WO2019212123A1 - 수지상세포의 이동능을 증가시키는 방법 및 이의 용도 - Google Patents

수지상세포의 이동능을 증가시키는 방법 및 이의 용도 Download PDF

Info

Publication number
WO2019212123A1
WO2019212123A1 PCT/KR2019/001173 KR2019001173W WO2019212123A1 WO 2019212123 A1 WO2019212123 A1 WO 2019212123A1 KR 2019001173 W KR2019001173 W KR 2019001173W WO 2019212123 A1 WO2019212123 A1 WO 2019212123A1
Authority
WO
WIPO (PCT)
Prior art keywords
dendritic cells
mature dendritic
cells
autotaxin
expression
Prior art date
Application number
PCT/KR2019/001173
Other languages
English (en)
French (fr)
Inventor
임대석
박수연
이준호
최소연
유지영
정남철
Original Assignee
차의과학대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 차의과학대학교 산학협력단 filed Critical 차의과학대학교 산학협력단
Priority to US16/977,320 priority Critical patent/US20210054335A1/en
Publication of WO2019212123A1 publication Critical patent/WO2019212123A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0639Dendritic cells, e.g. Langherhans cells in the epidermis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/15Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4615Dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4621Cellular immunotherapy characterized by the effect or the function of the cells immunosuppressive or immunotolerising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4622Antigen presenting cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/46433Antigens related to auto-immune diseases; Preparations to induce self-tolerance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/31Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/38Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/36Lipids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/44Thiols, e.g. mercaptoethanol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/70Undefined extracts
    • C12N2500/80Undefined extracts from animals
    • C12N2500/84Undefined extracts from animals from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/05Adjuvants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/05Adjuvants
    • C12N2501/052Lipopolysaccharides [LPS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/22Colony stimulating factors (G-CSF, GM-CSF)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2301Interleukin-1 (IL-1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2306Interleukin-6 (IL-6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2312Interleukin-12 (IL-12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/25Tumour necrosing factors [TNF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/73Hydrolases (EC 3.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/11Coculture with; Conditioned medium produced by blood or immune system cells
    • C12N2502/1114T cells

Definitions

  • It relates to a method of increasing the mobility of dendritic cells, and to the use thereof.
  • Dendritic cells are a type of specialized antigen presenting cell that mainly performs antigen presenting function on T cells, and are present in the form of twigs in the lymph nodes, spleen, thymus, subcutaneous or cellular gaps of various tissues. Dendritic cells are known to play an important role in T cell activation by absorbing antigens into cells and presenting various antigen samples to T cells along with major histocompatibility complex (MHC) class I molecules or MHC class II molecules.
  • MHC major histocompatibility complex
  • dendritic cells are differentiated into different states according to the environmental signals and types present in the surroundings, and exist as immature, semi-mature, or mature dendritic cells.
  • Immature dendritic cells which are found in early maturation, perform the primary function of collecting and eliminating debris from cell liver fluid, but because of the low expression of inflammatory cytokines, T cells are in contact with T cells. Cannot be activated.
  • Mature dendritic cells have the ability to induce immune responses by activating naive T cells.
  • dendritic cells have been studied for use as cell therapy for cancer, immune-related diseases, and the like.
  • dendritic cells can inhibit tumor cells by activating T cells in lymph nodes, and can be used in the treatment of infectious diseases, inflammatory diseases and the like by participating in an immune response.
  • they In order for dendritic cells to have this effect, they have to migrate to lymph nodes and activate T cells.
  • the in vivo lymph node migration of dendritic cells is about 2-5% lower than the number of cells administered.
  • One aspect provides a method of increasing the mobility of dendritic cells.
  • Another aspect provides a composition comprising dendritic cells with increased mobility.
  • One aspect provides a method of making mature dendritic cells with increased motility comprising contacting autotaxin with unmatured dendritic cells.
  • dendritic cells refers to the uptake and processing of antigens into cells to present antigens or peptides derived from antigens with a major histocompatibility complex (MHC) class I complex or MHC class II complex. It means a professional antigen presenting cell.
  • MHC major histocompatibility complex
  • Dendritic cells herein are described in Steinman et al., Annual Rev. Immunol. 9: 271-296, 1991 and Banchereau and Steinman Nature 392: 245-252, 1998 refers to cells having the typical phenotype and characteristics of dendritic cells.
  • Dendritic cells include both immunogenic and tolerogenic antigen presenting cells and, depending on maturity, immature dendritic cells (imDC), semi-dendritic dendritic cells (smDC) and mature dendritic cells (mature dendritic cells: mDC).
  • imDC immature dendritic cells
  • smDC semi-dendritic dendritic cells
  • mDC mature dendritic cells
  • unmatured dendritic cells may include immature dendritic cells, semi-mature dendritic cells, or a combination thereof.
  • the "immature dendritic cells” perform the primary function of collecting and removing debris from cell intercellular fluids, but because the expression level of inflammatory cytokines in these cells is low, they activate T cells in contact with T cells. It can mean dendritic cells that do not let.
  • Said "quasi-dendritic dendritic cells” are dendritic cells that lose some of the characteristics of immature dendritic cells and have some characteristics of the phenotype of mature dendritic cells, dendritic cells exhibiting partially or incompletely mature morphological and phenotypic characteristics. Can mean.
  • the dendritic cells can be obtained from an organ, tissue, bone marrow or blood of an animal.
  • any medium commonly used for culturing animal cells can be used.
  • the medium contains serum (eg fetal calf serum, horse serum, human serum).
  • serum eg fetal calf serum, horse serum, human serum.
  • Media that can be used in the present invention are, for example, RPMI series (e.g., RPMI 1640), Eagles's MEM (Eagle's minimum essential medium, Eagle, H. Science 130: 432 (1959)), ⁇ -MEM (Stanner, CP et al., Nat. New Biol. 230: 52 (1971), Iscove's MEM (Iscove, N. et al., J. Exp. Med.
  • the immature dendritic cells can be obtained through culturing after removing red blood cells from bone marrow cells, but is not limited thereto.
  • mature dendritic cells refers to cells formed by maturation of unmatured dendritic cells.
  • Mature dendritic cells express high levels of MHC class II, CD40, CD54, CD80, CD86, and CD274 as well as DC-LAMP, release proinflammatory cytokine, and primitive allogeneic in mixed lymphocyte reactions.
  • Mature dendritic cells typically express high levels of CCR7 and CXCR4. Mature dendritic cells have the ability to induce immune responses by activating naive T cells.
  • autotaxin refers to a 125 kDa glycoprotein first isolated from the medium of melanoma cells, ectonucleotide pyrophosphatase phosphodiesterase family member 2 (ectonucleotide pyrophosphatase / phosphodiesterase family member 2: also known as ENPP2).
  • Autotaxin has an lysophospholipase D (lysophospholipase D) activity and is an extracellular enzyme that degrades lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA).
  • the autotaxin may be prepared according to a known recombinant protein production method, isolated from a living body, or obtained commercially.
  • the autotaxin includes its functional equivalents.
  • “Functional equivalent” means at least 70%, preferably at least 80%, more preferably at least 90%, even more preferably at least 95% of the amino acid sequence of the autotaxin protein as a result of the addition, substitution or deletion of the amino acid It refers to a protein having a sequence homology of% or more and exhibiting substantially homogeneous physiological activity with autotaxin protein.
  • any combination of deletions, insertions and substitutions in the final structure of the protein is possible so long as the autotaxin protein is involved in the mobility of dendritic cells.
  • the term "contact” refers to a condition in which autotaxin can affect dendritic cells that have not matured under sufficient time and conditions.
  • the contact of the immature dendritic cells and autotaxin may be performed in RPMI medium, and more specifically, may include culturing the immature dendritic cells and autotaxin in RPMI medium.
  • the medium is generally a component that can be included in the cell culture medium or a component that can induce the maturation of the immature dendritic cells, for example, fetal bovine serum (FBS), granulocyte-macrophage-colony-stimulating factor ), IL (interleukin), and mercaptoethanol may be further included.
  • FBS fetal bovine serum
  • IL interleukin
  • mercaptoethanol mercaptoethanol
  • the contacting step is carried out for about 1 hour to 48 hours, about 5 hours to 40 hours, about 10 hours to 35 hours, about 15 hours to 30 hours, or about 20 hours to 25 hours, preferably about 24 hours. It may be, but is not limited thereto. If the contacting step is too short, the maturation of unmatured dendritic cells is not sufficiently achieved, if the contacting step is too long, the death of dendritic cells may increase.
  • the contacting step may be performed on about 4 to 8 days of culture, or about 5 to 7 days, or about 6 days of culture of unmatured dendritic cells.
  • the method may further include contacting the immature dendritic cells with lipopolysaccharide (LPS), keyhole Limpet Hemocyanin (KLH), or a combination thereof.
  • LPS lipopolysaccharide
  • KLH keyhole Limpet Hemocyanin
  • the LPS is used as an accelerator for contacting unmatured dendritic cells to stimulate the unmatured dendritic cells to mature.
  • the KLH is used to provide information about antigens to dendritic cells, which are antigen presenting cells.
  • Contacting the LPS, KLH, or a combination thereof may be performed simultaneously with, or before or after the step of contacting with the unmatured dendritic cells with autotaxin.
  • the concentration of autotaxin can be selected in the preferred range by those skilled in the art, for example, about 0.01 ⁇ g / ml to 1 mg / ml, about 0.05 ⁇ g / ml to 500 ⁇ g / ml, about 0.1 ⁇ g / ml To 100 ⁇ g / ml, about 0.5 ⁇ g / ml to 50 ⁇ g / ml, about 1 ⁇ g / ml to 30 ⁇ g / ml, about 3 ⁇ g / ml to 20 ⁇ g / ml, or about 5 ⁇ g / ml to 15 ⁇ g / ml.
  • the term “mobile capacity” may refer to the ability of mature dendritic cells to migrate. Mature dendritic cells capture antigen and then travel through lymphatic vessels to lymph nodes where na ⁇ ve T cells are present, which induce an immune response by recognizing the antigen. Therefore, in order to maximize the effect of inducing an immune response, it is important to increase the migration capacity, which is the ability of mature dendritic cells to migrate to lymph nodes.
  • Mature dendritic cells produced by the method is characterized in that the mobility is increased. Compared to normal mature dendritic cells that do not have increased mobility, the rate of migration of mature dendritic cells with increased mobility to lymph nodes is increased, resulting in a significant increase in immune response in lymph nodes.
  • the prophylactic or therapeutic effect of infectious diseases or inflammatory diseases may be increased.
  • the increase in the migration capacity of mature dendritic cells may be due to pp38, pJNK, or ERK1 / 2 signaling.
  • the method may be to increase the induction of inflammatory cytokine production of mature dendritic cells.
  • the mature dendritic cells according to the above method was confirmed to increase the ability to induce the production of inflammatory cytokines IL-1 ⁇ , IL-6, IL-12, TNF- ⁇ It was.
  • Mature dendritic cells may increase T cell activation by increasing the expression of inflammatory cytokines.
  • the method may be to increase T lymphocyte proliferation induction of mature dendritic cells.
  • the method may be to increase the induction of T lymphocyte polarization of mature dendritic cells.
  • the ability to induce T lymphocyte polarization of mature dendritic cells according to the method increased compared to the mature dendritic cells as a control.
  • Mature dendritic cells according to the method may have a prophylactic or therapeutic effect on various immune-related diseases by inducing production of inflammatory cytokines, inducing T lymphocyte proliferation, or T lymphocyte polarization.
  • Another aspect provides mature dendritic cells with increased motility produced by the method.
  • Another aspect is a pharmaceutical composition comprising mature dendritic cells with increased mobility prepared by the method, wherein the pharmaceutical composition is for preventing or treating a disease selected from the group consisting of autoimmune diseases, cancer, infectious diseases and inflammatory diseases.
  • a disease selected from the group consisting of autoimmune diseases, cancer, infectious diseases and inflammatory diseases.
  • Another aspect is a method of culturing mature dendritic cells having increased mobility for use in the manufacture of a pharmaceutical composition or formulation for the prevention or treatment of a disease selected from the group consisting of autoimmune diseases, cancer, infectious diseases and inflammatory diseases. It provides the use of the prepared mature dendritic cells.
  • Another aspect is a method of culturing mature dendritic cells having increased mobility for use in the manufacture of a medicament for the prophylaxis or treatment of a disease, such as an autoimmune disease, cancer, infectious disease and inflammatory disease, Or it provides a use of mature dendritic cells prepared by a method for increasing the migration capacity of mature dendritic cells.
  • the method as described above for the mature dendritic cells with increased mobility, mobility.
  • the autoimmune disease includes any disease or disorder caused by an autoimmune response in vivo.
  • type 1 diabetes rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, Sjogren's syndrome, scleroderma, multiple myositis, chronic active hepatitis, mixed connective tissue disease, primary biliary cirrhosis, pernicious anemia, autoimmune thyroiditis, Idiopathic Edison's disease, vitiligo, gluten-sensitive enteropathy, Grave's disease, myasthenia gravis, autoimmune neutropenia, idiopathic thrombocytopenic purpura, cirrhosis of the liver, vulgaris Lupus, ulcerative colitis and high density deposition.
  • the cancer includes gastric cancer, lung cancer, breast cancer, ovarian cancer, liver cancer, bronchial cancer, nasopharyngeal cancer, laryngeal cancer, pancreatic cancer, bladder cancer, colon cancer, cervical cancer, brain cancer, prostate cancer, bone cancer, skin cancer, thyroid cancer, parathyroid cancer, or ureter cancer. It may be, but is not limited thereto.
  • the inflammatory disease is a generic term for inflammation as the primary lesion, edema, allergy, asthma, conjunctivitis, periodontitis, rhinitis, otitis media, sore throat, tonsillitis, pneumonia, gastric ulcer, gastritis, Crohn's disease, colitis, hemorrhoids, gout, ankylosing Group consisting of spondylitis, rheumatic fever, lupus, fibromyalgia, psoriatic arthritis, osteoarthritis, rheumatoid arthritis, periarthritis, tendinitis, hay salt, myositis, hepatitis, cystitis, nephritis, sjogren's syndrome and multiple sclerosis It may correspond to any one selected from, but is not limited thereto.
  • infectious disease is a generic term for diseases caused by infection with pathogens such as viruses, bacteria, fungi, parasites, and human immunodeficiency virus (HIV), hepatitis B virus or hepatitis C virus (HBV). , HCV), Epstein-Barr virus (EBV), congenital cytomegalovirus (CMV), enterovirus, influenza viruses A, B and C influenza with Influenza virus A, B and C), syncytial respiratory virus (SRV), or HTLV, bacteria and / or their toxins (tetanus, diphtheria, pneumococci, meningococci, methicillin Staphylococci, Klebsiellas, Shigellas, Pseudomonas aeruginosa, Entererobacteria, including resistance resistant forms antibiotics (antibiotic resistant pathologies), including bacteria or nosocomial diseases), parasites (paludism, Leishmaniosis, trypanosomiasis) and
  • the composition has an effect of preventing or treating a disease, for example, cancer, autoimmune diseases, infectious diseases, or inflammatory diseases that mature dendritic cells with increased mobility can be treated by activating T cells and inducing an immune response in lymph nodes.
  • a disease for example, cancer, autoimmune diseases, infectious diseases, or inflammatory diseases that mature dendritic cells with increased mobility can be treated by activating T cells and inducing an immune response in lymph nodes.
  • prevention refers to any action that inhibits or delays the onset of autoimmune disease, cancer, infectious disease or inflammatory disease by administration of the composition.
  • treatment refers to any action in which symptoms for an autoimmune disease, cancer, infectious disease or inflammatory disease improve or benefit altered by administration of the composition.
  • compositions are conventionally used in the preparation, lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, fine Crystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil, and the like.
  • the composition may further include lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives and the like in addition to the above components. Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington's Pharmaceutical Sciences (19th ed., 1995).
  • Suitable dosages of the compositions may be prescribed in various ways, such as by the method of formulation, the mode of administration, the age, weight, sex, morbidity of the patient, food, time of administration, route of administration, rate of excretion and response.
  • composition can be used as a cell therapy.
  • composition can be used with conventional immunopotentiators.
  • Immunopotentiators are substances that promote an immune response to antigens in the specific process of initial activation of immune cells, and are agents, molecules, etc. that enhance immunity by increasing the activity of cells of the immune system, although they are not immunogens to the host. Increase the surface area of the antigen, extend the identity of the antigen in the body to allow the immune system access to the antigen, delay antigen release, target the antigen to macrophages, activate macrophages, and the like. It has been reported to work by various mechanisms.
  • Typical adjuvants include Freund adjuvant, aluminum compound, muramyl dipeptide, LPS, and the like.
  • composition may be maximized by use after surgery, in combination with radiation therapy or in combination with anticancer agents.
  • Another aspect includes autoimmune diseases, cancer, infectious diseases and inflammatory diseases comprising administering to a subject a therapeutic or pharmaceutically effective amount of mature dendritic cells produced by the method of producing mature dendritic cells having increased mobility.
  • a disease selected from the group consisting of:
  • administration means introducing a predetermined substance into an individual in any suitable manner, and the route of administration of the substance can be administered through any general route as long as it can reach the target tissue. It may be, but is not limited to, intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, topical administration, nasal administration, pulmonary administration, or rectal administration. In addition, administration can be performed by any device capable of moving to a target cell. The dosage may be appropriately selected depending on the type of cancer, the route of administration, the age and sex of the patient, and the extent of the disease, but for average adults, it may be administered from about 1 ⁇ 10 6 to about 1 ⁇ 10 11 cells.
  • the “therapeutically effective amount” means an amount sufficient to have a therapeutic effect when administered to an individual or cell in need thereof.
  • Treatment means treating a disease or medical condition in a subject, eg, a mammal, including a human, which includes: (a) preventing the occurrence of a disease or medical condition, ie preventing the patient cure; (b) alleviation of the disease or medical condition, ie, causing removal or recovery of the disease or medical condition in the patient; (c) inhibiting the disease or medical condition, ie, slowing or stopping the progression of the disease or medical condition in the individual; Or (d) alleviate the disease or medical condition in the subject.
  • the method according to one aspect may increase the mobility of mature dendritic cells and increase the induction of inflammatory cytokine production, induction of T lymphocyte proliferation, and induction of T lymphocyte polarization of dendritic cells, thereby preventing or treating immune related diseases. Can be used.
  • 1 is a graph showing the results of confirming the expression of autotaxin gene by RT-PCR in mature dendritic cells and control dendritic cells treated with autotaxin specific siRNA (* p ⁇ 0.05).
  • FIG. 2 is a graph showing Western blot expression of autotaxin protein in mature dendritic cells and control dendritic cells treated with autotaxin specific siRNA (*** p ⁇ 0.001).
  • Figure 3a shows surface antigens CD11c, CD14, CD40, CD54, CD80, CD86, MHCI, in mature dendritic cells (ATX siRNA), negative controls, and mature dendritic cells (mDC) whose expression is inhibited by autotaxin specific siRNA; And histograms analyzed for expression of MHCII.
  • Figure 3b shows surface antigens CD11c, CD14, CD40, CD54, CD80, CD86, MHCI, in mature dendritic cells (ATX siRNA), negative controls, and mature dendritic cells (mDC) whose expression is inhibited by autotaxin specific siRNA; And fluorescence intensities analyzed for expression of MHCII.
  • Figure 4 is a graph confirming the inflammatory cytokine concentration in the co-culture of mature dendritic cells (ATX siRNA), mature dendritic cells (mDC) and T lymphocytes suppressed by autotaxin-specific siRNA by ELISA (* p ⁇ 0.05).
  • 5 is an experimental result confirming the T cell proliferation capacity of the mature dendritic cells (ATX siRNA) and mature dendritic cells (mDC) suppressed the expression of the autotaxin gene.
  • FIG. 6 shows IFN- ⁇ / CD4 and IL-17 / CD4 identified by flow cytometry in mature dendritic cells (ATX siRNA) and normal mature dendritic cells (mDC) in which autotaxin gene expression is suppressed.
  • FIG. 6 shows IFN- ⁇ / CD4 and IL-17 / CD4 identified by flow cytometry in mature dendritic cells (ATX siRNA) and normal mature dendritic cells (mDC) in which autotaxin gene expression is suppressed.
  • Figure 7 is a graph confirming the concentration of cytokines in co-cultures co-cultured with mature dendritic cells (ATX siRNA), mature dendritic cells (mDC) and CD3 + T cells with suppressed autotaxin gene expression by ELISA.
  • Figure 9 is a graph showing the results confirmed in vitro mobility of mature dendritic cells according to the inhibition of the expression of the autotaxin gene by mobile assay.
  • FIG. 10 is a graph confirming the change in the expression of CCR7 in qD-PCR in mature dendritic cells according to the inhibition of autotaxin gene expression.
  • FIG. 11 shows pp38, ERK 1/2, pJNK in mature dendritic cells, negative controls, mature dendritic cells inhibited by autotaxin specific siRNA, mature dendritic cells treated with HA130, and mature dendritic cells treated with PF8380. , NF- ⁇ B protein levels are confirmed by Western blotting results.
  • Figure 12a is a histogram confirming the expression of cell surface markers of mature dendritic cells with enhanced mobility and recombinant dendritic cells added with recombinant autotaxin protein in the culture process by flow cytometry.
  • 12B is a graph quantifying the results obtained by flow cytometry confirming the expression of cell surface markers of mature dendritic cells with improved mobility and non-added mature dendritic cells added with recombinant autotaxin protein in culture.
  • FIG. 13 shows expression levels of inflammatory cytokines IL-1 ⁇ , IL-6, TNF- ⁇ , and IL-12p70 in mature dendritic cells (+) with and without autotaxin protein ( ⁇ ).
  • the graph confirmed by ELISA (* p ⁇ 0.05, ** p ⁇ 0.01).
  • FIG. 14 is a diagram showing the results of confirming the proliferative capacity of T lymphocytes in mature dendritic cells (+) with and without addition of autotaxin protein (-).
  • FIG. 15 shows IFN- ⁇ / CD4 and IL-17 / CD4 identified by flow cytometry in mature dendritic cells (+) and mature dendritic cells ( ⁇ ) cultured with autotaxin protein.
  • FIG. 16 is a graph confirming the concentration of cytokines in co-cultures cocultured with mature dendritic cells (+), mature dendritic cells (-) and CD3 + T cells cultured with autotaxin protein.
  • Figure 17 is a photograph showing the results confirmed by ELISA expression of RhoA protein in mature dendritic cells (+) and mature dendritic cells (-) cultured with the addition of autotaxin protein.
  • Figure 18 is a graph showing the results of the migration assay in the mature dendritic cells (+) and mature dendritic cells (-) cultured with the addition of autotaxin protein (*** p ⁇ 0.001).
  • FIG. 20 is a photograph showing that the mature dendritic cells (+) and mature dendritic cells (-) cultured with the addition of autotaxin protein were moved to the swarm lymph nodes for 3 days.
  • FIG. 21 is a graph showing the quantification of the ratio of mature dendritic cells (+) and mature dendritic cells (-) cultured with autotaxin protein to the swarm lymph nodes for 3 days.
  • Figure 22 shows the results of the analysis of confocal microscopy of the ratio of the mature dendritic cells (+) and mature dendritic cells (-) cultured with the addition of autotaxin protein to the swarm lymph nodes for 3 days.
  • Figure 23 is a diagram showing the result of confirming the mature dendritic cells by flow cytometry after staining with CD11c antibody after separating lymphocytes from the extracted swarm lymph nodes.
  • siRNA (Bioneer, Daejeon, Korea) targeting mouse Enpp2 mRNA was introduced into cells at a concentration of 100 nM using lipofectamine 3000 (Invitrogen, CA, USA) system.
  • lipofectamine 3000 Invitrogen, CA, USA
  • all cells were harvested and suspended in dendritic cell basal medium containing 5% fetal bovine serum and aliquoted at 2 10 5 cells / well in 6 well culture plates.
  • the dendritic cells treated with siRNA were exchanged with dendritic cell culture medium containing LPS 4 hours after siRNA transfection to induce maturation for 24 hours, and immature dendritic cell population was exchanged with fresh dendritic cell culture medium.
  • scramble siRNA (Bioneer) was used as a negative control, and three or more replicate experiments were performed.
  • the siRNA information targeting Enpp2 mRNA is shown in Table 1.
  • siRNA order Enpp2 siRNA-1 5’-GGG UCU UGG UGA AGA AAU AdTdT-3 ’
  • the reaction conditions were repeated 10 cycles at 95 ° C., 20 cycles at 94 ° C., 30 seconds at 62 ° C., and 20 seconds at 72 ° C. for 35 cycles.
  • Gene expression levels were analyzed by comparing the threshold cycle (Ct) value of each gene to the Ct value of GAPDH, and comparing the change in Ct value.
  • dendritic cells were suspended in RPMI 1640 medium supplemented with 2% fetal bovine serum and then aliquoted at 1 10 6 cells / well in 6 well plates and incubated at 37 ° C. and 5% CO 2 for 24 hours. . After 24 hours, the cell culture medium was collected and concentrated by centrifugation at 3000 g for 20 minutes using an Amicon Ultra-2 Centrifugal Filter Unit with Ultracel-10 membrane (Millipore, Germany). Intracellular proteins of dendritic cells were extracted using PRO-PREPTM (iNtRON Biotechnology, Gyeonggi, Korea) and phosphatase inhibitor cocktail (Calbiochem, CA, USA).
  • Protein concentrations were determined by Bradford (Thermo, MA, USA) assay. Quantified protein was separated by SDS-PAGE and adsorbed the separated protein by PVDF membrane (Biorad, CA, USA). PVDF membrane was blocked at room temperature for 1 hour using 5% skim milk in PBST, the primary antibody was diluted 1: 2000 in 5% skim milk and treated for 4 to 18 hours. Thereafter, the membrane was washed three times with 1 ⁇ PBST for 10 minutes, and the secondary antibody was treated with 1: 5000 and reacted at room temperature for 2 hours. Again, the membrane was washed three times with 1 ⁇ PBST and exposed to ECL solution (Thermo) to confirm protein bands with LAS-4000 (Fuji film, Tokyo, Japan). The results were analyzed using Multi Gauge software V3.0 (Fuji film).
  • 1 is a graph showing the results of confirming the expression of autotaxin gene by RT-PCR in mature dendritic cells and control dendritic cells treated with autotaxin specific siRNA (* p ⁇ 0.05).
  • FIG. 2 is a graph showing Western blot expression of autotaxin protein in mature dendritic cells and control dendritic cells treated with autotaxin specific siRNA (*** p ⁇ 0.001).
  • flow cytometry was performed as follows. 2 ⁇ 105-5 ⁇ 10 5 cells were washed with PBS (Lonza) and stained with fluorescently labeled monoclonal antibodies. The monoclonal antibodies for flow cytometry used are shown in Table 2 below.
  • PI Propidium Iodide staining was performed. Cells were treated with GolgiStop (BD Bioscience, CA, USA) for 4 hours for cytokine staining in T cells. After 4 hours, T cells were harvested and stained with CD4, and then fixed with Fixation / Permeabilization Solution (BD) at room temperature for 30 minutes.
  • BD Fixation / Permeabilization Solution
  • FIG. 3 shows surface antigens CD11c, CD14, CD40, CD54, CD80, CD86, MHCI, in mature dendritic cells (ATX siRNA), negative controls, and mature dendritic cells (mDC) whose expression is inhibited by autotaxin specific siRNA; And a graph showing a histogram (a) and fluorescence intensity (b) analyzing the expression of MHCII.
  • the expression of surface antigens in each mature dendritic cell appeared similar. Specifically, it was confirmed that the expression of CD14, a monocyte surface antigen, was hardly expressed, and the expression of CD11c, a representative surface antigen of dendritic cells, was high. In addition, it was confirmed that the expression of CD40 and T lymphocyte adhesion molecules, CD54, and co-stimulatory molecules, CD80 and CD86, were high.
  • the cytokine concentration in the mature dendritic cell culture was measured using an ELISA as follows.
  • IL-1 ⁇ mouse interleukin-1 ⁇
  • IL-6 tumor necrosis factor- ⁇
  • TNF- ⁇ tumor necrosis factor- ⁇
  • IL-12p70 BD Bioscience
  • Figure 4 is a graph confirming the inflammatory cytokine concentration in the co-culture of mature dendritic cells (ATX siRNA), mature dendritic cells (mDC) and T lymphocytes suppressed by autotaxin-specific siRNA by ELISA (* p ⁇ 0.05).
  • the concentration of inflammatory cytokines in the cell culture of mature dendritic cells with suppressed autotaxin expression was measured about 15% lower than the concentration in the cell culture of control mature dendritic cells.
  • the concentrations of inflammatory cytokines TNF- ⁇ , which represent innate immunity, and IL-12, a cytokine that induces a Th1 immune response, and IL-1 ⁇ and IL-6, which are representative inflammatory cytokines, are lowered. It was confirmed that the immune and inflammatory responses of the suppressed mature dendritic cells are reduced.
  • CD3 + T cells were co-cultured for 72 hours at a ratio of 1:10.
  • CD3 + cells were isolated from splenocytes of na ⁇ ve C57BL / 6 mice and stained with carboxyfluorescein succinmidyl ester (CFSE) at a final concentration of 4 ⁇ M. CFSE-labeled cells were washed, counted and co-cultured with dendritic cells.
  • CFSE carboxyfluorescein succinmidyl ester
  • 5 is an experimental result confirming the T cell proliferation capacity of the mature dendritic cells (ATX siRNA) and mature dendritic cells (mDC) suppressed the expression of the autotaxin gene.
  • the mature dendritic cells in which the expression of the autotaxin gene was suppressed showed a T lymphocyte proliferation capacity that was about 45% lower than that of the normal mature dendritic cells. Therefore, it was confirmed that the suppressed expression of the autotaxin gene inhibits T lymphocyte proliferation in mature dendritic cells.
  • Mature dendritic cells were co-cultured with CD3 + T cells at a ratio of 1:10 for 72 hours. The cells were stained with anti-CD4 and anti-IFN- ⁇ or anti-IL-17A antibodies and analyzed by flow cytometry.
  • FIG. 6 shows IFN- ⁇ / CD4 and IL-17 / CD4 identified by flow cytometry in mature dendritic cells (ATX siRNA) and normal mature dendritic cells (mDC) in which autotaxin gene expression is suppressed.
  • FIG. 6 shows IFN- ⁇ / CD4 and IL-17 / CD4 identified by flow cytometry in mature dendritic cells (ATX siRNA) and normal mature dendritic cells (mDC) in which autotaxin gene expression is suppressed.
  • T cells co-cultured with mature dendritic cells whose autotaxin gene expression was suppressed compared to mature dendritic cells were about 50% less differentiated into Th1 and Th17 subtype cells.
  • Figure 7 is a graph confirming the concentration of cytokines in co-cultures co-cultured with mature dendritic cells (ATX siRNA), mature dendritic cells (mDC) and CD3 + T cells with suppressed autotaxin gene expression by ELISA.
  • Rho A protein which is known to be involved in cell migration in the lower signaling of the LAP receptor with LPA as a ligand of the product of the autotaxin enzyme, was confirmed by western blotting, and the result of the confirmation is shown in FIG.
  • Rho A protein was expressed by about 45% or more lower than mature dendritic cells (mDC) when treated with autotaxin-inhibited dendritic cells (ATX siRNA), HA 130 and PF8380. .
  • Transwell-plates (Corning, NY, USA) containing 8.0 ⁇ m pore polycarbonate membranes were used. After harvesting mature dendritic cells incubated for 7 days, suspended in RPMI 1640 medium and placed into 5 ⁇ 10 5 cells / 500 ⁇ L at the top of the transwell plate, 2% fetal bovine serum at the bottom of the transwell, 100 ng / mL recombinant mouse CCL19 500 ⁇ L of RPMI 1640 medium added with (R & D systems) was added. After 1 hour incubation at 37 ° C. and 5% CO 2 , the transwell bottom culture was transferred to a 5 mL round bottom tube (Corning) and cell number was measured for 1 minute with FACSCalibur. The measurement results are shown in FIG. 9.
  • CCR7 a homing receptor for dendritic cells, is involved in the movement of dendritic cells. Therefore, in order to confirm whether the change in the ability of mature dendritic cells due to the inhibition of autotaxin gene expression is related to CCR7, the expression of CCR7 in mature dendritic cells was confirmed by qRT-PCR, and the results are shown in FIG. 10. .
  • cytokines were reduced by suppressing the expression of the autotaxin gene.
  • intracellular signaling proteins pp38, ERK
  • 1/2, pJNK, NF- ⁇ B were confirmed by western blotting.
  • FIG. 11 shows pp38, ERK 1/2, pJNK in mature dendritic cells, negative controls, mature dendritic cells inhibited by autotaxin specific siRNA, mature dendritic cells treated with HA130, and mature dendritic cells treated with PF8380. , NF- ⁇ B protein levels are confirmed by Western blotting results.
  • the experimental results show that the expression of autotaxin by siRNA in mature dendritic cells decreases the overall function of dendritic cells, such as decreased cytokine expression and reduced T cell proliferation inducing ability.
  • the decrease in the expression of autotaxin decreases the cell's mobility, and this decrease is associated with changes in the expression of cytokines.
  • Bone marrow cells are dendritic cell culture medium, 10% fetal bovine serum, 100 units / mL penicillin, 100 ⁇ g / mL streptomycin, 2 mM GlutaMaxTM, 55 nM 2-mercaptoethanol (Gibco, NY, USA) , 20 ng / mL recombinant mouse (rm) GM-CSF, 20 ng / mL rmIL-4 (JW CreaGene, Gyeonggi, Korea) and suspended in RPMI 1640 medium added to 3 ⁇ 10 7 Cells were aliquoted and incubated at 37 ° C. and 5% CO 2 .
  • FIGS. 12A and 12B Expression of cell surface markers of mature dendritic cells with enhanced mobility and recombinant dendritic cells added with recombinant autotaxin protein during culturing was confirmed by flow cytometry, which is shown in FIGS. 12A and 12B.
  • FIG. 13 shows expression levels of inflammatory cytokines IL-1 ⁇ , IL-6, TNF- ⁇ , and IL-12p70 in mature dendritic cells (+) with and without autotaxin protein ( ⁇ ).
  • the graph confirmed by ELISA (* p ⁇ 0.05, ** p ⁇ 0.01).
  • CD3 + T cells were isolated from splenocytes of na ⁇ ve C57BL / 6 mice and stained with CFSE.
  • FIG. 14 is a diagram showing the results of confirming the proliferative capacity of T lymphocytes in mature dendritic cells (+) with and without addition of autotaxin protein (-).
  • dendritic cell mediated T cell polarization To confirm the effect of the addition of autotaxin protein on dendritic cell mediated T cell polarization, mature dendritic cells were co-cultured with CD3 + T cells at a ratio of 1:10 for 72 hours. The cells were stained with anti-CD4 and anti-IFN- ⁇ or anti-IL-17A antibodies and analyzed by flow cytometry.
  • FIG. 15 shows IFN- ⁇ / CD4 and IL-17 / CD4 identified by flow cytometry in mature dendritic cells (+) and mature dendritic cells ( ⁇ ) cultured with autotaxin protein.
  • FIG. IFN- ⁇ is a Th1 cytokine and IL-17 is a Th17 cytokine.
  • T cells co-cultured with enhanced dendritic cells cultured with the addition of autotaxin protein were approximately 1.5-fold with Th1 and Th17 subtypes compared with mature dendritic cells when autotaxin protein was not added. It was confirmed that more differentiation.
  • FIG. 16 is a graph confirming the concentration of cytokines in co-cultures cocultured with mature dendritic cells (+), mature dendritic cells (-) and CD3 + T cells cultured with autotaxin protein.
  • Figure 17 is a photograph showing the results confirmed by ELISA expression of RhoA protein in mature dendritic cells (+) and mature dendritic cells (-) cultured with the addition of autotaxin protein.
  • RhoA protein As shown in FIG. 17, it was confirmed that the expression of RhoA protein was significantly increased by about 1.5-fold or more in mature dendritic cells in which the autotaxin protein was added and cultured.
  • Figure 18 is a graph showing the results of the migration assay in the mature dendritic cells (+) and mature dendritic cells (-) cultured with the addition of autotaxin protein (*** p ⁇ 0.001).
  • dendritic cells labeled with near infrared dye were suspended in PBS using CellVue® NIR815 Midi Kit for Membrane Labeling (Polysciences Inc., Warrington, UK), in which 1 ⁇ 10 5 cells / Subcutaneously injected at 50 ⁇ L.
  • the movement of dendritic cells was tracked using Pearl Impulse (LI-COR biotechnology, NE, USA) for 72 hours immediately after injection. Imaging was performed using a near-infrared 800-nm channel emitting at a wavelength of 778 nm and detecting at 794 nm. The image 3 days after the injection was used as the representative image.
  • FIG. 20 is a photograph showing that the mature dendritic cells (+) and mature dendritic cells (-) cultured with the addition of autotaxin protein were moved to the swarm lymph nodes for 3 days.
  • mice were injected with dendritic cells labeled with Carboxyfluorescein succinimidyl ester (CFSE) (Molecular Probes, OR, USA) fluorescence in the same manner as above.
  • CFSE Carboxyfluorescein succinimidyl ester
  • the swarovski nodes were removed.
  • the extracted swarovski sections were fixed with 4% paraformaldehyde, and then frozen sections were prepared.
  • Tissues cut to a thickness of 10 ⁇ m were attached to slides and treated with DAPI mounting solution (Immunobioscience Co., WA, USA) and images were obtained using Zeiss LSM 510 (Carl Zeiss Co., Oberkochen, Germany). Images were analyzed using Zeiss ZEN software (Carl Zeiss). The results are shown in FIG. 22.
  • lymphocytes were isolated from the extracted swarovski lymphocytes, stained with anti-CD11c antibody, and confirmed by flow cytometry.

Abstract

수지상세포의 이동능을 증가시키는 방법, 및 이의 용도에 관한 것이다. 일 양상에 따른 방법은 성숙 수지상세포의 이동능을 증가시킬 수 있고, 수지상세포의 염증성 사이토카인 생산 유도, T 림프구 증식 유도, 및 T 림프구 분극화 유도를 증가시킬 수 있으므로 면역 관련 질환의 예방 또는 치료에 사용할 수 있다.

Description

수지상세포의 이동능을 증가시키는 방법 및 이의 용도
본 출원은 2018년 5월 4일 출원된 대한민국 특허출원 제10-2018-0052135호를 우선권으로 주장하고, 상기 명세서 전체는 본 출원의 참고문헌이다.
수지상세포의 이동능을 증가시키는 방법, 및 이의 용도에 관한 것이다.
수지상세포는 주로 T 세포에 항원제시 기능을 수행하는 전문적 항원 제시 세포의 일종으로서, 림프절, 비장, 흉선, 피부 밑 또는 여러 조직의 세포 간극에서 나뭇가지 모양으로 존재한다. 수지상세포는 항원을 세포 내부로 흡수하여 MHC(major histocompatibility complex) 클래스 I 분자 또는 MHC 클래스 II 분자와 함께 다양한 항원 샘플을 T 세포에 제시함으로써, T 세포 활성화에 중요한 역할을 하는 것으로 알려져 있다.
또한, 수지상세포는 주위에 존재하는 환경적 신호와 종류에 따라 성숙도가 상이한 상태로 분화되어, 미성숙(immature), 준성숙(semi-mature) 또는 성숙(mature) 수지상세포로 존재한다. 미성숙 수지상세포는 초기 성숙 단계에서 발견되는 것으로서 세포 간액으로부터 데브리스(debris)들을 수집하고 제거하는 1차적인 기능을 수행하나, 염증성 사이토카인을 낮은 수준으로 발현하기 때문에 T 세포와 접촉하여도 T 세포를 활성화시키지 못한다. 반면, 성숙 수지상세포는 원시 T 세포(naive T cell)를 활성화시켜 면역반응을 유도할 수 있는 능력을 가진다.
최근 수지상세포는 암, 면역 관련 질환 등에 대한 세포치료제로서 사용하기 위해 연구되고 있다. 예를 들어, 수지상세포는 림프절에서 T 세포를 활성화시킴으로써 종양 세포를 억제할 수 있고, 면역 반응에 관여하여 감염성 질환, 염증성 질환 등의 치료에 사용될 수 있다. 수지상세포가 이러한 효과를 나타내기 위해서는 림프절로 이동하여 T 세포를 활성화시켜야 하는데, 수지상세포의 생체 내 림프절 이동은 투여 세포수에 비하여 약 2-5% 정도로 매우 낮은 실정이다.
따라서, 수지상세포의 이동능을 향상시킬 수 있는 조성물, 또는 방법을 개발할 필요가 있다.
일 양상은 수지상세포의 이동능을 증가시키는 방법을 제공한다.
다른 양상은 이동능이 증가된 수지상세포를 포함하는 조성물을 제공한다.
일 양상은 성숙되지 않은 수지상세포와 오토탁신(autotaxin)을 접촉시키는 단계를 포함하는 이동능이 증가된 성숙 수지상세포를 제조하는 방법을 제공한다.
본 명세서에서, 용어 "수지상세포(dendritic cells)"는 항원을 세포내부로 흡수하고 이를 처리하여 항원 또는 항원으로부터 유래된 펩타이드를 MHC (major histocompatibility complex) 클래스 I 복합체 또는 MHC 클래스 Ⅱ 복합체와 함께 제시하는 전문적 항원 제시 세포(professional antigen presenting cell)를 의미한다. 본 명세서에서의 수지상세포는 Steinman et al., Annual Rev. Immunol. 9:271-296, 1991 및 Banchereau and Steinman Nature 392:245-252, 1998에 개시된 수지상세포의 전형적인 표현형과 특성을 갖는 세포를 의미한다. 수지상세포는 면역성(immunogenic) 및 면역관용성 (tolerogenic) 항원 제시 세포를 모두 포함하며, 성숙도에 따라 미성숙 수지상세포(immature dendritic cells: imDC), 준성숙 수지상세포(semimature dendritic cells: smDC) 및 성숙 수지상세포(mature dendritic cells: mDC)로 분류한다.
본 명세서에서, 용어 "성숙되지 않은 수지상세포"는 미성숙 수지상세포, 준성숙 수지상세포, 또는 이들의 조합을 포함할 수 있다. 상기 "미성숙 수지상세포"는 세포 간액으로부터 데브리스(debris)들을 수집하고 제거하는 1차적인 기능을 수행하나, 이 세포의 염증성 사이토카인의 발현 수준은 낮기 때문에 T 세포와 접촉하여도 T 세포를 활성화시키지 못하는 수지상세포를 의미할 수 있다. 상기 "준성숙 수지상세포"는 미성숙 수지상세포의 특성의 일부를 상실하고, 성숙 수지상세포의 표현형의 일부 특성을 갖는 수지상세포로서, 부분적으로 또는 불완전하게 성숙된 형태 및 표현형적 특성을 나타내는 수지상세포를 의미할 수 있다.
상기 수지상세포는 동물의 기관, 조직, 골수 또는 혈액으로부터 얻을 수 있다.
상기 수지상세포를 얻기 위한 과정에서 이용되는 배지로는, 동물세포의 배양에 이용되는 일반적인 어떠한 배지도 이용할 수 있다. 바람직하게는, 혈청(예컨대, 우태아 혈청, 말 혈청, 인간 혈청)이 함유된 배지이다. 본 발명에서 이용될 수 있는 배지는, 예를 들어, RPMI 시리즈(예컨대, RPMI 1640), Eagles's MEM(Eagle's minimum essential medium, Eagle, H. Science 130:432(1959)), α-MEM (Stanner, C.P. et al., Nat. New Biol. 230:52(1971)), Iscove's MEM (Iscove, N. et al., J. Exp. Med. 147:923(1978)), 199 배지 (Morgan et al., Proc. Soc. Exp. Bio. Med. 73:1(1950)), CMRL 1066, RPMI 1640 (Moore et al., J. Amer. Med. Assoc. 199:519(1967)), F12 (Ham, Proc. Natl. Acad. Sci. USA 53:288(1965)), F10 (Ham, R.G. Exp. Cell Res. 29:515(1963)), DMEM (Dulbecco's modification of Eagle's medium, Dulbecco, R. et al., Virology 8:396(1959)), DMEM과 F12의 혼합물(Barnes, D. et al., Anal. Biochem. 102:255(1980)), Waymouth's MB752/1 (Waymouth, C. J. Natl. Cancer Inst. 22:1003(1959)), McCoy's 5A (McCoy, T.A., et al., Proc. Soc. Exp. Biol. Med. 100:115(1959)) 및 MCDB 시리즈 (Ham, R.G. et al., In Vitro 14:11(1978))를 포함하나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에서, 상기 성숙되지 않은 수지상세포는 골수세포에서 적혈구를 제거한 후 배양하는 단계를 통하여 획득할 수 있으나, 이에 제한되는 것은 아니다.
본 명세서에서, 용어 "성숙 수지상세포"는 성숙되지 않은 수지상세포가 성숙화되어 형성된 세포를 의미한다. 성숙 수지상세포는 DC-LAMP 뿐만 아니라 MHC 클래스 Ⅱ, CD40, CD54, CD80, CD86 및 CD274의 발현이 높으며, 전염증성 사이토카인(proinflammatory cytokine)을 방출하며, 혼합림프구 반응(mixed lymphocyte reaction)에서 원시 동종이계 T 세포(allogeneic T cells) 및 동종동계 T 세포(syngeneic T cells)의 증식의 증가 및/또 는 수지상세포 사이토카인의 증가된 생성을 발생시키는 능력을 갖는 것을 특징으로 한다. 성숙 수지상세포는 전형적으로 CCR7 및 CXCR4를 높은 수준으로 발현한다. 성숙 수지상세포는 나이브 T 세포(naive T cell)를 활성화시켜 면역반응을 유도할 수 있는 능력을 갖는다.
본 명세서에서, 용어 "오토탁신(Autotaxin)"은 멜라노마 세포의 배지에서 처음 분리된 125 kDa의 당단백질로서, 엑토뉴클레오티드 피로포스파타아제 포스포디에스터라제 패밀리 멤버 2(ectonucleotide pyrophosphatase/phosphodiesterase family member 2: ENPP2)로도 알려져 있다. 오토탁신은 리소포스포리아파제 D(lysophospholipase D) 활성을 가지며, LPC(lysophosphatidylcholine)를 LPA(lysophosphatidic acid)로 분해하는 역할을 수행하는 세포외 효소이다.
상기 오토탁신은 공지된 재조합 단백질 생산 방법에 따라 제조된 것이거나, 생체로부터 분리된 것이거나, 상업적으로 얻은 것일 수 있다.
상기 오토탁신은 이의 기능적 동등물을 포함한다. "기능적 동등물" 이란 아미노산의 부가, 치환 또는 결실의 결과, 상기 오토탁신 단백질의 아미노산 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더 더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 오토탁신 단백질과 실질적으로 동질의 생리활성을 나타내는 단백질을 말한다. 또한 상기 오토탁신 단백질이 수지상세포의 이동능에 관여하는 한, 단백질의 최종 구조물에서 어떤 결실, 삽입 및 치환의 조합도 가능하다.
본 명세서에서, 용어 "접촉"은 충분한 시간 및 조건 하에서 성숙되지 않은 수지상세포에 오토탁신이 영향을 줄 수 있는 상태를 의미한다. 구체적으로, 상기 성숙되지 않은 수지상세포와 오토탁신의 접촉은 RPMI 배지에서 수행되는 것일 수 있고, 더욱 구체적으로 성숙되지 않은 수지상세포와 오토탁신을 RPMI 배지에서 배양하는 것을 포함할 수 있다.
상기 배지는 일반적으로 세포 배양배지에 포함될 수 있는 성분이나 성숙되지 않은 수지상세포의 성숙화를 유도할 수 있는 성분, 예를 들어, FBS(fetal bovine serum), GM-CSF(granulocyte-macrophage colony-stimulating factor), IL(interleukin), 및 머캅토에탄올을 더 포함할 수 있다.
상기 접촉시키는 단계는 약 1시간 내지 48시간, 약 5시간 내지 40시간, 약 10시간 내지 35시간, 약 15시간 내지 30시간, 또는 약 20시간 내지 25시간 동안, 바람직하게는 약 24시간 동안 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 접촉시키는 단계가 너무 짧을 경우, 성숙되지 않은 수지상세포의 성숙이 충분히 이루어지지 않고, 상기 접촉시키는 단계가 너무 길 경우, 수지상세포의 사멸이 증가할 수 있다.
상기 접촉시키는 단계는 성숙되지 않은 수지상세포의 배양 약 4일 내지 8일째, 또는 약 5일 내지 7일째, 또는 약 6일째에 수행되는 것일 수 있다.
상기 이동능이 증가된 성숙 수지상세포를 제조하는 방법에서, 상기 성숙되지 않은 수지상세포와 LPS(lipopolysaccharide), KLH(keyhole Limpet Hemocyanin), 또는 이들의 조합을 접촉시키는 단계를 더 포함할 수 있다.
상기 LPS는 성숙되지 않은 수지상세포와 접촉하여 성숙되지 않은 수지상세포가 성숙하도록 자극하는 촉진제로 사용된다.
상기 KLH는 항원 제시 세포인 수지상세포에 대하여 항원에 대한 정보를 제공하기 위해 사용된다.
상기 LPS, KLH, 또는 이들의 조합을 접촉시키는 단계는 상기 성숙되지 않은 수지상세포와 오토탁신을 접촉시키는 단계와 동시에, 또는 전, 후에 수행될 수 있다.
상기 방법에서, 오토탁신의 농도는 당업자에 의해 바람직한 범위로 선택될 수 있고, 예를 들어, 약 0.01μg/ml 내지 1mg/ml, 약 0.05μg/ml 내지 500 μg/ml, 약 0.1μg/ml 내지 100μg/ml, 약 0.5μg/ml 내지 50μg/ml, 약 1μg/ml 내지 30μg/ml, 약 3μg/ml 내지 20μg/ml, 또는 약 5μg/ml 내지 15μg/ml일 수 있다.
본 명세서에서, 용어 "이동능"은 성숙 수지상세포가 이동하는 능력을 지칭할 수 있다. 성숙 수지상세포는 항원을 포획한 후, 림프관을 거쳐 나이브 T 세포들이 존재하는 림프절로 이동하게되고, 이들 T 세포들이 항원을 인식함으로써 면역반응을 유도한다. 따라서, 면역반응 유도 효과를 극대화시키기 위해서는 성숙 수지상세포가 림프절로 이동할 수 있는 능력인 이동능을 증가시키는 것이 중요하다.
상기 방법에 의해 제조된 성숙 수지상세포는 이동능이 증가된 것을 특징으로 한다. 증가된 이동능을 갖지 않는 일반 성숙 수지상세포에 비해서 이동능이 증가된 성숙 수지상세포가 림프절로 이동하는 비율이 증가하므로, 림프절에서의 면역반응 유도 효과가 유의적으로 증가하여 투여시 자가면역질환, 암, 감염성 질환 또는 염증성 질환의 예방 또는 치료 효과가 증가할 수 있다.
상기 방법에서, 성숙 수지상세포의 이동능의 증가는 pp38, pJNK, 또는 ERK1/2 신호전달에 기인한 것일 수 있다.
상기 방법은, 성숙 수지상세포의 염증성 사이토카인 생산 유도를 증가시키는 것일 수 있다. 본 발명의 일 실시예에서는 성숙 수지상세포에 비해 상기 방법에 따른 성숙 수지상세포가 염증성 사이토카인인 IL-1β, IL-6, IL-12, TNF-α의 생산을 유발하는 능력이 증가하는 것을 확인하였다. 성숙 수지상세포가 염증성 사이토카인의 발현을 증가시켜 T 세포 활성화를 증가시킬 수 있다.
상기 방법은, 성숙 수지상세포의 T 림프구 증식 유도를 증가시키는 것일 수 있다. 본 발명의 일 실시예에서는 대조군인 성숙 수지상세포에 비해 상기 방법에 따른 성숙 수지상세포가 T 림프구의 증식을 유발하는 능력이 증가한 것을 확인하였다.
상기 방법은, 성숙 수지상세포의 T 림프구 분극화 유도를 증가시키는 것일 수 있다. 본 발명의 일 실시예에서는 대조군인 성숙 수지상세포에 비해 상기 방법에 따른 성숙 수지상세포가 T 림프구 분극화를 유도하는 능력이 증가한 것을 확인하였다.
상기 방법에 따른 성숙 수지상세포는 염증성 사이토카인의 생산 유도, T 림프구 증식 유도, 또는 T 림프구 분극화를 유도함으로써, 다양한 면역 관련 질환을 예방 또는 치료 효과를 가질 수 있다.
다른 양상은 상기 방법에 의해 제조된 이동능이 증가된 성숙 수지상세포를 제공한다.
다른 양상은 상기 방법에 의해 제조된 이동능이 증가된 성숙 수지상세포를 포함하는 약학적 조성물로서, 자가면역질환, 암, 감염성 질환 및 염증성 질환으로 이루어진 군으로부터 선택된 질환을 예방 또는 치료하기 위한 것인 약학적 조성물을 제공한다.
다른 양상은 자가면역질환, 암, 감염성 질환 및 염증성 질환으로 이루어진 군으로부터 선택된 질환의 예방 또는 치료용 약학적 조성물 또는 제제의 제조에 사용하기 위한 상기 이동능이 증가된 성숙 수지상세포를 배양하는 방법에 의하여 제조된 성숙 수지상세포의 용도를 제공한다.
다른 양상은 질병, 예를 들면 자가면역질환, 암, 감염성 질환 및 염증성 질환으로 이루어진 군으로부터 선택된 질환의 예방 또는 치료용 의약의 제조에 사용하기 위한 상기 이동능이 증가된 성숙 수지상세포를 배양하는 방법, 또는 성숙 수지상세포의 이동능을 증가시키는 방법에 의하여 제조된 성숙 수지상세포의 용도를 제공한다.상기 방법, 이동능, 이동능이 증가된 성숙 수지상세포에 대하여는 전술한 바와 같다.
상기 자가면역질환은 생체 내에서의 자가 면역 반응에 의해 유발되는 모든 질병 또는 질환을 포함한다. 예를 들어, 제 1 형 당뇨병, 류마티스 관절염, 다발성 경화증, 전신성 홍반성 낭창, 쇼그렌 증후군, 피부경화증, 다발성 근염, 만성 활동성 간염, 혼합 결체 조직 질환, 원발성 담즙성 간경변, 악성 빈혈, 자가면역 갑상선염, 특발성 에디슨 병, 백반, 글루텐 감수성 장병증, 그레이브병, 중증 근무력증, 자가면역성 호중구 감소증, 특발성 혈소판 감소 자반증, 간경변증, 심상성천포창, 자가면역 불임증, 구드패스츄어 증후군, 수포성 유천포창, 원판상 홍반 루푸스, 궤양성 대장염 및 고밀도 침착병 등이 있다.
상기 암은 위암, 폐암, 유방암, 난소암, 간암, 기관지암, 비인두암, 후두암, 췌장암, 방광암, 결장암, 자궁경부암, 뇌암, 전립선암, 골암, 피부암, 갑상선암, 부갑상선암 또는 요관암 등을 포함할 수 있으나, 이에 제한되는 것은 아니다.
상기 염증성 질환은 염증을 주 병변으로 하는 질병을 총칭하는 것으로서, 부종, 알레르기, 천식, 결막염, 치주염, 비염, 중이염, 인후염, 편도염, 폐렴, 위궤양, 위염, 크론병, 대장염, 치질, 통풍, 강직성 척추염, 류마티스성 열, 루푸스, 섬유근통 (fibromyalgia), 건선 관절염, 골 관절염, 류마티스성 관절염, 견관절주위염, 건염, 건초염, 근육염, 간염, 방광염, 신장염, 쇼그렌 증후군(sjogren's syndrome) 및 다발성 경화증으로 구성된 군으로부터 선택되는 어느 하나에 해당할 수 있으나, 이에 제한되는 것은 아니다.
상기 감염성 질환은 바이러스, 세균, 곰팡이, 기생충과 같은 병원체에의 감염에 의해 발생하는 질환을 총칭하는 것으로서, 인간 면역 결핍 바이러스(human immunodeficiency virus; HIV), B형 간염 바이러스 또는 C형 간염 바이러스(HBV, HCV), 엡스타인바 바이러스(Epstein-Barr virus; EBV), 선천성 거대세포바이러스(cytomegalovirus; CMV), 엔테로바이러스(enterovirus), 인플루엔자 바이러스 A, B 및 C의 인플루엔자(influenza with Influenza virus A, B and C), 호흡기 세포융합바이러스(syncytial respiratory virus; SRV), 또는 HTLV), 박테리아 및/또는 그들의 독소(파상풍(tetanus), 디프테리아(diphtheria), 폐렴구균(pneumococci), 수막염구균(meningococci), 메티실린 내성 형태(methicilin resistant forms)를 포함하는 포도상구균(staphylococci), 클렙시라(Klebsiellas), 시겔라(Shigellas), 녹농균(Pseudomonas aeruginosa), 엔테로박테리아(enterobacteria) 또는 병원내 질병(nosocomial diseases)을 포함한 항생제 내성 질환(antibiotic resistant pathologies)), 기생충(말라리아(paludism), 레이쉬마니아증(Leishmaniosis), 트리파노소마증(trypanosomiasis)) 및 치군군야(chikungunya), 조류독감, SARS(severe acute respiratory syndrome virus), 에볼라 바이러스(Ebola virus), 뎅기열(Dengue fever) 바이러스 또는 웨스트나일 바이러스(West Nile virus)와 같은 출혈열(haemorrhagic fevers)에 관한 바이러스과 같은 신종 질병(emerging diseases), 탄저병(Anthrax), 보툴리누스중독증(botulism), 흑사병(Plague), 천연두(smallpox) 및 수두 바이러스(poxvirus), 튜라레미아증(Tularaemia), 출혈열 병원균(haemorrhagic fever agents), 브루셀라증(brucellosis), 포도상구균 B 엔데로톡신(Staphylococcus B Enterotoxins), 디프데리아 독소(diphtheric toxin) 또는 바이러스성 뇌염(viral Encephalitis)과 같은 바이오 테러리즘(bio-terrorism)에 관한 질병을 포함할 수 있으나 이에 제한되는 것은 아니다.
상기 조성물은 이동능이 증가된 성숙 수지상세포가 림프절에서 T 세포를 활성화시키고 면역반응을 유도함으로써 치료할 수 있는 질환, 예를 들어, 암, 자가면역질환, 감염성 질환, 또는 염증성 질환을 예방하거나 치료하는 효과가 있다.
본 명세서에서, 용어 "예방"은 상기 조성물의 투여에 의해 자가면역질환, 암, 감염성 질환 또는 염증성 질환을 억제시키거나 발병을 지연시키는 모든 행위를 의미한다.
본 명세서에서, 용어 "치료"는 상기 조성물의 투여에 의해 자가면역질환, 암, 감염성 질환 또는 염증성 질환에 대한 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다
상기 조성물에 포함되는 약학적으로 허용되는 담체는 제제 시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 상기 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed., 1995)에 상세히 기재되어 있다.
상기 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다.
또한, 상기 조성물은 세포치료제로 사용될 수 있다.
또한, 상기 조성물은 통상의 면역증강제와 함께 사용될 수 있다. 면역증강제는 면역세포의 초기 활성화 과정에서 비특이적으로 항원에 대한 면역 반응을 촉진하는 물질로, 숙주에게 면역원은 아니지만 면역계의 세포의 활성을 증대시킴으로써 면역을 강화하는 제제, 분자 등을 말하며 이러한 면역증강제는 항원의 표면적을 증가시키거나, 체내에서 항원의 정체를 연장시켜 면역시스템이 항원에 접근할 수 있도록 하거나, 항원 방출을 지연시키거나, 항원을 대식구에 표적화 시키거나, 대식구를 활성화시키는 등을 포함하는 다양한 메커니즘에 의해 작용하는 것으로 보고되었다. 전형적인 면역증강제에는 프로인트 면역증강제(Freund adjuvant), 알룸 화합물(aluminum compound), 무라밀 디펩타이드(muramyl dipeptide), LPS 등이 있다.
상기 조성물은 수술 후, 방사선치료와 병행해서 또는 항암제와 병행해서 사용함으로써 그 효과를 극대화 할 수도 있다.
다른 양상은 상기 이동능이 증가된 성숙 수지상세포를 제조하는 방법에 의하여 제조된 성숙 수지상세포의 치료학적 또는 약제학적 유효량을 개체에 투여하는 단계를 포함하는 자가면역질환, 암, 감염성 질환 및 염증성 질환으로 이루어진 군으로부터 선택된 질환을 치료하는 방법을 제공한다.
상기 "투여"는 어떠한 적절한 방법으로 개체에게 소정의 물질을 도입하는 것을 의미하며, 물질의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 복강내 투여, 정맥내 투여, 근육내 투여, 피하 투여, 피내 투여, 경구 투여, 국소 투여, 비내 투여, 폐내 투여, 또는 직장내 투여인 것일 수 있으나, 이에 제한되지는 않는다. 또한, 투여는 표적 세포로 이동할 수 있는 임의의 장치에 의해 수행될 수 있다. 투여량은 암의 유형, 투여 경로, 환자의 나이 및 성별, 및 질병의 정도에 따라 적절히 선택될 수 있으나, 평균 성인의 경우, 약 1x106 내지 약 1x1011 세포로 투여할 수 있다.
상기 "치료학적 유효량"은 치료를 필요로 하는 개체 또는 세포에게 투여되는 경우 치료 효과를 나타내기에 충분한 양을 의미한다. "치료"는 개체, 예를 들면 사람을 포함한 포유동물에서 질환 또는 의학적 증상을 치료함을 의미하고, 이는 다음을 포함한다: (a) 질환 또는 의학적 증상의 발생을 예방, 즉, 환자의 예방적 치료; (b) 질환 또는 의학적 증상의 완화, 즉, 환자에서 질환 또는 의학적 증상의 제거 또는 회복 야기; (c) 질환 또는 의학적 증상의 억제, 즉, 개체에서 질환 또는 의학적 증상의 진행을 늦춤 또는 정지; 또는 (d) 개체에서 질환 또는 의학적 증상을 경감.
일 양상에 따른 방법은 성숙 수지상세포의 이동능을 증가시킬 수 있고, 수지상세포의 염증성 사이토카인 생산 유도, T 림프구 증식 유도, 및 T 림프구 분극화 유도를 증가시킬 수 있으므로 면역 관련 질환의 예방 또는 치료에 사용할 수 있다.
도 1은 오토탁신 특이적 siRNA를 처리한 성숙 수지상세포와 대조군 수지상세포에서 오토탁신 유전자의 발현을 RT-PCR로 확인한 결과를 나타낸 그래프이다(*p<0.05).
도 2는 오토탁신 특이적 siRNA를 처리한 성숙 수지상세포와 대조군 수지상세포에서 오토탁신 단백질의 발현을 웨스턴 블롯으로 확인한 그래프이다(***p<0.001).
도 3a는 오토탁신 특이적 siRNA에 의해 발현이 억제된 성숙 수지상세포(ATX siRNA), 음성 대조군, 및 성숙 수지상세포(mDC)에서 표면 항원인 CD11c, CD14, CD40, CD54, CD80, CD86, MHCI, 및 MHCⅡ의 발현을 분석한 히스토그램이다.
도 3b는 오토탁신 특이적 siRNA에 의해 발현이 억제된 성숙 수지상세포(ATX siRNA), 음성 대조군, 및 성숙 수지상세포(mDC)에서 표면 항원인 CD11c, CD14, CD40, CD54, CD80, CD86, MHCI, 및 MHCⅡ의 발현을 분석한 형광 강도를 나타낸 그래프이다.
도 4는 오토탁신 특이적 siRNA에 의해 오토탁신 발현이 억제된 성숙 수지상세포(ATX siRNA)와 성숙 수지상세포(mDC)와 T 림프구의 공동배양액 내 염증성 사이토카인 농도를 ELISA로 확인한 그래프이다(*p < 0.05).
도 5는 오토탁신 유전자의 발현이 억제된 성숙 수지상세포(ATX siRNA)와 성숙 수지상세포(mDC)의 T 세포 증식능을 확인한 실험 결과이다.
도 6은 오토탁신 유전자의 발현이 억제된 성숙 수지상세포(ATX siRNA)와 정상 성숙 수지상세포(mDC)에서 유세포분석에 의해 IFN-γ/CD4 및 IL-17/CD4를 확인한 결과를 나타낸 도이다.
도 7은 오토탁신 유전자의 발현이 억제된 성숙 수지상세포(ATX siRNA)와 성숙 수지상세포(mDC)와 CD3+ T 세포를 공동배양한 공동배양액 내의 사이토카인의 농도를 ELISA로 확인한 그래프이다.
도 8은 Rho A 단백질을 웨스턴 블롯팅으로 확인한 결과이다.
도 9는 오토탁신 유전자의 발현 억제에 따른 성숙 수지상세포의 in vitro 이동능을 이동 분석법으로 확인한 결과를 나타낸 그래프이다.
도 10은 오토탁신 유전자의 발현 억제에 따른 성숙 수지상세포에서 CCR7의 발현 변화를 qRT-PCR로 확인한 그래프이다.
도 11은 성숙 수지상세포, 음성 대조군, 오토탁신 특이적 siRNA에 의해 발현이 저해된 성숙 수지상세포, HA130을 처리한 성숙 수지상세포, 및 PF8380을 처리한 성숙 수지상세포에서 pp38, ERK 1/2, pJNK, NF-κB의 단백질 수준을 웨스턴 블롯팅으로 확인한 결과를 나타낸 사진이다.
도 12a는 배양 과정에서 재조합 오토탁신 단백질을 첨가한 이동능이 향상된 성숙 수지상세포와 첨가하지 않은 성숙 수지상세포의 세포 표면 마커 발현을 유세포분석으로 확인한 히스토그램이다.
도 12b는 배양 과정에서 재조합 오토탁신 단백질을 첨가한 이동능이 향상된 성숙 수지상세포와 첨가하지 않은 성숙 수지상세포의 세포 표면 마커 발현을 유세포분석으로 확인한 결과를 정량화한 그래프이다.
도 13은 오토탁신 단백질을 첨가한 성숙 수지상세포(+)와 첨가하지 않은 성숙 수지상세포(-)에서 염증성 사이토카인인 IL-1β, IL-6, TNF-α, 및 IL-12p70의 발현 수준을 ELISA로 확인한 그래프이다(*p < 0.05, **p < 0.01).
도 14는 오토탁신 단백질을 첨가한 성숙 수지상세포(+)와 첨가하지 않은 성숙 수지상세포(-)에서 T 림프구의 증식능을 확인한 결과를 나타낸 도이다.
도 15는 오토탁신 단백질을 첨가하여 배양한 성숙 수지상세포(+)와 성숙 수지상세포(-)에서 유세포분석에 의해 IFN-γ/CD4 및 IL-17/CD4를 확인한 결과를 나타낸 도이다.
도 16은 오토탁신 단백질을 첨가하여 배양한 성숙 수지상세포(+)와 성숙 수지상세포(-)와 CD3+ T 세포를 공동배양한 공동배양액 내의 사이토카인의 농도를 ELISA로 확인한 그래프이다.
도 17은 오토탁신 단백질을 첨가하여 배양한 성숙 수지상세포(+)와 성숙 수지상세포(-)에서 RhoA 단백질의 발현을 ELISA로 확인한 결과를 나타낸 사진이다.
도 18은 오토탁신 단백질을 첨가하여 배양한 성숙 수지상세포(+)와 성숙 수지상세포(-)에서 이동 분석법을 실시한 결과를 나타낸 그래프이다(***p < 0.001).
도 19는 오토탁신 단백질을 첨가하여 배양한 성숙 수지상세포(+)와 성숙 수지상세포(-)의 세포 내부에서 pp38, ERK 1/2, pJNK, NF-κB의 단백질 발현 수준을 웨스턴 블롯팅으로 확인한 결과를 나타낸 사진이다.
도 20은 오토탁신 단백질을 첨가하여 배양한 성숙 수지상세포(+)와 성숙 수지상세포(-)가 3일 동안 슬와림프절로 이동한 것을 추적한 사진이다.
도 21은 오토탁신 단백질을 첨가하여 배양한 성숙 수지상세포(+)와 성숙 수지상세포(-)가 3일 동안 슬와림프절로 이동한 비율을 수치화한 그래프이다.
도 22는 오토탁신 단백질을 첨가하여 배양한 성숙 수지상세포(+)와 성숙 수지상세포(-)가 3일 동안 슬와림프절로 이동한 비율을 공초점 현미경으로 분석한 결과이다.
도 23은 적출한 슬와림프절에서 림프구를 분리한 후 CD11c 항체로 염색하여 유세포분석법에 의해 성숙 수지상세포를 확인한 결과를 나타낸 도이다.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: 오토탁신 유전자가 성숙 수지상세포의 특성에 미치는 영향 확인
오토탁신 유전자가 성숙 수지상세포의 특성에 미치는 영향을 다음의 실험을 통해 확인하였다.
1.1 오토탁신 특이적 siRNA를 이용한 성숙 수지상세포에서 오토탁신 유전자의 발현 수준 억제
오토탁신 특이적 siRNA를 이용해서 성숙 수지상세포에서 오토탁신 유전자의 발현 수준을 억제하였다. 구체적으로, 마우스 Enpp2 mRNA를 타겟하는 siRNA (Bioneer, Daejeon, Korea)를 lipofectamine 3000 (Invitrogen, CA, USA) 시스템을 이용하여 100 nM 농도로 세포 내로 도입시켰다. 수지상세포 배양 6일 째, 세포를 모두 수거한 후 5% 우태아혈청을 포함한 수지상세포 기본 배지에 현탁하고 6 웰 배양 플레이트에 2 Х 105 세포/웰로 분주하였다. siRNA를 처리한 수지상세포는 siRNA 형질감염 4시간 후 LPS를 포함하는 수지상세포 배양 배지로 교환하여 24시간동안 성숙을 유도하고, 미성숙 수지상세포군은 새로운 수지상세포 배양 배지로 교환해주었다. 여기서, scramble siRNA (Bioneer)를 음성 대조군으로 사용하였고, 3회 이상의 반복 실험을 수행하였다. Enpp2 mRNA를 타겟하는 siRNA 정보를 표 1에 나타내었다.
siRNA 서열
Enpp2 siRNA-1 5’-GGG UCU UGG UGA AGA AAU AdTdT-3’
Enpp2 siRNA-2 5’-UAU UUC UUC ACC AAG ACC CdTdT-3‘
오토탁신 특이적 siRNA를 처리한 성숙 수지상세포와 음성 대조군에서 오토탁신 유전자와 단백질의 발현을 qRT-PCR 및 웨스턴 블롯팅으로 각각 확인하였다.qRT-PCR을 위하여, 수지상세포의 RNA를 분리하기 위해 labozol reagent (Cosmo genetech, Seoul, Korea)를 이용하였다. 분리한 RNA로부터 cDNA synthesis kit (Cosmo genetech)를 이용하여 cDNA를 합성하였다. Enpp2 유전자의 정량적 실시간 PCR은 SensiFASTTM SYBR No-ROX kit (Bioline, Sydney, Australia)를 이용하였다. 반응 조건은 95℃에서 10분 반응 후, 94℃에서 20초, 62℃에서 30초 및 72℃에서 20초간 반응을 35 사이클 반복하고, 마지막에 72℃에서 5분간 반응하였다. 유전자 발현량은 각 유전자의 threshold cycle (Ct)값을 GAPDH의 Ct값으로 표준화한 후, Ct값의 변화량을 비교하여 분석하였다.
웨스턴 블롯팅을 위해, 수지상세포를 2% 우태아혈청이 첨가된 RPMI 1640 배지에 현탁 한 후 6 웰 플레이트에 1 Х 106 세포/웰로 분주하여 37℃, 5% CO2 조건에서 24시간 배양하였다. 24시간 후 세포배양액을 수거하여 Amicon Ultra-2 Centrifugal Filter Unit with Ultracel-10 membrane (Millipore, Germany)을 이용하여 3000 g, 20분간 원심분리 하여 농축하였다. 수지상세포의 세포 내부 단백질은 PRO-PREPTM (iNtRON Biotechnology, Gyeonggi, Korea)과 포스파타아제 저해제 칵테일 (Calbiochem, CA, USA)을 이용하여 추출하였다. 단백질의 농도는 Bradford (Thermo, MA, USA) 분석법으로 측정하였다. 정량된 단백질은 SDS-PAGE로 분리하고 PVDF 멤브레인 (Biorad, CA, USA)으로 분리된 단백질을 흡착시켰다. PVDF 멤브레인은 5% skim milk in PBST를 이용하여 1시간동안 상온에서 차단하고, 1차 항체를 5% skim milk에 1:2000으로 희석하여 처리한 후 4에서 18시간동안 반응시켰다. 그 후 멤브레인을 1 Х PBST로 10분씩 3번 세척하고, 2차 항체를 1:5000으로 처리한 후 상온에서 2시간동안 반응시켰다. 다시 멤브레인을 1 Х PBST로 3번 세척한 후 ECL 용액(Thermo)에 노출시켜 LAS-4000 (Fuji film, Tokyo, Japan)으로 단백질 밴드를 확인하였다. 결과는 Multi Gauge software V3.0 (Fuji film)을 사용하여 분석하였다.
도 1은 오토탁신 특이적 siRNA를 처리한 성숙 수지상세포와 대조군 수지상세포에서 오토탁신 유전자의 발현을 RT-PCR로 확인한 결과를 나타낸 그래프이다(*p<0.05).
도 2는 오토탁신 특이적 siRNA를 처리한 성숙 수지상세포와 대조군 수지상세포에서 오토탁신 단백질의 발현을 웨스턴 블롯으로 확인한 그래프이다(***p<0.001).
도 1 및 2에 나타낸 바와 같이, 오토탁신 특이적 siRNA를 처리한 성숙 수지상세포에서 오토탁신(ATX)의 mRNA 및 단백질 발현이 25% 이상 감소하는 것을 확인하였다.
1.2 오토탁신 유전자의 발현 억제에 따른 성숙 수지상세포의 표면 항원형 발현의 변화 확인
오토탁신 유전자의 발현과 표면 항원형(surface phenotype) 발현의 관계를 확인하기 위해, 다음과 같이 유세포 분석법을 수행하였다. 2Х105-5Х105개의 세포를 PBS (Lonza)로 세척한 후 형광이 표지된 단클론 항체를 염색하였다. 사용된 유세포 분석용 단클론 항체는 하기 표 2에 나타내었다. 세포 생존율을 확인하기 위해서 PI (Propidium Iodide) 염색을 실시하였다. T 세포내 사이토카인 염색을 위하여 4시간 동안 세포에 GolgiStop (BD Bioscience, CA, USA)을 처리해주었다. 4시간 후 T 세포를 수거하여 CD4 염색 후, Fixation/Permeabilization Solution (BD)을 넣고 30분간 실온에서 고정해주었다. FACS buffer로 세척한 후 IFN-γ와 IL-17A 단클론 항체를 이용하여 30분간 염색해주었다. 형광이 표지된 세포는 FACS 버퍼로 세척한 후 FACSCalibur (BD)를 이용하여 검출하였다. 모든 데이터는 FlowJo (Tree Star, CA, USA)를 이용하여 분석하였다.
Specificity Clone Conjugates Supplier
CD11c N418 PE eBioscience
CD14 Sa14-2 FITC Biolegend
CD40 3/23 PE BD
CD54 3E2 FITC BD
CD80 16-10A1 PE eBioscience
CD86 PO3 FITC Biolegend
H-2Db KH95 FITC Biolegend
I-Ab AF6-120.1 PE BD
CD4 RM4-5 APC Biolegend
IFN-γ XMG1.2 FITC Biolegend
IL-17A TC11-18H10 PE BD
도 3은 오토탁신 특이적 siRNA에 의해 발현이 억제된 성숙 수지상세포(ATX siRNA), 음성 대조군, 및 성숙 수지상세포(mDC)에서 표면 항원인 CD11c, CD14, CD40, CD54, CD80, CD86, MHCI, 및 MHCⅡ의 발현을 분석한 히스토그램(a) 및 형광 강도(b)를 나타낸 그래프이다.
도 3a 및 3b에 나타낸 바와 같이, 각각의 성숙 수지상세포에서 표면 항원의 발현은 유사하게 나타났다. 구체적으로, 단핵구 표면 항원인 CD14의 발현은 거의 나타나지 않았고, 수지상세포의 대표적인 표면 항원인 CD11c의 발현은 높게 나타남을 확인하였다. 또한, T 림프구 자극 분자인 CD40과 T 림프구 부착 분자인 CD54, 공동자극분자인 CD80 및 CD86의 발현이 높게 나타남을 확인하였다.
따라서, 오토탁신 유전자의 발현 변화는 성숙 수지상세포의 표면 항원형 발현에는 영향을 미치지 않는 것을 확인하였다.
1.3 오토탁신 유전자의 발현 억제에 따른 성숙 수지상세포의 사이토카인 발현의 변화 확인
오토탁신 유전자의 발현과 성숙 수지상세포가 분비하는 사이토카인의 관계를 확인하기 위해, 다음과 같이 ELISA를 이용해서 성숙 수지상세포 배양액 내의 사이토카인 농도를 측정하였다.
C57BL/6 마우스에서 분리한 비장세포를 10% 우태아혈청을 포함한 RPMI 1640에 현탁하고 나일론 울 칼럼에 통과시켜 CD3+ T 림프구를 분리하였다. 6 웰 배양 플레이트에 2Х105 성숙 수지상세포와 2Х106 T 림프구를 3일간 공동배양하였다. 상기 공동배양액에 대해, 마우스 인터류킨-1β (IL-1β), IL-6, 종양 괴사 인자-α (TNF-α) (Biolegend, CA, USA) 및 IL-12p70 (BD Bioscience) ELISA 키트를 사용하여 사이토카인 농도를 분석하였다. 결과는 평균±SEM으로 나타내었다.
도 4는 오토탁신 특이적 siRNA에 의해 오토탁신 발현이 억제된 성숙 수지상세포(ATX siRNA)와 성숙 수지상세포(mDC)와 T 림프구의 공동배양액 내 염증성 사이토카인 농도를 ELISA로 확인한 그래프이다(*p < 0.05).
도 4에 나타낸 바와 같이, 오토탁신 발현이 억제된 성숙 수지상세포의 세포 배양액 내의 염증성 사이토카인의 농도가 대조군 성숙 수지상세포의 세포 배양액 내 농도에 비하여 약 15% 낮게 측정되었다.
따라서, 선천성 면역을 대표하는 염증성 사이토카인인 TNF-α와 Th1 면역 반응을 유도하는 사이토카인인 IL-12, 대표적인 염증성 사이토카인인 IL-1β 및 IL-6의 농도가 낮아졌으므로, 오토탁신 발현이 억제된 성숙 수지상세포의 면역, 염증 반응이 감소하는 것을 확인하였다.
1.4 오토탁신 유전자의 발현 억제에 따른 성숙 수지상세포의 T 림프구 증식 능의 변화 확인
오토탁신 유전자의 발현과 성숙 수지상세포의 T 림프구 증식능 변화의 관계를 확인하기 위해, 성숙 수지상세포와 CD3+ T 세포를 1:10의 비율로 하여 72시간 동안 공동배양하였다. CD3+ 세포는 나이브 C57BL/6 마우스의 비장세포로부터 분리되었고, 최종 농도 4μM에서 CFSE(carboxyfluorescein succinmidyl ester)로 염색되었다. CFSE-표지된 세포를 세척하고, 카운팅하고 수지상세포와 공동배양 하였다.
도 5는 오토탁신 유전자의 발현이 억제된 성숙 수지상세포(ATX siRNA)와 성숙 수지상세포(mDC)의 T 세포 증식능을 확인한 실험 결과이다.
도 5에 나타낸 바와 같이, 오토탁신 유전자의 발현이 억제된 성숙 수지상세포의 경우, 정상 성숙 수지상세포에 비해서 약 45% 낮은 T 림프구 증식능을 나타내는 것을 확인하였다. 따라서, 오토탁신 유전자의 억제된 발현이 성숙 수지상세포에서 T 림프구 증식능을 억제하는 것을 확인하였다.
1.5 오토탁신 유전자의 발현 억제에 따른 성숙 수지상세포 매개된 T 림프구 분극화 확인
오토탁신 유전자의 발현 억제와 성숙 수지상세포 매개된 T 세포의 분극화의 연관성을 확인하기 위해서 다음과 같이 실험하였다.
성숙 수지상세포를 CD3+ T 세포와 1:10의 비율로 72시간 동안 공동배양하였다. 상기 세포를 항-CD4 및 항-IFN-γ 또는 항-IL-17A 항체로 염색하였고, 유세포분석으로 분석하였다.
도 6은 오토탁신 유전자의 발현이 억제된 성숙 수지상세포(ATX siRNA)와 정상 성숙 수지상세포(mDC)에서 유세포분석에 의해 IFN-γ/CD4 및 IL-17/CD4를 확인한 결과를 나타낸 도이다.
도 6에 나타낸 바와 같이, 성숙 수지상세포에 비하여 오토탁신 유전자의 발현이 억제된 성숙 수지상세포와 공동 배양한 T 세포가 Th1 및 Th17 아형 세포로 약 50% 적게 분화하는 것을 확인하였다.
또한, 각각의 성숙 수지상세포를 CD3+ T 세포와 1:10의 비율로 72시간 동안 공동배양하고, 세포 배양 상등액을 수확하여 ELISA에 의해 사이토카인(IFN-γ, IL-17A, IL-4, IL-10)의 발현을 확인하였다. 데이터는 평균±SEM(n=3)으로 나타내었다.
도 7은 오토탁신 유전자의 발현이 억제된 성숙 수지상세포(ATX siRNA)와 성숙 수지상세포(mDC)와 CD3+ T 세포를 공동배양한 공동배양액 내의 사이토카인의 농도를 ELISA로 확인한 그래프이다.
도 7에 나타낸 바와 같이, 공동배양액 내의 IFN-γ, IL-17의 농도는 오토탁신 발현을 억제한 성숙 수지상세포에서 낮게 발현되는 것을 확인하였다.
1.6 오토탁신 효소 활성 억제제의 처리에 따른 Rho A 단백질의 발현 변화 확인
오토탁신 특이적 siRNA의 처리에 의해 성숙 수지상세포의 오토탁신 유전자 발현을 억제하였으나, 세포 배양액 내 유리되어 있는 오토탁신이 존재하기 때문에, 오토탁신 효소의 활성을 억제할 수 있는 물질인 HA 130 (Albers, Dong et al. 2010)과 PF8380 (Gierse, Thorarensen et al. 2010)을 성숙 수지상세포 배양 과정 중 첨가하고 7일 동안 배양하였다.
첨가 후, 오토탁신 효소의 생성물인 LPA를 리간드로 하는 LAP 수용체의 하위 신호전달에서 세포의 이동에 관여한다고 알려진 Rho A 단백질을 웨스턴 블롯팅으로 확인하고, 확인 결과를 도 8에 나타내었다.
도 8에 나타낸 바와 같이, 오토탁신을 억제한 수지상세포(ATX siRNA), HA 130 및 PF8380을 처리한 경우에 성숙 수지상세포(mDC)에 비하여 Rho A 단백질이 약 45% 이상 낮게 발현하는 것을 확인하였다.
1.7 in vitro 오토탁신 유전자의 발현 억제에 따른 성숙 수지상세포의 이동능 확인
오토탁신 유전자의 발현 억제에 따른 성숙 수지상세포의 in vitro 이동능을 확인하기 위해서, 이동 분석법(migration assay)을 다음과 같이 수행하였다.
8.0 μm 포어 폴리카보네이트 멤브레인을 함유한 트랜스웰-플레이트 (Corning, NY, USA)를 이용하였다. 7일간 배양한 성숙 수지상세포를 수거한 후, RPMI 1640 배지에 현탁하여 트랜스웰-플레이트 상단에 5Х105 세포/500 μL로 넣고, 트랜스웰 하단에 2% 우태아혈청, 100 ng/mL 재조합 마우스 CCL19 (R&D systems)가 첨가된 RPMI 1640 배지를 500 μL 넣어주었다. 37℃, 5% CO2 조건에서 1시간 배양 후 트랜스웰 하단 배양액을 5 mL 둥근 바닥 튜브 (Corning)로 옮겨 FACSCalibur로 1분간 세포수를 측정하였다. 측정 결과를 도 9에 나타내었다.
도 9에 나타낸 바와 같이, 오토탁신 발현을 억제한 성숙 수지상세포(ATX siRNA)의 경우 성숙 수지상세포(음성 대조군)에 비하여 세포 이동능이 약 20% 감소하는 것을 확인하였다.
1.8 오토탁신 유전자의 발현 억제에 따른 CCR7의 발현 변화 확인
수지상세포의 이동에는 수지상세포의 귀소 수용체(homing receptor)인 CCR7이 관여한다고 알려져 있다. 따라서, 오토탁신 유전자의 발현 억제에 따른 성숙 수지상세포의 이동능 변화가 CCR7과 관련이 있는지 확인하기 위해서, 성숙 수지상세포에서 CCR7의 발현을 qRT-PCR로 확인하고, 그 결과를 도 10에 나타내었다.
도 10에 나타낸 바와 같이, 오토탁신 발현을 억제한 성숙 수지상세포, 음성 대조군, 성숙 수지상세포 사이에 CCR7의 발현 정도는 거의 차이가 나지 않는 것을 확인하였다.
따라서, 오토탁신 발현을 억제에 따라 발생한 이동능의 변화는 CCR7의 발현과는 별개로 조절되는 것을 알 수 있다.
1.9 오토탁신 유전자의 발현 억제에 따른 사이토카인의 감소 원인 확인
상기 실시예에서, 오토탁신 유전자의 발현 억제에 따라 사이토카인의 발현 감소를 확인하였는바, 사이토카인의 발현 감소에 대한 원인을 확인하기 위해서, 성숙 수지상세포에서 세포 내부의 신호전달 단백질(pp38, ERK 1/2, pJNK, NF-κB)들을 웨스턴 블롯팅으로 확인하였다.
도 11은 성숙 수지상세포, 음성 대조군, 오토탁신 특이적 siRNA에 의해 발현이 저해된 성숙 수지상세포, HA130을 처리한 성숙 수지상세포, 및 PF8380을 처리한 성숙 수지상세포에서 pp38, ERK 1/2, pJNK, NF-κB의 단백질 수준을 웨스턴 블롯팅으로 확인한 결과를 나타낸 사진이다.
도 11에 나타낸 바와 같이, 대조군과 비교해서, 오토탁신 발현이 감소된 성숙 수지상세포에서 pp38 및 MAPK(ERK 1/2)의 발현이 유의하게 감소하는 것을 확인하였다.
따라서, 오토탁신의 발현 감소에 의한 성숙 수지상세포의 이동능 변화는 pp38, MAPK의 발현 변화와 관련되어 있음을 알 수 있다.
상기 실험 결과를 종합하면, 성숙 수지상세포에서 siRNA에 의해 오토탁신의 발현이 감소함으로써 사이토카인 발현의 감소, T 세포 증식 유도능 감소 등 수지상세포의 전반적인 기능이 저하된다. 또한, 오토탁신의 발현이 감소함으로써 세포의 이동능이 감소하고, 이러한 감소는 사이토카인의 발현 변화와 연관되어 있음을 알 수 있다.
실시예 2. 이동능이 향상된 성숙 수지상세포의 제조
상기 실시예 1로부터 성숙 수지상세포에서 오토탁신의 발현이 감소하면 세포의 이동능이 감소하므로, 세포외 효소인 오토탁신 단백질을 수지상세포의 배양 과정에 첨가함으로써 세포의 이동능을 향상시킬 수 있는지 확인하였다.
동물실험은 차의과학대학교 동물실험윤리(IACUC) 규정에 따라 진행하였다(IRB number: IACUC170111). 수지상세포의 분리를 위해, 6-8주령의 수컷 C57BL/6 마우스를 오리엔트바이오(Seongnam-si, Korea)에서 구입하여 사용하였다. 마우스 골수세포는 C57BL/6 마우스의 경골(tibia) 및 대퇴골(femur)에서 25 mM HEPES를 포함하는 RPMI 1640 (Lonza, MD, USA)으로 골수 내강을 세척하여 얻었다. 획득한 골수세포는 70 μm cell strainer를 이용하여 불순물을 제거하고, 1600 rpm, 5분간 원심분리 한 후, 적혈구 용혈제인 ACK 용해 버퍼 (Lonza)를 이용하여 적혈구를 제거하였다. 골수세포는 수지상세포 배양 배지인 10% 우태아혈청(fetal bovine serum), 100 units/mL 페니실린, 100 μg/mL 스트렙토마이신, 2 mM GlutaMaxTM, 55 nM 2-머캅토에탄올 (Gibco, NY, USA), 20 ng/mL 재조합 마우스(recombinant mouse) (rm)GM-CSF, 20 ng/mL rmIL-4 (JW CreaGene, Gyeonggi, Korea)를 첨가한 RPMI 1640 배지로 현탁한 후 6 웰 배양 플레이트에 3Х107 세포로 분주하여 37℃, 5% CO2 조건에서 배양하였다. 배양 2일째, 비 부착 세포를 제거하고 동일한 조성의 수지상세포 배양 배지를 첨가하였다. 배양 4일째, 배양 배지의 절반을 모아 새로운 수지상세포 배양 배지로 교체하였다. 배양 6일째, 세포를 모두 수거한 후, 미성숙 수지상세포는 새로운 수지상세포 배양 배지로 교체해주고, 성숙 수지상세포로 분화시킬 세포는 1 μg/mL 리포폴리사카라이드(lipopolysaccharide: LPS)와 10 μg/mL KLH (Sigma Aldrich, MO, USA)를 첨가한 수지상세포 배양 배지에 현탁하여 24시간 동안 성숙을 유도하였다. 여기서, 재조합 오토탁신 단백질(R&D systems, MN, USA)은 LPS 자극과 동시에 10 μg/mL로 처리하여 상기와 같은 방법으로 이동능이 향상된 성숙 수지상세포를 제조하였다.
실시예 3. 이동능이 향상된 성숙 수지상세포의 특성 확인
3.1 포면 항원형 발현 확인
배양 과정에서 재조합 오토탁신 단백질을 첨가한 이동능이 향상된 성숙 수지상세포와 첨가하지 않은 성숙 수지상세포의 세포 표면 마커 발현을 유세포분석에 의해 확인하고, 이를 도 12a 및 도 12b에 나타내었다.
도 12a 및 도 12b에 나타낸 바와 같이, 오토탁신 단백질을 첨가한 경우(ATX+)와 첨가하지 않은 경우(ATX-)의 성숙 수지상세포에서 세포 표면 마커의 발현은 비슷한 것으로 확인되었다. 따라서, 오토탁신 단백질의 첨가는 수지상세포의 표면 항원형 발현에는 영향을 미치지 않는 것을 알 수 있다.
3.2 염증성 사이토카인의 발현 확인
오토탁신 단백질의 첨가가 수지상세포의 염증성 사이토카인에 미치는 영향을 확인하기 위해서, 이동능이 향상된 성숙 수지상세포와 성숙 수지상세포를 T 림프구와 공동배양하고, 공동배양액 내 염증성 사이토카인 농도를 ELISA로 확인하였다. 데이터는 평균±SEM(n=3)으로 나타내었다.
도 13은 오토탁신 단백질을 첨가한 성숙 수지상세포(+)와 첨가하지 않은 성숙 수지상세포(-)에서 염증성 사이토카인인 IL-1β, IL-6, TNF-α, 및 IL-12p70의 발현 수준을 ELISA로 확인한 그래프이다(*p < 0.05, **p < 0.01).
도 13에 나타낸 바와 같이, 오토탁신 단백질을 첨가하여 배양한 성숙 수지상세포가 오토탁신 단백질을 첨가하지 않은 성숙 수지상세포에 비해서 염증성 사이토카인을 더 높은 농도로 생산하였음을 확인하였다.
3.3 T 림프구 증식능 확인
오토탁신 단백질의 첨가가 수지상세포의 T 림프구 증식 유도능에 미치는 영향을 확인하기 위해서, 이동능이 향상된 성숙 수지상세포와 성숙 수지상세포를 CD3+ T 세포와 1:10의 비율로 72시간 동안 공동배양하였다. 상기 CD3+ T 세포는 나이브 C57BL/6 마우스의 비장세포로부터 분리된 것으로, CFSE로 염색하였다.
도 14는 오토탁신 단백질을 첨가한 성숙 수지상세포(+)와 첨가하지 않은 성숙 수지상세포(-)에서 T 림프구의 증식능을 확인한 결과를 나타낸 도이다.
도 14에 나타낸 바와 같이, 오토탁신 단백질을 첨가하여 배양한 성숙 수지상세포가 오토탁신 단백질을 첨가하지 않은 성숙 수지상세포에 비해서 약 15% 정도 높은 T 림프구 증식능을 갖는 것을 확인하였다.
3.4 수지상세포 매개된 T 세포 분극화 확인
오토탁신 단백질의 첨가가 수지상세포 매개된 T 세포 분극화에 미치는 영향을 확인하기 위해서, 성숙 수지상세포를 CD3+ T 세포와 1:10의 비율로 72시간 동안 공동배양하였다. 상기 세포를 항-CD4 및 항-IFN-γ 또는 항-IL-17A 항체로 염색하였고, 유세포분석으로 분석하였다.
도 15는 오토탁신 단백질을 첨가하여 배양한 성숙 수지상세포(+)와 성숙 수지상세포(-)에서 유세포분석에 의해 IFN-γ/CD4 및 IL-17/CD4를 확인한 결과를 나타낸 도이다. IFN-γ는 Th1 사이토카인이고, IL-17은 Th17 사이토카인이다.
도 15에 나타낸 바와 같이, 오토탁신 단백질을 첨가하여 배양한 이동능이 향상된 성숙 수지상세포와 공동 배양한 T 세포가 오토탁신 단백질을 첨가하지 않은 경우에 성숙 수지상세포에 비하여 Th1 및 Th17 아형으로 약 1.5배 더 많이 분화하는 것을 확인하였다.
또한, 각각의 성숙 수지상세포를 CD3+ T 세포와 1:10의 비율로 72시간 동안 공동배양하고, 세포 배양 상등액을 수확하여 ELISA에 의해 사이토카인(IFN-γ, IL-17A, IL-4, IL-10)의 발현을 확인하였다. 데이터는 평균±SEM(n=3)으로 나타내었다.
도 16은 오토탁신 단백질을 첨가하여 배양한 성숙 수지상세포(+)와 성숙 수지상세포(-)와 CD3+ T 세포를 공동배양한 공동배양액 내의 사이토카인의 농도를 ELISA로 확인한 그래프이다.
도 16에 나타낸 바와 같이, 공동배양액 내의 IFN-γ, IL-17의 농도는 오토탁신 발현을 억제한 성숙 수지상세포에서 높게 발현되는 것을 확인하였다.
3.5 Rho A 단백질 및 in vitro 이동능 확인
오토탁신 단백질의 첨가가 성숙 수지상세포에서 Rho A 단백질의 발현 수준과 성숙 수지상세포의 이동능에 미치는 영향을 확인하기 위해서, 상기 실시예 1.6 및 1.7과 같이 수행하였다.
도 17은 오토탁신 단백질을 첨가하여 배양한 성숙 수지상세포(+)와 성숙 수지상세포(-)에서 RhoA 단백질의 발현을 ELISA로 확인한 결과를 나타낸 사진이다.
도 17에 나타낸 바와 같이, 오토탁신 단백질을 첨가하여 배양한 이동능이 향상된 성숙 수지상세포에서 RhoA 단백질의 발현이 약 1.5배 이상 유의적으로 증가하였음을 확인하였다.
도 18은 오토탁신 단백질을 첨가하여 배양한 성숙 수지상세포(+)와 성숙 수지상세포(-)에서 이동 분석법을 실시한 결과를 나타낸 그래프이다(***p < 0.001).
도 18에 나타낸 바와 같이, 오토탁신 단백질을 첨가하여 배양한 이동능이 향상된 성숙 수지상세포의 in vitro 이동능이 약 15% 이상 증가하였음을 확인하였다.
3.6 세포 내부 단백질 발현 확인
오토탁신 단백질의 첨가가 성숙 수지상세포에서 세포 내부의 신호전달 단백질(pp38, ERK 1/2, pJNK, NF-κB)들에 어떤 영향을 주는지 확인하기 위해서, 상기 단백질들의 발현 수준을 웨스턴 블롯팅으로 확인하였다.
도 19는 오토탁신 단백질을 첨가하여 배양한 성숙 수지상세포(+)와 성숙 수지상세포(-)의 세포 내부에서 pp38, ERK 1/2, pJNK, NF-κB의 단백질 발현 수준을 웨스턴 블롯팅으로 확인한 결과를 나타낸 사진이다.
도 19에 나타낸 바와 같이, 오토탁신 단백질을 첨가하여 배양한 성숙 수지상세포의 경우 pp38, pJNK, 및 ERK1/2 단백질의 발현이 유의하게 증가하는 것을 확인하였다.
실시예 4. 배양 중 재조합 오토탁신 단백질을 첨가하여 배양한 성숙 수지상세포의 in vivo 이동능 평가
배양 중 재조합 오토탁신 단백질을 첨가하여 배양한 성숙 수지상세포의 이동능이 향상되었는지 여부를 in vivo에서 확인하기 위해서, 수지상세포의 이동을 추적하였다.
구체적으로, CellVue® NIR815 Midi Kit for Membrane Labeling (Polysciences Inc., Warrington, UK)을 이용하여 Near infrared dye (NIR)를 표지한 수지상세포를 PBS로 현탁하여 C57BL/6 마우스의 발바닥에 1Х105 세포/50 μL로 피하 주사하였다. 주사 직후부터 24시간 간격으로 72시간 동안 Pearl Impulse (LI-COR biotechnology, NE, USA) 장비를 이용하여 수지상세포의 이동을 추적하였다. 이미징은 778nm의 파장에서 방출되고 794nm에서 검출하는 near-infrared 800-nm 채널을 이용하여 수행하였다. 주입 후 3일째의 이미지를 대표 이미지로 사용하였다.
도 20은 오토탁신 단백질을 첨가하여 배양한 성숙 수지상세포(+)와 성숙 수지상세포(-)가 3일 동안 슬와림프절로 이동한 것을 추적한 사진이다.
도 20에 나타낸 바와 같이, 오토탁신 단백질을 첨가하여 배양한 성숙 수지상세포의 경우, 그렇지 않은 경우에 비해서 평균 4배 이상 더 많이 슬와림프절로 이동한 것을 확인하였다.
따라서, 배양 중 오토탁신 단백질을 첨가함으로써 성숙 수지상세포의 이동능이 향상되는 것을 확인하였다.
또한, 마우스에서 검출된 전체 형광 값(Fluorescence intensity)을 100%로 환산한 후 슬와림프절(popliteal lymph node)로 이동한 형광 값을 대비하여 이동 효율을 수치화 하고, 그 결과를 도 21에 나타내었다(*p < 0.05, **p < 0.01).
도 21에 나타낸 바와 같이, 시간이 지남에 따라 주사한 수지상세포주 대비 림프절로 이동한 수지상세포주의 비율이 유의적으로 증가하는 것을 확인하였다.
또한, 마우스 슬와림프절로 이동한 수지상세포의 비율을 공초점 현미경으로 확인하기 위하여, 마우스에 Carboxyfluorescein succinimidyl ester (CFSE) (Molecular Probes, OR, USA) 형광을 표지한 수지상세포를 위와 동일한 방법으로 주사하고 24시간 후 슬와림프절을 적출하였다. 적출한 슬와림프절을 4% 파라포름알데히드로 고정한 후, 동결절편을 제작하였다. 10 μm 두께로 절단한 조직을 슬라이드에 부착하여 DAPI mounting solution (Immunobioscience Co., WA, USA) 처리 후 Zeiss LSM 510 (Carl Zeiss Co., Oberkochen, Germany)을 이용하여 이미지를 획득하였다. 이미지는 Zeiss ZEN software (Carl Zeiss)를 이용하여 분석하였다. 결과를 도 22에 나타내었다.
도 22에 나타낸 바와 같이, 오토탁신 단백질을 첨가하여 배양한 성숙 수지상세포(+)를 주사한 마우스에서 세포의 슬와림프절로의 이동이 성숙 수지상세포(-)를 주사한 대조군에 비하여 더 높게 나타남을 확인하였다.
또한, 적출한 슬와림프절에서 림프구를 분리한 후, 항-CD11c 항체로 염색하여 유세포분석법에 의해 확인한 결과를 도 23에 나타내었다.
도 23에 나타낸 바와 같이, 오토탁신 단백질을 첨가하여 배양한 성숙 수지상세포(+)를 주사한 마우스의 슬와림프절에서 CFSE+, CD11c+인 수지상세포의 비율이 대조군에 비해 5배 이상 높게 나타나는 것을 확인하였다.
따라서 오토탁신 단백질을 첨가하여 배양함으로써 성숙 수지상세포의 이동능이 증가하는 것을 알 수 있다.
통계 분석
본 연구의 실험 결과는 최소 3회 이상의 반복 실험 결과에 대하여 Student's t-test 방법으로 통계적 유의성을 검사하였다. 통계적 유의성은 다음과 같이 나타내었다: *p < 0.05, **p < 0.01, ***p < 0.001.

Claims (11)

  1. 성숙되지 않은 수지상세포와 오토탁신(autotaxin)을 접촉시키는 단계를 포함하는 이동능이 증가된 성숙 수지상세포를 제조하는 방법.
  2. 청구항 1에 있어서, 상기 성숙되지 않은 수지상세포는 미성숙 수지상세포, 준성숙 수지상세포, 또는 이들의 조합인 것인 방법.
  3. 청구항 1에 있어서, 상기 성숙되지 않은 수지상세포는 골수세포에서 적혈구를 제거한 후 배양시켜 획득한 것인 방법.
  4. 청구항 1에 있어서, 상기 접촉은 RPMI 배지에서 수행되는 것인 방법.
  5. 청구항 4에 있어서, 상기 배지는 FBS(fetal bovine serum), GM-CSF(granulocyte-macrophage colony-stimulating factor), IL(interleukin), 및 머캅토에탄올을 포함하는 것인 방법.
  6. 청구항 1에 있어서, 상기 성숙되지 않은 수지상세포와 LPS(lipopolysaccharide), KLH(keyhole Limpet Hemocyanin), 또는 이들의 조합을 접촉시키는 단계를 더 포함하는 것인 방법.
  7. 청구항 1에 있어서, 수지상세포의 염증성 사이토카인 생산 유도, T 림프구 증식 유도, 또는 T 림프구 분극화 유도를 증가시키는 것인 방법.
  8. 청구항 1의 방법에 의해 제조된 이동능이 증가된 성숙 수지상세포를 포함하는 약학적 조성물로서, 자가면역질환, 암, 감염성 질환, 및 염증성 질환으로 이루어진 군으로부터 선택된 질환을 예방 또는 치료하기 위한 것인 약학적 조성물.
  9. 청구항 1의 방법에 의하여 제조된 이동능이 증가된 성숙 수지상세포.
  10. 자가면역질환, 암, 감염성 질환 및 염증성 질환으로 이루어진 군으로부터 선택된 질환의 예방 또는 치료용 의약의 제조에 사용하기 위한 청구항 1의 방법에 의하여 제조된 이동능이 증가된 성숙 수지상세포의 용도.
  11. 유효량의 청구항 1의 방법에 의하여 제조된 이동능이 증가된 성숙 수지상세포를 투여하는 단계를 포함하는 자가면역질환, 암, 감염성 질환 및 염증성 질환으로 이루어진 군으로부터 선택된 질환을 예방 또는 치료하는 방법.
PCT/KR2019/001173 2018-05-04 2019-01-28 수지상세포의 이동능을 증가시키는 방법 및 이의 용도 WO2019212123A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/977,320 US20210054335A1 (en) 2018-05-04 2019-01-28 Method for increasing dendritic cell migration ability, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0052135 2018-05-04
KR1020180052135A KR102091748B1 (ko) 2018-05-04 2018-05-04 수지상세포의 이동능을 증가시키는 방법 및 이의 용도

Publications (1)

Publication Number Publication Date
WO2019212123A1 true WO2019212123A1 (ko) 2019-11-07

Family

ID=68386567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001173 WO2019212123A1 (ko) 2018-05-04 2019-01-28 수지상세포의 이동능을 증가시키는 방법 및 이의 용도

Country Status (3)

Country Link
US (1) US20210054335A1 (ko)
KR (1) KR102091748B1 (ko)
WO (1) WO2019212123A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113881632B (zh) * 2021-09-29 2023-09-29 四川省医学科学院·四川省人民医院 一种提高dc细胞活性的细胞培养基及培养方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012083021A1 (en) * 2010-12-17 2012-06-21 Anthrogenesis Corporation Treatment of immune-related diseases and disorders using amnion derived adherent cells
KR101613675B1 (ko) * 2013-11-15 2016-04-20 차의과학대학교 산학협력단 면역관용 수지상 세포를 제조하는 방법 및 이를 통해 제조된 면역관용 수지상 세포
KR101643716B1 (ko) * 2014-04-30 2016-07-28 차의과학대학교 산학협력단 면역관용 수지상 세포 확인용 마커 및 이의 용도

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101117186B1 (ko) * 2011-06-24 2012-03-07 전남대학교산학협력단 수지상세포의 이동성 증진 및 수지상세포에 의해 제조된 세포독성 t 세포의 세포살상능 증진방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012083021A1 (en) * 2010-12-17 2012-06-21 Anthrogenesis Corporation Treatment of immune-related diseases and disorders using amnion derived adherent cells
KR101613675B1 (ko) * 2013-11-15 2016-04-20 차의과학대학교 산학협력단 면역관용 수지상 세포를 제조하는 방법 및 이를 통해 제조된 면역관용 수지상 세포
KR101643716B1 (ko) * 2014-04-30 2016-07-28 차의과학대학교 산학협력단 면역관용 수지상 세포 확인용 마커 및 이의 용도

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PARK, S. Y.: "Autotaxin influences immunologic functions of dentritic cells", CHA UNIVERSITY, DEPARTMENT OF BIOMEDICAL SCIENCE, MASTER'S THESIS, pages 1 - 78 *
PARK, S. Y.: "Enpp2 improves the migratory capacity of dendritic cells through the RhoA-mediated signaling pathway", EUROPEAN JOURNAL OF IMMUNOLOGY, vol. 48, no. 1, 14 June 2018 (2018-06-14), pages 197 *

Also Published As

Publication number Publication date
KR20190127473A (ko) 2019-11-13
KR102091748B1 (ko) 2020-03-20
US20210054335A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
WO2018074758A2 (ko) 면역질환 치료를 위한 고효능 줄기세포 선별방법
WO2016048107A1 (ko) 인터페론-감마 또는 인터류킨-1베타를 처리한 줄기세포 또는 그 배양물을 포함하는 면역질환 또는 염증질환의 예방 또는 치료용 약학조성물
WO2012026712A4 (ko) Nod2의 아고니스트를 처리한 줄기세포 또는 그 배양물을 포함하는 면역질환 또는 염증질환의 예방 또는 치료용 약학조성물
WO2019198995A1 (ko) 엑소좀 기반의 면역세포의 교차분화 방법
WO2013129739A1 (ko) 봉독-pla2를 포함하는 이상 조절 t 세포 활성 저하 관련 질환의 치료 또는 예방용 약학적 조성물
WO2011052883A9 (ko) Socs2 유전자의 발현을 조절하여 자연 살해 세포를 활성화시키는 방법
Lousberg et al. Type I interferons mediate the innate cytokine response to recombinant fowlpox virus but not the induction of plasmacytoid dendritic cell-dependent adaptive immunity
WO2019212123A1 (ko) 수지상세포의 이동능을 증가시키는 방법 및 이의 용도
WO2017146538A1 (ko) 조절 t 세포 매개성 질환의 예방 또는 치료용 약학적 조성물
WO2015167243A1 (ko) 면역질환 치료효과를 갖는 신규한 화합물 및 이의 용도
WO2019216623A1 (ko) 당뇨병 및 비만 치료용 면역관용 세포 백신 및 인슐린 분비 세포의 제조 방법
WO2015199402A1 (ko) 특정 유전자 발현이 증가된 수지상세포의 제조방법 및 이를 이용하여 제조된 수지상세포를 포함하는 자가면역질환 치료 또는 예방용 조성물
Li et al. P2Y6 Deficiency Enhances Dendritic Cell–Mediated Th1/Th17 Differentiation and Aggravates Experimental Autoimmune Encephalomyelitis
WO2014142433A1 (ko) 바이러스 생산능이 증가된 세포주 및 그 제조방법
Qu et al. Disruption of the Notch pathway aggravates airway inflammation by inhibiting regulatory T cell differentiation via regulation of plasmacytoid dendritic cells
WO2015023165A1 (ko) 염증조절복합체 및 stat3 신호분자 차단을 통한 면역조절능 최적화된 안정화 중간엽줄기세포
WO2016117960A1 (ko) 면역질환 치료 효능을 갖는 grim19이 과발현된 중간엽줄기세포 및 이의 용도
WO2022108165A1 (ko) 역분화 줄기세포 유래 중간엽 줄기세포로부터 분리된 엑소좀의 제조방법 및 이의 용도
WO2016027990A1 (ko) Dusp5를 유효성분으로 모두 포함하는 골대사성 질환의 예방 또는 치료용 약학적 조성물
WO2015023147A1 (ko) mTOR/STAT3 신호억제제 처리된 면역조절능을 갖는 간엽 줄기세포 및 이를 포함하는 면역질환의 예방 또는 치료용 세포치료제 조성물
WO2022108306A1 (ko) 인터류킨-33을 처리하여 면역원성이 향상된 cd103+ fcgr3+ 수지상세포의 제조방법 및 상기 수지상세포를 포함하는 면역항암치료용 약학적 조성물
WO2021187911A1 (ko) 제대혈 혈장 유래의 엑소좀 또는 이의 모방체 및 이의 약학적 용도
Sun et al. Alcaligene s lipid A functions as a superior mucosal adjuvant to monophosphoryl lipid A via the recruitment and activation of CD11b+ dendritic cells in nasal tissue
WO2015194710A1 (ko) Stat3 억제제가 처리된 간엽줄기세포를 유효성분으로 포함하는 면역질환의 예방 또는 치료용 조성물
WO2020130431A1 (ko) 클로날 줄기세포를 포함하는 이식편대숙주질환 치료용 약학적 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19797128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19797128

Country of ref document: EP

Kind code of ref document: A1