WO2019208491A1 - 電磁弁システム - Google Patents

電磁弁システム Download PDF

Info

Publication number
WO2019208491A1
WO2019208491A1 PCT/JP2019/017006 JP2019017006W WO2019208491A1 WO 2019208491 A1 WO2019208491 A1 WO 2019208491A1 JP 2019017006 W JP2019017006 W JP 2019017006W WO 2019208491 A1 WO2019208491 A1 WO 2019208491A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
solenoid valve
control
switch
solenoid
Prior art date
Application number
PCT/JP2019/017006
Other languages
English (en)
French (fr)
Inventor
坂村直紀
塩見幸治
Original Assignee
Smc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smc株式会社 filed Critical Smc株式会社
Priority to JP2020516340A priority Critical patent/JP7106063B2/ja
Priority to CN201980028613.7A priority patent/CN112055796B/zh
Priority to US17/050,670 priority patent/US11396954B2/en
Priority to EP19793462.3A priority patent/EP3786502B1/en
Priority to CA3098559A priority patent/CA3098559C/en
Priority to MX2020011154A priority patent/MX2020011154A/es
Publication of WO2019208491A1 publication Critical patent/WO2019208491A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • F15B20/002Electrical failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • F15B13/08Assemblies of units, each for the control of a single servomotor only
    • F15B13/0803Modular units
    • F15B13/0832Modular valves
    • F15B13/0839Stacked plate type valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • F15B13/08Assemblies of units, each for the control of a single servomotor only
    • F15B13/0803Modular units
    • F15B13/0846Electrical details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • F15B13/08Assemblies of units, each for the control of a single servomotor only
    • F15B13/0803Modular units
    • F15B13/0846Electrical details
    • F15B13/085Electrical controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/005Fault detection or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B9/00Safety arrangements
    • G05B9/02Safety arrangements electric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/064Circuit arrangements for actuating electromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1877Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings controlling a plurality of loads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/862Control during or prevention of abnormal conditions the abnormal condition being electric or electronic failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/862Control during or prevention of abnormal conditions the abnormal condition being electric or electronic failure
    • F15B2211/8623Electric supply failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/862Control during or prevention of abnormal conditions the abnormal condition being electric or electronic failure
    • F15B2211/8626Electronic controller failure, e.g. software, EMV, electromagnetic interference

Definitions

  • the present invention relates to a solenoid valve system including a control unit and a plurality of solenoid valve units arranged in a line with respect to the control unit.
  • U.S. Pat. No. 8,156,965 discloses a solenoid valve system in which a plurality of solenoid valve units are arranged in a line with respect to a control unit.
  • control / sensor wires control wires
  • voltage supply lines power lines and power supply lines
  • a plurality of solenoid valves are provided. It becomes possible to drive the solenoid valve in the valve unit.
  • control / sensor lines and the voltage supply lines extend in the plurality of solenoid valve units, the control / sensor lines and the voltage supply lines may be short-circuited in the solenoid valve unit. is there.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a solenoid valve system that avoids the occurrence of a short circuit between a control line and a power supply line in the solenoid valve unit.
  • An aspect of the present invention is an electromagnetic valve having a control unit and a plurality of electromagnetic valve units that are arranged in a line with respect to the control unit and that include a solenoid that drives the electromagnetic valve by supplying electric power from the control unit. It is about the system.
  • the control unit includes a safety circuit connected to an external driving power source, an electromagnetic valve driving circuit whose input side is connected to the safety circuit, and whose output side is connected to the plurality of electromagnetic valve units, the safety circuit, and the safety circuit And a control circuit for controlling the solenoid valve drive circuit.
  • the safety circuit includes a first switching unit that switches between supply and interruption of electric power from the driving power source to the electromagnetic valve driving circuit under the control of the control circuit.
  • the solenoid valve system is connected to one terminal of the driving power supply via the safety circuit, extends to the plurality of solenoid valve units, and is connected to one end of the solenoids. And a plurality of power lines connected to the other terminal of the drive power supply via the safety circuit and connected to the other end of each of the plurality of solenoids.
  • the solenoid valve driving circuit is provided in each of the plurality of power lines, and is controlled by the control circuit to switch power supply from the safety circuit to the plurality of solenoids, and a plurality of second switching circuits. It has a switching part.
  • the control unit only supplies power to the solenoids of the plurality of solenoid valve units via the common line and the power line that are power supply lines. That is, in the present invention, since control signals are exchanged between the control circuit in the control unit, the safety circuit, and the solenoid valve drive circuit, a control line for supplying control signals to the plurality of solenoid valve units. Is not provided. As a result, it is possible to avoid occurrence of a short circuit between the control line and the power supply line in the electromagnetic valve unit as in US Pat. No. 8,156,965.
  • the first switching unit performs interlock control on the solenoid valve driving circuit and the plurality of solenoid valve units, and the second switching unit supplies and shuts off power to each solenoid.
  • the interlock control and the driving of the electromagnetic valve can be performed efficiently.
  • control unit incorporates a control circuit, a safety circuit, and a solenoid valve drive circuit, the entire solenoid valve system can be reduced in size.
  • FIG. 1 is a schematic configuration diagram of a solenoid valve system according to the present embodiment.
  • FIG. 2 is a detailed configuration diagram of the solenoid valve system of FIG.
  • FIG. 3 is a schematic configuration diagram of a first modification of the electromagnetic valve system of FIG.
  • FIG. 4 is a schematic configuration diagram of a second modification of the solenoid valve system of FIG.
  • FIG. 5 is a schematic configuration diagram of a third modification of the solenoid valve system of FIG.
  • the electromagnetic valve system 10 As shown in FIG. 1, the electromagnetic valve system 10 according to the present embodiment includes a control unit 12 and a plurality of electromagnetic valve units 14. The plurality of solenoid valve units 14 are arranged in a line with respect to the control unit 12.
  • the control unit 12 includes a control circuit 16, a safety circuit 18, a solenoid valve drive circuit 20, and a solenoid valve connection portion 22.
  • the control circuit 16 is connected to a control power supply 24 that is an external DC power supply, and is connected to a sequencer 28 such as a PLC (Programmable Logic Controller) that is a host device via a fieldbus 26.
  • the control circuit 16 is connected to the safety circuit 18 and the solenoid valve drive circuit 20 via control lines 30 and 32.
  • the safety circuit 18, the solenoid valve drive circuit 20, and the solenoid valve connection portion 22 are provided in the control unit 12 for supplying power from the drive power supply 34 that is an external DC power supply to the plurality of solenoid valve units 14. ing.
  • the safety circuit 18, the solenoid valve drive circuit 20, the solenoid valve connection portion 22, and the plurality of solenoid valve units 14 are connected in parallel to the drive power supply 34.
  • the safety circuit 18 includes a first switch (first switching unit) 36, a second switch (first switching unit) 38, and a safety control circuit 40.
  • the first switch 36 is disposed on one positive power line (common line) 42 extending from the positive terminal (one terminal) of the drive power supply 34 to the plurality of solenoid valve units 14.
  • the second switch 38 has one end connected to the negative terminal (the other terminal) of the drive power supply 34 and the other end connected to one negative power line 44.
  • the safety control circuit 40 turns on and off the first switch 36 and the second switch 38 as cutoff switches based on a control signal supplied from the control circuit 16 via the control line 30.
  • the electromagnetic valve drive circuit 20 has a plurality of open / close switches (second switching units) 46.
  • Each of the branched negative electrode side power lines 50 extends to the corresponding solenoid valve unit 14.
  • Each of the plurality of open / close switches 46 is disposed on the plurality of negative power lines 50 and is turned on / off based on a control signal supplied from the control circuit 16 via the control line 32.
  • the number of the negative power lines 50 described above is an example, and the number of the negative power lines 50 larger than the number of the plurality of solenoid valve units 14 may be branched from the common terminal 48. Thereby, it is possible to easily cope with a case where the number of connected solenoid valve units 14 to the control unit 12 is increased or decreased. That is, the negative power line 50 that does not extend to the electromagnetic valve unit 14 becomes a spare power line for the newly connected electromagnetic valve unit 14. In addition, it is possible to extend two or more negative power lines 50 into one electromagnetic valve unit 14. Further, when the solenoid valve unit 14 not provided with the solenoid valve is connected to the control unit 12, a predetermined number of negative power lines 50 only need to extend in the solenoid valve unit 14.
  • the first switch 36, the second switch 38, and the plurality of open / close switches 46 may be any switching means that turns on and off based on the supply of the control signal.
  • switching means include semiconductor switching elements such as transistors.
  • a PNP transistor is used for the first switch 36
  • an NPN transistor is used for the second switch 38 and the plurality of open / close switches 46. Can be used.
  • the solenoid valve connecting portion 22 is a connecting means such as a connector through which one positive-side power line 42 and a plurality of negative-side power lines 50 pass and electrically connect the control unit 12 and the plurality of solenoid valve units 14. .
  • Each of the plurality of solenoid valve units 14 includes a solenoid 52 for driving a solenoid valve (not shown). Positive terminals (one end) of the plurality of solenoids 52 are connected to the positive power line 42. In addition, each of the negative terminal (the other end) of the plurality of solenoids 52 is connected to the corresponding negative power line 50.
  • the positive-side power line 42 is farthest from the positive-side terminal of the driving power supply 34 with respect to the driving power supply 34. It is provided so that it may extend.
  • each of the plurality of negative-side power lines 50 extends to the corresponding electromagnetic valve unit 14 and is connected to the negative-side terminal of the solenoid 52.
  • FIG. 1 as an example, a case where one solenoid 52 is provided in one solenoid valve unit 14 is illustrated, but two or more solenoids 52 can be provided in one solenoid valve unit 14. is there.
  • an instruction signal is supplied from the sequencer 28 to the control circuit 16 via the field bus 26.
  • the instruction signal may be a signal for instructing driving of an arbitrary electromagnetic valve, for example.
  • control circuit 16 When receiving the instruction signal, the control circuit 16 supplies a control signal (ON signal or OFF signal) based on the instruction signal to the safety circuit 18 and the solenoid valve drive circuit 20 via the control lines 30 and 32.
  • a control signal ON signal or OFF signal
  • the safety control circuit 40 of the safety circuit 18 When the safety control circuit 40 of the safety circuit 18 receives the ON signal via the control line 30, the safety control circuit 40 turns ON the first switch 36 and the second switch 38 based on the ON signal.
  • the solenoid valve drive circuit 20 when an ON signal is received via the control line 32, the corresponding opening / closing switch 46 is turned ON. That is, the first switch 36, the second switch 38, and the opening / closing switch 46 are normally maintained in an off state by an off signal supplied from the control circuit 16 to the safety circuit 18 and the solenoid valve drive circuit 20. Is switched from the off-state to the on-state.
  • the positive terminal of the drive power supply 34 is electrically connected to the positive terminal of the solenoid 52 constituting the plurality of solenoid valve units 14 via the first switch 36 and the positive power line 42.
  • the negative electrode side terminal of the drive power supply 34 is, among the plurality of solenoid valve units 14, via the second switch 38, the negative electrode power line 44, the open / close switch 46 switched to the ON state, and the negative electrode power line 50. It is electrically connected to the negative terminal of the solenoid 52 connected to the open / close switch 46. Therefore, the drive power supply 34 is electrically connected via the safety circuit 18, the solenoid valve drive circuit 20, and the solenoid valve connection 22, that is, via the positive power line 42 and the negative power lines 44 and 50. Power can be supplied to the solenoid 52 that is present. As a result, the solenoid 52 to which power is supplied is excited, and the solenoid valve corresponding to the solenoid 52 can be driven.
  • the first switch 36 and the second switch 38 are turned on, and all the open / close switches 46 are turned on so that all solenoids from the drive power supply 34 are turned on. What is necessary is just to supply electric power to 52.
  • the first switch 36 and the second switch 38 are turned on, and the open / close switch 46 connected to the solenoid 52 of the part of the solenoid valves is turned on to drive. Electric power may be supplied from the power supply 34 to the solenoid 52.
  • control circuit 16 indicates the operating state of the safety circuit 18 and the electromagnetic valve driving circuit 20, that is, the driving state of the electromagnetic valves constituting the electromagnetic valve unit 14 via the field bus 26.
  • the sequencer 28 may be notified.
  • the solenoid valve drive circuit 20 and the plurality of solenoid valve units. 14 can be appropriately controlled.
  • Control Unit 12 The schematic configuration and schematic operation of the electromagnetic valve system 10 according to the present embodiment are as described above. Next, a detailed configuration in the control unit 12 will be described with reference to FIG.
  • the control unit 12 may further include a down converter 54 such as a DC / DC converter.
  • the down converter 54 can step down the DC voltage output from the control power supply 24 to the drive voltage of the control circuit 16 and supply the voltage to the control circuit 16. That is, in the control unit 12, the power supply system circuit 56 including the safety circuit 18, the solenoid valve drive circuit 20 and the solenoid valve connection unit 22 and the control system circuit 58 including the control circuit 16 operate with different voltages. It is to do. Therefore, in the control unit 12, it is desirable to electrically insulate the control system circuit 58 and the power supply system circuit 56 with an insulating circuit (not shown).
  • the safety control circuit 40 also has a function of performing a diagnostic test of the control unit 12.
  • the safety control circuit 40 includes a first microcomputer (first control unit) 40a, a first diagnosis circuit 40b, a second microcomputer (second control unit) 40c, and a second diagnosis circuit 40d. .
  • the first microcomputer 40a turns the first switch 36 on and off based on a control signal (on signal or off signal) supplied from the control circuit 16 via the control line 30.
  • the first diagnosis circuit 40b diagnoses the state of the positive power line 42 when the first switch 36 is turned on / off.
  • the second microcomputer 40 c turns on and off the second switch 38 based on a control signal supplied from the control circuit 16 via the control line 30.
  • the second diagnosis circuit 40d diagnoses the state of the negative power lines 44 and 50 when the second switch 38 is turned on / off.
  • the safety control circuit 40 performs a known pulse test to diagnose the presence or absence of a short circuit between the positive power line 42 and the negative power lines 44 and 50 and other wirings.
  • the first switch 40 is turned off for a predetermined time by the first microcomputer 40a, or the second switch 38 is turned on by the second microcomputer 40c. Turn off for a predetermined time.
  • the first diagnostic circuit 40b detects the passage of time within a predetermined time of the potential of the positive power line 42.
  • the second diagnostic circuit 40d detects the passage of time within the predetermined time of the potentials of the negative power lines 44 and 50.
  • the first diagnostic circuit 40b determines whether the positive power line 42 is short-circuited with other wirings (for example, control lines 30 and 32) or the first switch 36 is fixed after the time of the potential of the positive power line 42 has elapsed. And the like, and the result of the diagnosis is reported to the second microcomputer 40c.
  • the second diagnostic circuit 40d determines whether or not the negative power line 44, 50 is short-circuited with other wirings (for example, the control lines 30, 32) from the time elapse of the potential of the negative power line 44, 50, The presence or absence of a failure such as the sticking of the switch 38 is diagnosed, and the diagnosis result is reported to the first microcomputer 40a.
  • the first diagnostic circuit 40b may cause a failure of the first switch 36. Then, it is diagnosed that a short circuit between the positive power line 42 and other wiring has not occurred.
  • the first diagnostic circuit 40b causes the capacitor component such as the positive power line 42 to It is determined that the potential is gradually decreasing.
  • the first diagnostic circuit 40b indicates that the positive power line 42 is short-circuited with other wiring, 1 It is determined that the switch 36 has failed.
  • the second diagnostic circuit 40d It is diagnosed that there is no failure of 38 or a short circuit between the negative power lines 44 and 50 and other wiring.
  • the second diagnostic circuit 40d includes the negative power lines 44, It is determined that the potential is gradually rising due to a capacitor component such as 50.
  • the second diagnostic circuit 40d causes the negative power lines 44 and 50 to short-circuit with other wirings. It is determined that the second switch 38 is malfunctioning.
  • the second microcomputer 40c reports the diagnosis result from the first diagnosis circuit 40b to the first microcomputer 40a and also reports to the control circuit 16 via the control line 30. Thereby, the first microcomputer 40a turns off the first switch 36 when the diagnosis result indicates that the positive power line 42 is short-circuited, for example.
  • the second microcomputer 40c turns off the second switch 38. For example, since the first switch 36 may be fixed, the power supply from the driving power supply 34 can be reliably cut off by turning off the second switch 38.
  • the first microcomputer 40a reports the diagnosis result from the second diagnosis circuit 40d to the second microcomputer 40c and reports it to the control circuit 16 via the control line 30.
  • the second microcomputer 40c turns off the second switch 38 when the diagnosis result indicates that the negative power lines 44 and 50 are short-circuited, for example.
  • the first microcomputer 40a turns off the first switch 36.
  • the second switch 38 since the second switch 38 may be fixed, the power supply from the drive power supply 34 can be reliably cut off by turning off the first switch 36.
  • the first microcomputer 40a and the second microcomputer 40c exchange the diagnosis result of the first diagnosis circuit 40b and the diagnosis result of the second diagnosis circuit 40d.
  • the operating status can be checked against each other.
  • the other microcomputer can control the first switch 36 and the second switch 38.
  • the control circuit 16 notifies the sequencer 28 via the fieldbus 26 of the short-circuit or failure diagnosis result received via the control line 30.
  • the control circuit 16 notifies the sequencer 28 via the fieldbus 26 of the short-circuit or failure diagnosis result received via the control line 30.
  • the safety control circuit 40 is used for driving even when the first microcomputer 40a or the second microcomputer 40c is abnormal, the first diagnostic circuit 40b or the second diagnostic circuit 40d is abnormal, the first switch 36 or the second switch 38 is turned off. It is also possible to make a diagnosis such as when power is supplied from the power supply 34 to the plurality of solenoid valve units 14 side. Further, the safety control circuit 40 can also diagnose a voltage abnormality of the control power supply 24 or the drive power supply 34, an internal temperature abnormality of the control unit 12, and a signal level abnormality of a control signal supplied from the control circuit 16. It is.
  • FIG. 3 is a schematic configuration diagram of a solenoid valve system 10A according to a first modification.
  • the control unit 12 includes an input circuit 62 that outputs an input of a signal, information, and the like from the external device 60 to the control circuit 16, and between the electromagnetic valve connection unit 22 and the plurality of electromagnetic valve units 14. 1 and FIG. 2 is different from the electromagnetic valve system 10 in that an external connection unit 66 that can be connected to the solenoid 64 of the external electromagnetic valve is inserted.
  • the external device 60 refers to a general sensor or safety device provided on an application target (for example, a factory door) of the electromagnetic valve system 10A.
  • a sensor or safety device examples include an auto switch, a pressure sensor, a push button switch, and a light curtain.
  • the input circuit 62 has a diagnostic unit 68 having the same function as the safety control circuit 40 and is connected to the control circuit 16 via the control line 70.
  • the diagnosis unit 68 connects the input circuit 62 and the control circuit 16 based on the control signal supplied from the control circuit 16 via the control line 70, and the input from the external device 60 is an appropriate signal or information. Diagnose whether or not.
  • the diagnosis unit 68 diagnoses the input as valid and permits the output of a signal or information to the control circuit 16.
  • the diagnosis unit 68 diagnoses the input as abnormal.
  • the diagnosis unit 68 reports the diagnosis result indicating that the input is abnormal to the control circuit 16 and the sequencer 28 and prohibits the output of a signal or information to the control circuit 16.
  • the positive power line 42 and the plurality of negative power lines 50 extend to the plurality of solenoid valve units 14 through the external connection unit 66.
  • the external connection power line 72 branched from the positive power line 42 is connected to the positive terminal (one end) of the solenoid 64.
  • an external connection power line 74 branches from the common terminal 48 of the negative electrode side power line 44, and the negative electrode side terminal of the solenoid 64 is connected via the electromagnetic valve drive circuit 20, the electromagnetic valve connection unit 22, and the external connection unit 66. (The other end) is connected.
  • an open / close switch 76 (third connection portion) is provided on the external connection power line 74 connected to the negative terminal of the solenoid 64.
  • the open / close switch 76 is turned on / off based on a control signal supplied from the control circuit 16 via the control line 32, as with the other open / close switch 46.
  • an external connection unit 66 is provided between the solenoid valve connection portion 22 and the plurality of solenoid valve units 14.
  • the external connection unit 66 may be provided between the plurality of electromagnetic valve units 14 or the downstream side in the connecting direction of the plurality of electromagnetic valve units 14 (direction away from the driving power supply 34).
  • An external connection unit 66 may be provided on the downstream side.
  • FIG. 4 is a schematic configuration diagram of a solenoid valve system 10B according to a second modification.
  • another electromagnetic valve unit 80 independent from the plurality of electromagnetic valve units 14 is connected between the electromagnetic valve connecting portion 22 and the plurality of electromagnetic valve units 14, and
  • the negative power line 82 is a common line connected to the negative terminals (one end) of the plurality of solenoids 52, and the plurality of positive power lines 84 are connected to the positive terminals (the other end) of the plurality of solenoids 52. 1 to 3 in that the electromagnetic valve system 10, 10A is different. Therefore, in the electromagnetic valve system 10B of the second modified example, compared with the electromagnetic valve systems 10 and 10A of FIGS.
  • the first switch 36 and the second switch between the driving power supply 34 and the plurality of solenoids 52 are used. It should be noted that the arrangement and connection relationship of the switch 38 and the plurality of open / close switches 46 are switched between the positive electrode side and the negative electrode side.
  • one end of the second switch 38 is connected to the positive terminal (the other terminal) of the driving power supply 34, and the other end is connected to the positive power line 86.
  • the same number of positive electrode power lines (power lines) 84 as the number of the plurality of electromagnetic valve units 14, or more than the number, are branched.
  • Each of the branched positive electrode power lines 84 is connected to, for example, the positive terminal of the solenoid 52 of the corresponding solenoid valve unit 14.
  • An open / close switch 46 is provided for each of the plurality of positive power lines 84.
  • another positive power line (other power line) 90 is connected to one end of the second switch 38, that is, the positive terminal of the driving power supply 34.
  • the other positive power line 90 extends to the other solenoid valve unit 80 via the safety circuit 18, the solenoid valve drive circuit 20, and the solenoid valve connection portion 22, and the solenoid of the solenoid valve constituting the other solenoid valve unit 80. 92 is connected to the positive terminal.
  • the other positive power line 90 is provided with a cutoff switch (fourth switching unit) 94. Therefore, in the second modification, the second switch 38 and the cutoff switch 94 are connected in parallel to the positive terminal of the driving power supply 34.
  • the safety control circuit 40 turns on and off the cutoff switch 94 based on a control signal supplied from the control circuit 16 via the control line 30.
  • the state of the control unit 12 can be diagnosed by turning on / off the cutoff switch 94.
  • One negative power line 82 (common line) is connected to the other solenoid valve unit 80 and the plurality of solenoid valves via the safety circuit 18, the solenoid valve drive circuit 20, and the solenoid valve connection portion 22 from the negative polarity terminal of the drive power supply 34. It extends to the electromagnetic valve unit 14 and is connected to the negative terminals of the plurality of solenoids 52 and 92.
  • a first switch 36 is disposed on the negative power line 82.
  • the other solenoid valve unit 80 is a solenoid valve unit in which the solenoid valves operate independently of the plurality of solenoid valve units 14. “The solenoid valve operates independently” means that other solenoid valves can be operated regardless of whether the second switch 38 and the plurality of on / off switches 46 are turned on or off.
  • a safety exhaust valve used as an application target of the electromagnetic valve system 10B or another manifold electromagnetic valve installed outside can be operated as an independent electromagnetic valve. .
  • the negative power line 82 is a common line, for example, a PNP transistor may be used for the plurality of open / close switches 46.
  • FIG. 5 is a schematic configuration diagram of a solenoid valve system 10C according to a third modification.
  • the control unit 12 includes a control module 12a connected to the control power supply 24 and the drive power supply 34, and an output module 12b connected to the plurality of electromagnetic valve units 14. It differs from the solenoid valve systems 10, 10A, 10B of FIGS.
  • the control module 12 a includes a control circuit 16.
  • the output module 12 b includes a safety circuit 18, a solenoid valve drive circuit 20, and a solenoid valve connection unit 22.
  • the solenoid valve systems 10, 10 ⁇ / b> A to 10 ⁇ / b> C according to the present embodiment are arranged in a row with respect to the control unit 12 and the control unit 12, and the solenoid valve is operated by electric power supplied from the control unit 12. And a plurality of solenoid valve units 14 each having a solenoid 52 for driving the motor.
  • the control unit 12 includes a safety circuit 18 connected to an external drive power supply 34, a solenoid valve drive circuit 20 whose input side is connected to the safety circuit 18, and whose output side is connected to a plurality of solenoid valve units 14, and a safety circuit. 18 and a control circuit 16 for controlling the solenoid valve drive circuit 20.
  • the safety circuit 18 is controlled by the control circuit 16 so that the first switching unit (the first switch 36 and the second switch 38) switches between supply and interruption of power from the drive power supply 34 to the solenoid valve drive circuit 20. ).
  • the solenoid valve systems 10, 10 A to 10 C are connected to one terminal (positive terminal or negative terminal) of the driving power supply 34 via the safety circuit 18 and extend to the plurality of solenoid valve units 14.
  • One common line (positive side power line 42 or negative side power line 82) connected to one end (positive side terminal or negative side terminal) of the solenoid 52, and the other terminal of the driving power source 34 via the safety circuit 18 (
  • a plurality of power lines (a negative power line 50 or a positive power line 84) connected to the other end (a negative terminal or a positive terminal) of each of the plurality of solenoids 52.
  • the solenoid valve drive circuit 20 is provided on each of the plurality of power lines, and is controlled by the control circuit 16 so as to switch between supply and cutoff of power from the safety circuit 18 to the plurality of solenoids 52. Part (open / close switch 46).
  • control unit 12 only supplies power to the solenoids 52 of the plurality of solenoid valve units 14 via the common line and the power line which are power supply lines. That is, since control signals are exchanged between the control circuit 16 in the control unit 12, the safety circuit 18 and the electromagnetic valve drive circuit 20, control for supplying control signals to the plurality of electromagnetic valve units 14 is performed. There is no line. As a result, it is possible to avoid the occurrence of a short circuit between the control line and the power line in the electromagnetic valve unit 14 as in US Pat. No. 8,156,965.
  • first switch 36 and the second switch 38 perform interlock control on the solenoid valve drive circuit 20 and the plurality of solenoid valve units 14, and the on / off switch 46 supplies and shuts off power to the individual solenoids 52. .
  • the interlock control and the driving of the electromagnetic valve can be performed efficiently.
  • control circuit 16 the safety circuit 18 and the electromagnetic valve drive circuit 20 are built in the control unit 12, the entire size of the electromagnetic valve systems 10, 10A to 10C can be reduced.
  • the effects of the electromagnetic valve systems 10, 10A to 10C will be described in more detail.
  • the electromagnetic valve drive circuit 20 and the plurality of electromagnetic valve units 14 are turned off by turning off the first switch 36 or the second switch 38 disposed on the other power line.
  • the power supply to can be cut off.
  • the existing solenoid valve, solenoid valve unit, or manifold base of the solenoid valve can be connected to the control unit 12 as it is.
  • the designer can set the electromagnetic valve systems 10, 10A to 10C without being aware of such functional safety as a short circuit.
  • the safety circuit 18 further includes a safety control circuit 40 that performs a diagnostic test of the control unit 12. Thereby, a diagnostic test such as a pulse test can be easily performed. Further, since the safety control circuit 40 is incorporated in the control unit 12, adjustment of a predetermined time in the pulse test considering the cable length and the like, and the design of the inside of the control unit 12 is changed to correspond to the safety control circuit 40. Is no longer necessary. As a result, the convenience of the electromagnetic valve systems 10, 10A to 10C is improved.
  • the first switch 36 is provided on the common line (the positive power line 42 or the negative power line 82), and the second switch 38 is connected to the other terminal of the driving power supply 34 and a plurality of power lines (negative power lines 44, 50). Or, it is provided between the positive-side power lines 84 and 86). Therefore, the safety control circuit 40 determines the state of the first control unit (first microcomputer 40a) that turns on and off the first switch 36 by the control from the control circuit 16, and the state of the common line when the first switch 36 is turned on and off.
  • first control unit first microcomputer 40a
  • the presence or absence of failure of the first switch 36 and the second switch 38, the positive side power lines 42, 84, 86 and the negative side power lines 44, 50, 82 and other wiring (for example, control lines 30, 32). It is possible to diagnose the presence or absence of a short circuit. In addition, a diagnosis result that one of the first switch 36 or the second switch 38 is broken, or a diagnosis that the common line or the power line in which one switch is disposed is short-circuited. When the result is obtained, the other switch can be turned off to cut off the power supply to the solenoid valve drive circuit 20 and the plurality of solenoid valve units 14. As a result, it becomes possible to avoid a situation where the interlock control becomes impossible.
  • control unit 12 further includes an input circuit 62 that outputs an input from the external device 60 to the control circuit 16, and the input circuit 62 is an input from the external device 60.
  • a diagnosis unit 68 is provided. As a result, it is possible to design the electromagnetic valve system 10A in consideration of safety measures for the input from the external device 60.
  • an external connection unit 66 that can be connected to the solenoid 64 of the external solenoid valve is further arranged with respect to the control unit 12.
  • the common line (positive power line 42) is connected to the positive terminal of the solenoid 64 of the external solenoid valve via the external connection unit 66.
  • the electromagnetic valve drive circuit 20 is further provided with an external connection power line 74 that connects the negative terminal of the drive power supply 34 and the negative terminal of the solenoid 64 via the external connection unit 66.
  • the external connection power line 74 is provided with a third switching unit (another open / close switch 76) that switches between supply and interruption of power to the solenoid 64 under the control of the control circuit 16.
  • another electromagnetic valve unit 80 may be further arranged with respect to the control unit 12.
  • the common line (the negative power line 82) is connected to the negative terminal of the solenoid 92 of the other solenoid valve unit 80.
  • another power line (other positive power line 90) for connecting the positive terminal of the drive power supply 34 and the positive terminal of the solenoid 92 is further provided.
  • the other positive power line 90 is provided with a fourth switching unit (shut-off switch 94) that switches between power supply and shut-off to the solenoid 92 under the control of the control circuit 16.
  • control unit 12 is disposed between the control module 12 a including the control circuit 16, the control module 12 a and the plurality of electromagnetic valve units 14, and the safety circuit 18 and And an output module 12b including an electromagnetic valve drive circuit 20.
  • control module 12a or only the output module 12b can be replaced according to the specifications of the electromagnetic valve system 10C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

電磁弁システム(10)の制御ユニット(12)において、安全回路(18)は、制御回路(16)からの制御によって、駆動用電源(34)から電磁弁駆動回路(20)への電力の供給と遮断とを切り替える第1スイッチ(36)及び第2スイッチ(38)を有する。1本のコモン線は、複数の電磁弁ユニット(14)にまで延びて複数のソレノイド(52)の一端に接続される。また、複数本の電力線は、複数のソレノイド(52)の各々の他端に接続される。電磁弁駆動回路(20)は、制御回路(16)からの制御によって、複数のソレノイド(52)への電力の供給と遮断とを切り替える複数の開閉スイッチ(46)を有する。

Description

電磁弁システム
 本発明は、制御ユニットと、該制御ユニットに対して一列に並んで配置される複数の電磁弁ユニットとを備える電磁弁システムに関する。
 米国特許第8156965号明細書には、制御ユニットに対して複数の電磁弁ユニットが一列に並んで配置された電磁弁システムが開示されている。この電磁弁システムでは、制御ユニットから複数の電磁弁ユニットにまで制御/センサ線(制御線)が延びている。また、複数の電磁弁ユニットには、電圧供給線(電力線、電源線)が延びている。これにより、電圧供給線を介して複数の電磁弁ユニットに電力が供給されている場合に、制御ユニットから制御/センサ線を介して複数の電磁弁ユニットに制御信号を供給すれば、複数の電磁弁ユニット内の電磁弁を駆動させることが可能となる。
 しかしながら、上記の電磁弁システムでは、複数の電磁弁ユニット内を制御/センサ線と電圧供給線とが延びているので、電磁弁ユニット内で制御/センサ線と電圧供給線とが短絡するおそれがある。
 本発明は、このような課題を考慮してなされたものであり、電磁弁ユニット内での制御線と電源線との短絡の発生を回避する電磁弁システムを提供することを目的とする。
 本発明の態様は、制御ユニットと、前記制御ユニットに対して一列に並んで配置され、前記制御ユニットからの電力の供給によって電磁弁を駆動させるソレノイドを備える複数の電磁弁ユニットとを有する電磁弁システムに関するものである。
 前記制御ユニットは、外部の駆動用電源に接続される安全回路と、入力側が前記安全回路に接続され、出力側が複数の前記電磁弁ユニットに接続される電磁弁駆動回路と、前記安全回路及び前記電磁弁駆動回路を制御する制御回路とを有する。この場合、前記安全回路は、前記制御回路からの制御によって、前記駆動用電源から前記電磁弁駆動回路への電力の供給と遮断とを切り替える第1切替部を有する。
 また、前記電磁弁システムは、前記安全回路を介して前記駆動用電源の一方の端子に接続され、複数の前記電磁弁ユニットまで延びて複数の前記ソレノイドの一端に接続される1本のコモン線と、前記安全回路を介して前記駆動用電源の他方の端子に接続され、複数の前記ソレノイドの各々の他端に接続される複数本の電力線とをさらに備える。そして、前記電磁弁駆動回路は、複数本の前記電力線の各々に設けられ、前記制御回路からの制御によって、前記安全回路から複数の前記ソレノイドへの電力の供給と遮断とを切り替える複数の第2切替部を有する。
 本発明によれば、制御ユニットは、電源線であるコモン線及び電力線を介して、複数の電磁弁ユニットのソレノイドに対する電力供給のみ行う。すなわち、本発明では、制御ユニット内の制御回路と安全回路及び電磁弁駆動回路との間で制御信号の授受が行われるので、複数の電磁弁ユニットには、制御信号を供給するための制御線が設けられていない。この結果、米国特許第8156965号明細書のように、電磁弁ユニット内で制御線と電源線との短絡が発生することを回避することができる。
 また、第1切替部によって電磁弁駆動回路及び複数の電磁弁ユニットに対するインタロック制御が行われ、第2切替部によって個々のソレノイドに対する電力の供給と遮断とが行われる。この結果、インタロック制御と電磁弁の駆動とを効率よく行うことができる。
 さらに、制御ユニットに制御回路、安全回路及び電磁弁駆動回路が内蔵されているので、電磁弁システム全体の小型化を実現することができる。
図1は、本実施形態に係る電磁弁システムの概略構成図である。 図2は、図1の電磁弁システムの詳細な構成図である。 図3は、図1の電磁弁システムの第1変形例の概略構成図である。 図4は、図1の電磁弁システムの第2変形例の概略構成図である。 図5は、図1の電磁弁システムの第3変形例の概略構成図である。
 本発明に係る電磁弁システムの好適な実施形態について、添付の図面を参照しながら、以下詳細に説明する。
[1.電磁弁システム10の概略構成]
 本実施形態に係る電磁弁システム10は、図1に示すように、制御ユニット12と、複数の電磁弁ユニット14とを有する。複数の電磁弁ユニット14は、制御ユニット12に対して一列に並んで配置されている。
 制御ユニット12は、制御回路16、安全回路18、電磁弁駆動回路20及び電磁弁接続部22を有する。
 制御回路16は、外部の直流電源である制御用電源24に接続されると共に、フィールドバス26を介して上位機器であるPLC(Programmable Logic Controller)等のシーケンサ28に接続されている。また、制御回路16は、制御線30、32を介して、安全回路18及び電磁弁駆動回路20と接続されている。
 安全回路18、電磁弁駆動回路20及び電磁弁接続部22は、外部の直流電源である駆動用電源34からの電力を、複数の電磁弁ユニット14に供給するために制御ユニット12内に設けられている。この場合、駆動用電源34に対して、安全回路18、電磁弁駆動回路20、電磁弁接続部22、及び、複数の電磁弁ユニット14が順に並列に接続されている。
 安全回路18は、第1スイッチ(第1切替部)36、第2スイッチ(第1切替部)38及び安全制御回路40を有する。第1スイッチ36は、駆動用電源34の正極側端子(一方の端子)から複数の電磁弁ユニット14にまで延びる1本の正極側電力線(コモン線)42に配設されている。第2スイッチ38は、一端が駆動用電源34の負極側端子(他方の端子)に接続され、他端が1本の負極側電力線44に接続されている。安全制御回路40は、制御回路16から制御線30を介して供給される制御信号に基づき、遮断スイッチとしての第1スイッチ36及び第2スイッチ38をオンオフする。
 電磁弁駆動回路20は、複数の開閉スイッチ(第2切替部)46を有する。電磁弁駆動回路20において、第2スイッチ38に接続される1本の負極側電力線44の共通端子48から、複数の電磁弁ユニット14の個数と同じ本数の負極側電力線50(電力線)が分岐している。分岐した複数の負極側電力線50の各々は、対応する電磁弁ユニット14まで延びている。複数の開閉スイッチ46の各々は、複数の負極側電力線50に配設され、制御回路16から制御線32を介して供給される制御信号に基づき、オンオフする。
 上述した負極側電力線50の本数は一例であり、複数の電磁弁ユニット14の個数よりも多い本数の負極側電力線50を共通端子48から分岐させてもよい。これにより、制御ユニット12に対する複数の電磁弁ユニット14の接続台数を増減させた場合に容易に対応することができる。すなわち、電磁弁ユニット14にまで延びていない負極側電力線50は、新たに接続される電磁弁ユニット14に対する予備の電力線となる。なお、2本以上の負極側電力線50を1つの電磁弁ユニット14内に延ばすことも可能である。また、電磁弁を備えていない電磁弁ユニット14が制御ユニット12に接続されている場合は、所定の本数の負極側電力線50が該電磁弁ユニット14内を延びていればよい。
 第1スイッチ36、第2スイッチ38及び複数の開閉スイッチ46は、制御信号の供給に基づいて、オンオフする切替手段であればよい。このような切替手段としては、例えば、トランジスタ等の半導体スイッチング素子がある。図1のように、正極側電力線42がコモン線である場合には、例えば、PNP型のトランジスタを第1スイッチ36に使用すると共に、NPN型のトランジスタを第2スイッチ38及び複数の開閉スイッチ46に使用すればよい。
 電磁弁接続部22は、1本の正極側電力線42と複数本の負極側電力線50とが通り、制御ユニット12と複数の電磁弁ユニット14とを電気的に接続するコネクタ等の接続手段である。
 複数の電磁弁ユニット14の各々は、不図示の電磁弁を駆動させるためのソレノイド52を備える。複数のソレノイド52の正極側端子(一端)は、正極側電力線42に接続されている。また、複数のソレノイド52の負極側端子(他端)の各々は、対応する負極側電力線50に接続されている。
 前述のように、複数の電磁弁ユニット14が一列に配置されているので、正極側電力線42は、駆動用電源34の正極側端子から、駆動用電源34に対して最も離れた電磁弁ユニット14まで延びるように設けられている。また、複数の負極側電力線50の各々は、対応する電磁弁ユニット14にまで延びて、ソレノイド52の負極側端子と接続している。なお、図1では、一例として、1つの電磁弁ユニット14に1つのソレノイド52が設けられる場合を図示しているが、1つの電磁弁ユニット14に2つ以上のソレノイド52を設けることも可能である。
[2.電磁弁システム10の概略動作]
 次に、本実施形態に係る電磁弁システム10の動作について説明する。
 先ず、制御用電源24から制御回路16に電力が供給され、該制御回路16が起動している場合に、シーケンサ28からフィールドバス26を介して制御回路16に指示信号を供給する。この場合、指示信号は、例えば、任意の電磁弁の駆動を指示するための信号であればよい。
 制御回路16は、指示信号を受け取ると、該指示信号に基づく制御信号(オン信号又はオフ信号)を、制御線30、32を介して、安全回路18及び電磁弁駆動回路20に供給する。
 安全回路18の安全制御回路40は、制御線30を介してオン信号を受け取ると、該オン信号に基づいて第1スイッチ36及び第2スイッチ38をオンさせる。また、電磁弁駆動回路20では、制御線32を介してオン信号を受け取ると、該当する開閉スイッチ46がオンする。すなわち、第1スイッチ36、第2スイッチ38及び開閉スイッチ46は、通常、制御回路16から安全回路18及び電磁弁駆動回路20に供給されるオフ信号によってオフ状態に維持されているが、オン信号の供給によってオフ状態からオン状態に切り替わる。
 これにより、駆動用電源34の正極側端子は、第1スイッチ36及び正極側電力線42を介して、複数の電磁弁ユニット14を構成するソレノイド52の正極側端子と電気的に接続される。一方、駆動用電源34の負極側端子は、第2スイッチ38、負極側電力線44、オン状態に切り替わった開閉スイッチ46、及び、負極側電力線50を介して、複数の電磁弁ユニット14のうち、該開閉スイッチ46と接続されているソレノイド52の負極側端子と電気的に接続される。そのため、駆動用電源34は、安全回路18、電磁弁駆動回路20及び電磁弁接続部22を介して、すなわち、正極側電力線42及び負極側電力線44、50を介して、電気的に接続されているソレノイド52に電力を供給することができる。この結果、電力供給を受けたソレノイド52が励磁され、該ソレノイド52に対応する電磁弁を駆動させることができる。
 従って、全ての電磁弁ユニット14の電磁弁を駆動させる場合には、第1スイッチ36及び第2スイッチ38をオンさせると共に、全ての開閉スイッチ46をオンさせて、駆動用電源34から全てのソレノイド52に電力を供給すればよい。また、一部の電磁弁のみ駆動させる場合には、第1スイッチ36及び第2スイッチ38をオンさせると共に、一部の電磁弁のソレノイド52に接続されている開閉スイッチ46をオンさせて、駆動用電源34から該ソレノイド52に電力を供給すればよい。
 なお、電磁弁システム10の動作中、制御回路16は、安全回路18及び電磁弁駆動回路20の動作状態、すなわち、電磁弁ユニット14を構成する電磁弁の駆動状態を、フィールドバス26を介してシーケンサ28に通知してもよい。
 また、制御回路16から制御線32を介して電磁弁駆動回路20に供給される制御信号がオン信号からオフ信号に切り替わると、開閉スイッチ46がオフする。これにより、駆動用電源34からソレノイド52への電力の供給が停止し、該ソレノイド52を備える電磁弁の駆動を停止させることができる。
 さらに、制御回路16から制御線30を介して安全回路18に供給される制御信号がオン信号からオフ信号に切り替わると、第1スイッチ36及び第2スイッチ38がオフする。これにより、制御用電源24又は駆動用電源34の異常(電圧低下)や、制御ユニット12内の故障(制御回路16の故障)が発生した場合に、電磁弁駆動回路20及び複数の電磁弁ユニット14に対するインタロック制御を適切に行うことができる。
[3.制御ユニット12の詳細な構成]
 本実施形態に係る電磁弁システム10の概略構成及び概略動作は、以上の通りである。次に、制御ユニット12内の詳細な構成について、図2を参照しながら説明する。
 制御用電源24及び駆動用電源34が同じ出力電圧の直流電源である場合、制御ユニット12は、DC/DCコンバータ等のダウンコンバータ54をさらに有してもよい。これにより、ダウンコンバータ54は、制御用電源24から出力される直流電圧を、制御回路16の駆動電圧にまで降圧して該制御回路16に供給することができる。すなわち、制御ユニット12内において、安全回路18、電磁弁駆動回路20及び電磁弁接続部22を含む電源系回路56と、制御回路16を含む制御系回路58とは、異なる大きさの電圧で動作するためである。従って、制御ユニット12内では、制御系回路58と電源系回路56とを不図示の絶縁回路で電気的に絶縁することが望ましい。
 また、安全制御回路40は、制御ユニット12の診断試験を行う機能も有する。該診断試験を行うため、安全制御回路40は、第1マイクロコンピュータ(第1制御部)40a、第1診断回路40b、第2マイクロコンピュータ(第2制御部)40c及び第2診断回路40dを有する。
 第1マイクロコンピュータ40aは、制御回路16から制御線30を介して供給される制御信号(オン信号又はオフ信号)に基づき、第1スイッチ36をオンオフさせる。第1診断回路40bは、第1スイッチ36をオンオフさせたときの正極側電力線42の状態を診断する。第2マイクロコンピュータ40cは、制御回路16から制御線30を介して供給される制御信号に基づき、第2スイッチ38をオンオフさせる。第2診断回路40dは、第2スイッチ38をオンオフさせたときの負極側電力線44、50の状態を診断する。具体的に、安全制御回路40では、公知のパルステストを実行することで、正極側電力線42及び負極側電力線44、50と他の配線との短絡の有無等を診断する。
 パルステストでは、第1スイッチ36及び第2スイッチ38がオン状態のときに、第1マイクロコンピュータ40aによって第1スイッチ36を所定時間オフするか、又は、第2マイクロコンピュータ40cによって第2スイッチ38を所定時間オフする。第1診断回路40bは、正極側電力線42の電位の所定時間内での時間経過を検出する。また、第2診断回路40dは、負極側電力線44、50の電位の所定時間内での時間経過を検出する。
 そして、第1診断回路40bは、正極側電力線42の電位の時間経過から、正極側電力線42と他の配線(例えば、制御線30、32)との短絡の有無や、第1スイッチ36の固着等の故障の有無を診断し、その診断結果を第2マイクロコンピュータ40cに報告する。また、第2診断回路40dは、負極側電力線44、50の電位の時間経過から、負極側電力線44、50と他の配線(例えば、制御線30、32)との短絡の有無や、第2スイッチ38の固着等の故障の有無を診断し、その診断結果を第1マイクロコンピュータ40aに報告する。
 例えば、第1スイッチ36のオフ後、所定時間内に、正極側電力線42の電位が速やかにゼロ電位等の一定電位にまで低下すれば、第1診断回路40bは、第1スイッチ36の故障や、正極側電力線42と他の配線との短絡が発生していないものと診断する。また、第1スイッチ36のオフ後、正極側電力線42の電位が時間経過に伴って緩慢に低下する場合には、第1診断回路40bは、正極側電力線42等のコンデンサ成分に起因して該電位が緩やかに低下しているものと判断する。さらに、第1スイッチ36のオフ後、正極側電力線42の電位の低下が僅かである場合には、第1診断回路40bは、正極側電力線42が他の配線と短絡しているか、又は、第1スイッチ36が故障しているものと判断する。
 一方、第2スイッチ38のオフ後、所定時間内に、負極側電力線44、50の電位の絶対値がゼロ電位から速やかに一定電位にまで上昇すれば、第2診断回路40dは、第2スイッチ38の故障や、負極側電力線44、50と他の配線との短絡が発生していないものと診断する。また、第2スイッチ38のオフ後、負極側電力線44、50の電位の絶対値がゼロ電位から時間経過に伴って緩慢に上昇する場合には、第2診断回路40dは、負極側電力線44、50等のコンデンサ成分に起因して該電位が緩やかに上昇しているものと判断する。さらに、第2スイッチ38のオフ後、負極側電力線44、50の電位の絶対値の上昇が僅かである場合には、第2診断回路40dは、負極側電力線44、50が他の配線と短絡しているか、又は、第2スイッチ38が故障しているものと判断する。
 第2マイクロコンピュータ40cは、第1診断回路40bからの診断結果を第1マイクロコンピュータ40aに報告すると共に、制御線30を介して制御回路16に報告する。これにより、第1マイクロコンピュータ40aは、例えば、正極側電力線42が短絡している旨の診断結果である場合には、第1スイッチ36をオフにする。また、第2マイクロコンピュータ40cは、第2スイッチ38をオフにする。例えば、第1スイッチ36が固着している場合もあるので、第2スイッチ38をオフにすることで、駆動用電源34からの電力供給を確実に遮断することができる。
 一方、第1マイクロコンピュータ40aは、第2診断回路40dからの診断結果を第2マイクロコンピュータ40cに報告すると共に、制御線30を介して制御回路16に報告する。これにより、第2マイクロコンピュータ40cは、例えば、負極側電力線44、50が短絡している旨の診断結果である場合には、第2スイッチ38をオフにする。また、第1マイクロコンピュータ40aは、第1スイッチ36をオフにする。例えば、第2スイッチ38が固着している場合もあるので、第1スイッチ36をオフにすることで、駆動用電源34からの電力供給を確実に遮断することができる。
 このように、図2の構成では、第1マイクロコンピュータ40aと第2マイクロコンピュータ40cとの間で、第1診断回路40bの診断結果と第2診断回路40dの診断結果とのやり取りを行うことで、動作状態を互いにチェックすることができる。この結果、一方のマイクロコンピュータが故障している場合には、他方のマイクロコンピュータで第1スイッチ36及び第2スイッチ38を制御することも可能となる。
 制御回路16は、制御線30を介して受け取った短絡又は故障の診断結果を、フィールドバス26を介してシーケンサ28に通知する。この結果、シーケンサ28側では、ユーザに短絡又は故障の発生を通知することで、ユーザは、制御ユニット12内の対象部品の保守交換等の対応を取ることができる。
 なお、上記の説明では、他の配線との短絡や、第1スイッチ36又は第2スイッチ38の固着等の故障について説明した。安全制御回路40は、第1マイクロコンピュータ40a又は第2マイクロコンピュータ40cの異常、第1診断回路40b又は第2診断回路40dの異常、第1スイッチ36又は第2スイッチ38をオフにしても駆動用電源34から複数の電磁弁ユニット14側に電力供給が行われる場合等の診断を行うことも可能である。また、安全制御回路40は、制御用電源24又は駆動用電源34の電圧異常、制御ユニット12の内部温度異常、制御回路16から供給される制御信号の信号レベルの異常に対する診断を行うことも可能である。
[4.電磁弁システム10の変形例]
 次に、本実施形態に係る電磁弁システム10の変形例(第1~第3変形例)について、図3~図5を参照しながら説明する。なお、第1~第3変形例において、図1及び図2の電磁弁システム10と同じ構成要素については、同じ参照符号を付け、詳細な説明を省略する。
<4.1 第1変形例>
 図3は、第1変形例の電磁弁システム10Aの概略構成図である。第1変形例は、外部機器60からの信号や情報等の入力を制御回路16に出力する入力回路62を制御ユニット12が有すると共に、電磁弁接続部22と複数の電磁弁ユニット14との間に、外部の電磁弁のソレノイド64に接続可能な外部接続用ユニット66が介挿されている点で、図1及び図2の電磁弁システム10とは異なる。
 ここで、外部機器60とは、電磁弁システム10Aの適用対象(例えば、工場のドア)に設けられた一般的なセンサや安全機器をいう。このようなセンサ又は安全機器としては、例えば、オートスイッチ、圧力センサ、押しボタンスイッチ、ライトカーテンがある。
 入力回路62は、安全制御回路40と同様の機能を有する診断部68を有し、制御線70を介して制御回路16と接続されている。診断部68は、制御回路16から制御線70を介して供給される制御信号に基づき、入力回路62と制御回路16とを接続させると共に、外部機器60からの入力が適切な信号又は情報であるか否かを診断する。外部機器60からの入力が正常である場合、診断部68は、該入力を有効と診断し、制御回路16への信号又は情報の出力を許可する。一方、外部機器60からの入力が異常である場合、例えば、外部機器60と入力回路62とを接続する配線が短絡していることで、外部機器60からの入力が適切なレベルではない場合、診断部68は、該入力を異常と診断する。そして、診断部68は、異常な入力である旨の診断結果を制御回路16及びシーケンサ28に報告すると共に、制御回路16への信号又は情報の出力を禁止する。
 また、電磁弁システム10Aにおいて、正極側電力線42及び複数の負極側電力線50は、外部接続用ユニット66を通して、複数の電磁弁ユニット14にまで延びている。さらに、外部接続用ユニット66において、正極側電力線42から分岐した外部接続用電力線72がソレノイド64の正極側端子(一端)に接続されている。さらにまた、負極側電力線44の共通端子48からは、外部接続用電力線74が分岐し、電磁弁駆動回路20、電磁弁接続部22及び外部接続用ユニット66を介して、ソレノイド64の負極側端子(他端)に接続されている。
 電磁弁駆動回路20において、ソレノイド64の負極側端子に接続される外部接続用電力線74には、開閉スイッチ76(第3接続部)が設けられている。開閉スイッチ76は、他の開閉スイッチ46と同様に、制御回路16から制御線32を介して供給される制御信号に基づいてオンオフする。
 従って、駆動用電源34から安全回路18、電磁弁駆動回路20、電磁弁接続部22、及び、外部接続用ユニット66を介して外部のソレノイド64に電力を供給し、該ソレノイド64を備える電磁弁を駆動させることができる。
 なお、図3では、電磁弁接続部22と複数の電磁弁ユニット14との間に外部接続用ユニット66を設けている。第1変形例では、複数の電磁弁ユニット14の間に外部接続用ユニット66を設けてもよいし、又は、複数の電磁弁ユニット14の連結方向の下流側(駆動用電源34から離間する方向の下流側)に外部接続用ユニット66を設けてもよい。
<4.2 第2変形例>
 図4は、第2変形例の電磁弁システム10Bの概略構成図である。第2変形例の電磁弁システム10Bは、電磁弁接続部22と複数の電磁弁ユニット14との間に、複数の電磁弁ユニット14から独立した他の電磁弁ユニット80が接続され、1本の負極側電力線82が複数のソレノイド52の負極性端子(一端)に接続されるコモン線であり、且つ、複数本の正極側電力線84が複数のソレノイド52の正極側端子(他端)に接続される点で、図1~図3の電磁弁システム10、10Aとは異なる。従って、第2変形例の電磁弁システム10Bでは、図1~図3の電磁弁システム10、10Aと比較して、駆動用電源34と複数のソレノイド52との間における第1スイッチ36、第2スイッチ38及び複数の開閉スイッチ46の配置及び接続関係が正極側と負極側とで入れ替わっている点に留意する。
 すなわち、第2スイッチ38の一端は、駆動用電源34の正極側端子(他方の端子)に接続され、他端は、正極側電力線86に接続されている。正極側電力線86の共通端子88から、複数の電磁弁ユニット14の個数と同じ本数、又は、該本数よりも多い本数の正極側電力線(電力線)84が分岐している。分岐した複数の正極側電力線84の各々は、例えば、対応する電磁弁ユニット14のソレノイド52の正極側端子に接続される。複数の正極側電力線84の各々に開閉スイッチ46が配設されている。
 また、第2スイッチ38の一端、すなわち、駆動用電源34の正極側端子には、他の正極側電力線(他の電力線)90が接続されている。他の正極側電力線90は、安全回路18、電磁弁駆動回路20及び電磁弁接続部22を介して、他の電磁弁ユニット80に延び、該他の電磁弁ユニット80を構成する電磁弁のソレノイド92の正極側端子に接続されている。
 安全回路18において、他の正極側電力線90には、遮断スイッチ(第4切替部)94が設けられている。従って、第2変形例において、駆動用電源34の正極側端子には、第2スイッチ38及び遮断スイッチ94が並列に接続されている。安全制御回路40は、制御回路16から制御線30を介して供給される制御信号に基づいて、遮断スイッチ94をオンオフさせる。なお、電磁弁システム10Bにおいても、遮断スイッチ94をオンオフさせることで、制御ユニット12の状態を診断することが可能である。
 1本の負極側電力線82(コモン線)は、駆動用電源34の負極性端子から安全回路18、電磁弁駆動回路20及び電磁弁接続部22を介して、他の電磁弁ユニット80及び複数の電磁弁ユニット14まで延び、複数のソレノイド52、92の負極性端子に接続されている。負極側電力線82に第1スイッチ36が配設されている。
 そして、第2変形例において、他の電磁弁ユニット80は、複数の電磁弁ユニット14から独立して電磁弁が動作する電磁弁ユニットである。「独立して電磁弁が動作する」とは、第2スイッチ38及び複数の開閉スイッチ46のオンオフとは関わりなく、他の電磁弁を動作可能であることを意味する。
 つまり、第1スイッチ36、第2スイッチ38及び複数の開閉スイッチ46がオン状態であっても、遮断スイッチ94をオフすれば、駆動用電源34から他の電磁弁ユニット80のソレノイド92への電力供給が遮断され、他の電磁弁ユニット80の電磁弁のみオフ位置に移動(駆動を停止)させることができる。なお、第2変形例では、例えば、電磁弁システム10Bの適用対象に用いられる安全用排気弁や、外部に設置される別のマニホールド電磁弁を、独立した電磁弁として動作させることが可能である。
 また、図4では、負極側電力線82がコモン線であるため、例えば、PNP型のトランジスタを複数の開閉スイッチ46に使用すればよい。
<4.3 第3変形例>
 図5は、第3変形例の電磁弁システム10Cの概略構成図である。第3変形例では、制御ユニット12が、制御用電源24及び駆動用電源34に接続される制御モジュール12aと、複数の電磁弁ユニット14に連結される出力モジュール12bとから構成される点で、図1~図4の電磁弁システム10、10A、10Bとは異なる。この場合、制御モジュール12aは、制御回路16を備える。また、出力モジュール12bは、安全回路18、電磁弁駆動回路20及び電磁弁接続部22を備える。
[5.本実施形態の効果]
 以上説明したように、本実施形態に係る電磁弁システム10、10A~10Cは、制御ユニット12と、制御ユニット12に対して一列に並んで配置され、制御ユニット12から供給される電力によって電磁弁を駆動させるソレノイド52を備える複数の電磁弁ユニット14とを有する。
 制御ユニット12は、外部の駆動用電源34に接続される安全回路18と、入力側が安全回路18に接続され、出力側が複数の電磁弁ユニット14に接続される電磁弁駆動回路20と、安全回路18及び電磁弁駆動回路20を制御する制御回路16とを有する。この場合、安全回路18は、制御回路16からの制御によって、駆動用電源34から電磁弁駆動回路20への電力の供給と遮断とを切り替える第1切替部(第1スイッチ36、第2スイッチ38)を有する。
 また、電磁弁システム10、10A~10Cは、安全回路18を介して駆動用電源34の一方の端子(正極側端子又は負極側端子)に接続され、複数の電磁弁ユニット14まで延びて複数のソレノイド52の一端(正極側端子又は負極側端子)に接続される1本のコモン線(正極側電力線42又は負極側電力線82)と、安全回路18を介して駆動用電源34の他方の端子(負極側端子又は正極側端子)に接続され、複数のソレノイド52の各々の他端(負極側端子又は正極側端子)に接続される複数本の電力線(負極側電力線50又は正極側電力線84)とをさらに備える。そして、電磁弁駆動回路20は、複数本の電力線の各々に設けられ、制御回路16からの制御によって、安全回路18から複数のソレノイド52への電力の供給と遮断とを切り替える複数の第2切替部(開閉スイッチ46)を有する。
 これにより、制御ユニット12は、電源線であるコモン線及び電力線を介して、複数の電磁弁ユニット14のソレノイド52に対する電力供給のみ行う。すなわち、制御ユニット12内の制御回路16と安全回路18及び電磁弁駆動回路20との間で制御信号の授受が行われるので、複数の電磁弁ユニット14には、制御信号を供給するための制御線が設けられていない。この結果、米国特許第8156965号明細書のように、電磁弁ユニット14内で制御線と電源線との短絡が発生することを回避することができる。
 また、第1スイッチ36及び第2スイッチ38によって電磁弁駆動回路20及び複数の電磁弁ユニット14に対するインタロック制御が行われ、開閉スイッチ46によって個々のソレノイド52に対する電力の供給と遮断とが行われる。この結果、インタロック制御と電磁弁の駆動とを効率よく行うことができる。
 さらに、制御ユニット12に制御回路16、安全回路18及び電磁弁駆動回路20が内蔵されているので、電磁弁システム10、10A~10C全体の小型化を実現することができる。
 ここで、電磁弁システム10、10A~10Cの効果について、さらに詳しく説明すると、制御線30、32、70と、正極側電力線42、84、86、90又は負極側電力線44、50、82のうち、一方の電力線との間で、短絡が発生した場合、他方の電力線に配設された第1スイッチ36又は第2スイッチ38をオフすることで、電磁弁駆動回路20及び複数の電磁弁ユニット14への電力供給を遮断することができる。この結果、既存の電磁弁、電磁弁ユニット、又は、電磁弁のマニホールドベースを制御ユニット12にそのまま接続して使用することができる。また、設計者は、このような短絡等の機能安全性を意識することなく、電磁弁システム10、10A~10Cを設定することができる。
 また、安全回路18は、制御ユニット12の診断試験を行う安全制御回路40をさらに有する。これにより、パルステスト等の診断試験を容易に行うことができる。また、制御ユニット12内に安全制御回路40を組み込んでいるため、ケーブル長等を考慮したパルステストでの所定時間の調整や、安全制御回路40に対応させて制御ユニット12の内部を設計変更することが不要となる。この結果、電磁弁システム10、10A~10Cの利便性が向上する。
 この場合、第1スイッチ36がコモン線(正極側電力線42又は負極側電力線82)に設けられ、第2スイッチ38が駆動用電源34の他方の端子と複数本の電力線(負極側電力線44、50又は正極側電力線84、86)との間に設けられている。そこで、安全制御回路40は、制御回路16からの制御によって第1スイッチ36をオンオフさせる第1制御部(第1マイクロコンピュータ40a)と、第1スイッチ36をオンオフさせたときのコモン線の状態を診断する第1診断回路40bと、制御回路16からの制御によって第2スイッチ38をオンオフさせる第2制御部(第2マイクロコンピュータ40c)と、第2スイッチ38をオンオフさせたときの複数本の電力線の状態を診断する第2診断回路40dとを有する。
 これにより、第1スイッチ36及び第2スイッチ38の故障の有無や、正極側電力線42、84、86及び負極側電力線44、50、82と他の配線(例えば、制御線30、32)との短絡の有無を診断することが可能となる。また、第1スイッチ36又は第2スイッチ38のうち、一方のスイッチが故障している旨の診断結果、あるいは、一方のスイッチが配設されているコモン線又は電力線が短絡している旨の診断結果が得られた場合には、他方のスイッチをオフにして、電磁弁駆動回路20及び複数の電磁弁ユニット14への電力供給を遮断することができる。この結果、インタロック制御が不能になる事態を回避することが可能となる。
 また、図3の第1変形例のように、制御ユニット12は、外部機器60からの入力を制御回路16に出力する入力回路62をさらに有し、入力回路62は、外部機器60からの入力を診断する診断部68を備える。これにより、外部機器60からの入力に対する安全対策を考慮した電磁弁システム10Aの設計を行うことが可能となる。
 さらに、図3の第1変形例のように、外部の電磁弁のソレノイド64に接続可能な外部接続用ユニット66が制御ユニット12に対してさらに配置される。この場合、コモン線(正極側電力線42)は、外部接続用ユニット66を介して、外部の電磁弁のソレノイド64の正極側端子に接続されている。電磁弁駆動回路20には、駆動用電源34の負極性端子と、外部接続用ユニット66を介して該ソレノイド64の負極側端子とを接続する外部接続用電力線74がさらに設けられている。外部接続用電力線74には、制御回路16からの制御によって、該ソレノイド64への電力の供給と遮断とを切り替える第3切替部(他の開閉スイッチ76)が設けられる。これにより、外部に設置された電磁弁のソレノイド64を容易に制御することができる。
 また、図4の第2変形例のように、他の電磁弁ユニット80が制御ユニット12に対してさらに配置されてもよい。この場合、コモン線(負極側電力線82)は、他の電磁弁ユニット80のソレノイド92の負極側端子に接続されている。また、駆動用電源34の正極側端子と該ソレノイド92の正極側端子とを接続する他の電力線(他の正極側電力線90)がさらに設けられている。他の正極側電力線90には、制御回路16からの制御によって、該ソレノイド92への電力の供給と遮断とを切り替える第4切替部(遮断スイッチ94)が設けられる。これにより、複数の電磁弁ユニット14とは独立して他の電磁弁ユニット80のソレノイド92に電力を供給し、該ソレノイド92を備える電磁弁を駆動させることができる。
 さらに、図5の第3変形例のように、制御ユニット12は、制御回路16を備えた制御モジュール12aと、制御モジュール12aと複数の電磁弁ユニット14との間に配置され、安全回路18及び電磁弁駆動回路20とを備える出力モジュール12bとから構成される。これにより、電磁弁システム10Cの仕様に応じて、制御モジュール12aのみ、又は、出力モジュール12bのみ交換することが可能となる。
 なお、本発明は、上述の実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることは勿論である。

Claims (7)

  1.  制御ユニット(12)と、前記制御ユニットに対して一列に並んで配置され、前記制御ユニットからの電力の供給によって電磁弁を駆動させるソレノイド(52)を備える複数の電磁弁ユニット(14)とを有する電磁弁システム(10、10A~10C)において、
     前記制御ユニットは、外部の駆動用電源(34)に接続される安全回路(18)と、入力側が前記安全回路に接続され、出力側が複数の前記電磁弁ユニットに接続される電磁弁駆動回路(20)と、前記安全回路及び前記電磁弁駆動回路を制御する制御回路(16)とを有し、
     前記安全回路は、前記制御回路からの制御によって、前記駆動用電源から前記電磁弁駆動回路への電力の供給と遮断とを切り替える第1切替部(36、38)を有し、
     前記電磁弁システムは、
     前記安全回路を介して前記駆動用電源の一方の端子に接続され、複数の前記電磁弁ユニットまで延びて複数の前記ソレノイドの一端に接続される1本のコモン線(42、82)と、
     前記安全回路を介して前記駆動用電源の他方の端子に接続され、複数の前記ソレノイドの各々の他端に接続される複数本の電力線(44、50、84、86)と、
     をさらに備え、
     前記電磁弁駆動回路は、複数本の前記電力線の各々に設けられ、前記制御回路からの制御によって、前記安全回路から複数の前記ソレノイドへの電力の供給と遮断とを切り替える複数の第2切替部(46)を有する、電磁弁システム。
  2.  請求項1記載の電磁弁システムにおいて、
     前記安全回路は、前記制御ユニットの診断試験を行う安全制御回路(40)をさらに有する、電磁弁システム。
  3.  請求項2記載の電磁弁システムにおいて、
     前記第1切替部は、前記コモン線に設けられた第1スイッチ(36)と、前記駆動用電源の他方の端子と複数本の前記電力線との間に設けられた第2スイッチ(38)とであり、
     前記安全制御回路は、前記制御回路からの制御によって前記第1スイッチをオンオフさせる第1制御部(40a)と、前記第1スイッチをオンオフさせたときの前記コモン線の状態を診断する第1診断回路(40b)と、前記制御回路からの制御によって前記第2スイッチをオンオフさせる第2制御部(40c)と、前記第2スイッチをオンオフさせたときの複数の前記電力線の状態を診断する第2診断回路(40d)とを有する、電磁弁システム。
  4.  請求項1~3のいずれか1項に記載の電磁弁システムにおいて、
     前記制御ユニットは、外部機器(60)からの入力を前記制御回路に出力する入力回路(62)をさらに有し、
     前記入力回路は、前記外部機器からの前記入力を診断する診断部(68)を備える、電磁弁システム。
  5.  請求項1~4のいずれか1項に記載の電磁弁システムにおいて、
     外部の電磁弁に接続可能な外部接続用ユニット(66)が、前記制御ユニットに対してさらに配置され、
     前記コモン線は、前記外部接続用ユニットを介して、前記外部の電磁弁のソレノイド(64)の一端に接続され、
     前記外部接続用ユニットを介して、前記駆動用電源の他方の端子と該ソレノイドの他端とを接続する外部接続用電力線(74)がさらに設けられ、
     前記外部接続用電力線には、前記制御回路からの制御によって、該ソレノイドへの電力の供給と遮断とを切り替える第3切替部(76)が、前記電磁弁駆動回路内に設けられている、電磁弁システム。
  6.  請求項1~5のいずれか1項に記載の電磁弁システムにおいて、
     他の電磁弁ユニット(80)が前記制御ユニットに対してさらに配置され、
     前記コモン線は、前記他の電磁弁ユニットのソレノイド(92)の一端に接続され、
     前記駆動用電源の他方の端子と、該ソレノイドの他端とを接続する他の電力線(90)がさらに設けられ、
     前記他の電力線には、前記制御回路からの制御によって、該ソレノイドへの電力の供給と遮断とを切り替える第4切替部(94)が設けられている、電磁弁システム。
  7.  請求項1~6のいずれか1項に記載の電磁弁システムにおいて、
     前記制御ユニットは、前記制御回路を備えた制御モジュール(12a)と、前記制御モジュールと複数の前記電磁弁ユニットとの間に配置され、前記安全回路及び前記電磁弁駆動回路とを備える出力モジュール(12b)とから構成される、電磁弁システム。
PCT/JP2019/017006 2018-04-27 2019-04-22 電磁弁システム WO2019208491A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020516340A JP7106063B2 (ja) 2018-04-27 2019-04-22 電磁弁システム
CN201980028613.7A CN112055796B (zh) 2018-04-27 2019-04-22 电磁阀系统
US17/050,670 US11396954B2 (en) 2018-04-27 2019-04-22 Electromagnetic valve system
EP19793462.3A EP3786502B1 (en) 2018-04-27 2019-04-22 Electromagnetic valve system
CA3098559A CA3098559C (en) 2018-04-27 2019-04-22 Electromagnetic valve system
MX2020011154A MX2020011154A (es) 2018-04-27 2019-04-22 Sistema de valvulas electromagneticas.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018086503 2018-04-27
JP2018-086503 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019208491A1 true WO2019208491A1 (ja) 2019-10-31

Family

ID=68293584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017006 WO2019208491A1 (ja) 2018-04-27 2019-04-22 電磁弁システム

Country Status (8)

Country Link
US (1) US11396954B2 (ja)
EP (1) EP3786502B1 (ja)
JP (1) JP7106063B2 (ja)
CN (1) CN112055796B (ja)
CA (1) CA3098559C (ja)
MX (1) MX2020011154A (ja)
TW (1) TWI804614B (ja)
WO (1) WO2019208491A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019214118A1 (de) * 2019-09-17 2021-03-18 Ellenberger & Poensgen Gmbh System
DE102019128180A1 (de) * 2019-10-18 2021-04-22 Bürkert Werke GmbH & Co. KG Prozessventil mit Sicherheitskontakt
JP7459915B1 (ja) 2022-10-27 2024-04-02 Smc株式会社 安全モジュールおよびモジュール連結体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019152173A2 (en) 2018-01-31 2019-08-08 Parker-Hannifin Corporation System and method for controlling a valve manifold
JP2022123965A (ja) * 2021-02-15 2022-08-25 本田技研工業株式会社 電力供給回路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355755A (ja) * 2000-06-13 2001-12-26 Ckd Corp 電磁弁マニホールド
US20090045363A1 (en) * 2007-08-16 2009-02-19 Festo Ag & Co. Kg Modular arrangement with modules, which are added in a series direction and are formed at least partially as valve modules
JP2013253693A (ja) * 2012-05-09 2013-12-19 Smc Corp 電磁弁システム

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234033A (en) * 1989-04-05 1993-08-10 Festo Kg Fluid power valve unit
DE4037353C1 (ja) * 1990-11-20 1992-03-12 Mannesmann Ag, 4000 Duesseldorf, De
DE69233568T2 (de) * 1991-09-10 2006-08-10 Smc K.K. Durch Flüssigkeitsdruck betätigte Vorrichtung
US5495871A (en) * 1995-04-03 1996-03-05 The Aro Corporation Multiple valve manifold with plural power supplies
DE10114439B4 (de) * 2000-04-07 2005-12-15 Smc K.K. Solenoidventilverteiler
JP3739680B2 (ja) 2001-08-17 2006-01-25 リンナイ株式会社 診断機能付きのガス燃焼機器用電磁弁群駆動装置
JP4122495B2 (ja) 2001-10-30 2008-07-23 Smc株式会社 電磁弁制御装置
JP4199474B2 (ja) * 2002-04-10 2008-12-17 シーケーディ株式会社 電磁弁マニホールド及び電磁弁マニホールドの制御システム
US7707872B2 (en) * 2006-09-25 2010-05-04 Eaton Corporation Method for testing a hydraulic manifold
DE102007052253B4 (de) * 2007-11-02 2023-07-06 Mercedes-Benz Group AG Ventiltriebvorrichtung
US10240785B2 (en) * 2010-01-28 2019-03-26 Noritz Corporation Driving method for solenoid valve, solenoid valve driving apparatus, and combustion apparatus including same
JP2011214606A (ja) * 2010-03-31 2011-10-27 Suzuki Motor Corp 遮断弁の駆動制御回路装置
EP2447798B1 (en) * 2010-10-26 2014-07-23 Vetco Gray Controls Limited Testing a control system including a valve
JP5794116B2 (ja) * 2011-11-08 2015-10-14 オムロン株式会社 安全制御システム
DE202011109158U1 (de) * 2011-12-15 2012-01-24 Karl Morgenbesser Elektrohydraulische Sicherheitssteuerung
DE102012001615C5 (de) * 2012-01-30 2017-05-11 Phoenix Contact Gmbh & Co. Kg Modulanordnung
DE102012001874A1 (de) * 2012-02-01 2013-08-01 Robert Bosch Gmbh Hydraulische Steueranordnung
JP5724928B2 (ja) * 2012-03-29 2015-05-27 アイシン・エィ・ダブリュ株式会社 電磁弁駆動回路の制御装置および異常診断方法
CA2902643C (en) * 2013-03-15 2019-04-02 Numatics, Incorporated Valve manifold circuit board with serial communication circuit line
CN203260162U (zh) * 2013-05-14 2013-10-30 大庆中石油昆仑燃气有限公司 燃气报警关阀装置
DE202013007990U1 (de) * 2013-09-11 2013-10-09 Bürkert Werke GmbH Elektromagnetischer Stellenantrieb für ein Magnetventil, Ventilinsel mit zumindest einem Magnetventil und Modulanordnung
JP6816762B2 (ja) * 2016-03-24 2021-01-20 株式会社タダノ 故障診断装置
CA3057060C (en) * 2017-03-07 2023-08-29 Asco, L.P. A device and method for anticipating failure in a solenoid valve for a manifold assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355755A (ja) * 2000-06-13 2001-12-26 Ckd Corp 電磁弁マニホールド
US20090045363A1 (en) * 2007-08-16 2009-02-19 Festo Ag & Co. Kg Modular arrangement with modules, which are added in a series direction and are formed at least partially as valve modules
US8156965B2 (en) 2007-08-16 2012-04-17 Festo Ag & Co. Kg Modular arrangement with modules, which are added in a series direction and are formed at least partially as valve modules
JP2013253693A (ja) * 2012-05-09 2013-12-19 Smc Corp 電磁弁システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019214118A1 (de) * 2019-09-17 2021-03-18 Ellenberger & Poensgen Gmbh System
DE102019128180A1 (de) * 2019-10-18 2021-04-22 Bürkert Werke GmbH & Co. KG Prozessventil mit Sicherheitskontakt
JP7459915B1 (ja) 2022-10-27 2024-04-02 Smc株式会社 安全モジュールおよびモジュール連結体

Also Published As

Publication number Publication date
JPWO2019208491A1 (ja) 2021-05-13
CN112055796B (zh) 2022-07-05
US11396954B2 (en) 2022-07-26
CA3098559C (en) 2023-03-28
JP7106063B2 (ja) 2022-07-26
TWI804614B (zh) 2023-06-11
MX2020011154A (es) 2020-11-11
EP3786502B1 (en) 2023-08-09
EP3786502A1 (en) 2021-03-03
US20210041035A1 (en) 2021-02-11
EP3786502A4 (en) 2022-02-09
CA3098559A1 (en) 2019-10-31
TW201945876A (zh) 2019-12-01
CN112055796A (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2019208491A1 (ja) 電磁弁システム
JP7099220B2 (ja) リレーの故障診断装置
JP5728095B2 (ja) 電気負荷をフェイルセーフに停止させるための安全開閉装置
JP5778268B2 (ja) 設備のフェールセーフな接続または接続解除のための安全回路
JP6353648B2 (ja) 半導体異常検出回路
EP2592502B1 (en) Safety control system
US20130140884A1 (en) Signal output circuit
JP2015527033A (ja) パワー出力段及びその動作方法
EP1372257B1 (en) Diagnostic device for electric mechanism drive circuits
JP2010108129A (ja) スイッチング装置
JP2004165379A (ja) 電気部品駆動回路
WO2019044657A1 (ja) 通電制御装置
JP2016122544A (ja) リレー駆動回路
WO2021117815A1 (ja) 安全信号出力装置、装着部材、安全システム及び監視無効化方法
JP7459469B2 (ja) 産業用制御装置の出力モジュール
KR20200069677A (ko) 경고등 구동 장치 및 경고등 구동 방법
JP2016092707A (ja) スイッチ制御装置
WO2024134842A1 (ja) ゲート駆動制御装置およびインバータ装置
CN114128102B (zh) 用于车辆的电机系统、风扇模组及电连接器
US20230254959A1 (en) Light system
KR200343309Y1 (ko) 스로틀 밸브 액츄에이터 구동회로의 고장 점검장치
JP2012226426A (ja) ディジタル出力回路
JP2022014011A (ja) 車載電子制御装置
JP2007302087A (ja) コネクタのフェールセーフ装置
JP5798832B2 (ja) モータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516340

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3098559

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019793462

Country of ref document: EP