WO2019210732A1 - 发光二极管及其制作方法 - Google Patents

发光二极管及其制作方法 Download PDF

Info

Publication number
WO2019210732A1
WO2019210732A1 PCT/CN2019/076136 CN2019076136W WO2019210732A1 WO 2019210732 A1 WO2019210732 A1 WO 2019210732A1 CN 2019076136 W CN2019076136 W CN 2019076136W WO 2019210732 A1 WO2019210732 A1 WO 2019210732A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor layer
electrode
emitting diode
light emitting
Prior art date
Application number
PCT/CN2019/076136
Other languages
English (en)
French (fr)
Inventor
蔡景元
吴俊毅
李福龙
王笃祥
吴超瑜
高文浩
刘晓峰
李维环
舒立明
刘超
Original Assignee
天津三安光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津三安光电有限公司 filed Critical 天津三安光电有限公司
Priority to KR1020207023901A priority Critical patent/KR102453206B1/ko
Priority to JP2020528449A priority patent/JP2021513210A/ja
Priority to CN201980000871.4A priority patent/CN110915005A/zh
Priority to TW108115082A priority patent/TWI781317B/zh
Publication of WO2019210732A1 publication Critical patent/WO2019210732A1/zh
Priority to US17/084,223 priority patent/US11563140B2/en
Priority to US18/157,237 priority patent/US11973163B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to the field of semiconductor manufacturing, and in particular to a light emitting diode and a method of fabricating the same.
  • FIG. 3 illustrates a conventional flip-chip AlGalnP-based LH) structure having a transparent substrate that employs a transparent bonding layer 120 to include a semiconductor structure (generally comprising a first type semiconductor layer 111, an active layer 112, and a second type semiconductor)
  • the layer 113 is transferred to the transparent substrate 101, and the p, n ohmic contact electrodes are formed on the opposite side of the transparent substrate, and the two electrodes are located on the same side, and then the flip-chip bonding electrodes are respectively connected to realize flip-chip packaging.
  • Chinese patent document CN101897048A discloses a thin flip-chip AlGalnP chip device and a manufacturing method thereof, specifically, fabricating an n-electrode and a P-electrode on the same side of a semiconductor structure, and then bonding the semiconductor structure through metal bonding or soldering The method is connected to the carrier and finally the growth substrate is removed.
  • Chinese Patent Document CN107681034A discloses a miniature light emitting diode and a manufacturing method thereof, specifically, fabricating an n electrode and a p electrode on a lower surface of a semiconductor structure, bonding the epitaxial structure to a carrier substrate, and then removing the growth substrate. .
  • a flip-chip type AlGalnP light-emitting diode which does not require a bonding process and a method of fabricating the same are provided.
  • the manufacturing method of the light emitting diode comprises the steps of: (1) providing a substrate on which the outer surface is formed
  • the epitaxial structure includes a first semiconductor layer, an AlGalnP active layer, a second semiconductor layer, and a third semiconductor layer, wherein the material of the third semiconductor layer is aluminum gallium arsenide and has a thickness of 30 pm or more; Making a first electrode and a second electrode on a side surface of the epitaxial structure away from the substrate, wherein the first electrode is electrically connected to the first semiconductor layer, and the second electrode is electrically connected to the second semiconductor layer; (3) removing The substrate forms a flip-chip light-emitting diode, wherein the third semiconductor layer serves as a light-emitting surface while supporting the epitaxial layer to ensure physical stability.
  • the step (1) sequentially comprises the following steps: (11) providing a substrate; (12) growing the third semiconductor layer on the substrate by liquid phase epitaxy; (13) adopting In the MOCVD epitaxial technique, a second semiconductor layer, an active layer, and a first semiconductor layer are sequentially formed on the third semiconductor layer.
  • the material of the third semiconductor layer formed in the step (1) is aluminum gallium arsenide, wherein the content of the aluminum component is 20% to 95%.
  • the thickness of the third semiconductor layer formed in the step (1) is 30 to 30 (Vm).
  • the step (2) includes: etching a portion of the first semiconductor of the epitaxial structure, forming an active surface, the mesa may be etched to the second semiconductor layer or the third semiconductor layer; Second electrode.
  • the substrate is removed with the third semiconductor layer as a support.
  • the light emitting diode comprises: an epitaxial stack, which in turn comprises a first semiconductor layer, an AlGalnP active layer, a second semiconductor layer and a third semiconductor layer, wherein the material of the third semiconductor layer is aluminum gallium arsenide, thickness 3 (Vm or more, supporting the epitaxial laminate on the one hand to ensure its physical stability, and on the other hand as a light-emitting surface; the first electrode and the second electrode are formed on the same side of the epitaxial laminate and away from The third semiconductor layer, wherein the first electrode is electrically connected to the first semiconductor layer, and the second electrode is electrically connected to the second semiconductor layer.
  • an epitaxial stack which in turn comprises a first semiconductor layer, an AlGalnP active layer, a second semiconductor layer and a third semiconductor layer, wherein the material of the third semiconductor layer is aluminum gallium arsenide, thickness 3 (Vm or more, supporting the epitaxial laminate on the one hand to ensure its physical stability, and on the other hand as a light-emitting surface;
  • the third semiconductor layer is p-type conductive or n-type conductive.
  • a portion of the first semiconductor layer and the active layer of the epitaxial layer are etched to form a mesa, and a second semiconductor layer is exposed, and the second electrode is formed on the mesa.
  • the third semiconductor layer has a thickness of 30 to 30 (Vm. In some embodiments, the third semiconductor layer has a thickness of 30 to 5 (Vm. In some embodiments, the third The semiconductor layer has a thickness of 50 to 10 (Vm. In some embodiments, the third semiconductor layer has a thickness of 100 to 150 [ xm. In some embodiments, The third semiconductor layer has a thickness of 150 to 30 (Vm).
  • the third semiconductor layer is aluminum gallium arsenide, wherein the content of the aluminum component is 20% to 95%.
  • the third semiconductor layer has an A1 composition of 30% to 70%.
  • the material of the first semiconductor layer is aluminum arsenide, aluminum gallium phosphide, aluminum indium phosphide, gallium phosphide or any combination thereof.
  • the material of the second semiconductor layer is aluminum gallium arsenide, aluminum gallium indium phosphide, aluminum indium phosphide, gallium phosphide or any combination thereof.
  • the epitaxial stack has a size of 30 (Vmx30 (Vm or less, the second semiconductor layer includes a second type of cover layer and a window layer, the second electrode and the window) Layer contact.
  • the epitaxial stack has a size of 30 (Vmx30 (Vm or less)
  • the second semiconductor layer includes a second type of cap layer and an ohmic contact layer, the second electrode and the Ohmic contact layer contact
  • the epitaxial stack has a size of HXVmxHXVm or more
  • the second semiconductor layer includes a second type of confinement layer, a cap layer, a window layer, and an ohmic contact layer, and the second electrode The ohmic contact layer is in contact.
  • the light emitting diode further includes a first metal layer and a second metal layer respectively contacting the first and second electrodes, and the areas thereof are respectively larger than the areas of the first and second electrodes.
  • first metal layer and the second metal layer serve as a reflective layer.
  • the present invention also provides a light emitting device comprising a plurality of light emitting diodes, wherein at least one of the plurality of light emitting diodes comprises: an epitaxial stack, which in turn comprises a first semiconductor layer, an AlGalnP active layer, a second a semiconductor layer and a third semiconductor layer, the material of the third semiconductor layer being aluminum gallium arsenide, having a thickness of 3 (Vm or more, supporting the epitaxial laminate on the one hand to ensure physical stability thereof, and the light-emitting surface on the other hand) a first electrode and a second electrode formed on the same side of the epitaxial stack and away from the third semiconductor layer, wherein the first electrode is electrically connected to the first type semiconductor layer, and the second electrode is electrically connected to the second Type semiconductor layer.
  • an epitaxial stack which in turn comprises a first semiconductor layer, an AlGalnP active layer, a second a semiconductor layer and a third semiconductor layer, the material of the third semiconductor layer being aluminum gallium arsenide,
  • the above-mentioned light-emitting diode utilizes epitaxial growth of a layer of AlGaAs semiconductor layer of 30 pm or more, using the AlGaAs semiconductor layer as a support to remove the growth substrate, and using the AlGaAs semiconductor layer as a light-emitting surface, thereby eliminating the bonding process and effectively improving the pouring process. Install LED yield and reduce cost.
  • the present invention also provides a method for growing an epitaxial structure of a flip-chip quaternary light-emitting diode, and epitaxial growth of the current spreading layer, the N-type layer, the light-emitting layer, and the P-type layer on the epitaxial substrate by the MOCV D method
  • the structure, the current spreading layer is A1 x Ga k As, 0 ⁇ x ⁇ l.
  • the invention proposes to adopt the A1 x Ga k As material as a current spreading layer instead of the conventional AlGalnP layer, thereby achieving the technical effects of shortening the program time (reducing the cost) and increasing the crystal quality.
  • the substrate is gallium arsenide, gallium phosphide, indium phosphide, more preferably gallium arsenide.
  • the thickness of the current spreading layer is Above, it is more preferable that the thickness of the current spreading layer is 3-5 pm depending on the crystal growth quality and the light extraction efficiency.
  • the buffer layer is GaAs
  • the etch stop layer is AllnP
  • the contact layer is GaAs
  • the P-type layer is AllnP
  • the N-type layer is AllnP
  • the luminescent layer is ( AlyGal-y) Z Inl-zP, 0 ⁇ y ⁇ l, 0 ⁇ z ⁇ l
  • the window layer is p-GaP.
  • the current spreading layer is n-doped, and the n-doping concentration is 1E18-2E18, which further reduces the contact resistance with the n-type layer and the quantum well light-emitting layer.
  • the present invention also provides a flip-chip quaternary LED epitaxial structure, comprising: a growth substrate, an etch stop layer, a current spreading layer, an N-type layer, a luminescent layer, a P-type layer, and current expansion.
  • the layer is AlxGa 1-xAs , 0 ⁇ x ⁇ l °
  • the flip-chip light emitting diode obtained by the epitaxial structure of the flip-chip quaternary light emitting diode of the present invention comprises, on the permanent substrate, a P-type layer, a light-emitting layer, an N-type layer, and a current spreading layer from bottom to top.
  • the current spreading layer is preferably roughened to increase the light output effect on the N-type layer.
  • the flip-chip quaternary light-emitting diode epitaxial structure, the flip-chip quaternary light-emitting diode, and the growth method thereof of the present invention have the following beneficial effects:
  • the growth rate limit of the conventional AlGalnP is increased from 7 people/s to 40 A/s, and the growth rate can be 3 times better
  • the growth time of the epitaxial structure can be shortened by more than 30%, the program time is greatly shortened, and the production cost is lowered, which is advantageous for mass production.
  • AlxGal-xAs are easy to grow.
  • 0V performance has increased by at least 20%.
  • a novel flip-chip quaternary light-emitting diode can be provided by the flip-chip quaternary LED epitaxial structure of the present invention.
  • FIG. 1 is a schematic view showing an epitaxial structure of a conventional quaternary light-emitting diode.
  • FIG. 2 is a quaternary light emitting diode epitaxial structure in accordance with an embodiment of the present invention.
  • 3 is a conventional flip-chip AlGalnP-based LED structure having a transparent substrate.
  • FIG. 4 is a flow chart of a method of fabricating an LED according to an embodiment of the present invention.
  • FIG. 5 is a partial flow chart of a method of fabricating an LED according to an embodiment of the present invention.
  • 6 to 11 are schematic views showing a process of fabricating a flip-chip type light emitting diode device according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural view of a light emitting diode according to an embodiment of the present invention.
  • an AlGaln P flip-chip LED includes a current spreading layer, an N-type layer, an MQW light-emitting layer and a P-type layer, wherein the current spreading layer is usually an AlGalnP material system, but the AlGalnP system is in an epitaxial process.
  • the temperature window is small, ⁇ 10 °C.
  • the growth rate becomes sensitive with temperature. When the growth rate reaches 7 people/ 8 , the growth limit has been reached, and the crystal growth quality is difficult to control.
  • the present embodiment discloses a method for growing an AlGalnP-based LED epitaxial structure by epitaxially growing n-GaAs on the n-GaAs substrate 100 by metal organic chemical vapor deposition (MOCVD).
  • the thickness of the buffer layer 101 is 0.2 pm
  • the thickness of the GalnP etch stop layer 102 is 0.2 pm
  • the thickness of the n-GaAs contact layer 103 is 70 nm
  • the thickness of the A1 ⁇ Ga a45 As current spreading layer 104 is 3 pm
  • the thickness of the n-AlInP N type layer is 105.
  • the thickness of the p-type layer 107 is 0.3 pm, and the thickness of the p-GaP window layer 108 is 1.2 pm, wherein the buffer layer is arranged to facilitate the growth of the epitaxial structure on the surface of the substrate, and the etch stop layer is located on the buffer layer for subsequent flip-chip illumination. Removal of the substrate during diode fabrication.
  • the contact layer is on the etch stop layer for ohmic contact of the electrodes.
  • the luminescent layer is a multi-quantum well structure, and the material of the well and the barrier is (Al y Ga uhln ⁇ P, 0 ⁇ y ⁇ l, 0 ⁇ z ⁇ l, according to adjusting the y/z value to obtain green to red light emission.
  • the light-emitting diode structure having a wavelength of 560-650 nm in this embodiment, the well layer is preferably (A1 o .i Ga 0.9 ) a 5 In a5 P, and the barrier is (A1 o .65 Ga 0.35 ) o .5 ln 0.5 P > emission wavelength Between 620 and 624 nm.
  • the N-AlInP confinement layer is used to supply electrons, and the P-AlInP confinement layer is used to provide holes.
  • the window layer is disposed on the P-type layer for current spreading on the P-type layer side.
  • the growth temperature of the a45 Ga Q.45 As current spreading layer is between 650-710 ° C, the growth time is 25 minutes, the growth gas is TMA1, TMGa, AsH3, and the growth thickness is 3 pm.
  • the LED epitaxial structure includes: a growth substrate 100, a buffer layer 010, an etch stop layer 102, a contact layer 103, a current spreading layer 104, an N-type layer 105, a luminescent layer 106, and a P-type layer. 107 and window The mouth layer 108, wherein the current spreading layer is A1 o .45 Ga 0.45 AS
  • the growth temperature window of the A1 Q.45 Ga Q.45 As current spreading layer is 680 ⁇ 30° C., and the growth time of the same thickness is compared with the conventionally used current spreading layer ( Al a6 Ga Q.4 ) 0 .5 In Q.5 P
  • the growth time was shortened to 25 minutes, and the flow of the epitaxial structure was shortened by about 30%.
  • the PH3 consumption is greatly reduced, the safety factor is improved during maintenance, and the cost is significantly reduced. If MOCVD is used to save the As source, the production cost can be further reduced.
  • the epitaxial growth substrate and the buffer layer and the etch stop layer are thinned and chemically etched to expose the contact layer, the first electrode is formed over the contact layer, and the contact layer other than the first electrode is etched to expose the current spreading layer.
  • the current spreading layer is roughened to form a smooth surface, and the back surface electrode is formed on the back surface of the permanent substrate to obtain the flip-chip red light emitting diode of the present invention.
  • the mirror layer is preferably a single layer or a plurality of mirror materials containing gold or a gold alloy
  • the permanent substrate is a conventional substrate material such as silicon, silicon nitride, etc.
  • the back electrode is a conventional metal electrode such as gold, molybdenum, nickel, chromium, ruthenium or an alloy thereof.
  • the flip-chip red light emitting diode obtained by the embodiment includes at least a contact layer, a current spreading layer, an N-type layer, a light-emitting layer, a P-type layer, a mirror layer, and a lining on the permanent substrate from top to bottom.
  • the current spreading layer AlxGal-xAs (0 ⁇ x ⁇ l), x is more preferably 0.45.65, and if x is higher than 0.65, the current spreading layer causes a voltage rise. High, beyond the conventional chip voltage range , is 0.23V or more.
  • the current spreading layer AlxGal-xAs (0 ⁇ x ⁇ l), x is more preferably 0.55, and the ESD performance of the chip obtained by the process of the second embodiment is improved by 23%.
  • the current spreading layer is n-type doped, and its doping concentration is 1E18 ⁇ 2E18, which is 1.5E18 in this embodiment.
  • a silicon source pair is used in the process of epitaxially growing the current spreading layer. It is doped, and different concentrations can be controlled by the flow rate of the silicon source, and the contact resistance with the n-type layer and the quantum well light-emitting layer can be further reduced by the n-type doping, and the heat generation of the epitaxial structure can be reduced and current can be saved.
  • FIGS. 4 and 5 are flowcharts of a method for fabricating a flip-chip type AlGalnP-type light emitting diode according to an embodiment of the present invention, which mainly includes steps S100 to S300, wherein step S100 further subdivides three sub-steps S1 10 -S130, which will be described in detail below with reference to Figs.
  • a growth substrate 100 is provided on which an epitaxial structure is formed, the epitaxial structure including a first semiconductor layer 111, an active layer 112, a second semiconductor layer 113, and a third semiconductor layer 114.
  • the substrate 100 is preferably a commonly used GaAs substrate. It should be noted that the substrate is not limited to GaAs, and other materials may be used;
  • a layer of AlGaAs material is formed on the surface of the bottom 100 as a third semiconductor layer 114.
  • the thickness of the semiconductor layer is 30 pm or more, preferably 50 to 220 ⁇ , and the content of the A1 component is 20% to 95%, preferably 30 to 70.
  • the A1 component can be confirmed according to the light-emitting wavelength of the light-emitting diode; then the second semiconductor layer 113, the active layer 112, and the first semiconductor layer 111 are sequentially grown by MOCVD on the AlGaAs third semiconductor layer, as shown in FIG.
  • the first semiconductor layer 111 may include a p-type cap layer and a p-type window layer
  • the second semiconductor layer may include an n-type ohmic contact layer, an n-type window layer, an n-type cap layer, and the like. It is worth noting that the above simply enumerates some structural layers. Not every layer is necessary.
  • the n-type window layer can be removed according to actual needs, and the n-type confinement layer, the p-type confinement layer, the AlGalnP transition layer, and the like can be added.
  • the functions and parameters of each layer refer to the following table 1.
  • the third semiconductor layer 114 is disposed between the substrate and the second semiconductor layer for supporting the epitaxial structure and removing the substrate during the subsequent chip fabrication, and serves as a light-emitting surface.
  • the third semiconductor is preferably AlGaAs.
  • the lattice of AlGaAs and the GaAs substrate is almost completely matched, and liquid phase epitaxy can be used for rapid growth.
  • the AlGaAs material does not absorb light, and is suitable for use as a light extraction window.
  • the n-type ohmic contact layer is used to form an ohmic contact with the n-type electrode after the device is fabricated.
  • the material is usually made of GaA s.
  • the preferred thickness is controlled within 50 nm, for example, 5-20 nm.
  • the n-type ohmic contact layer may also be made of other materials such as, for example, AlGaAs or AlGalnP.
  • the n-type window layer is disposed on the n-type ohmic contact layer, mainly functions as a current expansion, and its expansion capability is related to the thickness. Therefore, in the embodiment, the thickness can be selected according to the specific device size, and the thickness is preferably controlled at 500. Below Onm. Generally, the size of the LED device can be from 1 to 500 (Vm. For a small-sized device (for example, 10 (below Vm), there is usually no problem of current expansion.
  • the thickness can be selected to be 0, that is, the n-type window layer does not need to be provided. 221, for a device of 300 ⁇ or more, a thickness of 500 nm to 5000 nm may be selected at this time.
  • the active layer is an illuminating layer of an epitaxial structure, which determines an illuminating wavelength and brightness. In this embodiment, a multi-quantum structure is preferably used.
  • the specific barrier layer is Al al G a i-al InP, and the layer is AUGa m lnP, where al > a2.
  • the material of the n-type cladding layer and the p-type cladding layer is selected according to the band gap of the active layer, for the emission wavelength
  • the band gap is low, and the cover layer can be directly selected from AlGaAs or AlGalnP.
  • the band gap is large. Generally, it is 1.9 eV or more, and the cover layer needs to adopt a high band gap material.
  • Al b I ni - b P material (0 ⁇ b ⁇ 0.5) is used.
  • the highest band gap matching material is A1 Q.
  • both the n-type cap layer and the p-type cap layer are made of Al a5 In a5 P material, thereby maximizing the band gap difference between the active layer and the p-type cap layer .
  • an undoped AllnP or AlGalnP material layer is formed on both sides of the active layer, and the active layer is inhibited from diffusing to the active layer 224 by not passing the dopant source.
  • the p-type window layer is formed on the p-type cladding layer to function as a current extension.
  • a GaP material may be used, and its thickness may be 1.2 pm.
  • the lattice constant of the GaP material is different from the lattice constant of the p-type AllnP cap layer, preferably, an AlGalnP transition layer is interposed between the p-type AllnP cap layer and the p-type window layer, and the composition thereof is gradually changed.
  • the function of AllnP and GaP is connected to improve the lattice quality of the Ga P window layer.
  • the epitaxial structure described in Table 1 is more suitable for an epitaxial stack having a size of 100 [ xmx100 [ xm or more], particularly an epitaxial stack having a size of 300 [ xmx300 [ xm or more], preferably.
  • the formation of a certain thickness of the n-type window layer can effectively improve the current expansion capability.
  • an n-electrode region and a p-electrode region are defined on the surface of the epitaxial structure shown in FIG. 6.
  • the first semiconductor layer 111, the active layer 112, and a portion of the second semiconductor layer 113 of the n-electrode region are etched to form the mesa A, as shown in FIG. Specifically, taking the epitaxial structure of Table 1 as an example, the p-type window layer, the p-type cladding layer, the active layer, the n-type cladding layer, and the n-type window layer of the n-electrode region are etched until the n-type ohmic contact layer is exposed.
  • n-type window layer it is preferred to first dry-etch the n-type window layer, and then remove the residual n-type window layer by wet etching to ensure that the surface exposes the n-type ohmic contact layer to form an ohmic contact with the n-type electrode.
  • a p electrode 121 and an n electrode 122 are formed on the p electrode region on the surface of the p-type window layer and the exposed n-type ohmic contact layer, respectively, as shown in FIG.
  • the material of the electrode may be, for example, Au/AuZn/Au, and the electrode may be fused in this step to form an ohmic contact with the epitaxial structure.
  • the surface of the epitaxial structure is covered with an insulating protective layer 140, and only the p electrode 121 and the n electrode 122 are exposed, as shown in FIG.
  • the insulating protective layer 140 is made of a material such as silicon oxide, silicon nitride or aluminum oxide, and has a thickness of l [xm or more.
  • the extension electrodes 131 and 132 are formed on the p electrode 121 and the n electrode 122, respectively, which extend to the absolute Part of the surface of the edge protection layer 140 is as shown in FIG.
  • the extension electrode can be used as a mirror surface at the same time, and the material thereof can be metal materials such as titanium, molybdenum, aluminum, gold, silver and copper.
  • the mesa is formed first by forming a mesa.
  • one or more recesses penetrating through the first semiconductor layer 111 and the active layer 112 may be formed, conductive pillars are formed in the recesses, and then the n-electrode is guided to the surface of the first semiconductor layer 111.
  • the substrate 100 is removed to expose the surface of the third semiconductor layer, as shown in FIG. Removal can be accomplished by a variety of methods, including laser lift-off (LLO), grinding, or etching, depending on the material selection of the growth substrate 301.
  • the substrate 100 is comprised of GaA s.
  • the removal can be achieved by a combination of etching or grinding and selective etching along with selective etch stop on the etch stop layer.
  • an AlGaAs layer having a thickness of 3 (Vm or more) is used as a supporting layer by liquid phase epitaxy, and the bonding process of the flip-chip structure is omitted, thereby improving the fabrication of the flip-chip type AlGalnP series light emitting diode. Yield.
  • the second semiconductor layer 113 of the epitaxial structure is not provided with an n-type GaAs ohmic contact layer, and the n-type window layer is directly used as an ohmic contact layer, and is directly in contact with the n-electrode 122.
  • Table 2 lists an epitaxial structure suitable for the present embodiment.
  • the Al x Ga xx InP window layer is directly used as the ohmic contact layer, so that when the mesa of the n-electrode is fabricated, only the surface of the n-type window layer is dry-etched, and the electrode is fabricated. Yield.
  • an n-electrode is formed on the n-type window layer, and then high-temperature fusion (for example, 300 ° C or higher) is performed, so that metal atoms in the n-electrode are diffused into the n-type window layer, so that the n-electrode and the n-type
  • the window layer forms an ohmic contact
  • the material of the n-electrode may be gold, tantalum, nickel or an alloy of any combination of the above metals, such as AuGe, AuGeNi, Au/AuGe/Ni/Au, Au/AuGeNi/Au, and the like.
  • the n-electrode is a multi-layer structure, wherein the first sub-layer directly contacting the n-type window layer is an Au layer or a gold-containing alloy, and has a thickness of between 1 nm and 50 nm, for example, 5 to 20 nm.
  • the A1 component x of the n-type window layer is between 0.5 and 1, which can effectively reduce the light absorption effect of the window layer on the radiation; more preferably, for the aluminum gallium indium phosphorus and the epitaxial growth substrate such as arsenic
  • the crystal lattice of gallium is well matched, and aluminum gallium indium phosphorus with good growth quality is obtained, wherein the x is between 0.6 and 0.8; preferably, to ensure lateral expansion of the current, the thickness of the n-type window layer is 0.02 to 6.0.
  • the n-type window layer preferably has a doping concentration of 1 ⁇ E18 or more, more preferably 1 to 2E18, and a lower doping concentration.
  • the ohmic contact resistance is too high, and the higher doping concentration results in light absorption and lowers light extraction efficiency;
  • the doping concentration of the n-type window layer is uniform or non-uniform in the thickness direction, and the doping concentration is not Uniform case is that the doping concentration change of the window layer can be along The thickness direction of the window layer is varied, that is, the contact area near the first electrode, and the doping concentration can be higher to promote ohmic contact.
  • This embodiment is applicable to a small-sized light-emitting diode.
  • the size of the epitaxial layer is 30 (Vmx30 (Vm or less mini-type light-emitting diode or Micro-type light-emitting diode.
  • this embodiment uses the third semiconductor layer as the light-emitting layer).
  • the GaAs ohmic contact layer which is easy to absorb light is omitted, and the window layer is directly used as the ohmic contact to contact the n electrode, which can further improve the light efficiency.
  • the n-type window layer adopts Al x G a ix A S
  • the A1 component x is preferably 0.45 to 0.65, and may be, for example, 0.5.
  • the growth rate limit can be increased from 7 A/S to 40 A/S, the growth rate can be increased by more than 3 times, the epitaxial growth time can be shortened by more than 30%, the program time is greatly shortened, and the production cost is reduced. It is conducive to large-scale mass production; at the same time, the temperature window of AlGaAs is increased (680 °C ⁇ 30 °C), making the epitaxial growth quality easier to control.
  • the second semiconductor layer 113 of the unequal structure is not provided with an n-type window layer, and the embodiment is suitable for a small-sized light-emitting diode, for example, the size of the epitaxial layer is 300 [xmx300 [ Below xm mini type LED or Micro type LED.
  • the third semiconductor layer 114 has an n-type doping with a thickness of 30 to 10 (Vm, the n-electrode is directly in contact with the third semiconductor layer, as shown in FIG.
  • An epitaxial structure suitable for the present embodiment has been developed.
  • the third semiconductor layer 114 is directly used as the ohmic contact layer, and the n-type window layer and the n-type GaAs ohmic contact layer are omitted, which is suitable for a small-sized light-emitting diode, for example, the size of the epitaxial layer is 300 [ xmx300 [ xm or less mini type LED or Micro type LED).
  • the first semiconductor layer of the epitaxial structure is of an n-type conductivity type
  • the second semiconductor layer is of a p-type conductivity type.
  • the first semiconductor layer 111 may include an n-type cap layer, an n-type window layer
  • the second semiconductor layer 113 may include a p-type cap layer and a p-type window layer.
  • Table 4 lists an epitaxial structure suitable for the present embodiment.
  • the n electrode is connected to the n-type window layer, and the p-electrode is connected to the p-type window layer.
  • the second semiconductor layer 113 may comprise a GaAs ohmic contact layer, the p-electrode being connected to the GaAs ohmic contact layer.
  • the second semiconductor layer 113 does not include a window layer and an ohmic contact layer, and the third semiconductor layer 114 has p-type conductivity and is connected as an ohmic contact layer to the p-electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

一种发光二极管及其制作方法,其中该制作方法包括步骤:(1)提供一衬底(100),在该衬底(100)上形成外延结构,该外延结构包含第一半导体层(111)、AlGaInP有源层(112)、第二半导体层(113)和第三半导体层(114),所述第三半导体层(114)的材料为铝镓砷,厚度为30μm以上;(2)在所述外延结构之远离所述衬底(100)的一侧表面上制作第一电极(121)和第二电极(122),其中第一电极(121)电连接至第一半导体层(111)、第二电极(122)电连接至第二半导体层(113);(3)去除该衬底(100),其中第三半导体层(114)支撑该外延叠层,确保其物理稳定性。

Description

说明书 发明名称:发光二极管及其制作方法 技术领域
[0001] 本发明属于半导体制造领域, 具体涉及一种发光二极管及其制作方法。
背景技术
[0002] 倒装发光二极管由于其免打线、 无电极遮光、 优良的散热等优点, 是进一步提 高发光二极管发光效率的有效技术手段。 图 3示出一种常规的具有透明衬底的倒 装 AlGalnP系 LH)结构, 其采用透明键合层 120将半导体结构 (一般包含第一类 型半导体层 111、 有源层 112和第二类型半导体层 113) 转移至透明衬底 101, 并 将 p、 n欧姆接触电极制作在透明衬底相对的一面, 两个电极位于同一面, 此后 分别连接倒装焊接电极, 实现倒装封装。
[0003] 中国专利文献 CN101897048A公开了一种薄的倒装 AlGalnP芯片器件及其制作方 法, 具体为在半导体结构的同侧制作 n电极和 P电极, 再将该半导体结构通过金 属键合或者焊接的方式连接到载具上, 最后移除该生长衬底。
[0004] 中国专利文献 CN107681034A公开了一种微型发光二极管及其制作方法, 具体 为在半导体结构的下表面制作 n电极和 p电极, 将该外延结构键合至承载基板上 , 然后去除生长衬底。
[0005] 前述各种倒装发光二极管器件在制作过程中均需要先将半导体结构键合连接到 基板上, 然后去除生长衬底。 然而键合过程中容易造成器件损坏从而损失良率 发明概述
技术问题
问题的解决方案
技术解决方案
[0006] 根据本发明的第一个方面, 提供了一种不用进行键合工艺的倒装型 AlGalnP发 光二极管及其制作方法。
[0007] 该发光二极管的制作方法, 包括步骤: (1) 提供一衬底, 在该衬底上形成外 延结构, 该外延结构包含第一半导体层、 AlGalnP有源层、 第二半导体层和第三 半导体层, 所述第三半导体层的材料为铝镓砷, 厚度为 30pm以上; (2) 在所述 外延结构之远离所述衬底的一侧表面上制作第一电极和第二电极, 其中第一电 极电连接至第一半导体层、 第二电极电连接至第二半导体层; (3) 去除该衬底 , 形成一倒装发光二极管, 其中第三半导体层作为出光面的同时, 支撑该外延 叠层, 确保其物理稳定性。
[0008] 优选的, 所述步骤 (1)依次包含下面步骤: ( 11) 提供一衬底; ( 12) 采用液 相外延技术在该衬底上生长所述第三半导体层; ( 13) 采用 MOCVD外延技术, 在该第三半导体层上依次形成第二半导体层、 有源层和第一半导体层。
[0009] 优选的, 在步骤 ( 1) 中形成的第三半导体层的材料为铝镓砷, 其中铝组分的 含量为 20%~95%。
[0010] 优选地, 在步骤 ( 1) 中形成的第三半导体层的厚度为 30~30(Vm。
[0011] 进一步地, 在步骤 (2) 包括: 蚀刻部分所述外延结构的第一半导体、 有源层 形成台面, 该台面可蚀刻至第二半导体层或第三半导体层; 在该台面上制作第 二电极。
[0012] 进一步地, 在步骤 (3) 中, 以第三半导体层作为支撑, 去除所述衬底。
[0013] 该发光二极管, 包括: 外延叠层, 其依次包含第一半导体层、 AlGalnP有源层 、 第二半导体层和第三半导体层, 所述第三半导体层的材料为铝镓砷, 厚度为 3 (Vm以上, 一方面支撑所述外延叠层, 以确保其物理稳定性, 另一方面作为出光 面; 第一电极和第二电极, 形成于所述外延叠层的同一侧上且远离所述第三半 导体层, 其中第一电极电连接所述第一半导体层, 第二电极电连接第二半导体 层。
[0014] 进一步地, 所述第三半导体层为 p型导电或者 n型导电。
[0015] 进一步地, 所述外延叠层的部分第一半导体层、 有源层被蚀刻形成台面, 裸露 出第二半导体层, 所述第二电极形成在该台面上。
[0016] 优选地, 所述第三半导体层的厚度为 30~30(Vm。 在一些实施例中, 该第三半 导体层的厚度为 30~5(Vm。 在一些实施例中, 该第三半导体层的厚度为 50~10(V m。 在一些实施例中, 该第三半导体层的厚度为 100~150[xm。 在一些实施例中, 该第三半导体层的厚度为 150~30(Vm。
[0017] 优选地, 所述第三半导体层为铝镓砷, 其中铝组分的含量为 20%~95%。 在一些 实施例中, 该第三半导体层的 A1组分为 30%~70%。
[0018] 进一步地, 所述第一半导体层的材料为砷镓化铝、 磷化铝镓铟、 磷化铝铟、 磷 化镓或前述任意组合。
[0019] 进一步地, 所述第二半导体层的材料为砷镓化铝、 磷化铝镓铟、 磷化铝铟、 磷 化镓或前述任意组合。
[0020] 在一些实施例中, 所述外延叠层的尺寸为 30(Vmx30(Vm以下, 所述第二半导体 层包含第二类型的覆盖层和窗口层, 所述第二电极与所述窗口层接触。
[0021] 在一些实施例中, 所述外延叠层的尺寸为 30(Vmx30(Vm以下, 所述第二半导体 层包含第二类型的覆盖层和欧姆接触层, 所述第二电极与所述欧姆接触层接触
[0022] 在一些实施例中, 所述外延叠层的尺寸为 HXVmxHXVm以上, 所述第二半导体 层包含第二类型的限制层、 覆盖层、 窗口层和欧姆接触层, 所述第二电极与所 述欧姆接触层接触。
[0023] 优选的, 所述发光二极管还包括第一金属层和第二金属层, 分别与第一、 第二 电极接触, 其面积分别大于所述第一、 第二电极的面积。
[0024] 进一步地, 所述第一金属层和第二金属层作为反射层。
[0025] 本发明还提供了一种发光装置, 包含若干个发光二极管, 其中该若干个发光二 极管中的至少一个包括: 外延叠层, 其依次包含第一半导体层、 AlGalnP有源层 、 第二半导体层和第三半导体层, 所述第三半导体层的材料为铝镓砷, 厚度为 3 (Vm以上, 一方面支撑所述外延叠层, 以确保其物理稳定性, 另一方面作为出光 面; 第一电极和第二电极, 形成于所述外延叠层的同一侧上且远离所述第三半 导体层, 其中第一电极电连接所述第一类型半导体层, 第二电极电连接第二类 型半导体层。
[0026] 上述发光二极管利用外延生长一层 30pm以上的 AlGaAs半导体层, 以该 AlGaAs 半导体层作为支撑去除生长衬底, 并以该 AlGaAs半导体层作为出光面, 省去键 合工艺, 有效提高的倒装发光二极管良率, 并降低成本。 [0027] 本发明还提供了一种倒装四元系发光二极管外延结构的生长方法, 通过 MOCV D方法在外延衬底上生长包括电流扩展层、 N型层、 发光层、 P型层的外延结构 , 所述电流扩展层为 A1 xGa kAs, 0<x<l。 本发明通过提出采用 A1 xGa kAs材料 作为电流扩展层代替传统的 AlGalnP层, 达到程序时间缩短 (降低成本) 及长晶 质量提升的技术效果。
[0028] 优选地, 所述衬底为砷化镓、 磷化镓、 磷化铟, 更优选地为砷化镓。
[0029] 优选地, 为了保证电流扩展层的作用, 电流扩展层的厚度为
Figure imgf000006_0001
以上, 根据晶 体生长质量以及出光效率, 更优选地所述的电流扩展层厚度为 3-5pm。
[0030] 优选地, 为保证电流扩展层的出光效率, x>0.45 , 更优选地, 0.45 .65, 若 x高于 0.65将导致发光二极管的电压过高。
[0031] 优选地, 所述缓冲层为 GaAs, 所述腐蚀截止层为 AllnP, 所述接触层为 GaAs, 所述 P型层为 AllnP, 所述 N型层为 AllnP, 所述发光层为 (AlyGal-y)ZInl-zP, 0<y<l, 0<z<l , 所述窗口层为 p-GaP。 通过调整 y、 z值可以调整外延结构的发光 区域由绿光到红光, 发射波长从 560nm到 650nm的范围。
[0032] 优选地, 所述电流扩展层为 n掺杂, n掺杂的浓度为 1E18-2E18, 进一步降低其 与 n型层及所述量子阱发光层的接触电阻。
[0033] 此外, 本发明同时提供了一种倒装四元系发光二极管外延结构, 其包括: 生长 衬底、 腐蚀截止层, 电流扩展层、 N型层、 发光层、 P型层, 电流扩展层为 AlxGa 1-xAs , 0<x<l°
[0034] 通过本发明倒装四元系发光二极管外延结构获得的倒装发光二极管, 在永久衬 底上由下至上包括: P型层、 发光层、 N型层、 电流扩展层。
[0035] 所述的电流扩展层优选为被粗糙化处理, 以 N型层面增加出光效果。
发明的有益效果
有益效果
[0036] 通过本发明的倒装四元系发光二极管外延结构、 倒装四元系发光二极管及其生 长方法, 具有以下有益效果:
[0037] ( 1) 对于倒装四元系 LH)结构, AlxGal-xAs材料作为电流扩展层使用时, 相 对于传统的 AlGalnP生长速率极限由 7人/S提高到 40 A/S , 生长速率可以提升 3倍 以上, 外延结构生长时间可缩短 30%以上, 程序时间大幅度缩短, 生产成本降低 , 有利于大规模量产。
[0038] (2) 相较于 AlGalnP, AlxGal-xAs作为电流扩展层的温度窗口增加 (680°C±30 oc) 。
[0039] (3) 优选衬底 GaAs, AlxGal-xAs本身与衬底 GaAs晶体几乎完全匹配, 高质量
AlxGal-xAs易于生长。
[0040] (4) 生产工艺窗口扩大的情况下, 外延生长质量更容易控制, 最终 ESD的 400
0V性能提升了至少 20%以上。
[0041] (5) 通过本发明的倒装四元系发光二极管外延结构可提供一种全新的倒装四 元系发光二极管。
[0042] 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说明书中 变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优点可通过 在说明书、 权利要求书以及附图中所特别指出的结构来实现和获得。
对附图的简要说明
附图说明
[0043] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。
[0044] 图 1是现有一种四元系发光二极管的外延结构示意图。
[0045] 图 2为根据本发明实施的一种四元系发光二极管外延结构。
[0046] 图 3是一种常规的具有透明衬底的倒装 AlGalnP系 LED结构。
[0047] 图 4是根据本发明实施的一种发光二极管制作方法的流程图。
[0048] 图 5是根据本发明实施的一种发光二极管制作方法的部分流程图。
[0049] 图 6~11为根据本发明实施的制作一种倒装型发光二极管器件的过程示意图。
[0050] 图 12为根据本发明实施的一种发光二极管的结构示意图。
发明实施例
本发明的实施方式
[0051] 以下将结合附图及实施例来详细说明本发明的实施方式, 借此对本发明如何应 用技术手段来解决技术问题, 并达成技术效果的实现过程能充分理解并据以实 施。 需要说明的是, 只要不构成冲突, 本发明中的各个实施例以及各实施例中 的各个特征可以相互结合, 所形成的技术方案均在本发明的保护范围之内。
[0052] 实施例 1
[0053] 基于 AlGalnP材料体系的 LH)的发光效率的提升, 有多种方法, 其中采用倒装 结构可以极大地提高 LED亮度。 但是, 倒装外延结构中 n面和 p面的电流扩展能 力的优劣会极大影响 LED外延结构的发光效率及良率。 如图 1所示, 一种 AlGaln P倒装发光二极管, 包括电流扩展层、 N型层、 MQW发光层和 P型层, 其中电流 扩展层通常采用 AlGalnP材料体系, 但是 AlGalnP体系在外延过程中, 温度窗口 小, 为 ±10°C, 此外由于 In并入效率的限制, 生长速率随温度变得敏感, 生长速 率达到 7人/8时已经到达生长极限, 长晶质量难以控制。
[0054] 鉴于以上所述缺点, 本实施例公开了一种 AlGalnP系 LED外延结构的生长方法 , 采用金属有机化学气相沉积 (MOCVD) 在 n-GaAs衬底 100上由下至上外延生 长 n-GaAs缓冲层 101厚度为 0.2pm, GalnP腐蚀截止层 102厚度为 0.2pm, n-GaAs接 触层 103厚度为 70nm, A1 ^Ga a45As电流扩展层 104厚度为 3pm, n-AlInP N型层 厚度 105为 0.3 on, (Al zGa i— z) Q.5In Q.5P发光层 106厚度为 0.2 on, p-AlInP
P型层 107厚度为 0.3pm, p-GaP窗口层 108厚度为 1.2pm, 其中缓冲层的设置有利 于外延结构在衬底表面的生长, 腐蚀截止层位于缓冲层上, 用于后续倒装发光 二极管制备过程中衬底的去除。 接触层位于腐蚀截止层上, 用于电极的欧姆接 触。 所述发光层为多量子阱结构, 阱和垒的材料为 (Al yGa uhln ^P, 0<y<l, 0<z<l , 根据调整 y/z值以获得绿光到红光发光波长为 560- 650nm的发光二极管结 构, 本实施例优选阱层为 (A1 o.iGa 0.9) a5In a5P, 垒为 (A1 o.65Ga 0.35) o.5ln 0.5P > 发射波长介于 620-624nm之间。 N-AlInP限制层用于提供电子, P-AlInP限制层用 于提供空穴。 窗口层设置于 P型层上, 用于 P型层侧的电流扩展。 其中 Al a45Ga Q.45 As电流扩展层的生长温度介于 650-710°C之间, 生长时间为 25分钟, 生长气体是 TMA1、 TMGa、 AsH3 , 生长厚度为 3pm。
[0055] 如图 2所示, 发光二极管外延结构包括: 生长衬底 100, 缓冲层 010, 腐蚀截止 层 102, 接触层 103, 电流扩展层 104, N型层 105, 发光层 106 , P型层 107以及窗 口层 108, 其中电流扩展层为 A1 o.45Ga 0.45AS
[0056] 本发明的倒装红外发光二极管外延结构及其制作方法, 具有以下有益效果:
[0057] 相对于传统的 AlGalnP电流扩展层, A1 Q.45Ga Q.45As电流扩展层的生长温度窗口 为 680±30°C, 同样厚度的生长时间相对于传统常规使用的电流扩展层 (Al a6Ga Q.4) 0.5In Q.5P的生长时间缩短到了 25分钟, 外延结构的流程缩短了 30%左右。 在 MOCVD外延生长过程中 PH3耗量大幅减少, 维护时安全系数提升, 成本下降明 显, 如果采用能够节省 As源的 MOCVD, 生产成本可进一步降低。
[0058] 实施例 2
[0059] 通过实施例 1的倒装红光发光二极管外延结构获得倒装红光发光二极管的方法 , 其具体包括以下步骤: 在上述外延结构的窗口层上设置一层透明介电层, 在 介电层表面沉积镜面层组合形成全镜面反射层, 镜面层下方沉积金属键合层用 于键合, 选择一永久衬底, 在其表面沉积金属键合层, 并通过高温高压键合方 法将永久衬底与外延结构进行键合。 接着外延生长衬底和缓冲层以及腐蚀截止 层经减薄、 化学腐蚀去除, 露出接触层, 在接触层上方制作第一电极, 并对第 一电极以外的接触层进行腐蚀以露出电流扩展层, 电流扩展层进行粗化处理形 成出光面, 在永久衬底背面制作背面电极, 获得本发明的倒装红光发光二极管
[0060] 所述的镜面层优选为含金或金合金的单层或多层镜面材料, 所述的永久衬底为 常规的衬底材料如硅、 氮化硅等, 所述的第一电极以及背面电极为常规的金属 电极如金、 钼、 镍、 铬、 锗或其合金等。
[0061] 通过本实施例获得的倒装红光发光二极管, 在永久衬底上由上至下至少包括: 接触层, 电流扩展层, N型层, 发光层, P型层, 镜面层, 衬底层, 背面电极, 其中电流扩展层被粗化处理以提高出光效率。
[0062] 通过 ESD (抗静电性能) 测试, 芯片 ESD4000V性能提升 25%, 可满足高压 LE D产品的性能需求。
[0063] 实施例 3
[0064] 不同于实施例 1, 所述电流扩展层 AlxGal-xAs(0 < x < l), x更优选为 0.45 .6 5 , 若 x高于 0.65 , 所述的电流扩展层会引起电压升高, 超出常规的芯片电压范围 , 为 0.23V以上。 本实施例优选所述的电流扩展层 AlxGal-xAs(0 < x < l), x更优 选为 0.55 , 通过实施例 2制作的工艺获得的芯片的 ESD性能提升 23%。
[0065] 实施例 4
[0066] 不同于实施例 1, 所述电流扩展层为 n型掺杂, 其掺杂浓度为 1E18~2E18, 本实 施例为 1.5E18 , 在外延生长电流扩展层的过程中, 使用硅源对其进行掺杂, 不同 的浓度能够通过硅源的流量进行控制, 通过 n型掺杂能够进一步降低其与 n型层 及所述量子阱发光层的接触电阻, 降低外延结构的发热并节省电流。
[0067] 实施例 5
[0068] 图 4和 5为根据本发明实施的一种倒装型 AlGalnP系发光二极管的制作方法的流 程图, 其主要包括了步骤 S100~S300, 其中步骤 S100进一步细分了三个子步骤 S1 10-S130, 下面结合附图 6~11进行详细说明。
[0069] (一) 外延生长
[0070] 首先提供一生长衬底 100, 在其上形成外延结构, 该外延结构包含了第一半导 体层 111、 有源层 112、 第二半导体层 113、 第三半导体层 114。 具体包含下面步 骤: 提供一衬底 100, 该衬底 100优选常用的 GaAs衬底, 应当注意的是, 衬底并 不局限于 GaAs, 也可采用其他材料; 接着采用液相外延的工艺在衬底 100表面上 形成一 AlGaAs材料层作为第三半导体层 114, 该半导体层的厚度为 30pm以上, 优选为 50~220—, 其中 A1组分的含量为 20%~95%, 优选为 30~70%, 可以根据发 光二极管的发光波长确认 A1组份; 接着在 AlGaAs第三半导体层上采用 MOCVD 依次生长第二半导体层 113、 有源层 112和第一半导体层 111, 如图 6所示。 在一 个实施例中第一半导体层 111可以包含 p型覆盖层和 p型窗口层, 第二半导体层可 以包含 n型欧姆接触层、 n型窗口层、 n型覆盖层等。 值得注意的是, 上述只是简 单列举了一些结构层, 并非每层都是必须, 例如可根据实际需要去除 n型窗口层 , 也可增加 n型限制层、 p型限制层、 AlGalnP过渡层等。 关于各层的功能及参数 可参照下表一。
[0071] 表一
[0072]
Figure imgf000011_0001
[0073] 在本实施例中, 第三半导体层 114设置于衬底与第二半导体层之间, 用于后续 芯片制作的过程中移除衬底时, 支撑外延结构, 同时作为出光面。 该第三半导 体首选采用 AlGaAs, 首先 AlGaAs与 GaAs衬底的晶格几乎完全匹配, 可以采用液 相外延进行快速生长, 其次, AlGaAs材料不会进行吸光, 适用于作为取光窗口 。 n型欧姆接触层用于后续制作器件后与 n型电极形成欧姆接触, 材料常采用 GaA s , 为减少吸光, 其较佳厚度控制在 50nm以内, 例如 5~20nm。 在一些实施例中 , 该 n型欧姆接触层也可以采用其他的材料, 如例 AlGaAs或者 AlGalnP等。 n型窗 口层设置在 n型欧姆接触层上, 主要起到电流扩展的作用, 其扩展能力与厚度相 关, 因此在本实施例中可根据具体的器件尺寸选择其厚度, 较佳厚度控制在 500 Onm以下。 一般发光二极管器件的尺寸可为 l~500(Vm, 对于小尺寸的器件 (例 如 10(Vm以下) 通常不存在电流扩展的问题, 此时可选择厚度为 0, 即不需要设 置 n型窗口层 221, 对于 300—以上的器件, 此时可选择 500nm~5000nm的厚度。 有源层为外延结构的发光层, 其决定发光波长及亮度。 在本实施例中, 较佳的 采用多量子讲结构, 具体垒层为 Al alGa i-alInP, 讲层为 AUGa m lnP, 其中 al > a2。 n型覆盖层和 p型覆盖层的材料根据有源层的带隙进行选择, 对于发光波 长为 670nm以上的有源层, 其带隙较低, 覆盖层可以直接选用 AlGaAs或 AlGalnP 即可, 对于发光波长为 670nm以下, 特别是 640nm以下的有源层, 其带隙较大, 一般为 1.9eV以上, 则覆盖层需要采用高带隙材料, 一般选用 Al bIn i- bP材料 (0 < b<0.5) , 在 AlGalnP材料体系中, 带隙最高的匹配材料为 A1 Q.5In Q.5P, 因此在 本实施例中, n型覆盖层和 p型覆盖层均采用 Al a5In a5P材料, 因此可使得有源层 与 p型覆盖层之间带隙差最大化。 较佳地, 可在有源层的两侧分别形成未掺杂的 AllnP或 AlGalnP材料层, 借由不通入掺杂源, 抑制 p/n掺杂源向有源层 224扩散而 影响有源层的性能。 p型窗口层形成于 p型覆盖层之上, 起到电流扩展的作用。 在本实施例, 可采用 GaP材料, 其厚度可取 1.2pm。 由于 GaP材料的晶格常数与 p 型 AllnP覆盖层的晶格常数差异较大, 较佳的, 在 p型 AllnP覆盖层与 p型窗口层之 间插入一 AlGalnP过渡层, 其组分渐变, 起衔接 AllnP和 GaP的作用, 从而提高 Ga P窗口层的晶格质量。
[0074] 表 1所述的外延结构较适用于外延叠层的尺寸为 100[xmxl00[xm以上的发光二极 管, 特别是外延叠层的尺寸为 300[xmx300[xm以上的发光二极管, 其较佳的形成 一定厚度的 n型窗口层, 可以有效提升电流扩展能力。
[0075] (二) 制作电极
[0076] 首先, 在图 6所示的外延结构的表面上定义 n电极区和 p电极区。
[0077] 接着, 蚀刻 n电极区的第一半导体层 111、 有源层 112及部分第二半导体层 113, 形成台面 A, 如图 7所示。 具体的, 以表一的外延结构为例, 蚀刻 n电极区的 p型 窗口层、 p型覆盖层、 有源层、 n型覆盖层、 n型窗口层, 直至裸露出 n型欧姆接 触层。 在本步骤中, 优选先采用干法蚀刻至 n型窗口层, 接着采用湿蚀刻的方法 将残留的 n型窗口层去除, 保证表面露出 n型欧姆接触层, 以便与 n型电极形成欧 姆接触。
[0078] 接着, 分别在 p型窗口层表面的 p电极区和裸露出的 n型欧姆接触层上制作 p电极 121和 n电极 122, 如图 8所示。 电极的材料可以例如 Au/AuZn/Au, 在本步骤中可 对电极进行熔合, 使其与外延结构形成欧姆接触。
[0079] 较佳的, 在外延结构的表面上覆盖一层绝缘保护层 140, 只裸露出 p电极 121和 n 电极 122, 如图 9所示。 优选的, 绝缘保护层 140采用氧化硅、 氮化硅、 氧化铝等 材料, 厚度为 l[xm以上。
[0080] 较佳的, 分别将在 p电极 121和 n电极 122上制作延伸电极 131和 132, 其延伸至绝 缘保护层 140的部分表面上, 如图 10所示。 该延伸电极可以同时作为反射镜面, 其材料可以为钛、 钼、 铝、 金、 银及铜等金属材料。
[0081] 尽管上述实施例中, 先形成台面再进行制作 n电极。 在另一些实施例中, 也可 以形成一个或者多个贯穿第一半导体层 111、 有源层 112的凹陷, 在该等凹陷内 制作导电柱, 然后将 n电极引至第一半导体层 111的表面之上, 可以方便制作等 高的 p\n电极, 或者将 n电极引至外延叠层的外侧区域。
[0082] (三) 移除衬底
[0083] 以第三半导体层 114作为支撑, 移除衬底 100, 裸露出第三半导体层的表面, 如 图 11所示。 可通过多种方法来实现移除, 包括激光剥离 (LLO)、 磨削或者蚀刻, 具体取决于生长衬底 301的材料选择, 在所示的具体实施例中, 在衬底 100由 GaA s构成的情况下, 可通过蚀刻或磨削及选择性蚀刻的组合连同蚀刻停止层上的选 择性蚀刻停止来实现移除。
[0084] 在本实施例中, 采用液相外延生长一层厚度达 3(Vm以上的 AlGaAs层作为支撑 层, 省去倒装结构之键合工艺, 提高了制作倒装型 AlGalnP系列发光二极管的良 率。
[0085] 实施例 5
[0086] 不同于实施例 4的是, 外延结构的第二半导体层 113不设置 n型 GaAs欧姆接触层 , 直接采用 n型窗口层作为欧姆接触层, 直接与 n电极 122接触。 表二列出了适用 于本实施例的一种外延结构。
[0087]
Figure imgf000014_0001
[0088] 本实施例中, 直接采用 Al xGa x-xInP窗口层作为欧姆接触层, 如此在制作 n电极 的台面 A时, 只需采用干法蚀刻至 n型窗口层的表面, 提升了制作电极的良率。 在本实施例中, 在 n型窗口层上形成 n电极, 然后进行高温熔合 (例如 300°C以上 ) , 使得 n电极中的金属原子扩散至 n型窗口层内, 使得该 n电极与 n型窗口层形 成欧姆接触, 该 n电极的材料可以为金、 锗、 镍或上述金属任意组合的合金, 例 如 AuGe、 AuGeNi、 Au/AuGe/Ni/Au、 Au/AuGeNi/Au等。 优选的, 该 n电极为多 层结构, 其中与 n型窗口层直接接触的第一子层为 Au层或者含金合金, 厚度介于 lnm~50nm之间, 例如可以为 5~20nm。
[0089] 优选的, 该 n型窗口层的 A1组份 x介于 0.5~1, 可有效降低该窗口层对辐射的吸 光效应; 更优选的, 为了铝镓铟磷与外延生长衬底如砷化镓的晶格良好匹配, 获得良好生长质量的铝镓铟磷, 其中所述 x介于 0.6~0.8 ; 较佳的, 为保证电流的 横向扩展, 该 n型窗口层的厚度为 0.02~6.0—, 更优选的厚度为 2.5~3.5pm; 根据 欧姆接触和横向电流扩展效果, 该 n型窗口层优选掺杂浓度为 1XE18以上, 更优 选的为 1~2E18 , 更低的掺杂浓度, 则会导致所述欧姆接触阻值过高, 更高的掺 杂浓度则导致吸光现象, 降低出光效率; 该 n型窗口层的掺杂浓度是在厚度方向 上均匀或不均匀的, 掺杂浓度不均匀的情况是窗口层的掺杂浓度变化可以是沿 着窗口层厚度方向是变化的, 即靠近第一电极的接触区域, 掺杂浓度可以更高 以促进欧姆接触。
[0090] 本实施例适用于小尺寸的发光二极管, 例如外延叠层的尺寸为 30(Vmx30(Vm以 下 mini型发光二极管或者 Micro型发光二极管。 进一步的, 本实施例以第三半导 体层为出光面, 省略容易吸光的 GaAs欧姆接触层, 直接采用窗口层作为欧姆接 触与 n电极接触, 可以进一步提升光效。
[0091] 实施例 6
[0092] 不同于实施例 5的是, n型窗口层采用 Al xGa i-xAS
, 其中 A1组分 x优选为 0.45~0.65, 例如可以为 0.5。 相对于传统的 AlGalnP窗口层 , 生长速率极限可由 7 A/S提高到 40 A/S, 生长速率可以提升 3倍以上, 外延结构 生长时间可缩短 30%以上, 程序时间大幅度缩短, 生产成本降低, 有利于大规模 量产; 同时 AlGaAs的温度窗口增加 (680°C±30°C) , 使得外延生长质量更容易 控制。
[0093] 实施例 7
[0094] 不同于实施例 4的是, 夕卜延结构的第二半导体层 113不设置 n型窗口层, 本实施 例适用于小尺寸的发光二极管, 例如外延叠层的尺寸为 300[xmx300[xm以下 mini 型发光二极管或者 Micro型发光二极管。
[0095] 实施例 8
[0096] 不同于实施例 4的是, 第三半导体层 114具有 n型掺杂, 其厚度为 30~10(Vm, n 电极直接下第三半导体层接触, 如图 12所示。 表三列出了适用于本实施例的一 种外延结构。
[0097] 表三
[0098]
Figure imgf000016_0001
[0099] 在本实施例, 直接采用第三半导体层 114作为欧姆接触层, 省略了 n型窗口层和 n型 GaAs欧姆接触层, 比较适用于小尺寸的发光二极管, 例如外延叠层的尺寸为 300[xmx300[xm以下 mini型发光二极管或者 Micro型发光二极管。
[0100] 实施例 9
[0101] 不同于实施例 4的是, 外延结构的第一半导体层为 n型导电类型, 第二半导体层 为 p型导电类型。 具体的, 第一半导体层 111可以包含 n型覆盖层、 n型窗口层, 第二半导体层 113可以包含 p型覆盖层、 p型窗口层。
[0102] 表四
[0103]
Figure imgf000017_0001
[0104] 表四列出了适用于本实施例的一种外延结构。 其中 n电极与 n型窗口层连接, p 电极与 p型窗口层连接。
[0105] 在一个变形实施例中, 第二半导体层 113可以包含 GaAs欧姆接触层, p电极与 G aAs欧姆接触层连接。 在另一个变形实施中, 该第二半导体层 113不包含窗口层 及欧姆接触层, 第三半导体层 114具有 p型导电, 同时作为欧姆接触层, 与 p电极 连接。
[0106] 以上所述仅为本发明创造的较佳实施例而已, 并不用以限制本发明创造, 凡在 本发明创造的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包 含在本发明创造的保护范围之内。

Claims

权利要求书
[权利要求 1] 发光二极管的制作方法, 包括步骤:
(D 提供一衬底, 在该衬底上形成外延结构, 该外延结构依次包含 第一半导体层、 AlGalnP有源层、 第二半导体层和第三半导体层, 该 第三半导体层比所述第一半导体层更靠近所述衬底, 其材料为铝镓砷 , 厚度为 30[xm以上;
(2) 在所述外延结构之远离所述衬底的一侧表面上制作第一电极和 第二电极, 其中第一电极电连接至第一半导体层、 第二电极电连接至 第二半导体层;
(3) 去除该衬底, 其中第三半导体层支撑该外延叠层, 确保其物理 稳定性。
[权利要求 2] 根据权利要求 1所述的发光二极管的制作方法, 其特征在于: 所述步 骤 (!)依次包含下面步骤:
( 11) 提供一衬底;
( 12) 采用液相外延技术在该衬底上生长所述第三半导体层;
( 13) 采用 MOCVD外延技术, 在该第三半导体层上依次形成第二半 导体层、 有源层和第一半导体层。
[权利要求 3] 根据权利要求 1所述的发光二极管的制作方法, 其特征在于: 在步骤
( 1) 中形成的第三半导体层的材料为铝镓砷, 其中铝组分的含量为 2
0%~95%。
[权利要求 4] 根据权利要求 1所述的发光二极管的制作方法, 其特征在于: 在步骤
( 1 ) 中形成的第三半导体层的厚度为 30~30(Vm。
[权利要求 5] 根据权利要求 1所述的发光二极管的制作方法, 其特征在于: 所述步 骤 ( 1) 中形成的外延结构的第二半导体层包含第二类型的覆盖层和 窗口层, 其中窗口层为 AlGaAs或者 AlGalnP; 所述步骤 ⑵ 中形成 的第二电极与所述窗口层形成欧姆接触。
[权利要求 6] 根据权利要求 5所述的发光二极管, 其特征在于: 所述步骤 (2) 中先 在所述第二类型的窗口层的表面上形成第二电极, 然后进行加热处理 使得所述第一电极的金属原子扩散至第二型类的窗口层内, 以使该第 二电极与第二类型的窗口层形成欧姆接触。
[权利要求 7] 根据权利要求 6所述的发光二极管, 其特征在于: 所述第二电极为单 层或者多层结构, 其中与该窗口层直接接触的材料层为 Au或者含金 合金。
[权利要求 8] 根据权利要求 1所述的发光二极管, 其特征在于: 所述步骤 (1) 中形 成的外延结构依次包含第一类型的覆盖层、 有源层、 第二类型的覆盖 层、 欧姆接触层及第三半导体层, 所述步骤 (2) 形成的第二电极与 所述欧姆接触层接触。
[权利要求 9] 根据权利要求 1所述的发光二极管的制作方法, 其特征在于: 所述步 骤 (1) 中形成的外延结构依次包含第一类型的覆盖层、 有源层、 第 二类型的覆盖层及第三半导体层, 所述步骤 (2) 中形成的第二电极 与第三半导体层接触。
[权利要求 10] 根据权利要求 9所述的发光二极管, 其特征在于: 所述步骤 (2) 中先 在所述第三半导体层的表面上形成第二电极, 然后进行加热处理使得 所述第一电极的金属原子扩散至第三半导体层内, 以使该第二电极与 第三半导体层形成欧姆接触。
[权利要求 11] 根据权利要求 1所述的发光二极管的制作方法, 其特征在于: 在步骤
(2) 中包括:
蚀刻部分所述外延结构的第一半导体、 有源层和第二半导体层, 形成 台面或者凹陷, 该台面或者凹陷蚀刻至第二半导体层或第三半导体层 , 裸露出所述第二半导体层或者第三半导体层的表面;
在该台面或者凹陷上制作第二电极。
[权利要求 12] 根据权利要求 1所述的发光二极管的制作方法, 其特征在于: 在步骤
(3) 中, 以第三半导体层作为支撑, 去除所述衬底。
[权利要求 13] 发光二极管, 其特征在于: 采用权利要求 1-12所述的任意一种制作方 法获得。
[权利要求 14] 发光二极管, 包括: 外延叠层, 依次包含第一半导体层、 AlGalnP有源层、 第二半导体层 和第三半导体层, 所述第三半导体层的材料为铝镓砷, 厚度为 3(Vm 以上, 支撑所述外延叠层, 以确保其物理稳定性; 第一电极和第二电极, 形成于所述外延叠层的同一侧, 其中第一电极 电连接所述第一半导体层, 第二电极电连接第二半导体层。
[权利要求 15] 根据权利要求 14所述的发光二极管, 其特征在于: 所述第三半导体层 的厚度为 30~30(Vm。
[权利要求 16] 根据权利要求 14所述的发光二极管, 其特征在于: 所述第三半导体层 为铝镓砷, 其中铝组分的含量为 20%~95%。
[权利要求 17] 根据权利要求 14所述的发光二极管, 其特征在于: 所述有源层发射的 光线从所述第三半导体层一侧表面射出。
[权利要求 18] 根据权利要求 14所述的发光二极管, 其特征在于: 所述第一半导体层 的材料为砷镓化铝、 磷化铝镓铟、 磷化铝铟、 磷化镓或前述任意组合
[权利要求 19] 根据权利要求 14所述的发光二极管, 其特征在于: 所述第二半导体层 的材料为砷镓化铝、 磷化铝镓铟、 磷化铝铟、 磷化镓或前述任意组合
[权利要求 20] 根据权利要求 14所述的发光二极管, 其特征在于: 所述第二半导体层 包含第二类型的覆盖层和窗口层, 该窗口层为 AlGaAs或者 AlGalnP, 所述第二电极与所述窗口层形成欧姆接触。
[权利要求 21] 根据权利要求 20所述的发光二极管, 其特征在于: 所述第二电极为单 层或者多层结构, 其中与该窗口层直接接触的材料层为 Au或者含金 合金。
[权利要求 22] 根据权利要求 21所述的发光二极管, 其特征在于: 所述与该窗口层直 接接触的材料层的厚度为 5~20nm。
[权利要求 23] 根据权利要求 14所述的发光二极管, 其特征在于: 所述第二电极与所 述第三半导体层形成欧姆接触。
[权利要求 24] 根据权利要求 23所述的发光二极管, 其特征在于: 所述第二电极为单 层或者多层结构, 其中与该窗口层直接接触的材料层为 Au或者含金 合金。
[权利要求 25] 根据权利要求 14所述的发光二极管, 其特征在于: 所述外延叠层的尺 寸为 30(Vmx30(Vm以下, 所述第二半导体层包含第二类型的覆盖层 和窗口层, 所述第二电极与所述窗口层接触。
[权利要求 26] 根据权利要求 14所述的发光二极管, 其特征在于: 所述外延叠层的尺 寸为 30(Vmx30(Vm以下, 所述第二半导体层包含第二类型的覆盖层 和欧姆接触层, 所述第二电极与所述欧姆接触层接触。
[权利要求 27] 根据权利要求 14所述的发光二极管, 其特征在于: 所述外延叠层依次 包含第一类型的窗口层、 第一类型的覆盖层、 AlGalnP有源层、 第二 类型的覆盖层、 第二类型的窗口层和第三半导体层, 所述第二电极接 触所述第二类型的窗口层。
[权利要求 28] 根据权利要求 14所述的发光二极管, 其特征在于: 所述外延叠层依次 包含第一类型的窗口层、 第一类型的覆盖层、 AlGalnP有源层、 第二 类型的覆盖层、 第二类型的窗口层、 欧姆接触层和第三半导体层, 所 述第二电极与欧姆接触层接触。
[权利要求 29] 根据权利要求 14所述的发光二极管, 其特征在于: 还包括第一金属层 和第二金属层, 分别与第一、 第二电极接触, 其面积分别大于所述第 第二电极的面积。
[权利要求 30] 根据权利要求 29所述的发光二极管, 其特征在于: 所述第一金属层和 第二金属层作为反射层。
[权利要求 31] 发光装置, 包含若干个发光二极管, 其中该若干个发光二极管中的至 少一个包括: 外延叠层, 其依次包含第一半导体层、 AlGalnP有源层、 第二半导体 层和第三半导体层, 所述第三半导体层的材料为铝镓砷, 厚度为 3(V m以上, 支撑所述外延叠层, 以确保其物理稳定性;
第一电极和第二电极, 形成于所述外延叠层的同一侧, 其中第一电极 电连接所述第一类型半导体层, 第二电极电连接第二类型半导体层。
[权利要求 32] 根据权利要求 31所述的发光装置, 其特征在于: 所述第三半导体层的 铝组分为 20%~95%。
[权利要求 33] 根据权利要求 31所述的发光装置, 其特征在于: 所述第三半导体层的 厚度为 30~30(Vm。
[权利要求 34] 根据权利要求 31所述的发光装置, 其特征在于: 所述外延叠层的尺寸 为 30(Vmx30(Vm以下, 所述第二半导体层包含第二类型的覆盖层和 窗口层, 所述第二电极与所述窗口层接触。
[权利要求 35] 根据权利要求 31所述的发光装置, 其特征在于: 所述外延叠层的尺寸 为 30(Vmx30(Vm以下, 所述第二半导体层包含第二类型的覆盖层和 欧姆接触层, 所述第二电极与所述欧姆接触层接触。
[权利要求 36] 根据权利要求 31所述的发光装置, 其特征在于: 所述外延叠层的尺寸 为 10(Vmxl0(Vm以上, 所述第二半导体层包含第二类型的限制层、 覆盖层、 窗口层和欧姆接触层, 所述第二电极与所述欧姆接触层接触
PCT/CN2019/076136 2018-05-01 2019-02-26 发光二极管及其制作方法 WO2019210732A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207023901A KR102453206B1 (ko) 2018-05-02 2019-02-26 발광 다이오드 및 그 제조방법
JP2020528449A JP2021513210A (ja) 2018-05-02 2019-02-26 発光ダイオード及びその製造方法
CN201980000871.4A CN110915005A (zh) 2018-05-02 2019-02-26 发光二极管及其制作方法
TW108115082A TWI781317B (zh) 2018-05-01 2019-04-30 發光二極體、其製作方法及發光裝置
US17/084,223 US11563140B2 (en) 2018-05-02 2020-10-29 Light emitting device and production method and use thereof
US18/157,237 US11973163B2 (en) 2018-05-02 2023-01-20 Light emitting device and production method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810411333.1A CN108550666A (zh) 2018-05-02 2018-05-02 倒装四元系发光二极管外延结构、倒装四元系发光二极管及其生长方法
CN201810411333.1 2018-05-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/084,223 Continuation-In-Part US11563140B2 (en) 2018-05-02 2020-10-29 Light emitting device and production method and use thereof

Publications (1)

Publication Number Publication Date
WO2019210732A1 true WO2019210732A1 (zh) 2019-11-07

Family

ID=63513323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076136 WO2019210732A1 (zh) 2018-05-01 2019-02-26 发光二极管及其制作方法

Country Status (6)

Country Link
US (2) US11563140B2 (zh)
JP (1) JP2021513210A (zh)
KR (1) KR102453206B1 (zh)
CN (2) CN108550666A (zh)
TW (1) TWI781317B (zh)
WO (1) WO2019210732A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109860364B (zh) * 2017-08-30 2020-09-01 天津三安光电有限公司 发光二极管
WO2020151014A1 (zh) * 2019-01-25 2020-07-30 厦门市三安光电科技有限公司 一种发光二极管器件
CN110364601A (zh) * 2019-07-09 2019-10-22 佛山市国星半导体技术有限公司 一种垂直led芯片外延结构及其制备方法和垂直led芯片
CN111819702B (zh) * 2019-11-26 2024-04-09 天津三安光电有限公司 一种红外发光二极管
TWI750664B (zh) 2020-05-19 2021-12-21 錼創顯示科技股份有限公司 微型發光二極體晶片
CN111540817A (zh) * 2020-05-19 2020-08-14 錼创显示科技股份有限公司 微型发光二极管芯片
CN112133804B (zh) * 2020-08-04 2022-03-18 华灿光电(苏州)有限公司 发光二极管芯片及其制作方法
CN114287065A (zh) * 2021-08-20 2022-04-05 天津三安光电有限公司 微发光二极管及制备方法和显示面板
CN113823716B (zh) * 2021-09-17 2023-09-15 厦门士兰明镓化合物半导体有限公司 Led外延结构及其制备方法
WO2023087314A1 (zh) * 2021-11-22 2023-05-25 厦门市三安光电科技有限公司 发光二极管及制备方法和显示面板
CN114388670A (zh) * 2021-12-27 2022-04-22 泉州三安半导体科技有限公司 一种不可见光发光二极管

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW474034B (en) * 2000-11-07 2002-01-21 United Epitaxy Co Ltd LED and the manufacturing method thereof
TW480752B (en) * 2001-04-09 2002-03-21 United Epitaxy Co Ltd Structure and manufacturing method for light emitting diode
US20030146444A1 (en) * 2002-01-17 2003-08-07 Matsushita Electric Industrial Co., Ltd. Group III-V compound semiconductor and group III-V compound semiconductor device using the same
CN104617195A (zh) * 2015-02-06 2015-05-13 扬州乾照光电有限公司 一种近红外发光二极管及其生产方法
CN105845793A (zh) * 2016-06-01 2016-08-10 天津三安光电有限公司 一种不可见光发光二极管及其制作方法
CN107919417A (zh) * 2016-10-09 2018-04-17 比亚迪股份有限公司 发光二极管及其制备方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300788A (en) * 1991-01-18 1994-04-05 Kopin Corporation Light emitting diode bars and arrays and method of making same
DE4113969A1 (de) * 1991-04-29 1992-11-05 Telefunken Electronic Gmbh Verfahren zur herstellung von ohmschen kontakten fuer verbindungshalbleiter
JPH09283798A (ja) * 1996-04-19 1997-10-31 Rohm Co Ltd 半導体発光素子およびその製法
US6107648A (en) * 1997-03-13 2000-08-22 Rohm Co., Ltd. Semiconductor light emitting device having a structure which relieves lattice mismatch
GB2344458B (en) * 1998-12-02 2000-12-27 Arima Optoelectronics Corp Light-emitting diodes
US20010042866A1 (en) * 1999-02-05 2001-11-22 Carrie Carter Coman Inxalygazn optical emitters fabricated via substrate removal
US6320206B1 (en) * 1999-02-05 2001-11-20 Lumileds Lighting, U.S., Llc Light emitting devices having wafer bonded aluminum gallium indium nitride structures and mirror stacks
JP2001127343A (ja) * 1999-10-27 2001-05-11 Matsushita Electronics Industry Corp 複合発光素子及びその製造方法
JP2001291895A (ja) * 2000-04-06 2001-10-19 Sharp Corp 半導体発光素子
US6909536B1 (en) * 2001-03-09 2005-06-21 Finisar Corporation Optical receiver including a linear semiconductor optical amplifier
TW522534B (en) * 2001-09-11 2003-03-01 Hsiu-Hen Chang Light source of full color LED using die bonding and packaging technology
US6869820B2 (en) * 2002-01-30 2005-03-22 United Epitaxy Co., Ltd. High efficiency light emitting diode and method of making the same
US8685764B2 (en) * 2005-01-11 2014-04-01 SemiLEDs Optoelectronics Co., Ltd. Method to make low resistance contact
TWI285970B (en) * 2005-08-26 2007-08-21 Arima Optoelectronics Corp Window interface layer structure of LED
CN100533791C (zh) * 2006-02-22 2009-08-26 夏普株式会社 发光二极管及其制造方法
WO2008038910A1 (en) * 2006-09-25 2008-04-03 Seoul Opto Device Co., Ltd. Light emitting diode having alingap active layer and method of fabricating the same
US8110425B2 (en) * 2007-03-20 2012-02-07 Luminus Devices, Inc. Laser liftoff structure and related methods
JP2010016353A (ja) * 2008-06-03 2010-01-21 Sumitomo Electric Ind Ltd AlxGa(1−x)As基板、赤外LED用のエピタキシャルウエハ、赤外LED、AlxGa(1−x)As基板の製造方法、赤外LED用のエピタキシャルウエハの製造方法および赤外LEDの製造方法
US10147843B2 (en) * 2008-07-24 2018-12-04 Lumileds Llc Semiconductor light emitting device including a window layer and a light-directing structure
JP5325506B2 (ja) * 2008-09-03 2013-10-23 株式会社東芝 半導体発光素子及びその製造方法
CN102130254B (zh) * 2010-09-29 2015-03-11 映瑞光电科技(上海)有限公司 发光装置及其制造方法
TW201232806A (en) * 2011-01-31 2012-08-01 Walsin Lihwa Corp Method for fabricating light emitting diode chip
JP2012230969A (ja) * 2011-04-25 2012-11-22 Sumitomo Electric Ind Ltd GaN系半導体デバイスの製造方法
TWI445189B (zh) * 2011-04-29 2014-07-11 Iner Aec Executive Yuan 光電元件之基板剝離的結構及其方法
CN103474543B (zh) * 2012-06-07 2016-06-08 清华大学 发光二极管
KR101482526B1 (ko) * 2012-12-28 2015-01-16 일진엘이디(주) 질화물 반도체 발광 소자 제조 방법
TW201513397A (zh) * 2013-09-26 2015-04-01 Lextar Electronics Corp 發光二極體之製造方法
TWI623115B (zh) * 2014-10-09 2018-05-01 新世紀光電股份有限公司 具粗化表面之薄膜式覆晶發光二極體及其製造方法
KR102268109B1 (ko) * 2014-12-22 2021-06-22 엘지이노텍 주식회사 발광 소자 및 이를 구비한 발광 소자 패키지
JP6649726B2 (ja) * 2015-09-11 2020-02-19 三星電子株式会社Samsung Electronics Co.,Ltd. 半導体発光装置およびその製造方法
JP2017126720A (ja) * 2016-01-15 2017-07-20 信越半導体株式会社 発光素子及びその製造方法
CN105529382B (zh) * 2016-01-20 2019-04-12 华灿光电(苏州)有限公司 一种红黄光的发光二极管外延片及芯片的制备方法
JP2017183458A (ja) * 2016-03-30 2017-10-05 ソニー株式会社 発光素子組立体及びその製造方法、並びに、表示装置
CN106299058A (zh) * 2016-08-30 2017-01-04 扬州乾照光电有限公司 一种用于倒装红外发光二极管的外延片
TWI786248B (zh) * 2018-12-26 2022-12-11 晶元光電股份有限公司 發光元件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW474034B (en) * 2000-11-07 2002-01-21 United Epitaxy Co Ltd LED and the manufacturing method thereof
TW480752B (en) * 2001-04-09 2002-03-21 United Epitaxy Co Ltd Structure and manufacturing method for light emitting diode
US20030146444A1 (en) * 2002-01-17 2003-08-07 Matsushita Electric Industrial Co., Ltd. Group III-V compound semiconductor and group III-V compound semiconductor device using the same
CN104617195A (zh) * 2015-02-06 2015-05-13 扬州乾照光电有限公司 一种近红外发光二极管及其生产方法
CN105845793A (zh) * 2016-06-01 2016-08-10 天津三安光电有限公司 一种不可见光发光二极管及其制作方法
CN107919417A (zh) * 2016-10-09 2018-04-17 比亚迪股份有限公司 发光二极管及其制备方法

Also Published As

Publication number Publication date
US11563140B2 (en) 2023-01-24
KR102453206B1 (ko) 2022-10-07
US11973163B2 (en) 2024-04-30
CN110915005A (zh) 2020-03-24
KR20200123126A (ko) 2020-10-28
US20210050475A1 (en) 2021-02-18
TW201946294A (zh) 2019-12-01
JP2021513210A (ja) 2021-05-20
US20230187574A1 (en) 2023-06-15
TWI781317B (zh) 2022-10-21
CN108550666A (zh) 2018-09-18

Similar Documents

Publication Publication Date Title
WO2019210732A1 (zh) 发光二极管及其制作方法
US10326055B2 (en) Diode having vertical structure
US8735185B2 (en) Light emitting device and fabrication method thereof
CN112542533B (zh) 一种高电光转换率倒装结构深紫外micro-LED及其制备方法
TW200843150A (en) III-nitride light emitting device with reduced strain light emitting layer
JP2008218878A (ja) GaN系LED素子および発光装置
TW201817033A (zh) 具有超晶格之iii-p發光器件
KR101032987B1 (ko) 반도체 발광소자
JP2002353503A (ja) 窒化ガリウム系化合物半導体発光素子
US20230016028A1 (en) Semiconductor light-emitting component and light-emitting device
JP6921179B2 (ja) 超格子を用いたiii−p発光デバイス
TWI221037B (en) Light emitting diode structure and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19796865

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020528449

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19796865

Country of ref document: EP

Kind code of ref document: A1