (en) 2019-11-14
BR102018070369A2 (pt) 2019-11-26
AU2018220915A1 (en) 2019-11-28
EP3567636A1 (en) 2019-11-13
CN108706889A (zh) 2018-10-26
JP2019197877A (ja) 2019-11-14
KR20190128540A (ko) 2019-11-18

Similar Documents

Publication Publication Date Title
WO2019214036A1 (zh) 一种镀膜板及其制备方法和一种太阳能组件
WO2019214037A1 (zh) 一种曲面镀膜板及其制备方法和一种太阳能组件
US5595825A (en) Transparent substrate provided with a stack of thin films acting on solar and/or infrared radiation
US9482799B2 (en) Solar-control glazing unit
US4902581A (en) Architectural coating with interference colors
KR101194257B1 (ko) 광대역 반사방지 다층코팅을 갖는 태양전지용 투명 기판 및 그 제조방법
EA022240B1 (ru) Многослойный стеклопакет и способ его получения
KR20160004280A (ko) 열 특성을 갖는 스택이 제공된 기판
US9309149B2 (en) Systems, methods, and apparatus for production coatings of low-emissivity glass
CN112047642A (zh) 光伏建筑一体化用黄色盖板玻璃及其制备方法
WO2019214033A1 (zh) 一种太阳能组件
EP3655371B1 (fr) Matériau comprenant un empilement à propriétés thermiques
JP2014218426A (ja) サーモクロミックウィンドウ
US4891113A (en) Method of making architectural coating with interference colors
US20190348555A1 (en) Solar module
CN216890665U (zh) 一种中透可钢化三银低辐射镀膜玻璃
CN201999858U (zh) 镀有双银层、TiO2为基层的低反射率镀膜玻璃
CN212199019U (zh) 一种高透单银低辐射镀膜玻璃
CN212476547U (zh) 一种中透低反灰色双银低辐射镀膜玻璃
JP2023551674A (ja) 日射遮蔽コーティングを含む複合ペイン
CN204382744U (zh) 一种高透过低辐射的双银镀膜玻璃
US4964963A (en) Method of making architectural coating with interference colors
CN210948311U (zh) 双面相同颜色的双银镀膜中空玻璃
CN210506095U (zh) 一种低辐射阳光控制镀膜玻璃
CN115706179A (zh) 盖板玻璃及中空玻璃组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18917742

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/03/2021)