WO2019213918A1 - 样本分析仪、试剂加载控制方法及存储介质 - Google Patents

样本分析仪、试剂加载控制方法及存储介质 Download PDF

Info

Publication number
WO2019213918A1
WO2019213918A1 PCT/CN2018/086387 CN2018086387W WO2019213918A1 WO 2019213918 A1 WO2019213918 A1 WO 2019213918A1 CN 2018086387 W CN2018086387 W CN 2018086387W WO 2019213918 A1 WO2019213918 A1 WO 2019213918A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
reagents
preset
replenished
test item
Prior art date
Application number
PCT/CN2018/086387
Other languages
English (en)
French (fr)
Inventor
陈大凯
刘右林
陶思理
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
深圳迈瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司, 深圳迈瑞科技有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2018/086387 priority Critical patent/WO2019213918A1/zh
Priority to CN201880089145.XA priority patent/CN112055816A/zh
Publication of WO2019213918A1 publication Critical patent/WO2019213918A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Definitions

  • the present invention relates to the field of medical device technology, and in particular, to a sample analyzer, a reagent loading control method, and a storage medium.
  • the automatic sample analyzer is highly automated and fast, and the inspection activities are generally accompanied by reagent consumption.
  • the doctor needs to replenish consumables daily, such as reagents and reaction vessels, to ensure that the test can be carried out smoothly the next day.
  • an alarm device is usually set on the automatic sample analyzer.
  • the fully automatic sample analyzer can After the alarm message is issued, the user needs to manually perform the loading operation of the supplementary reagent. For example, when the remaining amount of reagent on the fully automated sample analyzer is insufficient, the alarm device can prompt the user to perform a supplemental loading of the reagent.
  • the object of the present invention is to provide a sample analyzer, a reagent loading control method and a storage medium, and improve the loading efficiency and accuracy of the supplementary reagent. .
  • the present invention adopts the following technical solutions:
  • a sample analyzer that includes:
  • a reagent carrying tray on which a plurality of loading positions for loading reagents are disposed;
  • a memory for storing a current reagent remaining amount of various reagents on the reagent carrying tray and an estimated total consumption amount of each of the predetermined reagents corresponding to each test item;
  • a control device configured to obtain, from the memory, a current reagent remaining amount and an estimated total consumption amount of various reagents on the reagent carrying tray; and obtaining a current reagent amount and an estimated total consumption amount according to various reagents
  • the type and amount of the replenishing reagent; each of the replenishing reagents is assigned a loading position in an available state, and the loading position in the usable state includes an idle loading position on the reagent carrying tray.
  • the present invention also provides a sample analyzer comprising a reagent carrier disk for holding a reagent, a dispensing device for sucking up a sample or a reagent, a sample carrier device for storing a sample, a display device, and the sample analyzer described above .
  • the invention also provides a reagent loading method, comprising the following steps:
  • Each of the reagents to be replenished is assigned a load bit in an available state, the load position in an available state including a free load bit on the reagent carrier tray.
  • the present invention also provides a computer readable storage medium having stored therein a computer program, the computer program being executed by one or more processors, performing the following steps:
  • Each of the reagents to be replenished is assigned a load bit in an available state, the load position in an available state including a free load bit on the reagent carrier tray.
  • the sample analyzer, the reagent loading control method and the storage medium of the invention can obtain the type and quantity of the reagent to be replenished by detecting the current reagent remaining amount and the estimated total consumption amount of various reagents on the reagent carrying tray, and can Each of the reagents to be replenished is assigned a loading position in a usable state, so that information such as the type, quantity and loading position of the replenishing reagent can be automatically confirmed, the automation degree of the sample analyzer is improved, and the loading efficiency and accuracy of the replenishing reagent are improved. .
  • FIG. 1 is a schematic structural view of a sample analyzer of an embodiment
  • FIG. 2 is a schematic structural view of a sample analyzer of another embodiment
  • FIG. 3 is a schematic structural view of an embodiment of the reagent carrying tray of FIG. 1 or FIG. 2;
  • FIG. 4 is a block diagram showing the structure of a sample analyzer of an embodiment
  • Figure 5 is a flow chart showing the operation of an embodiment of the sample analyzer of Figure 4.
  • FIG. 6 is a flow chart showing the operation of an embodiment of the sample analyzer of FIG. 4;
  • Figure 7 is a flow chart showing the operation of an embodiment of the sample analyzer in Figure 4.
  • Figure 8 is a flow chart showing the operation of an embodiment of the sample analyzer of Figure 4.
  • FIG. 9 is a flow chart showing the operation of an embodiment in which the sample analyzer of FIG. 4 allocates a loading position to a reagent to be replenished;
  • FIG. 10 is a flow chart showing the operation of an embodiment in which the sample analyzer of FIG. 4 allocates a loading position to a reagent to be replenished;
  • Figure 11 is a schematic illustration of a list of supplemental reagents in an embodiment.
  • the sample analyzer 100 of the embodiment of the present application may include a reaction tray 110, a reagent carrier tray 120, a sample carrier tray 130, and a dispensing device.
  • the dispensing device may include a reagent dispensing mechanism 140 (such as a reagent needle) disposed between the reaction disk 110 and the reagent carrier disk 120, and a sample dispensing mechanism disposed between the reaction disk 110 and the sample carrier disk 130. 150 (such as a sample needle).
  • the sample carrier tray 130 is used to load a sample to be tested, and the shape of the sample carrier tray 130 may be a circular shape, a rectangular shape, or other irregular shapes, and the like, which is not specifically limited herein.
  • the sample dispensing mechanism 150 is capable of transferring the sample to be tested in the sample carrier tray to a reaction vessel on the reaction tray.
  • the reagent carrier tray 120 is used to store various reagents, and the reagent carrier tray 120 is provided with loading positions, and one reagent bottle can be placed in each loading position.
  • the shape of the reagent carrier disk 120 may be a circular shape, a rectangular shape, or other irregular shapes, and the like.
  • the embodiment of the present application is exemplified by a circular reagent carrier disk.
  • the reagent dispensing mechanism 140 is capable of transferring the reagents in the reagent carrying tray 120 into the reaction vessel on the reaction tray 110. Further, in order to improve the detection efficiency and speed of the sample analyzer, the number of the reagent dispensing mechanisms may be two, and the two reagent dispensing mechanisms 140 may operate independently, and the specific structure is as shown in FIG. 2 .
  • the reagent carrier disk 120 may further include a first reagent disk 121 and a second reagent disk 122 .
  • the first reagent disk 121 and the second reagent disk 122 are coaxially nested.
  • the first reagent disk 121 is provided with a plurality of loading positions for loading reagents.
  • the plurality of loading positions are disposed along the circumferential direction of the first reagent disk 121, and one reagent bottle can be placed in each loading position.
  • the second reagent tray 122 is also provided with a plurality of loading positions, and a plurality of loading positions are disposed along the circumferential direction of the second reagent tray 122, and one reagent bottle can be placed in each loading position.
  • the reagent carrier disk 120 may also include only one reagent disk, that is, the reagent carrier disk 120 includes only the first reagent disk 121 or the second reagent disk 122 .
  • the reagent carrying tray 120 is provided with a plurality of preset reagent storage areas, which may be formed by one or more reagent loading positions, each of which is used to store a designated reagent.
  • the reagent carrier disk can be equally divided into N (N ⁇ 1, N is a positive integer) predetermined reagent storage areas according to the type of the specified reagent.
  • the reagent carrier tray includes the first reagent tray and the second reagent tray which are nested, the R1 reagent and the R2 reagent may be stored on the first reagent tray 121, and the R3 reagent and the R4 reagent may be stored in the second reagent.
  • the tray 122 On the tray 122.
  • the first reagent disk 121 is only used to store the R1 reagent
  • the second reagent disk 122 is only used to store the R2 reagent.
  • the specific division manner of the preset reagent storage area may be determined according to specific conditions, and is not specifically limited herein.
  • the current reagent stored in the preset reagent storage area is different from the specified reagent in the preset reagent storage area, the current reagent may be determined as an invalid reagent, and the load bit where the current reagent is located may be marked as invalid loading. Position, so that during the actual test, the reagent dispensing mechanism 140 does not draw the reagent from the invalid loading position where the invalid reagent is located to ensure the accuracy of the test result.
  • the sample analyzer can also record and identify status information of each loading bit on the reagent carrier disk 120.
  • the status information of each loading bit includes, but is not limited to, whether the loading bit is in an idle state (ie, whether the loading bit is loaded or not) Reagent), the current reagent remaining amount of the loaded reagent in the loading position, and whether the loaded reagent has expired in the loading position. If the current reagent remaining amount of the loaded reagent in the loading position is less than or equal to the preset margin, if the current reagent remaining amount of the loaded loading reagent is insufficient to complete 10 test items, the loaded reagent label is loaded in the loading position. It is a trace reagent and the loading site is labeled as a trace reagent loading site.
  • the load level can now be marked as a free load position.
  • the reagent is loaded in the loading position, and the current reagent remaining amount of the loaded reagent in the loading position is close to zero, indicating that the reagent in the loading position has been used up, and the loading bit can be marked as a free loading position.
  • the sample analyzer can record the type of the reagent and the reagent amount taken by the reagent dispensing mechanism, so that the current reagent balance of the reagent can be obtained, so that the reagent carrier tray can be updated in real time. Status information on each load bit.
  • the reagent carrier tray can be replenished before the next round of testing begins. This reagent is to ensure the smooth development of the next round of testing.
  • the specific implementation method can be referred to the description below.
  • the sample analyzer 100 may further include a sample carrier (not shown) for storing samples, a control device 200, and a memory 300.
  • the memory 300 is configured to store a current reagent balance of various reagents on the reagent carrier tray, historical test data of each test item within a preset time period, and an estimated total of the various preset reagents corresponding to each test item. consumption.
  • the control device 200 is configured to obtain the type and quantity of the reagent to be replenished, and respectively assign a load position in an available state for each of the to-be-replenished reagents, and the load position in the usable state includes an idle load position on the reagent carrier tray. In order to achieve automatic allocation of the placement position of each reagent to be replenished, the automation of reagent loading is improved.
  • the control device 200 can also implement control of components of the sample analyzer 110, the reagent carrier disk 120, the sample carrier disk 130, and the dispensing device.
  • the sample analyzer may further include a display device 400, and the display device 400 may be configured to display a list of supplemental reagents, which may include the type and amount of the reagent to be replenished and the loading position of the reagent to be replenished on the reagent carrier tray. And the loading operation of the reagent to be replenished, and the like.
  • the above control device 200 is further configured to control the display device 400 to display a list of supplemental reagents.
  • control device of the sample analyzer can also be communicatively connected (wired or wirelessly connected) to a display device not integrated on the sample analyzer, such as a desktop device connected to the sample analyzer. And mobile devices (like mobile phones or tablets) and more. Further, the control device can control the display device to display a list of supplemental reagents.
  • the sample analyzer described above can automatically obtain the type, quantity and loading position of the reagent to be replenished, and improve the accuracy and efficiency of reagent loading on the sample analyzer.
  • the sample analyzer may include a reagent carrier disk 120 for carrying a reagent, a memory 300, and a control device 200, wherein the reagent carrier disk 120 is provided with a plurality of loading positions for loading the reagent bottle.
  • the memory 300 is used to store the current reagent remaining amount of various reagents on the reagent carrying tray, and the estimated total consumption of each of the predetermined reagents corresponding to each test item. Further, the memory can also be used to store historical test data of each test item within a preset time period, and various data in the reagent loading control process.
  • control device 200 may be a processor such as a CPU, an FPGA, or a DSP.
  • the control device 200 may include an input component 210, an operation component 220, and a control component 230, wherein the input component 210 may be an I/O (Input/Output) interface or the like.
  • the sample analyzer may pass through the input component 210.
  • the current reagent remaining amount and the estimated total consumption amount of various reagents on the reagent carrying tray are obtained from a storage device such as the memory 300.
  • the input component 210 can also be a button or a touchpad set on the sample analyzer, or an external keyboard, a touchpad, or a mouse.
  • the input component may also be a touch layer overlaid on the display device.
  • the computing component 220 is configured to obtain the type and quantity of the reagent to be supplemented according to the current reagent remaining amount and the estimated total consumption amount of the various reagents; the control device 230 is configured to respectively allocate one for each of the reagents to be supplemented A load bit of the state, the load bit in an available state including an idle load bit on the reagent carrier disk.
  • the working process of the sample analyzer of the embodiment of the present application is as follows:
  • the control device 200 acquires, from the memory 300, a current reagent remaining amount and an estimated total consumption amount of various reagents on the reagent carrying tray, wherein the reagent carrying tray is provided with a plurality of loading positions for loading the reagent.
  • the reagent carrier tray may include only one first reagent tray, or may include a first reagent tray and a second reagent tray which are nested with each other, and each reagent tray is provided with a plurality of reagents for loading reagents. Loading position.
  • the current reagent balance refers to the remaining amount of reagent before the next round of testing
  • the estimated total consumption refers to the amount of reagent that needs to be consumed in the next round of testing.
  • the current reagent balance of the various reagents on the reagent carrier tray can be obtained, and the sample analyzer needs to consume various reagents in the next round of testing (such as the next day's test). Estimated total consumption.
  • the control device 200 obtains the type and quantity of the reagent to be replenished according to the current reagent remaining amount of the various reagents and the estimated total consumption. Specifically, for each reagent, the control device 200 determines whether the reagent needs to be supplemented according to the current reagent remaining amount and the estimated total consumption amount of the reagent, and if the reagent needs to be supplemented, the reagent is recorded. The type and quantity of supplements required.
  • the control device 200 respectively allocates a load bit in an available state for each reagent to be supplemented, wherein the load bit in the usable state comprises a free load bit on the reagent carrier disk, and the free load bit may be unloaded with any reagent.
  • the loading position ie, the loading position where no reagent bottles are placed
  • control device can automatically allocate a free loading position for each reagent to be replenished, so that the reagent to be replenished can be placed on the reagent carrier tray. Idle load bit on.
  • the type and quantity of the reagent to be replenished, and the loading position allocated by the sample analyzer for each reagent to be replenished can be displayed through The device 400 is displayed so that the user can know the above-mentioned reagent supplement information in time, thereby loading the reagent to be supplemented according to the reagent supplement information, thereby improving the accuracy and efficiency of the reagent loading.
  • the display device 400 may be a display device of a terminal such as a mobile phone, a desktop computer or a tablet computer communicably connected to the sample analyzer.
  • the display device 400 may be integrated on the sample analyzer, such as Other devices with display functions such as LCD displays.
  • the current reagent balance and the estimated total consumption of the various reagents can be statistically calculated according to each test item performed on the sample analyzer, and each test item can include one or more preset reagents ( The reagents that must be used to complete the test project).
  • the control device 200 is specifically configured to: obtain, according to various preset reagents corresponding to the current test item, respectively, the current reagent balance of each preset reagent corresponding to the current test item. And estimated total consumption.
  • the control device can respectively obtain the current reagent residual amount and the estimated total consumption amount of the R1 reagent in the current test item, R2.
  • a plurality of test items can be completed on the sample analyzer.
  • the control device can repeatedly perform the above steps to obtain the current reagent balance and estimation of each preset reagent corresponding to each test item. Total consumption.
  • the sample analyzer can record the extracted sample.
  • the reagent amount of the preset reagent (that is, the current consumption of the preset reagent) is stored in the memory 300 of the reagent amount of the predetermined reagent that is taken up this time.
  • the sample analyzer can update the reagent remaining amount of the preset reagent according to the reagent remaining amount of the preset reagent and the consumption amount of the preset reagent, thereby obtaining the current reagent remaining amount of the preset reagent, and
  • the current reagent remaining amount of the preset reagent is stored in the memory 300.
  • the reagent dispensing mechanism 140 can detect the remaining amount of the reagent before the reagent is taken, and then, the reagent The dispensing mechanism 140 can begin to aspirate the reagent and obtain the current amount of absorbent reagent.
  • the sample analyzer can calculate the current reagent remaining amount of the preset reagent according to the reagent remaining amount before the reagent is taken up and the current pumping reagent amount of the reagent dispensing mechanism 140, and store the current reagent remaining amount of the preset reagent.
  • the current reagent remaining amount of the preset reagent stored in the memory 300 can be used by the control device of the sample analyzer.
  • the memory 200 is further configured to store historical test data of each test item within a preset time period.
  • the control apparatus 200 may calculate, according to the historical test data, an estimate of various reagents corresponding to the current test item. Total consumption.
  • the control device 200 may perform the foregoing steps of respectively acquiring the estimated total consumption amounts of the various preset reagents corresponding to the current test item according to the flowcharts shown in FIG. 6 to FIG. 7, and specifically performing the following steps:
  • the control device 200 acquires historical test data of the current test item within a preset time period, wherein the historical test data of the current test item may include a historical sample quantity.
  • the preset time period may be one week, one month, or one quarter.
  • the preset time period may be one month
  • the historical test data of the current test item may be the number of samples of the current test item performed every day in one month, so that it is known how many times the sample analyzer is completed in the month.
  • the historical test data of the current test item may be stored in a memory, and the first input unit may read the historical test data described above from the memory.
  • the control device obtains a sample size change curve corresponding to the current test item according to the historical sample quantity of the current test item. Specifically, the control device may obtain the sample size average and the sample size variance corresponding to the current test item according to the historical sample quantity of the sample analyzer in the preset time period, so that the sample size average and the sample size variance may be calculated. Obtain the sample size curve corresponding to the current test item. In the above example, the control device can calculate the sample size average and the sample size variance corresponding to the current test item according to the sample number of the current test item completed by the sample analyzer every day within a preset time period (for example, within one month).
  • the control device can calculate the total number of samples in the preset time period (eg, within one month) according to the number of samples per day, and according to the total number of samples of the current test item within a preset time period (eg, within one month) Calculate the average sample size corresponding to the current test item.
  • the sample size change curve by using the sample size change curve, the sample size change trend of the current test item can be obtained, so that the number of current test items in the next test can be estimated.
  • the control device may further compare the sample size variation curve corresponding to the estimated current test item according to the preset deviation value. Correction (such as panning, etc.), you can adjust the number of samples in the next round of tests that need to be tested according to the preset bias value.
  • the control device obtains each corresponding to the current test item according to the sample size change curve corresponding to the current test item and the reagent consumption amount of the preset reagent required for each current test item.
  • the first estimated consumption of the preset reagent Specifically, the type of the preset reagent required for completing a current test item and the reagent consumption amount of each preset reagent may be fixed, so that the control device can estimate the sample according to the sample size curve corresponding to the current test item.
  • the number of current test items that need to be completed in one round of testing (such as the next day test) (ie, how many current test items the sample analyzer needs to complete in the next round of testing), and based on the number of current test items and each test
  • the reagent consumption amount of the preset reagent required for the item is calculated, the first estimated consumption amount of each preset reagent in the current test item is calculated, and the first estimated consumption amount is stored in the memory 300.
  • control device 200 may further perform the foregoing steps of separately obtaining the estimated total consumption amount of the various preset reagents corresponding to the current test item according to the flowcharts shown in FIG. 6 and FIG. 7 , which may specifically include:
  • the control device 200 acquires historical test data of the current test item within a preset time period, and the historical test data of the current test item includes historical consumption amounts of various preset reagents corresponding to the current test item.
  • the preset time period may be one week, one month, or one quarter.
  • the preset time period may be one month
  • the historical test data of the current test item may include, in one month, the historical consumption amount of various preset reagents corresponding to the current test item every day.
  • the history test data of the current test item may be stored in a memory, and the control device 200 may read the above-described history test data from the memory 300.
  • the control device 200 obtains a reagent consumption change curve of each preset reagent corresponding to the current test item according to the historical consumption amount of each preset reagent corresponding to the current test item. Specifically, for each preset reagent corresponding to the current test item, the control device 200 calculates the reagent consumption amount of the preset reagent according to the historical consumption amount of the preset reagent within a preset time period (eg, within one month). The average value and the reagent consumption variance are calculated, and the reagent consumption variation curve of the preset reagent is calculated according to the reagent consumption average value and the reagent consumption variance.
  • the control device obtains a first estimated consumption amount of the preset reagent corresponding to the current test item according to the reagent consumption change curve of the preset reagent. Specifically, for each preset reagent corresponding to the current test item, the control device may obtain a change trend of the preset reagent in the current test item according to the reagent consumption change curve of the preset reagent, thereby being estimated The reagent consumption of the preset reagent required in the current test item.
  • control device may adjust the actual consumption change curve of each preset reagent according to the preset deviation value, that is, according to the preset The deviation value adjusts the estimated first estimated consumption amount of each preset reagent corresponding to the current test item, and stores the first estimated consumption amount into the memory 300.
  • the historical test data of the current test item may include the historical sample quantity and the historical consumption amount of various preset reagents corresponding to the current test item, and calculate the estimated total consumption amount of the various preset reagents corresponding to the current test item.
  • the process may be performed by the above steps S110 to S112, or may be calculated by the above steps S113 to S115, and is not specifically limited herein.
  • the sample analyzer needs to process the reagents required for these emergencies, and cannot pass the historical test of the sample analyzer. Data is obtained. Therefore, when there is an abnormal situation such as a backup device failure or a large amount of sample data temporarily, the accuracy of the reagent consumption estimation of the next test can be improved by manual adjustment to ensure that the sample analyzer can be smoothly completed.
  • the next test task (such as the test task the next day).
  • control device 200 may further perform the foregoing steps of separately obtaining the estimated total consumption amount of the various preset reagents corresponding to the current test item according to the flowchart shown in FIG. 6, which may specifically include:
  • the control device 200 acquires the floating quantity of the current test item.
  • the floating amount of the current test item may be the number manually input by the user.
  • the control device 200 can obtain the floating amount of the current test item through a button provided on the sample analyzer or a touch layer covered on the display device.
  • the control device 200 obtains a second estimated consumption amount of each preset reagent corresponding to the current test item according to the floating quantity of the current test item. Specifically, the type of the preset reagent required to complete a current test item and the reagent consumption amount of the various preset reagents may be fixed, so that the control device 200 may obtain the second estimated consumption amount according to the floating quantity of the current test item. And storing the second estimated consumption amount in the memory 300.
  • the control device 200 obtains an estimated total consumption amount of the preset reagent according to the first estimated consumption amount of the preset reagent and the second estimated consumption amount of the preset reagent.
  • the estimated total consumption of the preset reagent may be a first estimated consumption amount of the preset reagent and a second estimated consumption amount of the preset reagent.
  • the estimated total consumption of the preset reagent can be stored in the memory 300.
  • the control device 200 may calculate, according to the historical test data of the current test item, the first estimated consumption amount of the various preset reagents in the current test item, and the first pre-predetermined amount.
  • the estimated consumption can be displayed by the display device 400.
  • the types of test items included in the medical examination items, each test item The corresponding preset reagent type and reagent consumption amount are fixedly set.
  • the control device 200 can calculate the floating of each test item according to the 100 individual test items.
  • the quantity, and according to the floating quantity of the current test item calculates a second estimated consumption amount of each preset reagent corresponding to the current test item. If the floating quantity of the current test item is zero, the second estimated consumption corresponding to each preset reagent in the current test item is zero.
  • the sample analyzer can send an adjustment prompt message to the user through the display device.
  • a dialog box may pop up on the display device and display "whether or not to make adjustments". If the user selects the adjustment (the user can select whether to adjust by the button set on the terminal or the selection control displayed in the dialog box), the floating quantity setting interface can be displayed according to the selected signal input by the user, the floating The quantity setting interface may be a selection of a specific test item and a floating quantity setting of the selected test item.
  • the floating quantity setting interface may also be a quantity setting of a physical examination item, and is not specifically limited herein. If the user selects that no adjustment is needed, the estimated total consumption of each preset reagent in the current test item may be displayed on the display device according to the selected signal input by the user. At this time, each pre-plan in the current project Let the estimated total consumption of the reagent be equal to the first estimated consumption of each predetermined reagent.
  • the user may also directly adjust the estimated reagent amount.
  • the control device may perform the foregoing steps of separately obtaining the estimated total consumption amount of the various preset reagents corresponding to the current test item according to the flowchart shown in FIG. 7, which may specifically include:
  • the control device 200 acquires a third estimated consumption amount of various preset reagents corresponding to the current test item. Specifically, when there is an abnormal situation such as a backup device failure or a temporary large amount of sample data, the third estimated consumption amount of each preset reagent corresponding to the current test item may be directly adjusted manually to ensure that the sample analyzer is under It works well in one test. The third estimated consumption may be determined according to a specific abnormal situation.
  • the control device 200 can obtain a third estimated consumption amount of various preset reagents corresponding to the current test item by using a button set on the sample analyzer or a touch layer covered on the display device. Further, the third estimated consumption amount of the various preset reagents corresponding to the current test item may be stored in the memory 300.
  • the control device obtains an estimated total consumption amount of the preset reagent according to the first estimated consumption amount of the preset reagent and the third estimated consumption amount of the preset reagent.
  • the estimated total consumption of the preset reagent may be equal to a sum of the first estimated consumption amount and the third estimated consumption amount of the preset reagent, the preset The estimated total consumption of reagents can be stored in memory 300.
  • the first estimated consumption amount of each preset reagent in the current test item may be calculated according to the historical test data of the current test item, and the first estimated consumption amount is obtained. It can be displayed by a display device.
  • the types of test items included in the medical examination items and each test item The third estimated consumption of the preset reagent is known, and at this time, the user can input the third estimated reagent consumption of various preset reagents corresponding to 100 individual test items.
  • the sample analyzer calculates the first estimated consumption amount of the various preset reagents in the current test item according to the historical test data of the current test item, and displays the first estimated consumption amount on the display device
  • the sample analyzer can send adjustment prompt information to the user through the display device. If the display device can pop up a dialog box and display "Yes, adjust". If the user selects the adjustment (the user can select whether to adjust by the button set on the sample analyzer or the selection control displayed in the dialog box), the floating consumption setting interface can be displayed according to the selected signal input by the user. The third estimated consumption amount of each preset reagent can be set through the floating consumption setting interface.
  • the selected signal input by the user may display the estimated total consumption of each preset reagent in the current test item on the display device.
  • each preset reagent in the current item The estimated total consumption can be equal to the first estimated consumption of each preset reagent.
  • the sample analyzer when the sample analyzer completes the test task of the day, the sample analyzer can be controlled to enter the reagent loading process, and the user can manually select the manual adjustment mode to make the sample analyzer enter the reagent consumption. Estimation process. At this time, in the estimation process of the reagent consumption amount, the estimated total consumption amount of each preset reagent can be directly displayed on the display device, and the first estimated reagent consumption amount is not displayed.
  • the control device 200 may further perform the foregoing steps of separately obtaining the estimated total consumption amount of the various preset reagents corresponding to the current test item according to the flowchart shown in FIG. 8 , which may specifically include:
  • the control device 200 acquires the floating quantity of the current test item and the historical test data of the current test item in the preset time period, wherein the historical test data of the current test item includes the historical sample quantity and/or various types corresponding to the current test item.
  • the historical consumption of the preset reagent is not limited to the preset time period.
  • the control device 200 calculates, according to the floating quantity of the current test item and the historical test data of the current test item in the preset time period, respectively, the estimated total consumption amount of the various preset reagents corresponding to the current test item is obtained.
  • the sample analyzer when the sample analyzer completes the test task for the day, the sample analyzer can be controlled to enter the reagent loading process to ensure that the sample analyzer will function properly the next day. Specifically, after the sample analyzer is controlled to enter the reagent loading process, the sample analyzer can send adjustment prompt information to the user through the display device. For example, a dialog box may pop up on the display device and display "whether or not to make adjustments". If the user selects that adjustment is needed (the user can select whether to adjust by the button set on the terminal or the selection control displayed in the dialog box), the floating quantity setting interface can be displayed according to the selected signal input by the user, The floating quantity setting interface may be a selection of a specific test item and a floating quantity setting of the selected test item.
  • the floating quantity setting interface may also be a quantity setting of a physical examination item, and is not specifically limited herein.
  • the control apparatus 200 may calculate the historical test data (including the historical sample quantity and/or the current test item corresponding to the current test item according to the floating quantity of the current test item and the current test item.
  • the historical consumption of various preset reagents is calculated separately to obtain the estimated consumption of various preset reagents corresponding to the current test item, and the estimation of various preset reagents of the current test item is displayed on the display device. Total consumption.
  • the sample analyzer can enter the calculation process of the estimated total consumption according to the selected signal input by the user, that is, the current test data is calculated according to the historical test data of the current test item.
  • the estimated total consumption corresponding to the test item, and the estimated total consumption of various preset reagents of the current test item is displayed on the display device.
  • the calculation process of the estimated total consumption of the various preset reagents of the current test item can be calculated by referring to the steps S110 to S112, or the calculation is performed by referring to the above steps S113 to S115, which are not specifically limited herein.
  • the type and quantity of the reagent to be supplemented may also be counted and calculated according to each test item on the sample analyzer.
  • the control device 200 is configured to perform the above step S200, specifically, the following steps are performed:
  • the control device 200 determines whether the current reagent balance of each preset reagent is less than the estimated total consumption of the preset reagent. If the current reagent remaining amount of the preset reagent is greater than or equal to the estimated total consumption of the preset reagent, the preset reagent may be considered to be sufficient for the next test, and no supplement is needed at this time.
  • step S211 is performed, and the control device 200 marks the preset reagent as the reagent to be supplemented, and according to the current reagent residual amount and the preset amount of the preset reagent.
  • the total capacity of the reagent to be replenished may be equal to the difference between the current reagent balance of the preset reagent and the estimated total consumption.
  • the control device 200 obtains the number of refill bottles required for the reagent to be replenished in the current test item according to the total capacity of the reagent to be replenished and the rated capacity of the reagent to be replenished per bottle.
  • the number of replenishing bottles required for the reagent to be replenished in the current test item may be equal to the quotient of the total capacity of the reagent to be replenished and the rated capacity of the reagent to be replenished per bottle.
  • the rated capacity of each bottle of the reagent to be replenished may be the full bottle capacity of the reagent to be replenished.
  • control device 200 may calculate an estimated supplemental quantity corresponding to the reagent to be replenished according to the total capacity of the reagent to be replenished and the rated capacity of the reagent to be replenished, and the estimated supplemental quantity may be equal to the total capacity of the reagent to be replenished and each bottle. The quotient of the rated capacity of the reagent to be replenished. Thereafter, the control device 200 may round up the estimated supplemental amount to obtain the number of supplemental bottles required for the reagent to be replenished. For example, if the estimated supplement amount is 2.3 bottles, the number of refill bottles required for the reagent to be replenished is 3 bottles.
  • the reagent loading operation can be temporarily disabled.
  • the preset reagent corresponding to a test item needs to be replenished, the supplementary quantity can be satisfied as long as it meets the needs of the next round of testing, so that the various reagents required for the next round of testing are loaded on the reagent carrying tray as much as possible. To ensure that the next round of testing can be performed normally.
  • the reagent loading method of the embodiment of the present application can also obtain the loading position of each reagent to be replenished, thereby eliminating the need to manually inspect the respective loading positions on the reagent carrying tray and assigning loading positions to the respective reagents to be replenished. .
  • the control device 200 is specifically configured to perform the following steps:
  • the control device 200 obtains the number and location information of the loading bits in the available state on the reagent carrying tray.
  • the load position on the reagent carrier tray in a usable state may include an idle load position (a loading position where no reagent bottles are placed or a reagent bottle is placed and the current reagent balance of the reagent in the reagent bottle is close to zero).
  • each loading position on the reagent carrying tray may be numbered according to a preset rule.
  • the position information of each loading position on the reagent carrying tray refers to the number corresponding to each reagent loading position.
  • the sample analyzer can update the status of the load bit.
  • the control device 200 can update the state of the loading position. For another example, when the reagent bottle is placed in the free loading position and the current reagent remaining amount of the reagent in the reagent bottle is close to zero, the control device 200 can update the free loading when the reagent bottle in the free loading position is unloaded. The state of the bit; when a new reagent bottle is again placed in the free load bit, the control device 200 can update the state of the free load bit again.
  • control device 200 can also update the current reagent remaining amount of the loaded reagent in the loading bit in real time, and when the reagent in the loading bit is used up, the system can also update the state of the loading bit. That is to say, in the present embodiment, the control device 200 can update the state of each load bit on the reagent carrier tray in real time.
  • the control device 200 obtains the total number of reagents to be replenished according to the number of replenishing bottles required for each reagent to be replenished. Specifically, the total amount of the reagent to be replenished may be the sum of the number of replenishing bottles required for each of the reagents to be replenished.
  • the control device 200 determines whether the total number of reagents to be replenished is less than or equal to the number of loading positions in the available state on the reagent carrying tray.
  • step S340 may be performed, and the control device 200 may be performed.
  • a load bit in an available state is assigned to each reagent to be supplemented, that is, position information of the load bit in the usable state is assigned to the corresponding reagent to be replenished.
  • the estimated total consumption of each preset reagent corresponding to each test item may be re-adjusted at this time, and then corresponding to each test item.
  • the control device 200 can calculate the type and quantity of the reagent to be replenished according to the adjusted estimated total consumption corresponding to the preset reagent and the current reagent remaining amount, and then return to step S320, and the control device 200 according to each The number of replenishing bottles required for the replenishing reagent is recalculated to obtain the total amount of the reagent to be replenished, and then step S330 is performed, and the control device 200 continues to determine whether the total amount of the reagent to be replenished is less than or equal to the loading position of the reagent disc on the available state. Quantity.
  • the number of floating of each test item can be manually adjusted.
  • the third estimated consumption of each test item can also be manually adjusted.
  • the above steps S200 to S300 may be repeatedly performed to realize the allocation of the loading positions of the respective reagents to be replenished.
  • the loading position on the reagent carrying tray in a usable state further includes a trace reagent loading position in which the reagent is loaded, and wherein the current reagent remaining amount of the loaded reagent is insufficient.
  • the control device 200 can respectively determine whether the current reagent remaining amount of the reagent is less than the preset reagent amount in the loading position of each loaded reagent on the reagent carrying tray, and if the current reagent remaining amount of the reagent in the loading position of the loaded reagent is less than By presetting the reagent amount, the control device 200 can mark the loading position at which the reagent is located as a trace reagent loading position. For example, when the current reagent balance of the reagent is insufficient to complete 10 test items, the loading position at which the reagent is placed is marked as a trace reagent loading position.
  • control device 200 when the control device 200 is configured to perform steps S330 to S340, the following steps are specifically performed:
  • the control device 200 determines whether the total quantity of the reagents to be replenished is less than or equal to the number of free loading positions on the reagent carrying tray; wherein the total number of reagents to be replenished may be the total number of various reagents to be replenished in each test item. with.
  • step S341 can be performed.
  • the control device 200 assigns a free load bit to each reagent to be replenished, that is, assigns position information of one free load bit to the reagent to be replenished to load the reagent to be replenished into the free load position.
  • the total number of reagents to be replenished may be three, and the number of free loading positions on the reagent carrier tray is greater than three.
  • the control device may configure one of the loading positions of the reagent to be replenished as the idle loading position No. 1 (
  • the loading position on the reagent carrier tray) the loading position of one of the reagents to be replenished is configured as the No. 2 free loading position (such as the loading position No. 5 on the reagent carrier tray), and the loading position of another reagent to be replenished is used.
  • Configured as No. 3 free load bit (such as load stop 7 on the reagent carrier).
  • step S332 may be performed, and the control device 200 determines Whether the total amount of supplemental reagents is less than or equal to the sum of the number of free loading sites on the reagent carrier tray and the number of trace reagent loading sites.
  • Step S342 is executed, the control device 200 allocates one idle loading bit or one micro reagent loading bit for each reagent to be replenished, that is, assigning the position information of the idle loading position on the reagent carrying tray or the position information of the micro reagent loading position to the corresponding to-be-replenished Reagents.
  • the reagent carrier tray can place all the reagents to be replenished corresponding to all the test items, thereby ensuring the normal operation of the sample analyzer.
  • a small reagent loading position on the reagent carrier tray is used as the loading position of the reagent to be replenished.
  • the target reagent in the micro reagent loading position may be unloaded, and then the reagent to be replenished is loaded to the micro reagent loading position.
  • the reagent type of the reagent to be replenished is the same as the reagent type of the target reagent in the micro reagent loading position
  • the reagent to be replenished may be directly poured into the reagent bottle of the target reagent in the micro reagent loading position. The loading operation of the reagent to be replenished.
  • the estimated total consumption of each preset reagent corresponding to each test item may be re-adjusted at this time, and then, For each preset reagent corresponding to each test item, the type and quantity of the reagent to be replenished can be calculated according to the adjusted estimated total consumption amount and the current reagent remaining amount corresponding to the preset reagent, and then the process returns to step S320.
  • the control device 200 recalculates the total number of reagents to be replenished according to the number of replenishing bottles required for the various reagents to be replenished, and then proceeds to step S332, and the control device 200 continues to determine whether the total amount of reagents to be replenished is less than or equal to the idle loading on the reagent carrier tray.
  • the sum of the number of bits and the number of trace reagent loading sites are included in the total quantity of the reagent to be replenished. Specifically, when the total quantity of the reagent to be replenished is greater than the sum of the number of free loading positions on the reagent carrying tray and the number of the small reagent loading positions, the floating quantity of each test item can be manually adjusted at this time, and the specific adjustment process can be referred to the above.
  • Step S116 to step S118 and details are not described herein again.
  • the third estimated consumption of each test item can also be manually adjusted.
  • the above steps S200 to S300 may be repeatedly performed to realize the allocation of the loading positions of the respective reagents to be replenished.
  • the target reagent in the micro reagent loading position may be unloaded first, and then the micro reagent is discharged. Add new reagents to the loading position. After the target reagent in the trace reagent loading position is unloaded, the target reagent in the micro reagent loading position can be recycled to ensure that the sample analyzer has sufficient reagents in the next round of testing.
  • the control device 200 is specifically configured to perform the following steps:
  • the control device 200 acquires the reagent type of the target reagent placed in the trace reagent loading position and the current reagent remaining amount.
  • the target reagent refers to a target reagent loaded in a trace reagent loading position.
  • the control device 200 obtains a target moving position of the target reagent according to the type of the reagent of the target reagent and the current reagent remaining amount, wherein the target moving position of the target reagent is a loading position of the reagent of the same type as the target reagent. Specifically, the control device can obtain which reagent bottle needs to transfer the remaining reagent amount of the target reagent according to the reagent type of the target reagent and the current reagent remaining amount.
  • the target reagent in the micro reagent loading position is the R2 reagent
  • the input component can know the current reagent remaining amount of the R2 reagent.
  • the control device 200 can obtain the loading positions of all the R2 reagents (in which loading position are respectively loaded) at the respective reagent loading positions on the reagent carrying tray, and determine which loading is based on the current reagent remaining amount of the R2 reagent in each loading position.
  • the reagent bottle in the position can accommodate the remaining reagent in the micro reagent loading position, and obtain the target moving position of the target reagent, that is, the target moving position refers to the reagent that needs to pour the remaining reagent in the micro reagent loading position into which loading position. in.
  • the reagent carrier tray is provided with a plurality of preset reagent storage areas, and the preset reagent storage area may be formed by one or more reagent loading positions, each of the preset reagent storage areas for storing the designated reagent. If the current reagent stored in the preset reagent storage area is different from the specified reagent in the preset reagent storage area, the current reagent may be determined as an invalid reagent, and the loading position of the current reagent may be marked, thereby actually During the test, the reagent dispensing mechanism does not draw the reagent from the loading position where the invalid reagent is located to ensure the accuracy of the test results.
  • the control device 200 is further configured to perform the following steps:
  • the control device 200 waits for each reagent to be replenished. A free load bit is allocated in the preset storage area corresponding to the supplemental reagent.
  • the control device 200 allocates one idle loading position for each reagent to be supplemented in the preset storage area corresponding to the reagent to be supplemented. Or a trace reagent loading position.
  • each reagent to be replenished can only be placed in a preset storage area corresponding to the reagent to be replenished.
  • the reagent carrier tray is an inner and outer nested structure including a first reagent tray and a second reagent tray, wherein the first reagent tray is used to load the R1 reagent, and the second reagent tray is used to load the R2 reagent, ie, the R1 reagent.
  • the corresponding preset storage area is each loading position on the first reagent disk, and the preset storage area corresponding to the R2 reagent is each loading position on the second reagent disk.
  • the control device 200 determines whether the number of replenishing bottles required for the R1 reagent is less than or equal to the number of free loading positions on the first reagent disc, and the number of refilled bottles required for the R1 reagent is less than Or equal to the number of free load bits on the first reagent disk, then the control device 200 will assign a free load bit to each of the R1 reagents to be replenished on the first reagent disk.
  • the control device 200 will assign an idle loading bit or a trace reagent loading position to each of the R1 reagents to be replenished on the first reagent disk.
  • the number of replenishing bottles required for the R1 reagent is greater than the sum of the number of free loading positions on the first reagent tray and the number of micro reagent loading positions, the R1 reagent is not loaded onto the second reagent tray at this time.
  • the R1 reagent is considered to be an invalid reagent, which not only occupies the resources on the reagent carrier disk, but also fails to meet the needs of the next test.
  • the process of assigning the loading position is similar to the loading position of the R1 reagent. For details, refer to the description above, and details are not described herein again.
  • the target reagent in the micro reagent loading position may be unloaded, and then the new reagent loading position is added to the new reagent loading position. Reagents. After the target reagent in the micro reagent loading position is unloaded, the target reagent in the micro reagent loading position can be recycled to ensure that the sample analyzer has sufficient reagents in the next round of testing, and the specific execution process can be performed.
  • the steps S400 to S410 in the above the details are not described herein again.
  • control device 200 is further configured to control the display device 400 to display the supplementary reagent list, wherein the supplementary reagent list includes the kind of the reagent to be supplemented, the quantity of the reagent to be supplemented, and the reagent to be supplemented on the reagent carrier tray.
  • the loading position and the loading operation of the reagent to be replenished In this way, it is possible to display on the display device the type and quantity of the reagent to be replenished and the loading position in the available state corresponding to the reagent to be replenished, thereby facilitating reagent loading.
  • the display device 400 may be a display device of a terminal such as a mobile phone, a desktop computer or a tablet computer communicably connected to the sample analyzer.
  • the display device 400 may be integrated on the sample analyzer, such as Other devices with display functions such as LCD displays.
  • control device 200 may generate a supplementary reagent list according to a preset list template according to the type and quantity of the reagent to be supplemented, and the loading position and loading operation of each reagent to be supplemented, and the supplementary reagent list can be seen in FIG. 11 .
  • the list of supplemental reagents can show which test items require supplemental reagents, the type and amount of reagents to be replenished for each test item, and the loading position and loading operation of each reagent to be replenished.
  • control device can control the display device to display the above-mentioned list of supplementary reagents so that the user can clearly know the loading process of the reagent to be replenished, and perform the loading operation of the reagent according to the supplementary reagent list.
  • control device 200 can also connect to the printer and transfer the list of supplemental reagents to the printer to enable the printer to print the list of supplemental reagents.
  • the user can print the list of supplemental reagents for ease of operation.
  • the type and quantity of the reagent to be replenished can be obtained by the current reagent remaining amount and the estimated total consumption amount of various reagents on the reagent carrying tray, and one reagent can be allocated for each reagent to be supplemented.
  • the loading position of the available state can automatically confirm the type, quantity and loading position of the replenishing reagent, improve the automation of the sample analyzer, and improve the loading efficiency and accuracy of the replenishing reagent.
  • information such as the type, quantity, and loading position of the above-mentioned supplementary reagents can be displayed to the user through the interactive display interface, thereby facilitating the user to perform the loading operation of the supplementary reagents and improving the operation efficiency.
  • the type and quantity of the reagent to be replenished can be directly directly calculated according to the current reagent remaining amount and the estimated total consumption amount of various reagents on the reagent carrying tray, without being statistically obtained according to each test item.
  • the type and quantity of each reagent to be replenished The calculation method is similar to the calculation method in the foregoing embodiment. For details, refer to the description above, and details are not described herein again.
  • the embodiment of the present application further provides a reagent loading control method, which can be used in the sample analyzer described above to implement the control of the reagent loading process.
  • the reagent loading control method may include the following steps:
  • Each of the reagents to be replenished is assigned a load bit in an available state, the load position in an available state including a free load bit on the reagent carrier tray.
  • an embodiment of the present application further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by one or more processors, the following steps are performed:
  • Each of the reagents to be replenished is assigned a load bit in an available state, the load position in an available state including a free load bit on the reagent carrier tray.
  • Non-volatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM) or external cache memory.
  • RAM is available in a variety of formats, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronization chain. Synchlink DRAM (SLDRAM), Memory Bus (Rambus) Direct RAM (RDRAM), Direct Memory Bus Dynamic RAM (DRDRAM), and Memory Bus Dynamic RAM (RDRAM).
  • the sample analyzer, the reagent loading control method and the storage medium of the invention can obtain the type and quantity of the reagent to be replenished by the current reagent amount and the estimated total consumption amount of various reagents on the reagent carrying tray, and can be used for each
  • the reagent to be replenished is assigned a loading position in a usable state, so that information such as the type, quantity and loading position of the replenishing reagent can be automatically confirmed, the degree of automation of the sample analyzer is improved, and the loading efficiency and accuracy of the replenishing reagent are improved.
  • information such as the type, quantity, and loading position of the above-mentioned supplementary reagents can be displayed to the user through the interactive display interface, thereby facilitating the user to perform the loading operation of the supplementary reagents and improving the operation efficiency. Further, when the user is inconvenient to view the interactive display interface of the terminal, the user can print the supplementary reagent list to facilitate the operation.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

本发明提供了一种样本分析仪,包括试剂承载盘、存储器和控制装置,试剂承载盘上设置有多个用于装载试剂的装载位;存储器用于存储试剂承载盘上各种试剂的当前试剂余量以及各个测试项目对应的各种预设试剂的预估总消耗量;控制装置用于根据各种试剂的当前试剂余量及预估总消耗量,获得待补充试剂的种类及数量;分别为每个待补充试剂分配一个处于可用状态的装载位,处于可用状态的装载位包括试剂承载盘上的空闲装载位。本发明还提供了一种试剂加载控制方法及存储介质。本发明的样本分析仪、试剂加载控制方法及存储介质,提高了补充试剂的装载效率及准确性,并且便于用户进行补充试剂的装载操作,提高了操作效率。

Description

样本分析仪、试剂加载控制方法及存储介质 技术领域
本发明涉及医疗设备技术领域,特别是涉及一种样本分析仪、试剂加载控制方法及存储介质。
背景技术
全自动样本分析仪的自动化程度高、测试速度快,检验活动一般都伴随着试剂消耗,需要医生每日补充耗材,如试剂及反应容器等,以保证第二天测试能够顺利开展。
为了保证全自动样本分析仪的正常运转及检测效率,通常会在全自动样本分析仪上设置报警装置,当某种耗材低于预设的报警门限值时,则该全自动样本分析仪可以发出报警信息,之后,用户需要人为进行补充试剂的装载操作。例如,当全自动样本分析仪上的试剂余量不足时,则该报警装置可以提示用户进行试剂的补充装载。但上述补充试剂装载的过程中,需要人为确认补充试剂类型等信息,在试剂存储量较大的情况下,人为工作量较大且容易出错,从而影响补充试剂的装载效率及准确性。
发明内容
鉴于上述全自动样本分析仪的补充试剂装载的效率及准确性较低的问题,本发明的目的在于提供一种样本分析仪、试剂加载控制方法及存储介质,提高补充试剂的装载效率及准确性。
为实现上述目的,本发明采用如下技术方案:
一种样本分析仪,包括:
试剂承载盘,所述试剂承载盘上设置有多个用于装载试剂的装载位;
存储器,用于存储试剂承载盘上各种试剂的当前试剂余量以及各个测试项目对应的各种所述预设试剂的预估总消耗量;
控制装置,用于从所述存储器中获取试剂承载盘上各种试剂的当前试剂余量及预估总消耗量;根据各种所述试剂的当前试剂余量及预估总消耗量,获得待补充试剂的种类及数量;分别为每个所述待补充试剂分配一个处于可用状态的装载位,所述处于可用状态的装载位包括所述试剂承载盘上的空闲装载位。本发明还提供了一种样本分析仪,包括用于盛放试剂的试剂承载盘、用于吸排样本或试剂的分注装置、用于存储样本的样本承载装置、显示装置以及上述的样本分析仪。
本发明还提供了一种试剂加载方法,包括如下步骤:
获取试剂承载盘上各种试剂的当前试剂余量及预估总消耗量,其中,所述试剂承载盘上设置有多个用于装载所述试剂的装载位;
根据各种所述试剂的当前试剂余量及预估总消耗量,获得待补充试剂的种类及数量;
分别为每个所述待补充试剂分配一个处于可用状态的装载位,所述处于可用状态的装载位包括所述试剂承载盘上的空闲装载位。
本发明还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被一个或多个处理器执行时,执行如下步骤:
获取试剂承载盘上各种试剂的当前试剂余量及预估总消耗量,其中,所述试剂承载盘上设置有多个用于装载所述试剂的装载位;
根据各种所述试剂的当前试剂余量及预估总消耗量,获得待补充试剂的种类及数量;
分别为每个所述待补充试剂分配一个处于可用状态的装载位,所述处于可用状态的装载位包括所述试剂承载盘上的空闲装载位。
本发明的样本分析仪、试剂加载控制控制方法及存储介质,通过检测试剂承载盘上各种试剂的当前试剂余量及预估总消耗量,可以获得待补充试剂的种类及数量,并可以为每一个待补充试剂分配一个处于可用状态的装载位,从而可以自动确认补充试剂的类型、数量及装载位置等信息,提高了样本分析仪的自动化程度,并提高了补充试剂的装载效率及准确性。
附图说明
图1为一实施例的样本分析仪的结构示意图;
图2为另一实施例的样本分析仪的结构示意图;
图3为图1或图2中的试剂承载盘一实施例的结构示意图;
图4为一实施例的样本分析仪的结构框图;
图5为图4中样本分析仪一实施例的工作流程图;
图6为图4中的样本分析仪一实施例的工作流程图;
图7为4中的样本分析仪一实施例的工作流程图;
图8为图4中的样本分析仪一实施例的工作流程图;
图9为图4中的样本分析仪为待补充试剂分配装载位时一实施例的工作流程图;
图10为图4中的样本分析仪为待补充试剂分配装载位时一实施例的工作流程图;
图11为一实施例的补充试剂清单的示意图。
具体实施方式
为了使本发明的技术方案更加清楚,以下结合附图,对本发明的样本分析仪、试剂加 载控制方法及存储介质作进一步详细的说明。应当理解,此处所描述的具体实施例仅用以解释本发明并不用于限定本发明。
如图1和图2所示,本申请实施例的样本分析仪100可以包括反应盘110、试剂承载盘120、样本承载盘130以及分注装置。其中,该分注装置可以包括设置在反应盘110和试剂承载盘120之间的试剂分注机构140(如试剂针),以及设置在反应盘110和样本承载盘130之间的样本分注机构150(如样本针)。
具体地,样本承载盘130用于装载待测试的样本,该样本承载盘130的形状可以是圆形、矩形或其他不规则形状等等,此处不做具体限定。样本分注机构150能够将样本承载盘中的待测试的样本转移至反应盘上的反应容器内。
试剂承载盘120用于存储各种试剂,试剂承载盘120上设置有装载位,每个装载位内可以放置一个试剂瓶。该试剂承载盘120的形状可以是圆形、矩形或其他不规则形状等等,此处不做具体限定,本申请实施例中以圆形的试剂承载盘为例。该试剂分注机构140能够将试剂承载盘120中的试剂转移至反应盘110上的反应容器内。进一步地,为提高该样本分析仪的检测效率及速度,该试剂分注机构的数量可以两个,两个试剂分注机构140可以独立运行,具体结构如图2所示。
可选地,如图1所示,该试剂承载盘120还可以包括第一试剂盘121和第二试剂盘122,第一试剂盘121和第二试剂盘122同轴嵌套设置。第一试剂盘121上设置有多个用于装载试剂的装载位,多个装载位沿第一试剂盘121的周向设置,每个装载位内可以放置一个试剂瓶。第二试剂盘122上也设置有多个装载位,多个装载位沿第二试剂盘122的周向设置,每个装载位内可以放置一个试剂瓶。通过将试剂承载盘120设置为两层嵌套的结构,增大了试剂承载盘的试剂装载量,便于使用。如图3所示,在其他实施例中,该试剂承载盘120也可以仅包括一个试剂盘,即试剂承载盘120仅包括第一试剂盘121或第二试剂盘122。
进一步地,试剂承载盘120上设置有多个预设试剂存储区域,该预设试剂存储区域可以由一个或多个试剂装载位形成,每个预设试剂存储区域用于存储指定试剂。例如,可以根据指定试剂的类型将试剂承载盘平均划分为N(N≥1,N为正整数)个预设试剂存储区域。再如,当试剂承载盘包括嵌套设置的第一试剂盘和第二试剂盘时,可以将R1试剂、R2试剂存储在第一试剂盘121上,将R3试剂和R4试剂存储在第二试剂盘122上。或者,第一试剂盘121仅用于存储R1试剂,第二试剂盘122仅用于存储R2试剂。该预设试剂存储区域的具体划分方式可以根据具体情况而定,此处不做具体限定。
若该预设试剂存储区域内存储的当前试剂与该预设试剂存储区域的指定试剂不同时,则可以将该当前试剂判定为无效试剂,并可以将该当前试剂所在的装载位标记为无效装载位,从而在实际的测试过程中,试剂分注机构140不会从该无效试剂所在的无效装载位吸 取试剂,以保证测试结果的准确性。
更进一步地,该样本分析仪还可以记录并标识试剂承载盘120上各个装载位的状态信息,各个装载位的状态信息包括但不限于:装载位是否处于空闲状态(即装载位内是否装载有试剂),装载位内已装载试剂的当前试剂余量,装载位内已装载试剂是否过期等信息。若装载位内已装载试剂的当前试剂余量小于或等于预设余量,如装载位已装载试剂的当前试剂余量不足以完成10个测试项目时,则将该装载位内已装载试剂标记为微量试剂,并将该装载位标记为微量试剂装载位。若装载位内未装载任何试剂(即该装载位内未放置任何试剂瓶),此时可以将该装载位标记为空闲装载位。或装载位内装载有试剂,且该装载位内已装载试剂的当前试剂余量接近于零,则表明该装载位内的试剂已经用光,此时可以将该装载位标记为空闲装载位。再进一步地,每当试剂分注机构吸取一次试剂,样本分析仪可以记录一次试剂分注机构吸取的试剂类型及试剂量,从而可以获得该试剂的当前试剂余量,从而可以实时更新试剂承载盘上各个装载位的状态信息。
可选地,由于试剂承载盘上的装载位的数量有限,因此当试剂承载盘上某种试剂用光或其当前试剂余量不足时,可以在下一轮测试开始之前,向试剂承载盘中补充该试剂,以保证下一轮测试的顺利开展。其具体实现方法可参见下文中的描述。
可选地,如图4所示,该样本分析仪100还可以包括用于存储样本的样本承载装置(未示出)、控制装置200以及存储器300。其中,存储器300用于存储试剂承载盘上各种试剂的当前试剂余量、各个测试项目在预设时间段内的历史测试数据以及各个测试项目对应的各种所述预设试剂的预估总消耗量。
控制装置200用于获得待补充试剂的种类及数量,并分别为每个所述待补充试剂分配一个处于可用状态的装载位,处于可用状态的装载位包括所述试剂承载盘上的空闲装载位,以实现对各个待补充试剂的放置位置的自动分配,提高试剂加载的自动化程度。可选地,控制装置200还可以实现对样本分析仪的反应盘110、试剂承载盘120、样本承载盘130以及分注装置等部件的控制。
进一步地,该样本分析仪还可以包括显示装置400,显示装置400可以用于显示补充试剂清单,该补充试剂清单可以包括待补充试剂的种类、数量及待补充试剂在试剂承载盘上的装载位置及待补充试剂的装载操作等等。进一步地,上述的控制装置200还用于控制显示装置400显示补充试剂清单。
当然,在其他实施例中,该样本分析仪的控制装置还可以通信连接(有线连接或无线连接的方式)至未集成于样本分析仪上的显示装置,如与样本分析仪连接的台式电脑设备及移动设备(如手机或平板电脑)等等。进一步地,该控制装置能够控制该显示装置显示补充试剂清单。
以下结合附图说明本申请实施例中的样本分析仪的工作原理:
如图4所示,上述的样本分析仪能够自动获得待补充试剂的种类、数量及装载位置,提高样本分析仪上试剂装载的准确性及效率。具体地,该样本分析仪可以包括用于承载试剂的试剂承载盘120、存储器300以及控制装置200,其中,所述试剂承载盘120上设置有多个用于装载试剂瓶的装载位。存储器300用于存储试剂承载盘上各种试剂的当前试剂余量,以及各个测试项目对应的各种所述预设试剂的预估总消耗量。进一步地,存储器还可以用于存储各个测试项目在预设时间段内的历史测试数据,以及试剂加载控制过程中的各种数据。
可选地,控制装置200可以是CPU、FPGA或DSP等处理器。具体地,控制装置200可以包括输入部件210、运算部件220及控制部件230,其中,该输入部件210可以是I/O(Input/Output)接口等,此时,样本分析仪可以通过输入部件210从存储器300等存储装置中获取试剂承载盘上各种试剂的当前试剂余量及预估总消耗量。可选地,该输入部件210还可以是样本分析仪上设置的按键或触控板等,还可以是外接的键盘、触控板或鼠标等。可选地,该输入部件还可以是覆盖于显示装置上的触摸层。运算部件220用于根据各种所述试剂的当前试剂余量及预估总消耗量,获得待补充试剂的种类及数量;控制装置230用于分别为每个所述待补充试剂分配一个处于可用状态的装载位,所述处于可用状态的装载位包括所述试剂承载盘上的空闲装载位。
如图5所示,本申请实施例的样本分析仪的工作过程如下:
S100、控制装置200从存储器300中获取试剂承载盘上各种试剂的当前试剂余量及预估总消耗量,其中,试剂承载盘上设置有多个用于装载试剂的装载位。可选地,该试剂承载盘可以仅包括一个第一试剂盘,也可以包括相互嵌套设置的第一试剂盘和第二试剂盘,每个试剂盘上均设置有多个用于装载试剂的装载位。其中,针对试剂承载盘上的每种试剂,其当前试剂余量是指在进行下一轮测试之前的试剂剩余量,预估总消耗量是指在下一轮测试中需要消耗的试剂量。例如,当样本分析仪完成当天的测试工作后,可以获得试剂承载盘上各种试剂的当前试剂余量,以及样本分析仪在下一轮测试(如第二天的测试)中需要消耗各种试剂的预估总消耗量。
S200、控制装置200根据各种试剂的当前试剂余量及预估总消耗量,获得待补充试剂的种类及数量。具体地,针对每一种试剂,控制装置200分别根据该种试剂的当前试剂余量及预估总消耗量,判断该种试剂是否需要补充,若需要补充该种试剂时,则记录该试剂的种类以及所需补充的数量。
S300、控制装置200分别为每个待补充试剂分配一个处于可用状态的装载位,其中,处于可用状态的装载位包括试剂承载盘上的空闲装载位,该空闲装载位可以为未装载任何试剂的装载位(即未放置任何试剂瓶的装载位),也可以是放置有试剂瓶但试剂瓶中的试剂已经用光的装载位。具体地,若该样本分析仪的试剂承载盘上存在需要补充的试剂时, 则控制装置可以自动为每一个待补充试剂分配一个空闲装载位,从而可以将该待补充的试剂放置于试剂承载盘上的空闲装载位。
进一步地,上述的待补充试剂的种类及数量,以及样本分析仪为每一个待补充试剂分配的装载位(即将各个待补充试剂分别放置于试剂承载盘上的哪个装载位中),可以通过显示装置400进行展示,以便用户及时获知上述试剂补充信息,从而根据上述试剂补充信息加载待补充试剂,提高试剂加载的准确性及效率。本实施例中,上述的显示装置400可以是与样本分析仪通信连接的手机、台式电脑或平板电脑等终端的显示装置,当然,上述的显示装置400还可以是集成在样本分析仪上,如LCD显示屏等其他具有显示功能的装置。
在一个实施例中,各种试剂的当前试剂余量及预估总消耗量可以根据该样本分析仪上进行的各个测试项目进行统计计算,每个测试项目可以包括一个或多个预设试剂(完成该测试项目所必须使用的试剂)。具体地,上述控制装置200在执行上述步骤S100时,具体用于执行如下步骤:针对当前测试项目对应的各种预设试剂,分别获取当前测试项目对应的各种预设试剂的当前试剂余量及预估总消耗量。
例如,若当前测试项目包括3种预设试剂,如R1试剂、R2试剂及R3试剂,此时,控制装置可以分别获得当前测试项目中R1试剂的当前试剂余量及预估总消耗量,R2试剂的当前试剂余量及预估总消耗量,以及R3试剂的当前试剂余量及预估总消耗量。一般地,样本分析仪上可以完成多个测试项目,针对每一个测试项目,控制装置均可以重复执行上述步骤,以分别获得各个测试项目对应的各种预设试剂的当前试剂余量及预估总消耗量。
可选地,本实施例的样本分析仪中,针对当前测试项目的每一种预设试剂,每当试剂分注机构140吸取一次该种预设试剂,则样本分析仪可以记录此次吸取的该预设试剂的试剂量(即预设试剂此次的消耗量),即将此次吸取的该预设试剂的试剂量存储于存储器300中。之后,样本分析仪可以根据该预设试剂的试剂余量和该预设试剂此次的消耗量更新一次该预设试剂的试剂余量,从而获得该预设试剂的当前试剂余量,并将预设试剂的当前试剂余量存储至存储器300中。或者,针对当前测试项目的每一种预设试剂,每当试剂分注机构140吸取该种预设试剂时,则该试剂分注机构140可以探测获得试剂吸取前的试剂余量,之后,试剂分注机构140可以开始吸取试剂并获得当前吸取试剂量。此时,样本分析仪可以根据试剂吸取前的试剂余量和试剂分注机构140的当前吸取试剂量,计算获得该预设试剂的当前试剂余量,并将预设试剂的当前试剂余量存储至存储器300中。该存储器300中存储的预设试剂的当前试剂余量可供样本分析仪的控制装置使用。
可选地,存储器200还可以用于存储各个测试项目在预设时间段内的历史测试数据,此时,控制装置200可以根据该历史测试数据计算获得当前测试项目对应的各种试剂的预估总消耗量。具体地,控制装置200可以按照图6~图7所示的流程图,执行上述的分别 获取当前测试项目对应的各种预设试剂的预估总消耗量的步骤,具体可以执行如下步骤:
S110、控制装置200获取当前测试项目在预设时间段内的历史测试数据,其中,当前测试项目的历史测试数据可以包括历史样本数量。具体地,该预设时间段可以是一周、一个月或一个季度。例如,该预设时间段可以是一个月,当前测试项目的历史测试数据可以是,一个月内每天进行当前测试项目的样本数量,从而可以获知在这一个月内,样本分析仪每天完成了多少个当前测试项目。该当前测试项目的历史测试数据可以存储于存储器中,第一输入单元可以从存储器中读取上述的历史测试数据。
S111、控制装置根据当前测试项目的历史样本数量,获得当前测试项目对应的样本量变化曲线。具体地,控制装置可以根据样本分析仪在预设时间段内的历史样本数量,获得当前测试项目对应的样本量平均值和样本量方差,从而可以根据该样本量平均值和样本量方差,计算获得当前测试项目对应的样本量变化曲线。承接上例,控制装置可以根据预设时间段内(如一个月内),样本分析仪每天完成的当前测试项目的样本数量,计算获得当前测试项目对应的样本量平均值和样本量方差。其中,控制装置可以根据每天的样本数量计算获得预设时间段内(如一个月内)的样本总数量,并根据该当前测试项目在预设时间段内(如一个月内)的样本总数量,计算获得当前测试项目对应的样本量平均值。本实施例中,通过该样本量变化曲线,可以获得当前测试项目的样本量变化趋势,从而可以预估出下一次测试中当前测试项目的数量。进一步地,为提高当前测试项目对应的各种预设试剂的第一预估消耗量的准确性,控制装置可以再根据预设的偏差值对预估出的当前测试项目对应的样本量变化曲线进行修正(如上下平移等等),即可以根据预设的偏差值对下一轮测试中需要进行当前测试项目的样本数量进行调整。
S112、针对当前测试项目对应的每种预设试剂,控制装置根据当前测试项目对应的样本量变化曲线及每个当前测试项目所需的预设试剂的试剂消耗量,获得当前测试项目对应的各个预设试剂的第一预估消耗量。具体地,完成一个当前测试项目所需的预设试剂的种类及各种预设试剂的试剂消耗量可以是固定的,从而控制装置可以根据当前测试项目对应的样本量变化曲线,预估出下一轮测试(如第二天测试)需要完成的当前测试项目的数量(即可以获得样本分析仪在下一轮测试时需要完成多少个当前测试项目),并根据当前测试项目的数量及每个测试项目所需的预设试剂的试剂消耗量,计算获得当前测试项目中各种预设试剂的第一预估消耗量,并将该第一预估消耗量存储至存储器300中。
例如,完成一个当前测试项目所需的预设试剂为3种,完成当前测试项目所需的各种预设试剂的试剂消耗量如下表所示:
Figure PCTCN2018086387-appb-000001
可选地,控制装置200还可以按照图6和图7所示的流程图,执行上述的分别获取当前测试项目对应的各种预设试剂的预估总消耗量的步骤,其具体可以包括:
S113、控制装置200获取当前测试项目在预设时间段内的历史测试数据,当前测试项目的历史测试数据包括当前测试项目对应的各种预设试剂的历史消耗量。具体地,该预设时间段可以是一周、一个月或一个季度。例如,该预设时间段可以是一个月,当前测试项目的历史测试数据可以包括,在一个月内,当前测试项目每天对应的各种预设试剂的历史消耗量。该当前测试项目的历史测试数据可以存储于存储器中,控制装置200可以从存储器300中读取上述的历史测试数据。
S114、控制装置200根据当前测试项目对应的各个预设试剂的历史消耗量,分别获得当前测试项目对应的各个预设试剂的试剂消耗量变化曲线。具体地,针对当前测试项目对应的每种预设试剂,控制装置200根据该预设试剂在预设时间段内(如一个月内)的历史消耗量,计算获得该预设试剂的试剂消耗量平均值和试剂消耗量方差,并根据该试剂消耗量平均值和试剂消耗量方差,计算获得该预设试剂的试剂消耗量变化曲线。
S115、针对所述当前测试项目对应的每种预设试剂,控制装置根据该预设试剂的试剂消耗量变化曲线获得当前测试项目对应的预设试剂的第一预估消耗量。具体地,针对所述当前测试项目对应的每种预设试剂,控制装置可以根据该预设试剂的试剂消耗量变化曲线,获得当前测试项目中该预设试剂的变化趋势,从而可以预估出当前测试项目中所需的该预设试剂的试剂消耗量。进一步地,为提高当前测试项目对应的各个预设试剂的第一预估消耗量的准确性,控制装置可以根据预设的偏差值调整各个预设试剂的实际消耗量变化曲线,即根据预设的偏差值调整预估出的当前测试项目对应的各个预设试剂的第一预估消耗量,并将该第一预估消耗量存储至存储器300中。
例如,完成一个当前测试项目所需的预设试剂为3种,完成当前测试项目所需的各种预设试剂的试剂消耗量如下表所示:
试剂类型 历史消耗量 第一预估消耗量
R1试剂 A毫升 A’毫升
R2试剂 B毫升 B’毫升
R3试剂 C毫升 C’毫升
进一步地,当前测试项目的历史测试数据可以包括历史样本数量以及当前测试项目对 应的各种预设试剂的历史消耗量,在计算当前测试项目对应的各种预设试剂的预估总消耗量的过程,可以通过上述步骤S110~步骤S112进行计算,也可以通过上述步骤S113~步骤S115进行计算,此处不做具体限定。
可选地,由于医院存在多种突发状况,如备用设备故障或临时有大批量的样本数据等,样本分析仪处理这些突发状况所需的试剂消耗量,无法通过样本分析仪的历史测试数据获得。因此,当存在备用设备故障或临时有大批量的样本数据等异常情况时,可以通过人工调整的方式,提高下一次测试的试剂消耗量预估的准确性,以保证样本分析仪能够顺畅的完成下一次测试任务(如第二天的测试任务)。
可选地,控制装置200还可以按照图6所示的流程图,执行上述的分别获取当前测试项目对应的各种预设试剂的预估总消耗量的步骤,其具体可以包括:
S116、控制装置200获取当前测试项目的浮动数量。具体地,该当前测试项目的浮动数量可以是由用户手动输入的数量。控制装置200可以通过样本分析仪上设置的按键或显示装置上覆盖的触摸层获取当前测试项目的浮动数量。当存在备用设备故障或临时有大批量的样本数据等异常情况,通过增加人工调整的步骤,可以保证该样本分析仪在下一次测试中能够正常运转。
S117、控制装置200根据当前测试项目的浮动数量获得当前测试项目对应的各种预设试剂的第二预估消耗量。具体地,完成一个当前测试项目所需的预设试剂的种类及各种预设试剂的试剂消耗量可以是固定的,从而控制装置200可以根据当前测试项目的浮动数量获得第二预估消耗量,并将该第二预估消耗量存储至存储器300中。
S118、针对当前测试项目的每种预设试剂,控制装置200根据预设试剂的第一预估消耗量和预设试剂的第二预估消耗量,获得预设试剂的预估总消耗量。具体地,针对当前测试项目的每种预设试剂,该预设试剂的预估总消耗量可以是该预设试剂的第一预估消耗量和该预设试剂的第二预估消耗量之和,该预设试剂的预估总消耗量可以存储于存储器300中。
例如,当样本分析仪完成当天的测试任务时,控制装置200可以根据该当前测试项目的历史测试数据计算获得当前测试项目中各种预设试剂的第一预估消耗量,且该第一预估消耗量可以通过显示装置400进行展示。同时,若确知下一轮测试存在异常情况,如确知下一轮测试(如第二天测试)有100个体检项目需要进行测试,该体检项目所包括的测试项目种类,每种测试项目对应的预设试剂种类及试剂消耗量固定设置,因此,用户可以通过显示装置的交互显示界面输入该100个体检测试项目时,控制装置200可以根据该100个体检项目计算获得各个测试项目的浮动数量,并根据当前测试项目的浮动数量,计算获得当前测试项目对应的各个预设试剂的第二预估消耗量。若该当前测试项目的浮动数量为零时,该当前测试项目中各种预设试剂对应的第二预估消耗量为零。
进一步地,当样本分析仪根据当前测试项目的历史测试数据,计算获得当前测试项目中各种预设试剂的第一预估消耗量,并将当前测试项目中的各种预设试剂的第一预估消耗量显示于显示装置上时,样本分析仪可以通过显示装置向用户发送调整提示信息。如,显示装置上可以弹出对话框,并显示“是否进行调整”。若用户选定需要进行调整(用户可以通过终端上设置的按键或对话框中显示的选择控件选定是否需要进行调整),则可以根据用户输入的选定信号显示浮动数量设定界面,该浮动数量设定界面可以是具体测试项目的选择及选定测试项目的浮动数量设置,该浮动数量设定界面还可以是体检项目等数量设置,此处不做具体限定。若用户选定不需要进行调整时,则可以根据用户输入的选定信号,在显示装置上显示该当前测试项目中各个预设试剂的预估总消耗量,此时,该当前项目中各个预设试剂的预估总消耗量可以等于各个预设试剂的第一预估消耗量。
可选地,在其他实施例中,用户还可以直接调整预估试剂量。具体地,控制装置可以按照图7所示的流程图,执行上述的分别获取当前测试项目对应的各种预设试剂的预估总消耗量的步骤,其具体可以包括:
S119、控制装置200获取当前测试项目对应的各种预设试剂的第三预估消耗量。具体地,当存在备用设备故障或临时有大批量的样本数据等异常情况,可以通过人工直接调整当前测试项目对应的各种预设试剂的第三预估消耗量,以保证该样本分析仪在下一次测试中能够正常运转。其中,该第三预估消耗量可以根据具体的异常情况进行确定。控制装置200可以通过样本分析仪上设置的按键或显示装置上覆盖的触摸层获得当前测试项目对应的各种预设试剂的第三预估消耗量。进一步地,该当前测试项目对应的各种预设试剂的第三预估消耗量可以存储于存储器300中。
S120、针对当前测试项目的每种预设试剂,控制装置根据预设试剂的第一预估消耗量和预设试剂的第三预估消耗量,获得预设试剂的预估总消耗量。具体地,针对当前测试项目的每种预设试剂,该预设试剂的预估总消耗量可以等于该预设试剂的第一预估消耗量和第三预估消耗量之和,该预设试剂的预估总消耗量可以存储于存储器300中。
例如,当样本分析仪完成当天的测试任务时,可以根据该当前测试项目的历史测试数据计算获得当前测试项目中各种预设试剂的第一预估消耗量,且该第一预估消耗量可以通过显示装置进行展示。同时,若确知下一轮测试存在异常情况,如确知下一轮测试(如第二天测试)有100个体检项目需要进行测试,该体检项目所包括的测试项目种类以及每个测试项目中预设试剂的第三预估消耗量已知,此时用户可以输入100个体检测试项目对应的各种预设试剂的第三预估试剂消耗量。
进一步地,当样本分析仪根据当前测试项目的历史测试数据,计算获得当前测试项目中各种预设试剂的第一预估消耗量,并将第一预估消耗量显示于显示装置上时,样本分析仪可以通过显示装置向用户发送调整提示信息。如显示装置上可以弹出对话框,并显示“是 否进行调整”。若用户选定需要进行调整(用户可以通过样本分析仪上设置的按键或对话框中显示的选择控件选定是否需要进行调整),则可以根据用户输入的选定信号显示浮动消耗量设定界面,通过该浮动消耗量设定界面可设定各个预设试剂的第三预估消耗量。若用户选定不需要进行调整时,则可以用户输入的选定信号在显示装置上显示该当前测试项目中各个预设试剂的预估总消耗量,此时,该当前项目中各个预设试剂的预估总消耗量可以等于各个预设试剂的第一预估消耗量。
可选地,在其他实施例中,当样本分析仪完成当天的测试任务时,可以控制样本分析仪进入试剂加载流程,此时用户可以手动选择人工调整方式,使得该样本分析仪进入试剂消耗量的预估过程。此时在试剂消耗量的预估过程中,显示装置上可以直接显示各种预设试剂的预估总消耗量,而不显示第一预估试剂消耗量。具体地,控制装置200还可以按照图8所示的流程图,执行上述的分别获取当前测试项目对应的各种预设试剂的预估总消耗量的步骤,其具体可以包括:
S121、控制装置200获取当前测试项目的浮动数量及当前测试项目在预设时间段内的历史测试数据,其中,当前测试项目的历史测试数据包括历史样本数量和/或当前测试项目对应的各种预设试剂的历史消耗量。
S122、控制装置200根据当前测试项目的浮动数量及当前测试项目在预设时间段内的历史测试数据,分别计算获得当前测试项目对应的各种预设试剂的预估总消耗量。
例如,当样本分析仪完成当天的测试任务时,可以控制样本分析仪进入试剂加载流程,以保证样本分析仪在第二天能够正常工作。具体地,当控制样本分析仪进入试剂加载流程之后,样本分析仪可以通过显示装置向用户发送调整提示信息。如,显示装置上可以弹出对话框,并显示“是否进行调整”。若用户选定需要进行调整(用户可以通过终端上设置的按键或对话框中显示的选择控件选定是否需要进行调整),则可以根据用户的输入的选定信号显示浮动数量设定界面,该浮动数量设定界面可以是具体测试项目的选择及选定测试项目的浮动数量设置,该浮动数量设定界面还可以是体检项目等数量设置,此处不做具体限定。完成各个测试项目的浮动数量的设定之后,控制装置200可以根据当前测试项目的浮动数量、当前测试项目在预设时间段内的历史测试数据(包括历史样本数量和/或当前测试项目对应的各种预设试剂的历史消耗量),分别计算获得当前测试项目对应的各种预设试剂的预估消总消耗量,并在显示装置上显示当前测试项目的各种预设试剂的预估总消耗量。
若用户选定不需要进行调整时,则样本分析仪可以根据用户输入的选定信号进入预估总消耗量的计算过程,即根据当前测试项目在预设时间段内的历史测试数据计算获得当前测试项目对应的预估总消耗量,并在显示装置上显示当前测试项目的各种预设试剂的预估总消耗量。此时,该当前测试项目的各种预设试剂的预估总消耗量的计算过程可参见步骤 S110~步骤S112进行计算,或者参见上述步骤S113~步骤S115进行计算,此处不做具体限定。
可选地,待补充试剂的种类及数量也可以根据样本分析仪上的各个测试项目进行统计和计算。如图6至图8所示,当控制装置200用于执行上述步骤S200时,具体用于执行如下步骤:
S210、针对当前测试项目对应的各种预设试剂,控制装置200分别判断各种预设试剂的当前试剂余量是否小于预设试剂的预估总消耗量。若该预设试剂的当前试剂余量大于或等于预设试剂的预估总消耗量,则可以认为该预设试剂足以完成下一次测试,此次不需要进行补充。
若预设试剂的当前试剂余量小于预设试剂的预估总消耗量,则执行步骤S211,控制装置200将预设试剂标记为待补充试剂,并根据预设试剂的当前试剂余量和预设试剂的预估总消耗量,获得待补充试剂总容量。具体地,该待补充试剂总容量可以等于该预设试剂的当前试剂余量和预估总消耗量之差。
S212、控制装置200根据待补充试剂总容量及每瓶待补充试剂的额定容量,获得当前测试项目中待补充试剂所需的补充瓶数。具体地,当前测试项目中该待补充试剂所需的补充瓶数可以等于该待补充试剂总容量与每瓶待补充试剂的额定容量之商。其中,每瓶待补充试剂的额定容量可以是该待补充试剂的满瓶容量。本实施例中,可以认为同一测试项目的相同试剂采用相同的规格,如同一测试项目的相同试剂的满瓶容量均相同。
进一步地,控制装置200可以根据待补充试剂总容量及每瓶待补充试剂的额定容量,计算获得待补充试剂对应的预估补充数量,该预估补充数量可以等于待补充试剂总容量与每瓶待补充试剂的额定容量之商。之后,控制装置200可以将该预估补充数量向上取整,以获得该待补充试剂所需的补充瓶数。例如,该预估补充数量为2.3瓶,则该待补充试剂所需的补充瓶数为3瓶。在本实施例中,由于试剂承载盘上的装载位的数量有限,因此,为保证样本分析仪的所有测试项目都可以具有足够的预设试剂,因此,当某个测试项目对应的预设试剂充足时,可以暂不进行试剂的加载操作。当某个测试项目对应的预设试剂需要补充时,其补充数量只要满足下一轮测试的需要即可,这样使得下一轮测试所需的各种试剂尽可能的都装载在试剂承载盘上,以保证下一轮测试能够正常执行。
在一个实施例中,本申请实施例的试剂加载方法还可以获得各个待补充试剂的装载位置,从而不需人工对试剂承载盘上的各个装载位进行检查,并对各个待补充试剂分配装载位置。具体地,如图9所示,当控制装置200用于执行上述步骤S300时,控制装置200具体用于执行如下步骤:
S310、控制装置200获得试剂承载盘上处于可用状态的装载位的数量及位置信息。具体地,试剂承载盘上处于可用状态的装载位可以包括空闲装载位(未放置任何试剂瓶的装 载位或放置有试剂瓶且试剂瓶内试剂的当前试剂余量接近于零)。本实施例中,为便于试剂承载盘上各个试剂的管理及控制,可以按照预设的规则对试剂承载盘上的各个装载位进行编号。具体地,试剂承载盘上各个装载位的位置信息,即指各个试剂装载位对应的编号。可选地,针对每一个装载位,若该装载位为空闲装载位时,则当该空闲装载位中放入新的试剂瓶时,则样本分析仪可以更新该装载位的状态。
例如,当空闲装载位内未装载任何试剂瓶时,则当该空闲装载位中放入新的试剂瓶时,控制装置200可以更新该装载位的状态。再如,当空闲装载位内放置有试剂瓶且该试剂瓶内试剂的当前试剂余量接近于零时,则当该空闲装载位中的试剂瓶被卸载时,控制装置200可以更新该空闲装载位的状态;当再向该空闲装载位中放入新的试剂瓶时,控制装置200可以再次更新该空闲装载位的状态。进一步地,控制装置200还可以实时更新该装载位中已装载试剂的当前试剂余量,当该装载位内的试剂用完时,系统也可以更新该装载位的状态。也就是说,本实施例中,控制装置200可以实时更新试剂承载盘上的各个装载位的状态。
S320、控制装置200根据各种待补充试剂所需的补充瓶数获得待补充试剂总数量。具体地,待补充试剂总数量可以是各种待补充试剂所需的补充瓶数之和。
S330、控制装置200判断待补充试剂总数量是否小于或等于试剂承载盘上处于可用状态的装载位数量。
若待补充试剂总数量小于或等于试剂承载盘上处于可用状态的装载位的数量时,则说明该试剂承载盘有足够的装载位接纳各个待补充试剂,此时可以执行步骤S340,控制装置200为每一个待补充试剂分配一个处于可用状态的装载位,即将该处于可用状态的装载位的位置信息分配给对应的待补充试剂。
若待补充试剂总数量大于试剂承载盘上处于可用状态的装载位的数量,此时可以重新调整各个测试项目对应的各个预设试剂的预估总消耗量,之后,针对每一个测试项目对应的各种预设试剂,控制装置200可以根据该预设试剂对应的调整后的预估总消耗量和当前试剂余量计算获得待补充试剂的种类及数量,然后返回步骤S320,控制装置200根据各种待补充试剂所需的补充瓶数重新计算获得待补充试剂的总数量,之后执行步骤S330,控制装置200继续判断待补充试剂的总数量是否小于或等于试剂盘上处于可用状态的装载位的数量。具体地,当待补充试剂总数量大于试剂承载盘上处于可用状态的装载位的数量,此时可以通过人工调整各个测试项目的浮动数量,其具体调整过程可参见上述步骤S116~步骤S118,此处不再赘述。当然,也可以通过人工调整各个测试项目的第三预估消耗量,其具体调整过程可参见上述步骤S119~步骤S120,此处不再赘述。之后,可以重复执行上述步骤S200~步骤S300,以实现各个待补充试剂的装载位置的分配。
进一步地,试剂承载盘上处于可用状态的装载位还包括微量试剂装载位,该微量试剂 装载位内装载有试剂,且其中装载的试剂的当前试剂余量不足。具体地,控制装置200可以分别判断试剂承载盘上各个已装载试剂的装载位中,试剂的当前试剂余量是否小于预设试剂量,若已装载试剂的装载位中试剂的当前试剂余量小于预设试剂量,则控制装置200可以将该试剂所处的装载位标记为微量试剂装载位。例如,试剂的当前试剂余量不足以完成10个测试项目时,则将该试剂所处的装载位标记为微量试剂装载位。
可选地,如图10所示,控制装置200用于执行步骤S330~步骤S340时,其具体执行如下步骤:
S331、控制装置200判断待补充试剂的总数量是否小于或等于试剂承载盘上的空闲装载位的数量;其中,待补充试剂的总数量可以是各个测试项目中各种待补充试剂的总数量之和。
若待补充试剂总数量小于或等于试剂承载盘上的空闲装载位的数量时,则说明试剂承载盘上有足够的空闲装载位可以用于容纳各种待补充试剂,此时可以执行步骤S341,控制装置200为每个待补充试剂分配一个空闲装载位,即将一个空闲装载位的位置信息分配给该待补充试剂,以便将待补充试剂装载至空闲装载位中。例如,待补充试剂总数量可以为3个,且试剂承载盘上的空闲装载位的数量大于3个,此时,控制装置可以将其中一个待补充试剂的装载位置配置为1号空闲装载位(如试剂承载盘上的1号装载位),将其中一个待补充试剂的装载位置配置为2号空闲装载位(如试剂承载盘上的5号装载位),将另一个待补充试剂的装载位置配置为3号空闲装载位(如试剂承载盘上的7号装载位)。
若待补充试剂总数量大于试剂承载盘上的空闲装载位的数量时,则说明试剂承载盘上的空闲装载位不足以容纳各种待补充试剂,此时可以执行步骤S332,控制装置200判断待补充试剂的总数量是否小于或等于试剂承载盘上空闲装载位的数量及微量试剂装载位的数量之和。
若待补充试剂总数量大于试剂承载盘上的空闲装载位的数量,且待补充试剂总数量小于或等于试剂承载盘上空闲装载位的数量及微量试剂装载位的数量之和时,此时可以执行步骤S342,控制装置200为每一个待补充试剂分配一个空闲装载位或一个微量试剂装载位,即将试剂承载盘上空闲装载位的位置信息或微量试剂装载位的位置信息分配给对应的待补充试剂。由于试剂承载盘上的装载位数量有限,为充分利用试剂承载盘上的各个试剂装载位,使得试剂承载盘能够放置所有测试项目对应的全部待补充试剂,保证该样本分析仪的正常运行,可以将试剂承载盘上的微量试剂装载位作为待补充试剂的装载位置。
当采用试剂承载盘上的微量试剂装载位作为待补充试剂的装载位置时,可以先将该微量试剂装载位中的目标试剂卸载,再将待补充试剂加载至该微量试剂装载位。当然,若待补充试剂的试剂类型与该微量试剂装载位中的目标试剂的试剂类型相同时,也可以直接将待补充试剂倒入该微量试剂装载位中的目标试剂的试剂瓶中,以实现待补充试剂的加载操 作。
若待补充试剂总数量大于试剂承载盘上空闲装载位的数量及微量试剂装载位的数量之和时,此时可以重新调整各个测试项目对应的各个预设试剂的预估总消耗量,之后,针对每一个测试项目对应的各种预设试剂,可以根据该预设试剂对应的调整后的预估总消耗量和当前试剂余量计算获得待补充试剂的种类及数量,然后可以返回步骤S320,控制装置200根据各种待补充试剂所需的补充瓶数重新计算获得待补充试剂的总数量,之后执行步骤S332,控制装置200继续判断待补充试剂总数量是否小于或等于试剂承载盘上空闲装载位的数量及微量试剂装载位的数量之和。具体地,当待补充试剂总数量大于试剂承载盘上空闲装载位的数量及微量试剂装载位的数量之和时,此时可以通过人工调整各个测试项目的浮动数量,其具体调整过程可参见上述步骤S116~步骤S118,此处不再赘述。当然,也可以通过人工调整各个测试项目的第三预估消耗量,其具体调整过程可参见上述步骤S119~步骤S120,此处不再赘述。之后,可以重复执行上述步骤S200~步骤S300,以实现各个待补充试剂的装载位置的分配。
可选地,如图10所示,当为待补充试剂分配一个微量试剂装载位时,在实际的试剂加载操作中,可以先将该微量试剂装载位中的目标试剂卸载,再向该微量试剂装载位中补充新的试剂。当将微量试剂装载位中的目标试剂卸载后,可以对该微量试剂装载位中的目标试剂进行回收利用,以保证该样本分析仪在下一轮测试过程中具有充足的试剂。具体地,当控制装置200用于为待补充试剂分配一个微量试剂位时,该控制装置200具体用于执行如下步骤:
S400、控制装置200获取置于微量试剂装载位的目标试剂的试剂种类及当前试剂余量。具体地,该目标试剂是指装载在微量试剂装载位的目标试剂。
S410、控制装置200根据目标试剂的试剂种类及当前试剂余量,获得目标试剂的目标移动位置,其中,目标试剂的目标移动位置为与目标试剂相同种类的试剂所在的装载位。具体地,控制装置可以根据目标试剂的试剂种类及当前试剂余量,获得需要将该目标试剂的剩余试剂量转移到哪个试剂瓶中。
例如,当前需要将待补充试剂R1加载至一个微量试剂装载位中,该微量试剂装载位内的目标试剂为R2试剂,且该输入部件可以获知该R2试剂的当前试剂余量。此时,控制装置200可以在试剂承载盘上各个试剂装载位置,获得所有R2试剂的装载位置(分别装载在哪个装载位中),并根据各个装载位中R2试剂的当前试剂余量判断哪个装载位中的试剂瓶可以容纳该微量试剂装载位中的剩余试剂,获得该目标试剂的目标移动位置,即该目标移动位置是指需要将微量试剂装载位中的剩余试剂倒入哪个装载位的试剂中。
进一步地,该试剂承载盘上设置有多个预设试剂存储区域,该预设试剂存储区域可以由一个或多个试剂装载位形成,每个预设试剂存储区域用于存储指定试剂。若该预设试剂 存储区域内存储的当前试剂与该预设试剂存储区域的指定试剂不同时,则可以将该当前试剂判定为无效试剂,并可以标记该当前试剂所在的装载位,从而在实际的测试过程中,试剂分注机构不会从该无效试剂所在的装载位吸取试剂,以保证测试结果的准确性。具体地,控制装置200还用于执行如下步骤:
针对每一种待补充试剂,若待补充试剂所需的补充瓶数小于或等于待补充试剂对应的预设试剂存储区域内空闲装载位的数量,则控制装置200为每一个待补充试剂在待补充试剂对应的预设存储区域内分配一个空闲装载位。针对每一种待补充试剂,若待补充试剂所需的补充瓶数大于待补充试剂对应的预设试剂存储区域内空闲装载位的数量,且待补充试剂的数量小于或等于待补充试剂对应的预设试剂存储区域内空闲装载位的数量及微量试剂装载位的数量之和时,则控制装置200为每一个待补充试剂在待补充试剂对应的预设存储区域内分配分配一个处于空闲装载位或一个微量试剂装载位。
具体地,每种待补充试剂只能放置在该待补充试剂对应的预设存储区域内。例如,该试剂承载盘为内外嵌套的结构,其包括第一试剂盘和第二试剂盘,其中,第一试剂盘用于装载R1试剂,第二试剂盘用于装载R2试剂,即R1试剂对应的预设存储区域为第一试剂盘上的各个装载位,R2试剂对应的预设存储区域为第二试剂盘上的各个装载位。
若该待补充试剂为R1试剂时,控制装置200将会判断R1试剂所需的补充瓶数是否小于或等于第一试剂盘上的空闲装载位的数量,当R1试剂所需的补充瓶数小于或等于第一试剂盘上的空闲装载位的数量时,则控制装置200将在第一试剂盘上为每一个待补充的R1试剂分配一个空闲装载位。当R1试剂所需的补充瓶数大于第一试剂盘上的空闲装载位的数量,且R1试剂所需的补充瓶数小于或等于第一试剂盘上的空闲装载位的数量和微量试剂装载位的数量之和时,则控制装置200将在第一试剂盘上为每一个待补充的R1试剂分配一个空闲装载位或一个微量试剂装载位。当R1试剂所需的补充瓶数大于第一试剂盘上的空闲装载位的数量和微量试剂装载位的数量之和时,此时也不会将R1试剂装载至第二试剂盘上。因为,即使将R1试剂装载至第二试剂盘上,R1试剂也会被认为是无效试剂,不仅占用试剂承载盘上的资源,也不能满足下一次测试的需求。
若该待补充试剂为R2试剂时,其装载位置的分配过程与R1试剂的装载位置分配过程类似,具体可参见上文中的描述,此处不再赘述。
可选地,当为待补充试剂分配一个微量试剂装载位时,在实际的试剂加载操作中,可以先将该微量试剂装载位中的目标试剂卸载,再向该微量试剂装载位中补充新的试剂。当将微量试剂装载位中的目标试剂卸载后,可以对该微量试剂装载位中的目标试剂进行回收利用,以保证该样本分析仪在下一轮测试过程中具有充足的试剂,其具体执行过程可参见上文中步骤S400~步骤S410的描述,此处不再赘述。
作为进一步地改进,控制装置200还用于控制显示装置400显示所述补充试剂清单, 其中,所述补充试剂清单包括待补充试剂的种类、待补充试剂的数量、待补充试剂在试剂承载盘上的装载位置及待补充试剂的装载操作。这样可以实现在所述显示装置上显示所述待补充试剂的种类、数量以及所述待补充试剂对应的处于可用状态的装载位,从而便于试剂加载。本实施例中,上述的显示装置400可以是与样本分析仪通信连接的手机、台式电脑或平板电脑等终端的显示装置,当然,上述的显示装置400还可以是集成在样本分析仪上,如LCD显示屏等其他具有显示功能的装置。
具体地,控制装置200可以根据待补充试剂的种类及数量,以及各个待补充试剂的装载位置及装载操作等信息,按照预设的清单模板,生成补充试剂清单,该补充试剂清单可参见图11所示。例如,该补充试剂清单可以展示哪些测试项目需要补充试剂,每个测试项目对应的待补充试剂的种类及数量,以及各个待补充试剂的装载位置及装载操作。之后,控制装置可以控制显示装置显示上述的补充试剂清单,以便用户可以清楚地获知待补充试剂的加载过程,并根据补充试剂清单进行试剂的加载操作。
进一步地,每次试剂加载操作中,控制装置均会对应生成一个补充试剂清单,各个补充试剂可以按照生成时间进行排序,并可以存储在存储器300中。更进一步地,控制装置200还可以连接打印机,并将该补充试剂清单传送至打印机,以使得打印机能够打印该补充试剂清单。这样当用户不方便看显示装置时,用户可以打印该补充试剂清单,以便于操作。
本申请实施例的样本分析仪,通过试剂承载盘上各种试剂的当前试剂余量及预估总消耗量,可以获得待补充试剂的种类及数量,并可以为每一个待补充试剂分配一个处于可用状态的装载位,从而可以自动确认补充试剂的类型、数量及装载位置等信息,提高了样本分析仪的自动化程度,并提高了补充试剂的装载效率及准确性。进一步地,上述补充试剂的类型、数量及装载位置等信息可以通过交互显示界面展示给用户,从而便于用户进行补充试剂的装载操作,提高了操作效率。
当然,在其他实施例中,也可以直接根据试剂承载盘上各种试剂的当前试剂余量及预估总消耗量直接进行待补充试剂的种类及数量,而不需要按照各个测试项目进行统计获得各个待补充试剂的种类及数量。此种计算方式与上述实施例中的计算方式相似,具体可参见上文中的描述,此处不再赘述。
本申请实施例还提供了一种试剂加载控制方法,该试剂加载控制方法可以用于上述的样本分析仪,以实现试剂加载过程的控制。具体地,该试剂加载控制方法可以包括如下步骤:
获取试剂承载盘上各种试剂的当前试剂余量及预估总消耗量,其中,所述试剂承载盘上设置有多个用于装载所述试剂的装载位;
根据各种所述试剂的当前试剂余量及预估总消耗量,获得待补充试剂的种类及数量;
分别为每个所述待补充试剂分配一个处于可用状态的装载位,所述处于可用状态的装载位包括所述试剂承载盘上的空闲装载位。
应当清楚的是,上述方法中的各个步骤的执行顺序与上文中样本分析仪的工作流程一致,具体可参见上文中的描述。
此外,本申请一实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被一个或多个处理器执行时,执行如下步骤:
获取试剂承载盘上各种试剂的当前试剂余量及预估总消耗量,其中,所述试剂承载盘上设置有多个用于装载所述试剂的装载位;
根据各种所述试剂的当前试剂余量及预估总消耗量,获得待补充试剂的种类及数量;
分别为每个所述待补充试剂分配一个处于可用状态的装载位,所述处于可用状态的装载位包括所述试剂承载盘上的空闲装载位。
应当清楚的是,上述计算机可读存储介质中存储的计算机程序被一个或多个处理器执行时,其执行顺序与上文中样本分析仪的工作流程一致,具体可参见上文中的描述。
可选地,该计算机可读存储介质可以包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
本发明的样本分析仪、试剂加载控制方法及存储介质,通过试剂承载盘上各种试剂的当前试剂余量及预估总消耗量,可以获得待补充试剂的种类及数量,并可以为每一个待补充试剂分配一个处于可用状态的装载位,从而可以自动确认补充试剂的类型、数量及装载位置等信息,提高了样本分析仪的自动化程度,并提高了补充试剂的装载效率及准确性。进一步地,上述补充试剂的类型、数量及装载位置等信息可以通过交互显示界面展示给用户,从而便于用户进行补充试剂的装载操作,提高了操作效率。更进一步地,当用户不方便看终端的交互显示界面时,用户可以打印该补充试剂清单,以便于操作。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种样本分析仪,其特征在于,包括:
    试剂承载盘,所述试剂承载盘上设置有多个用于装载试剂的装载位;
    存储器,用于存储试剂承载盘上各种试剂的当前试剂余量以及各个测试项目对应的各种所述预设试剂的预估总消耗量;
    控制装置,用于从所述存储器中获取试剂承载盘上各种试剂的当前试剂余量及预估总消耗量;根据各种所述试剂的当前试剂余量及预估总消耗量,获得待补充试剂的种类及数量;分别为每个所述待补充试剂分配一个处于可用状态的装载位,所述处于可用状态的装载位包括所述试剂承载盘上的空闲装载位。
  2. 根据权利要求1所述的样本分析仪,其特征在于,针对当前测试项目对应的各种预设试剂,所述控制装置还用于分别获取所述当前测试项目对应的各种预设试剂的当前试剂余量及预估总消耗量,以实现获取试剂承载盘上各种试剂的当前试剂余量及预估总消耗量。
  3. 根据权利要求2所述的样本分析仪,其特征在于,所述存储器还用于存储各个测试项目在预设时间段内的历史测试数据;
    所述控制装置还用于获取所述当前测试项目在预设时间段内的历史测试数据,所述当前测试项目的历史测试数据包括历史样本数量;
    根据所述当前测试项目的历史样本数量,获得所述当前测试项目对应的样本量变化曲线;
    针对所述当前测试项目对应的每种预设试剂,根据所述当前测试项目对应的样本量变化曲线及所述当前测试项目所需的每个所述预设试剂的试剂消耗量,获得所述当前测试项目对应的所述预设试剂的第一预估消耗量。
  4. 根据权利要求2所述的样本分析仪,其特征在于,所述存储器还用于存储各个测试项目在预设时间段内的历史测试数据;
    所述控制装置还用于获取所述当前测试项目在预设时间段内的历史测试数据,所述当前测试项目的历史测试数据包括所述当前测试项目对应的各种预设试剂的历史消耗量;
    根据所述当前测试项目对应的各个预设试剂的历史消耗量,分别获得所述当前测试项目对应的各个所述预设试剂的试剂消耗量变化曲线;
    针对所述当前测试项目对应的每种预设试剂,根据所述预设试剂的试剂消耗量变化曲线,获得所述当前测试项目对应的所述预设试剂的第一预估消耗量。
  5. 根据权利要求3或4所述的样本分析仪,其特征在于,所述控制装置还用于获取所述当前测试项目的浮动数量;
    根据所述当前测试项目的浮动数量获得所述当前测试项目对应的各种预设试剂的第二预估消耗量;
    针对所述当前测试项目的每种预设试剂,根据所述预设试剂的第一预估消耗量和所述预设试剂的第二预估消耗量,获得所述预设试剂的预估总消耗量,以实现分别获取所述当前测试项目对应的各种预设试剂的预估总消耗量。
  6. 根据权利要求3或4所述的样本分析仪,其特征在于,所述控制装置还用于获取所述当前测试项目对应的各种所述预设试剂的第三预估消耗量;
    针对所述当前测试项目的每种预设试剂,根据所述预设试剂的第一预估消耗量和所述预设试剂的第三预估消耗量,获得所述预设试剂的预估总消耗量,以实现分别获取所述当前测试项目对应的各种预设试剂的预估总消耗量。
  7. 根据权利要求2所述的样本分析仪,其特征在于,所述控制装置还用于从所述存储器中获取所述当前测试项目的浮动数量及所述当前测试项目在预设时间段内的历史测试数据,其中,所述当前测试项目的历史测试数据包括历史样本数量和/或所述当前测试项目对应的各种预设试剂的历史消耗量;
    根据所述当前测试项目的浮动数量及所述当前测试项目在所述预设时间段内的历史测试数据,分别计算获得所述当前测试项目对应的各种预设试剂的预估总消耗量,以实现分别获取所述当前测试项目对应的各种预设试剂的预估总消耗量。
  8. 根据权利要求2所述的样本分析仪,其特征在于,所述控制装置还用于:
    针对所述当前测试项目对应的各种预设试剂,在所述预设试剂的当前试剂余量小于所述预设试剂的预估总消耗量,则将所述预设试剂标记为待补充试剂,并根据所述预设试剂的当前试剂余量和所述预设试剂的预估总消耗量,获得所述待补充试剂总容量;
    根据所述待补充试剂总容量及每瓶所述待补充试剂的额定容量,获得所述当前测试项目中所述待补充试剂所需的补充瓶数,以实现根据各种所述试剂的当前试剂余量及预估总消耗量,获得待补充试剂的种类及数量。
  9. 根据权利要求1所述的样本分析仪,其特征在于,所述控制装置还用于:
    获得所述试剂承载盘上处于可用状态的装载位的数量及位置信息;
    根据各种所述待补充试剂所需的补充瓶数获得待补充试剂总数量;
    在所述待补充试剂总数量小于或等于所述试剂承载盘上处于可用状态的装载位的数量时,则为每一个所述待补充试剂分配一个处于可用状态的装载位,以实现为每个所述待补充试剂分配一个处于可用状态的装载位。
  10. 根据权利要求9所述的样本分析仪,其特征在于,所述控制装置还用于当所述待补充试剂总数量小于或等于所述试剂承载盘上的空闲装载位的数量时,则为每个所述待补 充试剂分配一个空闲装载位。
  11. 根据权利要求9所述的样本分析仪,其特征在于,所述处于可用状态的装载位还包括微量试剂装载位,所述控制装置还用于当所述待补充试剂总数量大于所述试剂承载盘上的空闲装载位的数量,且所述待补充试剂总数量小于或等于所述试剂承载盘上空闲装载位的数量及微量试剂装载位的数量之和时,则为每一个所述待补充试剂分配一个空闲装载位或一个微量试剂装载位。
  12. 根据权利要求9所述的样本分析仪,其特征在于,所述试剂承载盘上设置有多个预设试剂存储区域,每个所述预设试剂存储区域用于存储指定的试剂;所述控制装置还用于:
    针对每一种待补充试剂,在所述待补充试剂所需的补充瓶数小于或等于所述待补充试剂对应的预设试剂存储区域内空闲装载位的数量,则为每一个所述待补充试剂在所述待补充试剂对应的预设存储区域内分配一个所述空闲装载位;
    针对每一种待补充试剂,在所述待补充试剂所需的补充瓶数大于所述待补充试剂对应的预设试剂存储区域内空闲装载位的数量,且所述待补充试剂的数量小于或等于所述待补充试剂对应的所述预设试剂存储区域内空闲装载位的数量及微量试剂装载位的数量之和时,则为每一个所述待补充试剂在所述待补充试剂对应的预设存储区域内分配分配一个处于空闲装载位或一个微量试剂装载位。
  13. 根据权利要求11或12所述的样本分析仪,其特征在于,当为所述待补充试剂分配一个微量试剂装载位时,所述控制装置还用于获取置于所述微量试剂装载位的目标试剂的试剂种类及当前试剂余量;根据所述目标试剂的试剂种类及当前试剂余量,获得所述目标试剂的目标移动位置,其中,所述目标试剂的目标移动位置为与所述目标试剂相同种类的试剂所在的装载位。
  14. 根据权利要求1-13任一项所述的样本分析仪,其特征在于,所述样本分析仪还包括显示装置,所述控制装置还用于控制所述显示装置显示补充试剂清单;
    其中,所述补充试剂清单包括待补充试剂的种类、待补充试剂的数量、待补充试剂在试剂承载盘上的装载位置及待补充试剂的装载操作。
  15. 根据权利要求14所述的样本分析仪,其特征在于,所述控制装置还用于连接打印机,以将所述补充试剂清单传送至所述打印机,使得所述打印机能够打印所述补充试剂清单。
  16. 一种样本分析仪,其特征在于,包括用于盛放试剂的试剂承载盘、用于吸排样本或试剂的分注装置、用于存储样本的样本承载装置、显示装置、存储器以及控制装置;其中,所述试剂承载盘上设置有多个用于装载所述试剂的装载位;
    存储器用于存储试剂承载盘上各种试剂的当前试剂余量、各个测试项目在预设时间段内的历史测试数据以及各个测试项目对应的各种所述预设试剂的预估总消耗量;
    控制装置用于获取试剂承载盘上各种试剂的当前试剂余量及预估总消耗量;根据各种所述试剂的当前试剂余量及预估总消耗量,获得待补充试剂的种类及数量;分别为每个所述待补充试剂分配一个处于可用状态的装载位,所述处于可用状态的装载位包括所述试剂承载盘上的空闲装载位;
    所述控制装置还用于控制所述显示装置显示补充试剂清单;其中,所述补充试剂清单包括待补充试剂的种类、待补充试剂的数量、待补充试剂在试剂承载盘上的装载位置及待补充试剂的装载操作。
  17. 一种试剂加载控制方法,其特征在于,包括如下步骤:
    获取试剂承载盘上各种试剂的当前试剂余量及预估总消耗量,其中,所述试剂承载盘上设置有多个用于装载所述试剂的装载位;
    根据各种所述试剂的当前试剂余量及预估总消耗量,获得待补充试剂的种类及数量;
    分别为每个所述待补充试剂分配一个处于可用状态的装载位,所述处于可用状态的装载位包括所述试剂承载盘上的空闲装载位。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被一个或多个处理器执行时,执行如下步骤:
    获取试剂承载盘上各种试剂的当前试剂余量及预估总消耗量,其中,所述试剂承载盘上设置有多个用于装载所述试剂的装载位;
    根据各种所述试剂的当前试剂余量及预估总消耗量,获得待补充试剂的种类及数量;分别为每个所述待补充试剂分配一个处于可用状态的装载位,所述处于可用状态的装载位包括所述试剂承载盘上的空闲装载位。
PCT/CN2018/086387 2018-05-10 2018-05-10 样本分析仪、试剂加载控制方法及存储介质 WO2019213918A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/086387 WO2019213918A1 (zh) 2018-05-10 2018-05-10 样本分析仪、试剂加载控制方法及存储介质
CN201880089145.XA CN112055816A (zh) 2018-05-10 2018-05-10 样本分析仪、试剂加载控制方法及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086387 WO2019213918A1 (zh) 2018-05-10 2018-05-10 样本分析仪、试剂加载控制方法及存储介质

Publications (1)

Publication Number Publication Date
WO2019213918A1 true WO2019213918A1 (zh) 2019-11-14

Family

ID=68467244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086387 WO2019213918A1 (zh) 2018-05-10 2018-05-10 样本分析仪、试剂加载控制方法及存储介质

Country Status (2)

Country Link
CN (1) CN112055816A (zh)
WO (1) WO2019213918A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113030499A (zh) * 2019-12-25 2021-06-25 深圳迈瑞生物医疗电子股份有限公司 试剂处理装置、方法及计算机可读存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113588971B (zh) * 2021-06-18 2023-09-15 深圳迈瑞动物医疗科技股份有限公司 样本分析仪及试剂管理方法
CN114816166A (zh) * 2022-05-16 2022-07-29 中元汇吉生物技术股份有限公司 一种耗材界面管理装置、方法、计算机设备及存储介质
CN116519963B (zh) * 2023-07-05 2023-09-22 深圳市瑞图生物技术有限公司 样本检测系统、样本检测方法及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033425A (ja) * 2009-07-31 2011-02-17 Hitachi High-Technologies Corp 自動分析装置
JP2013253813A (ja) * 2012-06-05 2013-12-19 Hitachi High-Technologies Corp 自動分析装置
CN104969074A (zh) * 2013-01-29 2015-10-07 株式会社日立高新技术 自动分析装置
US20180003600A1 (en) * 2016-06-30 2018-01-04 Leica Biosystems Nussloch Gmbh Treatment device for treating histological or cytological samples

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180640A (ja) * 2007-01-25 2008-08-07 Olympus Corp 自動分析装置、発注管理システムおよび発注管理方法
AU2013370567B2 (en) * 2012-12-26 2016-05-26 Ventana Medical Systems, Inc. Specimen processing systems and methods for preparing reagents
CN105203781A (zh) * 2015-09-16 2015-12-30 江苏奥迪康医学科技股份有限公司 临床化学一体化组合多试剂条检测装置及方法
CN107782675A (zh) * 2017-09-30 2018-03-09 深圳迈瑞生物医疗电子股份有限公司 一种耗材信息处理方法及生物样本分析仪

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033425A (ja) * 2009-07-31 2011-02-17 Hitachi High-Technologies Corp 自動分析装置
JP2013253813A (ja) * 2012-06-05 2013-12-19 Hitachi High-Technologies Corp 自動分析装置
CN104969074A (zh) * 2013-01-29 2015-10-07 株式会社日立高新技术 自动分析装置
US20180003600A1 (en) * 2016-06-30 2018-01-04 Leica Biosystems Nussloch Gmbh Treatment device for treating histological or cytological samples

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113030499A (zh) * 2019-12-25 2021-06-25 深圳迈瑞生物医疗电子股份有限公司 试剂处理装置、方法及计算机可读存储介质

Also Published As

Publication number Publication date
CN112055816A (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2019213918A1 (zh) 样本分析仪、试剂加载控制方法及存储介质
US10621544B2 (en) System and method of inventory management
Howe et al. Limitation of inverse probability-of-censoring weights in estimating survival in the presence of strong selection bias
US20110245089A1 (en) Laboratory central control unit method and system
CN111033229A (zh) 耗材管理方法、样本分析系统和计算机可读存储介质
CN110320318B (zh) 样本分析设备、方法和存储介质
JP5951292B2 (ja) 自動分析装置
EP3724890B1 (en) System of medical devices
CN103282873A (zh) 用于实验室测定确认或验证的系统和方法
JP6266327B2 (ja) 自動分析装置
CN115222318A (zh) 试剂管理系统
CN111596045B (zh) 试剂信息管理方法、样本分析装置及存储介质
JPWO2020044790A1 (ja) 自動分析装置
CN112151154A (zh) 一种耗材管理方法、装置及存储介质
JP5658904B2 (ja) 検体分析装置及び分析制御プログラム
JP7066011B2 (ja) ポイントオブケア医療アナライザの消耗品の使用可能性予測
TWM423699U (en) Biochemical oxygen demand automatic measurement device
CN113030499A (zh) 试剂处理装置、方法及计算机可读存储介质
JP2007249444A (ja) 有害物質情報管理装置、有害物質情報管理方法及び有害物質情報管理を行うためのプログラム
CN110687307A (zh) 体外诊断试剂补充方法及系统、设备、存储介质
US11586124B2 (en) Toner supply by changing driving speed of developing apparatus
TWI655535B (zh) 程式異動管理系統及程式異動管理方法
CN115004035A (zh) 自动分析装置
JP2016223801A (ja) 消耗品管理システム
JP6505417B2 (ja) 臨床検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/04/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18917669

Country of ref document: EP

Kind code of ref document: A1