WO2019208426A1 - 光学薄膜、光学部材及び光学薄膜の製造方法 - Google Patents

光学薄膜、光学部材及び光学薄膜の製造方法 Download PDF

Info

Publication number
WO2019208426A1
WO2019208426A1 PCT/JP2019/016790 JP2019016790W WO2019208426A1 WO 2019208426 A1 WO2019208426 A1 WO 2019208426A1 JP 2019016790 W JP2019016790 W JP 2019016790W WO 2019208426 A1 WO2019208426 A1 WO 2019208426A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
layer
thin film
optical thin
silicon oxide
Prior art date
Application number
PCT/JP2019/016790
Other languages
English (en)
French (fr)
Inventor
靖 水町
正章 能勢
研人 長谷川
洋輔 青木
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to US17/050,379 priority Critical patent/US20210116608A1/en
Priority to JP2020516309A priority patent/JP7279713B2/ja
Priority to EP19791993.9A priority patent/EP3751319A4/en
Priority to CN201980027702.XA priority patent/CN112005131A/zh
Publication of WO2019208426A1 publication Critical patent/WO2019208426A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3447Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide
    • C03C17/3452Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide comprising a fluoride
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/284Halides
    • C03C2217/285Fluorides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/734Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/76Hydrophobic and oleophobic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/151Deposition methods from the vapour phase by vacuum evaporation

Definitions

  • the present invention relates to an optical thin film, an optical member, and a method for producing an optical thin film, and in particular, has excellent sliding properties and is excellent in durability required when used as an outdoor lens, and has high productivity. It relates to a good optical thin film.
  • an in-vehicle camera is mounted on a vehicle for driving support of the vehicle. More specifically, a camera that captures the back and sides of the vehicle is mounted on the body of the automobile, and the image captured by the camera is displayed at a position where the driver can visually recognize it. Contributes to safe driving.
  • in-vehicle cameras are often attached outside the vehicle, and dirt such as water droplets and mud often adheres on the lens. Depending on the degree of water drops and dirt adhering to the lens, the image captured by the camera may become unclear.
  • Ion-assisted deposition (Ion Assisted Deposition) generally used in the formation of an antireflection layer (hereinafter referred to as “Ion Assisted Deposition”)
  • the surface roughness can be controlled by lowering the deposition energy such as lowering the ion beam irradiation intensity or lowering the deposition rate in the method.
  • the deposition energy such as lowering the ion beam irradiation intensity or lowering the deposition rate in the method.
  • the film quality of the antireflection layer becomes sparse, and the durability (reliability) required for an outdoor lens for in-vehicle use cannot be ensured.
  • there is a surface processing such as etching or machining.
  • productivity increases due to an additional processing time.
  • the present invention has been made in view of the above problems and situations, and the solution is to have good sliding properties, and excellent durability required when used as an outdoor lens,
  • An object is to provide an optical thin film, an optical member and a method for producing an optical thin film with good productivity.
  • the present inventor has a structure in which a water repellent layer is provided on a silicon oxide layer containing an oxide of silicon (Si) in the process of examining the cause of the above problems, It was found that the surface of the silicon oxide layer is hard, and that the surface of the water-repellent layer is moderately rough can provide an optical thin film having excellent durability and good sliding properties. Invented. That is, the said subject concerning this invention is solved in the following procedures.
  • An optical thin film provided on a substrate, A silicon oxide layer containing an oxide of silicon (Si); A water repellent layer provided on the silicon oxide layer and containing fluoride, The hardness of the silicon oxide layer measured by nanoindentation is 9 GPa or more, An optical thin film having an arithmetic average roughness of 0.7 nm or more of the water-repellent layer measured by AFM.
  • optical thin film according to claim 1 further comprising a high refractive index layer having a refractive index higher than that of the silicon oxide layer under the silicon oxide layer.
  • the high refractive index layer includes an oxide of titanium (Ti) and an oxide of lanthanum (La).
  • a second high refractive index layer having a refractive index higher than the refractive index of the base material, and the second high refractive index The optical thin film according to any one of Items 2 to 4, wherein a low refractive index layer having a refractive index lower than that of the layer is provided.
  • An optical member comprising: the base material; and the optical thin film according to any one of items 1 to 9 provided on the base material.
  • optical member according to Item 10 wherein the optical member is a lens for a vehicle-mounted camera.
  • a method for producing an optical thin film provided on a substrate A step of forming a silicon oxide layer containing an oxide of silicon (Si) on the base material by a vacuum deposition method; Forming a water repellent layer containing a fluoride on the silicon oxide layer, The hardness of the silicon oxide layer measured by nanoindentation is 9 GPa or more, A method for producing an optical thin film, wherein the arithmetic average roughness of the water-repellent layer measured by AFM is 0.7 nm or more.
  • the vacuum evaporation method in the step of forming the high refractive index layer does not use an ion assist deposition (IAD) method, or the ion assist deposition (IAD) method in the step of forming the silicon oxide film Item 15.
  • IAD ion assist deposition
  • IAD ion assist deposition
  • an optical thin film, an optical member, and an optical thin film having good sliding properties, excellent durability required when used as an outdoor lens, and good productivity A method can be provided.
  • the expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
  • the substrate has a silicon oxide layer containing an oxide of silicon (Si), and a water repellent layer containing a fluoride provided on the silicon oxide layer, and nano Since the hardness of the silicon oxide layer measured by indentation is 9 GPa or more and the arithmetic average roughness of the water repellent layer measured by AFM is 0.7 nm or more, water droplets adhering to the surface of the water repellent layer are present.
  • the surface roughness of the water repellent layer which is the outermost surface, can be set within a specific range by reducing the ion beam irradiation intensity by the IAD method or by reducing the film formation rate. Therefore, the film quality becomes dense, and the durability (reliability) required for outdoor lenses such as in-vehicle applications can be ensured. Furthermore, in order to control the surface roughness, surface processing such as etching or machining is not required, so that productivity is also improved.
  • Sectional view of the optical thin film of the present invention Sectional drawing which shows schematic structure of the vapor deposition apparatus which concerns on this invention
  • the optical thin film of the present invention is an optical thin film provided on a substrate, and includes a silicon oxide layer containing an oxide of silicon (Si) and a fluoride provided on the silicon oxide layer.
  • the silicon oxide layer measured by nanoindentation has a hardness of 9 GPa or more
  • the water repellent layer measured by AFM has an arithmetic average roughness of 0.7 nm or more.
  • the provision of a high refractive index layer having a refractive index higher than the refractive index of the silicon oxide layer below the silicon oxide layer can achieve both an antireflection effect and sliding properties.
  • the high refractive index layer contains an oxide of hafnium (Hf) because the surface roughness measured on the water repellent layer can be created.
  • the high refractive index layer containing titanium (Ti) oxide and lanthanum (La) oxide can create a surface roughness measured on the water repellent layer. preferable.
  • the silicon oxide layer contains an oxide of aluminum (Al).
  • a second high refractive index layer having a refractive index higher than the refractive index of the base material, and the second high refractive index It is preferable that a low refractive index layer having a lower refractive index than that of the layer is provided in terms of excellent optical performance.
  • the thickness of the high refractive index layer is preferably 10 nm or more from the viewpoint that the arithmetic average roughness of the water repellent layer can be in the above range.
  • the sliding angle at a temperature of 20 ° C. and an appropriate amount of water of 7 ⁇ L in the water-repellent layer is 20 ° or less, and the contact angle with respect to water at a temperature of 20 ° C. in the water-repellent layer is 100 ° or more. Is superior in terms of sliding properties and is preferable in terms of water droplet removal.
  • the optical thin film of the present invention is preferably used for an optical member, particularly a lens for an in-vehicle camera, from the viewpoint of preventing adhesion of water droplets due to rain or the like and obtaining good visibility.
  • the method for producing an optical thin film of the present invention is a method for producing an optical thin film provided on a substrate, and a silicon oxide layer containing an oxide of silicon (Si) is formed on the substrate by a vacuum deposition method.
  • a step of forming a film and a step of forming a water-repellent layer containing fluoride on the silicon oxide layer, and the hardness of the silicon oxide layer measured by nanoindentation is 9 GPa or more
  • the arithmetic average roughness of the water repellent layer measured by AFM is 0.7 nm or more.
  • An optical thin film excellent in optical performance comprising a step of forming a high refractive index layer having a refractive index higher than that of the silicon oxide layer before the step of forming the silicon oxide film Is preferable in that it can be formed.
  • the vacuum deposition method in the step of forming the silicon oxide film is an ion-assisted deposition (IAD) method from the viewpoint that the dense silicon oxide layer can be formed.
  • the vacuum deposition method in the step of forming the high refractive index layer does not use the ion assist deposition (IAD) method, or in the ion assist deposition (IAD) method in the step of forming the silicon oxide. It is preferable to form a film with an intensity smaller than the ion beam irradiation intensity in that the surface roughness required for excellent water droplet sliding property can be obtained.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the optical thin film of the present invention is an optical thin film 100 provided on a substrate 101, which is a silicon oxide containing an oxide of silicon (Si) (hereinafter also referred to as silicon oxide).
  • the silicon oxide layer 103 is provided on the silicon oxide layer 103 and has a water repellent layer 104 containing fluoride, and the hardness of the silicon oxide layer 103 measured by nanoindentation is 9 GPa or more. Yes, the arithmetic average roughness of the water repellent layer 104 measured by AFM is 0.7 nm or more.
  • a high refractive index layer 102 having a refractive index higher than that of the silicon oxide layer 103 is preferably provided under the silicon oxide layer 103.
  • an antireflection layer in which a layer having a high refractive index and a layer having a low refractive index are alternately stacked is provided between the substrate 101 and the high refractive index layer 102.
  • a low refractive index layer 107 having a refractive index is provided.
  • the surface side (exposed surface side) of the water repellent layer 104 is the side in contact with air. Each configuration will be described below.
  • Substrate 101 ⁇ Configuration of optical thin film>
  • the substrate include glass and resin.
  • the resin include polycarbonate resin and cycloolefin resin.
  • the high refractive index layer is a layer provided under the silicon oxide layer and having a refractive index higher than that of the silicon oxide layer.
  • the high refractive index layer preferably contains an oxide of hafnium (Hf), or contains an oxide of titanium (Ti) and an oxide of lanthanum (La).
  • Hf hafnium
  • Ti titanium
  • La lanthanum
  • hafnium oxide examples include HfO 2
  • titanium oxide includes TiO 2
  • lanthanum oxide includes La 2 O 3 .
  • the thickness of the high refractive index layer is preferably 10 nm or more from the viewpoint that the surface of the water-repellent layer can be appropriately roughened, more preferably 40 nm or more, and particularly preferably 50 nm or more.
  • the upper limit value is preferably 300 nm or less.
  • the silicon oxide layer contains an oxide of silicon (Si).
  • silicon oxide examples include SiO 2 .
  • the silicon oxide layer may contain Al 2 O 3 in addition to the silicon oxide. In this case, it is preferable that SiO 2 is in the range of 90 to 99% by mass and Al 2 O 3 is in the range of 1 to 10% by mass. Since the heat resistance and scratch resistance are improved as the mixing ratio of Al 2 O 3 increases, the content is preferably 1% by mass or more, and when it is 10% by mass or less, the film formation rate is stabilized and the film appearance is improved. Also excellent.
  • the hardness of the silicon oxide layer by nanoindentation is 9 GPa or more. Preferably it is 10 GPa or more, and an upper limit is 13 GPa.
  • the hardness by nanoindentation was measured as follows. First, a silicon oxide film is formed to a thickness of 100 nm on a glass plate, and a nano-indentation measuring device is provided with an ultra-small indentation hardness tester ENT-2100 manufactured by Elionix Co., Ltd. An indenter was attached and pressed against the membrane for measurement.
  • the indenter gives an addition at a weighted speed of 0.2 mgf / sec, holds the maximum load of 0.98 mN for 1 second, then unloads at the same weighted speed, and determines the indenter indentation depth obtained from a series of operations. The hardness was determined from the measured value when the maximum load was reached from the load curve.
  • the thickness of the silicon oxide layer is preferably 30 nm or more from the viewpoint that the surface roughness on the water repellent layer can be created, and more preferably 80 nm or more. As an upper limit, It is preferable that it is 300 nm or less.
  • the silicon oxide layer is preferably formed by the IAD method described later.
  • Water repellent layer 104 Examples of the water-repellent material contained in the water-repellent layer include fluorides, among which fluoride is preferable. Examples of the fluoride include a fluororesin material. As a commercially available product, a tablet shape of SURFCLEAR100 (SC-100) (Canon Optron Co., Ltd.) is preferable. Other than the tablet shape, it may be liquid.
  • the arithmetic average roughness Ra of the surface of the water repellent layer is preferably 0.7 nm or more from the viewpoint of excellent sliding properties and durability, and more preferably 0.8 nm or more.
  • the upper limit is preferably 1.3 nm or less from the viewpoint of obtaining sufficient optical performance.
  • the arithmetic average roughness is a value measured using an AFM (atomic force microscope) according to JIS B 0601: 2001. Specifically, a Dimension Icon made by Burker was used, and the measurement area was 10 ⁇ m ⁇ 10 ⁇ m.
  • the thickness of the water-repellent layer is preferably 5 nm or more, and within the range of 10 to 30 nm, the surface roughness of the water-repellent layer can be within the specific range, and the water-repellent performance. Is preferable in that it can be sufficiently secured.
  • the water repellent layer according to the present invention has a sliding angle of 20 degrees or less at a temperature of 20 ° C. and an appropriate amount of water of 7 ⁇ L.
  • the sliding angle is set on a contact angle meter (LSE-B100W: manufactured by Nick Co.) by placing a test object (base material having a water-repellent layer) horizontally on the water-repellent layer of the base material placed horizontally. 7 ⁇ L of water droplets are dropped, and then the substrate is tilted, and the angle of the substrate when the water droplets are moved by 15 pixels in image processing is measured.
  • the measurement temperature is 20 ° C. and the humidity is 50%.
  • the contact angle with water at a temperature of 20 ° C. is preferably 100 degrees or more, which is superior in terms of sliding properties and is preferable in terms of water droplet removal.
  • the contact angle can be measured by a known method. For example, the measurement is performed according to a method defined in JIS R3257. The measurement conditions were a temperature of 25 ⁇ 5 ° C. and a humidity of 50 ⁇ 10%. As a specific operation procedure, about 1.5 ⁇ L of the water (distilled water) was dropped on the water-repellent layer to analyze the solid-liquid interface. Five points on the water repellent layer are measured with an apparatus (DropMaster 500, manufactured by Kyowa Interface Science Co., Ltd.), and an average contact angle is obtained from the average of the measured values. The time to contact angle measurement is 1 minute after dropping water.
  • the water repellent layer can be formed using a vacuum deposition method, a coating method, or the like. Specifically, a spin coating method, a dip coating method, a spray method, or the like can be used as the coating method.
  • the antireflection layer includes a second high refractive index layer 106 having a refractive index higher than the refractive index of the substrate 101, and a low refractive index layer 107 having a lower refractive index than the second high refractive index layer 106.
  • a multilayer structure in which the second high refractive index layers 106 and the low refractive index layers 107 are alternately stacked.
  • the refractive index of the second high refractive index layer 106 with respect to the wavelength of 587.56 nm is in the range of 1.9 to 2.45, and the refractive index of the low refractive index layer 107 with respect to the wavelength of 587.56 nm is 1.3 to 2. It is preferable to be within the range of 1.5.
  • the material used for the antireflection layer (second high refractive index layer, low refractive index layer) according to the present invention is preferably a dielectric material, for example, Ti, Ta, Nb, Zr, Ce, La, and the like.
  • a An oxide such as l, Si, Hf, or an oxide compound that combines these is suitable.
  • the number of stacked layers depends on the required optical performance, but by generally stacking about 3 to 5 layers, the reflectance in the entire visible range can be reduced, and the upper limit number is 12 layers or less. This is preferable in that the stress of the film can be prevented and the film can be prevented from peeling off.
  • the low refractive index layer 105, the second high refractive index layer 106, the low refractive index layer 107, and the first layer are sequentially formed from the substrate 101 side.
  • 2 high refractive index layer 108 is preferable.
  • the high refractive index layer 102, the silicon oxide layer 103, and the water repellent layer 104 are preferably provided in this order on the second high refractive index layer 108, but the order is not limited thereto.
  • the low refractive index layers 105 and 107 are made of a material having a refractive index lower than that of the substrate 101, and are preferably made of, for example, SiO 2 or a mixture of SiO 2 and Al 2 O 3 .
  • the low refractive index layers 105 and 107 can be formed on the substrate 101 by a known method such as a vacuum deposition method, a sputtering method, or an ion plating method. It is preferable not to use an IAD method which will be described later, or to form a film with an intensity lower than the ion beam irradiation intensity in the IAD method when forming the silicon oxide layer 103.
  • the second high refractive index layers 106 and 108 are made of a material having a refractive index higher than that of the base material 101.
  • a mixture of a Ta oxide and a Ti oxide, a Ti oxide, Ta It is preferable to be an oxide of La, a mixture of La oxide and Ti oxide.
  • the second high refractive index layers 106 and 108 can be formed on the substrate 101 by a known method such as a vacuum deposition method, a sputtering method, or an ion plating method. It is preferable that the film is formed and the IAD method to be described later is not used, or the film is formed with an intensity smaller than the ion beam irradiation intensity in the IAD method when the silicon oxide layer 103 is formed.
  • the thickness of the antireflection layer (the total thickness when a plurality of layers are laminated) is preferably in the range of 50 nm to 5 ⁇ m. If the thickness is 50 nm or more, the optical properties of antireflection can be exhibited, and if the thickness is 5 ⁇ m or less, it is possible to prevent surface deformation due to the layer stress of the antireflection layer itself. .
  • the method for producing an optical thin film of the present invention is a method for producing an optical thin film provided on a substrate, and a silicon oxide layer containing an oxide of silicon (Si) is formed on the substrate by a vacuum deposition method.
  • a step of forming a film and a step of forming a water-repellent layer containing fluoride on the silicon oxide layer, and the hardness of the silicon oxide layer measured by nanoindentation is 9 GPa or more,
  • the arithmetic average roughness of the water repellent layer measured by AFM is 0.7 nm or more.
  • it is preferable to provide the process of forming the high refractive index layer which has a refractive index higher than the refractive index of the said silicon oxide layer before the process of forming the said silicon oxide.
  • a high refractive index layer having a refractive index higher than the refractive index of the silicon oxide layer is formed on the substrate by vacuum deposition.
  • the vacuum evaporation method it is preferable not to use the IAD method or to form a film with an intensity smaller than the ion beam irradiation intensity in the IAD method in the step of forming a silicon oxide layer described later.
  • the intensity of the ion gun current value and ion assist conditions are made smaller than the values of each condition in the step of forming the silicon oxide layer. Is preferred.
  • a silicon oxide layer containing an oxide of silicon (Si) is formed on the substrate by a vacuum deposition method.
  • a vacuum deposition method it is preferable to use the IAD method.
  • an IAD method and a vapor deposition apparatus used in the IAD method will be described.
  • the vapor deposition apparatus 1 includes a chamber 2, a dome 3, an ion gun 4, and a monitor system 5.
  • a plurality of evaporation sources 6 are arranged at the bottom of the chamber 2.
  • the film-forming material (evaporation material) of the evaporation source 6 is heated to evaporate, and the film-forming material is attached to the base material 101 (for example, a glass plate) installed in the chamber 2, thereby forming a layer made of the film-forming material (for example, a silicon oxide layer) is formed on the substrate 101.
  • the base material 101 for example, a glass plate
  • the chamber 2 is provided with an evacuation system (not shown), and the inside of the chamber 2 is evacuated.
  • the dome 3 holds at least one holder (not shown) that holds the base material 101 and is also called a vapor deposition umbrella.
  • the dome 3 has an arc shape in cross section, and has a rotationally symmetric shape that passes through the center of a string connecting both ends of the arc and rotates about an axis AX that is perpendicular to the string.
  • the dome 3 rotates around the axis AX, for example, at a constant speed
  • the base material 101 held by the dome 3 via the holder revolves around the axis AX at a constant speed.
  • This dome 3 can hold a plurality of holders side by side in the rotation radius direction (revolution radius direction) and the rotation direction (revolution direction). Thereby, it becomes possible to form a film simultaneously on the plurality of base materials 101 held by the plurality of holders, and the manufacturing efficiency of the optical element can be improved.
  • the ion gun 4 is a device that introduces argon or oxygen gas into the main body, ionizes them, and irradiates the ionized gas molecules toward the substrate 101.
  • molecules of the film forming material evaporated from the plurality of evaporation sources 6 can be pressed against the substrate 101, and a film having high adhesion and denseness can be obtained.
  • a film can be formed on the substrate 101.
  • the ion gun 4 is installed on the axis AX of the dome 3 at the bottom of the chamber 2, it may be installed at a position shifted from the axis AX. When the ion gun 4 is installed at a position shifted from the axis AX, any of the plurality of evaporation sources 6 described above may be located on the axis AX.
  • the monitor system 5 monitors the characteristics of the layer formed on the substrate 101 by monitoring the layer evaporated from each evaporation source 6 during vacuum film formation and adhering to itself (monitor system 5). It is. With this monitor system 5, it is possible to grasp optical characteristics (for example, transmittance, reflectance, optical layer thickness, etc.) of a layer formed on the substrate 101.
  • the monitor system 5 also includes a crystal layer thickness monitor, and can monitor the physical layer thickness of the layer formed on the substrate 101.
  • the monitor system 5 also functions as a control unit that controls ON / OFF switching of the plurality of evaporation sources 6, ON / OFF switching of the ion gun 4, and the like according to the monitoring result of the layer.
  • a silicon oxide layer is formed by vapor-depositing the film-forming material which comprises a silicon oxide layer on the base material formed in the base material using the vapor deposition apparatus mentioned above.
  • the film forming speed is within a range of 2 to 8 mm / sec.
  • an acceleration voltage output of the ion gun is 700 to 10,000 V using the IAD “NIS-175” manufactured by SYNCHRON Co., Ltd.
  • the acceleration current is in the range of 700 to 10000 mA
  • the bias current is in the range of 1400 to 2000 mA
  • the oxygen introduction amount is 30 to 60 sccm
  • the argon introduction amount is 0 to 10 sccm.
  • the low refractive index layer and the second high refractive index layer are formed on the substrate by a known method such as a vacuum deposition method, a sputtering method, or an ion plating method.
  • the low refractive index layer and the second high refractive index layer are preferably formed by a vacuum deposition method, and the IAD method is not used or the IAD method is used when forming the silicon oxide layer. It is preferable to form a film with an intensity lower than the ion beam irradiation intensity in FIG.
  • the step of forming the water-repellent layer is preferably formed using a vacuum deposition method, a coating method, or the like.
  • Specific examples of the coating method include spin coating, dip coating, and spraying.
  • the arithmetic average roughness Ra of the surface of the water repellent layer obtained by the above step is preferably 0.7 nm or more from the viewpoint of excellent sliding properties and durability, and more preferably 0.8 nm or more.
  • the film is formed by using a vacuum evaporation method, and the film is formed by IAD. If not performed, the film deposition may be performed with the drive of the ion gun 4 turned off in the vacuum deposition apparatus 1 used in the process of depositing the silicon oxide layer.
  • the optical thin film of the present invention is preferably provided on a substrate and used as an optical member.
  • the optical member include an in-vehicle or outdoor optical lens, and a lens for an in-vehicle camera (a lens constituting a lens unit) is particularly preferable.
  • “In-vehicle camera” is a camera that is installed on the outside of the car body of an automobile, installed in the gazette section of the car body and used for backward confirmation, or installed in the front part of the car body for forward confirmation. Alternatively, it is used for side confirmation, distance confirmation with the front car, etc.
  • Such a lens unit for an in-vehicle camera is composed of a plurality of lenses, and more specifically, is composed of an object side lens disposed on the object side and an image side lens group disposed on the image side.
  • the image side lens group includes a plurality of lenses and a diaphragm provided between the lenses.
  • the object side lens is an exposed surface that is exposed to the outside air, and the base material according to the present invention is preferably used as the lens having the exposed surface, and the present invention is formed on the lens.
  • An optical thin film is provided.
  • the outdoor optical member examples include an outdoor installation type surveillance camera, and among the lenses constituting the surveillance camera, the base material according to the present invention is suitable as a lens having an exposed surface exposed to the outside air. And the optical thin film of the present invention is used on the lens.
  • Silicon oxide layer deposition material SiO 2 (Canon Optron)
  • the film-forming material is loaded into the second evaporation source, the inside of the apparatus is depressurized to 1 ⁇ 10 ⁇ 4 Pa, and then vapor deposition is performed at a film-forming rate of 3 mm / sec.
  • a silicon oxide layer having a thickness of 80 nm was formed.
  • the silicon oxide layer was formed by IAD, under the conditions of IAD level 1 shown below.
  • the “acceleration voltage”, “acceleration current”, and “bias current” in Table I below are the installation values of the acceleration voltage, acceleration current, and bias current of the device using “NIS-175” manufactured by SYNCHRON Corporation. Is shown.
  • Water repellent film forming material SURFCLEAR 100 (SC-100) tablet shape (manufactured by Canon Optron Co., Ltd.)
  • the film-forming material is loaded into a third evaporation source, and after the pressure inside the apparatus is reduced to 1 ⁇ 10 ⁇ 4 Pa, deposition is performed at a deposition rate of 0.3 ⁇ / sec.
  • a water repellent layer having a thickness of 15 nm was formed on the optical thin film 1 to obtain an optical thin film 1 comprising a high refractive index layer, a silicon oxide layer, and a water repellent layer.
  • optical thin films 2 to 10 In the production of the optical thin film 1, except that the film forming material of the high refractive index layer, the thicknesses of the high refractive index layer, the silicon oxide layer and the water repellent layer, and the IAD level were changed as shown in Table II below. Similarly, optical thin films 2 to 10 were produced.
  • “OA-600” used as a film forming material for the high refractive index layer is a commercial product (Canon) of a mixture of Ta oxide and Ti oxide (Ta 2 O 5 + TiO 2 ). Manufactured by Optron).
  • the hardness of the silicon oxide layer of each optical thin film was measured by nanoindentation. As described above, as described above, a sample in which a silicon oxide layer was formed on a glass plate was separately prepared, and an edge angle of 115 ° triangular pyramid diamond indenter was applied to an ultra-small indentation hardness tester ENT-2100 manufactured by Elionix Co., Ltd. Was attached to the silicon oxide layer and measured. In the measurement, the indenter gives an addition at a weighted speed of 0.2 mgf / sec, holds the maximum load of 0.98 mN for 1 second, then unloads at the same weighted speed, and determines the indenter indentation depth obtained from a series of operations. The hardness was determined from the measured value when the maximum load was reached from the load curve.
  • ⁇ Arithmetic mean roughness> The arithmetic average roughness Ra on the surface of the water-repellent layer of the optical thin film was measured using an AFM (atomic force microscope) according to JIS B 0601: 2001. Specifically, a Dimension Icon made by Burker was used, and the measurement area was 10 ⁇ m ⁇ 10 ⁇ m.
  • ⁇ Contact angle> The contact angle with respect to water of the water-repellent layer of the optical thin film was measured. The measurement was performed according to the method defined in JIS R3257, and the measurement conditions were a temperature of 25 ⁇ 5 ° C. and a humidity of 50 ⁇ 10%. As a specific operation procedure, about 1.5 ⁇ L of distilled water is dropped on the water-repellent layer, and five locations on the water-repellent layer are analyzed by a solid-liquid interface analyzer (DropMaster 500, manufactured by Kyowa Interface Science Co., Ltd.). The average contact angle was obtained from the average of the measured values. The time to contact angle measurement was measured 1 minute after dropping water.
  • ⁇ Sliding properties> A test object (base material having an optical thin film) was set horizontally on a contact angle meter (LSE-B100W: manufactured by Nick Corporation), and 7 ⁇ L of water droplets were dropped on the water-repellent layer of the base material placed horizontally. . Next, the substrate was tilted, and the angle (sliding angle) of the substrate when a water droplet moved by 15 pixels was measured by image processing, and the sliding property was evaluated according to the following criteria. ⁇ and ⁇ are assumed to have no problem in practical use. The measurement temperature was 20 ° C. and the humidity was 50%. (Standard) ⁇ : Sliding angle is 10 degrees or less ⁇ : Sliding angle is larger than 10 degrees and 20 degrees or less ⁇ : Sliding angle is larger than 20 degrees
  • ⁇ Reliability (durability)> The test object (optical thin film) is rubbed on the surface of the lens by applying a weight of 2 kg to the turtle scourer (palm material) of the Tortoise Bundle, Nishio Shoten.
  • the condition for moving the scrubber is a stroke of 5 cm, a frequency of 500 reciprocations, and a reciprocation of 1 second. After rubbing, the appearance of the lens was observed with an optical microscope, and the reliability was evaluated according to the following criteria.
  • indicates that there is no practical problem.
  • No scratches in appearance in scratch test
  • Scratches in appearance in scratch test
  • the optical thin film of the present invention is superior in sliding property and reliability (durability) as compared with the optical thin film of the comparative example.
  • an antireflection layer from the substrate side, SiO 2 (low refractive index layer), OA-600 (second high refractive index) is interposed between the substrate and the high refractive index layer. rate layer), SiO 2 (low refractive index layer), OA-600 (Similarly, when the second high refractive index layer) to form a layer) stacked in this order, the optical film of the present invention is an optical comparative example Compared to the thin film, it was excellent in sliding property and reliability (durability).
  • the present invention is used for an optical thin film, an optical member, and a method for producing an optical thin film having good sliding properties and excellent durability required when used as an outdoor lens, and good productivity. can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本発明の光学薄膜は、基材上に設けられる光学薄膜であって、ケイ素(Si)の酸化物を含有するケイ素酸化物層と、当該ケイ素酸化物層上に設けられて、フッ化物を含有する撥水層と、を有し、ナノインデンテーションで測定した前記ケイ素酸化物層の硬度が9GPa以上であり、AFMで測定した前記撥水層の算術平均粗さが0.7nm以上である。

Description

光学薄膜、光学部材及び光学薄膜の製造方法
 本発明は、光学薄膜、光学部材及び光学薄膜の製造方法に関し、特に、良好な滑落性を有し、かつ、屋外レンズとして使用した際に必要とされる耐久性に優れ、また、生産性が良好な光学薄膜等に関する。
 例えば車両の運転支援のため、車両に車載カメラを搭載することが行われている。より具体的には、車両の後方や側方を撮像するカメラを自動車の車体に搭載し、このカメラによって撮像された映像を運転者が視認可能な位置に表示することによって死角を減らし、これにより安全運転に貢献できる。
 ところで、車載カメラは車外に取り付けられる場合が多く、そのレンズ上に水滴や泥等の汚れがしばしば付着する。レンズに付着した水滴や汚れの度合によっては、カメラで撮像された画像が不鮮明となるおそれがある。
 従来、接触角が大きい撥水材や、指紋等の汚れが付着しても容易に拭き取ることができる表面滑り性を有する表面処理剤が提供されている(例えば、特許文献1参照。)。しかしながら、このような表面処理剤をレンズに用いたとしても、水滴除去の性能は満足できるものでは無かった。
 ここで、水滴除去性能を向上させるため、レンズの表面粗さを大きくする必要があり、その手段として反射防止層の成膜で一般的に使用されるイオンアシストデポジション(Ion Assisted Deposition)(以下、単に「IAD」ともいう。)法におけるイオンビーム照射強度を下げたり、成膜速度を下げるなどの成膜エネルギーを下げることで、表面粗さを制御することができる。
 しかしながら、イオンビーム照射強度を下げたり、成膜速度を下げると、反射防止層の膜質が疎となり、車載用途などの屋外レンズで必要とされる耐久性(信頼性)を担保することができない。
 一方、レンズの表面粗さをコントロールするために、エッチングや機械加工などによる表面加工があるが、この場合、加工時間追加により生産性が大きくする低下するという問題がある。
特開2013-253232号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、良好な滑落性を有し、かつ、屋外レンズとして使用した際に必要とされる耐久性に優れ、また、生産性が良好な光学薄膜、光学部材及び光学薄膜の製造方法を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、ケイ素(Si)の酸化物を含有するケイ素酸化物層上に、撥水層を設けた構成とし、前記ケイ素酸化物層の表面が硬く、また、撥水層の表面が適度に荒れていることで耐久性にも優れかつ良好な滑落性を有す光学薄膜等を提供することができることを見い出し、本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手順で解決される。
 1.基材上に設けられる光学薄膜であって、
 ケイ素(Si)の酸化物を含有するケイ素酸化物層と、
 当該ケイ素酸化物層上に設けられて、フッ化物を含有する撥水層と、を有し、
 ナノインデンテーションで測定した前記ケイ素酸化物層の硬度が9GPa以上であり、
 AFMで測定した前記撥水層の算術平均粗さが0.7nm以上である光学薄膜。
 2.前記ケイ素酸化物層の下に、前記ケイ素酸化物層の屈折率よりも高い屈折率を有する高屈折率層を備える第1項に記載の光学薄膜。
 3.前記高屈折率層が、ハフニウム(Hf)の酸化物を含む第2項に記載の光学薄膜。
 4.前記高屈折率層が、チタン(Ti)の酸化物と、ランタン(La)の酸化物とを含む第2項に記載の光学薄膜。
 5.前記ケイ素酸化物層が、アルミニウム(Al)の酸化物を含む第1項から第4項までのいずれか一項に記載の光学薄膜。
 6.前記基材と前記高屈折率層との間に、前記基材側から順に、前記基材の屈折率よりも高い屈折率を有する第2の高屈折率層と、前記第2の高屈折率層よりも低い屈折率を有する低屈折率層とが設けられている第2項から第4項までのいずれか一項に記載の光学薄膜。
 7.前記高屈折率層の厚さが、10nm以上である第2項から第6項までのいずれか一項に記載の光学薄膜。
 8.前記撥水層における、温度20℃、水適量7μLでの滑落角が、20度以下である第1項から第5項までのいずれか一項に記載の光学薄膜。
 9.前記撥水層における、温度20℃での水に対する接触角が、100度以上である第1項から第6項までのいずれか一項に記載の光学薄膜。
 10.前記基材と、前記基材の上に設けられた第1項から第9項までのいずれか一項に記載の光学薄膜とを備えた光学部材。
 11.前記光学部材は、車載カメラ用のレンズである第10項に記載の光学部材。
 12.基材上に設けられる光学薄膜の製造方法であって、
 前記基材上に、ケイ素(Si)の酸化物を含有するケイ素酸化物層を真空蒸着法により成膜する工程と、
 前記ケイ素酸化物層上に、フッ化物を含有する撥水層を形成する工程と、を備え、
 ナノインデンテーションで測定した前記ケイ素酸化物層の硬度が9GPa以上であり、
 AFMで測定した前記撥水層の算術平均粗さが0.7nm以上である光学薄膜の製造方法。
 13.前記ケイ素の酸化物を成膜する工程の前に、前記ケイ素酸化物層の屈折率よりも高い屈折率を有する高屈折率層を成膜する工程を備える第12項に記載
の光学薄膜の製造方法。
 14.前記ケイ素の酸化物を成膜する工程における前記真空蒸着法が、イオンアシストデポジション(IAD)法である第13項に記載の光学薄膜の製造方法。
 15.前記高屈折率層を成膜する工程における真空蒸着法が、イオンアシストデポジション(IAD)法を用いないか、又は、前記ケイ素の酸化物を成膜する工程におけるイオンアシストデポジション(IAD)法におけるイオンビーム照射強度よりも小さい強度で成膜する第14項に記載の光学薄膜の製造方法。
 本発明の上記手段により、良好な滑落性を有し、かつ、屋外レンズとして使用した際に必要とされる耐久性に優れ、また、生産性が良好な光学薄膜、光学部材及び光学薄膜の製造方法を提供することができる。
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
 基材上に、ケイ素(Si)の酸化物を含有するケイ素酸化物層と、当該ケイ素酸化物層上に設けられて、フッ化物を含有する撥水層と、を有する構成とし、かつ、ナノインデンテーションで測定した前記ケイ素酸化物層の硬度が9GPa以上であり、AFMで測定した前記撥水層の算術平均粗さが0.7nm以上であるので、撥水層の表面に付着する水滴が滑落し易く、確実に水滴を除去することができる。また、IAD法によるイオンビーム照射強度を下げたり、成膜速度を下げることなく、上記のような層構成とすることにより、最表面である撥水層の表面粗さを特定範囲とすることができるので、膜質が緻密となり、車載用途などの屋外レンズで必要とされる耐久性(信頼性)を担保することができる。さらに、表面粗さをコントロールするために、エッチングや機械加工などによる表面加工も必要としないことから、生産性も良好となる。
本発明の光学薄膜の断面図 本発明に係る蒸着装置の概略構成を示す断面図
 本発明の光学薄膜は、基材上に設けられる光学薄膜であって、ケイ素(Si)の酸化物を含有するケイ素酸化物層と、当該ケイ素酸化物層上に設けられて、フッ化物を含有する撥水層と、を有し、ナノインデンテーションで測定した前記ケイ素酸化物層の硬度が9GPa以上であり、AFMで測定した前記撥水層の算術平均粗さが0.7nm以上である。
 この特徴は、下記各実施形態に共通又は対応する技術的特徴である。
 本発明の実施態様としては、前記ケイ素酸化物層の下に、前記ケイ素酸化物層の屈折率よりも高い屈折率を有する高屈折率層を備えることが、反射防止効果と滑落性の両立の点で好ましい。
 前記高屈折率層が、ハフニウム(Hf)の酸化物を含むことが、前記撥水層上で測定される表面粗さを作り出すことができる点で好ましい。
 また、前記高屈折率層が、チタン(Ti)の酸化物と、ランタン(La)の酸化物とを含むことが、前記撥水層上で測定される表面粗さを作り出すことができる点で好ましい。
 前記ケイ素酸化物層が、アルミニウム(Al)の酸化物を含むことが、耐久性の点で好ましい。
 前記基材と前記高屈折率層との間に、前記基材側から順に、前記基材の屈折率よりも高い屈折率を有する第2の高屈折率層と、前記第2の高屈折率層よりも低い屈折率を有する低屈折率層とが設けられていることが光学性能に優れる点で好ましい。
 前記高屈折率層の厚さが、10nm以上であることが、撥水層の算術平均粗さを上記範囲とすることができる点で好ましい。
 前記撥水層における、温度20℃、水適量7μLでの滑落角が、20度以下であること、また、前記撥水層における、温度20℃での水に対する接触角が、100度以上であることが、滑落性により優れ、水滴除去の点で好ましい。
 本発明の光学薄膜は、光学部材、特に、車載カメラ用のレンズに用いられることが、雨天などによる水滴の付着を防止し、かつ、良好な視認性が得られる点で好ましい。
 本発明の光学薄膜の製造方法は、基材上に設けられる光学薄膜の製造方法であって、前記基材上に、ケイ素(Si)の酸化物を含有するケイ素酸化物層を真空蒸着法により成膜する工程と、前記ケイ素酸化物層上に、フッ化物を含有する撥水層を形成する工程と、を備え、ナノインデンテーションで測定した前記ケイ素酸化物層の硬度が9GPa以上であり、AFMで測定した前記撥水層の算術平均粗さが0.7nm以上である。これにより、良好な滑落性を有し、かつ、屋外レンズとして使用した際に必要とされる耐久性に優れ、また、生産性が良好な光学薄膜を製造することができる。
 前記ケイ素の酸化物を成膜する工程の前に、前記ケイ素酸化物層の屈折率よりも高い屈折率を有する高屈折率層を成膜する工程を備えることが、光学性能に優れた光学薄膜を形成できる点で好ましい。
 また、前記ケイ素の酸化物を成膜する工程における前記真空蒸着法が、イオンアシストデポジション(IAD)法であることが、緻密な前記ケイ素酸化物層を形成できる点で好ましい。
 前記高屈折率層を成膜する工程における真空蒸着法が、イオンアシストデポジション(IAD)法を用いないか、又は、前記ケイ素酸化物を成膜する工程におけるイオンアシストデポジション(IAD)法におけるイオンビーム照射強度よりも小さい強度で成膜することが、優れた水滴滑落性に必要となる表面粗さを得ることができる点で好ましい。
 以下、本発明とその構成要素及び本発明を実施するための形態・態様について説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
[光学薄膜]
 本発明の光学薄膜は、図1に示すように、基材101上に設けられる光学薄膜100であって、ケイ素(Si)の酸化物(以下、ケイ素酸化物ともいう。)を含有するケイ素酸化物層103と、当該ケイ素酸化物層103上に設けられて、フッ化物を含有する撥水層104と、を有し、ナノインデンテーションで測定した前記ケイ素酸化物層103の硬度が9GPa以上であり、AFMで測定した前記撥水層104の算術平均粗さが0.7nm以上である。
 前記ケイ素酸化物層103の下に、前記ケイ素酸化物層103の屈折率よりも高い屈折率を有する高屈折率層102を備えることが好ましい。
 また、前記基材101と前記高屈折率層102との間に、屈折率の高い層と屈折率の低い層とが交互に積層された反射防止層が設けられていることが好ましい。具体的には、前
記基材101側から順に、前記基材101の屈折率よりも高い屈折率を有する第2の高屈折率層106と、前記第2の高屈折率層106よりも低い屈折率を有する低屈折率層107とが設けられていることが好ましい。
なお、撥水層104の表面側(露出面側)が空気に接触する側となる。
 以下、各構成について説明する。
<光学薄膜の構成>
 (基材101)
 基材としては、ガラス、樹脂等が挙げられる。樹脂としては、ポリカーボネート樹脂やシクロオレフィン樹脂等が挙げられる。
 (高屈折率層102)
 高屈折率層は、ケイ素酸化物層の下に設けられ、当該ケイ素酸化物層の屈折率よりも高い屈折率を有する層である。
 高屈折率層は、ハフニウム(Hf)の酸化物を含むか、又は、チタン(Ti)の酸化物とランタン(La)の酸化物とを含むことが好ましい。ハフニウム(Hf)の酸化物を含む場合、滑落性に優位となる撥水層上の表面粗さを作りだすことができる点で好ましく、チタン(Ti)の酸化物とランタン(La)の酸化物を含む場合も、滑落性に優位となる撥水層上の表面粗さを作りだすことができる点で好ましい。ハフニウムの酸化物としてはHfO、チタンの酸化物としてはTiO、ランタンの酸化物としてはLaが挙げられる。
 高屈折率層の厚さは、10nm以上であることが撥水層の表面を適度に荒らすことができる点で好ましく、40nm以上であることがより好ましく、特に50nm以上であることが好ましい。上限値としては、300nm以下であることが好ましい。
 高屈折率層は、後述するが、真空蒸着法により成膜することが好ましく、後述するIAD法を用いないか、又は、前記ケイ素酸化物層を成膜するときのIAD法におけるイオンビーム照射強度よりも小さい強度で成膜することが好ましい。
 (ケイ素酸化物層103)
 ケイ素酸化物層は、ケイ素(Si)の酸化物を含有する。ケイ素の酸化物としては、SiOが挙げられる。ケイ素酸化物層は、ケイ素の酸化物以外に、Alを含有してもよい。この場合、SiOが90~99質量%の範囲内で、Alが1~10質量%の範囲内であることが好ましい。Alの混合割合の増大に伴って耐熱性や耐傷性が向上することから1質量%以上であることが好ましく、10質量%以下であると成膜速度が安定し、成膜外観にも優れる。
 ケイ素酸化物層のナノインデンテーションによる硬度は、9GPa以上である。好ましくは10GPa以上であり、上限値は13GPaである。
 ナノインデンテーションによる硬度は、以下のとおりにして測定した。まず、ガラス板にケイ素の酸化物を100nmの厚さで成膜し、ナノインデンテーション測定装置として、株式会社エリオニクス製の超極小押し込み硬さ試験機ENT-2100に稜間角115°三角錐ダイヤモンド圧子を取り付けて、これを膜に押し付けて測定を行った。測定は、圧子が0.2mgf/secの加重速度で付加を与え、最大荷重0.98mNを1秒間保持した後、同様の加重速度で除荷を行い、一連の動作から得られる圧子押し込み深さと荷重曲線から最大荷重に達したときの測定値から硬度を求めた。
 ケイ素酸化物層の厚さは、30nm以上であることが、撥水層上の表面粗さを作り出すことができる点で好ましく、80nm以上であることがより好ましい。上限値としては、
300nm以下であることが好ましい。
 ケイ素酸化物層は、後述するIAD法により成膜することが好ましい。
 (撥水層104)
 撥水層に含有される撥水材料としては、フッ化物が挙げられるが、中でもフッ化物であることが好ましい。フッ化物としては、フッ素樹脂材料等が挙げられる。市販品としては、SURFCLEAR100(SC-100)(キヤノンオプトロン株式会社)のタブレット形状のものが好ましい。その他、タブレット形状以外に液体状であっても構わない。
 撥水層の表面の算術平均粗さRaは、0.7nm以上であることが滑落性及び耐久性に優れる点で好ましく、0.8nm以上であることがより好ましい。上限値としては、1.3nm以下であることが、十分な光学性能が得られる点で好ましい。
 前記算術平均粗さは、JIS B 0601:2001に準じて、AFM(原子間力顕微鏡)を用いて測定した値である。具体的には、Buruker社製のDimension Iconを用い、測定エリアは、10μm×10μmとした。
 撥水層の厚さは、5nm以上であることが好ましく、10~30nmの範囲内であることが、撥水層の表面の前記粗さを上記特定範囲内にすることができ、撥水性能の確保が十分にできる点で好ましい。
 また、本発明に係る撥水層は、温度20℃、水適量7μLでの滑落角が、20度以下であることが、滑落性により優れ、水滴除去の点で好ましい。
 滑落角は、接触角計(LSE-B100W:ニック社製)に、被検物(撥水層を有する基材)を水平にセットし、水平に載置された基材の撥水層上に水滴7μLを滴下し、次いで、基材を傾斜させていき、画像処理にて水滴が15画素(ピクセル)移動したときの基材の角度を測定する。なお、測定時の温度は20℃、湿度は50%とする。
 また、本発明に係る撥水層における、温度20℃での水に対する接触角が、100度以上であることが、滑落性により優れ、水滴除去の点で好ましい。
 接触角は、公知の方法によって測定することができる。例えば、JIS R3257で規定される方法に準拠して測定する。測定条件は、温度25±5℃、湿度50±10%とし、具体的な操作の手順としては、前記水(蒸留水)を撥水層上に約1.5μL滴下して、固液界面解析装置(DropMaster500、協和界面科学株式会社製)により撥水層上の5か所を測定し、測定値の平均から平均接触角を得る。接触角測定までの時間は水を滴下してから1分で測定する。
 撥水層は、真空蒸着法、塗布法などを用いて形成することができ、塗布法として具体的には、スピン塗布、ディップ塗布、スプレー法などを用いることができる。
 (反射防止層)
 反射防止層は、基材101の屈折率よりも高い屈折率を有する第2の高屈折率層106と、前記第2の高屈折率層106よりも低い屈折率を有する低屈折率層107とを有する。これら第2の高屈折率層106と、低屈折率層107とが交互に積層された多層構造を有することが好ましい。
 第2の高屈折率層106の波長587.56nmに対する屈折率が、1.9~2.45の範囲内であり、低屈折率層107の波長587.56nmに対する屈折率が、1.3~1.5の範囲内であることが好ましい。
 本発明に係る反射防止層(第2の高屈折率層、低屈折率層)に用いられる材料としては、好ましくは誘電体材料が挙げられ、例えば、Ti、Ta、Nb、Zr、Ce、La、A
l、Si、Hfなどの酸化物、又はこれらを組み合わせた酸化化合物が適している。異なる誘電体材料を複数層積み重ねることで、可視域全体の反射率を低下させた機能を付加することができる。
 積層数は、要求される光学性能によるが、おおむね3~5層程度の積層をすることで、可視域全体の反射率を低下させることができ、上限数としては12層以下であることが、膜の応力が大きくなって膜が剥がれたりすることを防止できる点で好ましい。
 本発明に係る反射防止層の具体的構成としては、図1に示すように、基材101側から順に、低屈折率層105、第2の高屈折率層106、低屈折率層107及び第2の高屈折率層108とすることが好ましい。第2の高屈折率層108上には、前記高屈折率層102、ケイ素酸化物層103及び撥水層104がこの順に設けられることが好ましいが、これらの順番に限られるものではない。
 前記低屈折率層105,107は、基材101よりも屈折率が低い材料から構成され、例えば、SiOやその他、SiOとAlの混合物などであることが好ましい。
 前記低屈折率層105,107は、基材101上に真空蒸着法、スパッタリング法、イオンプレーティング法等の公知の方法によって成膜することができるが、特に、真空蒸着法で成膜し、後述するIAD法を用いないか、又は、前記ケイ素酸化物層103を成膜するときのIAD法におけるイオンビーム照射強度よりも小さい強度で成膜することが好ましい。
 前記第2の高屈折率層106,108は、基材101よりも屈折率が高い材料から構成され、例えば、Taの酸化物とTiの酸化物の混合物や、その他、Tiの酸化物、Taの酸化物、Laの酸化物とTiの酸化物の混合物などであることが好ましい。
 前記第2の高屈折率層106,108は、基材101上に真空蒸着法、スパッタリング法、イオンプレーティング法等の公知の方法によって成膜することができるが、特に、真空蒸着法で成膜し、後述するIAD法を用いないか、又は、前記ケイ素酸化物層103を成膜するときのIAD法におけるイオンビーム照射強度よりも小さい強度で成膜することが好ましい。
 また、反射防止層の厚さ(複数層積層した場合は全体の厚さ)は、好ましくは、50nm~5μmの範囲内である。厚さが50nm以上であれば、反射防止の光学特性を発揮させることができ、厚さが5μm以下であれば、反射防止層自体の層応力による面変形が発生するのを防止することができる。
[光学薄膜の製造方法]
 本発明の光学薄膜の製造方法は、基材上に設けられる光学薄膜の製造方法であって、前記基材上に、ケイ素(Si)の酸化物を含有するケイ素酸化物層を真空蒸着法により成膜する工程と、前記ケイ素酸化物層上に、フッ化物を含有する撥水層を形成する工程と、を備え、ナノインデンテーションで測定した前記ケイ素酸化物層の硬度が9GPa以上であり、AFMで測定した前記撥水層の算術平均粗さが0.7nm以上である。
 また、前記ケイ素酸化物を成膜する工程の前に、前記ケイ素酸化物層の屈折率よりも高い屈折率を有する高屈折率層を成膜する工程を備えることが好ましい。
<高屈折率層を成膜する工程>
 高屈折率層を成膜する工程は、基材上に、ケイ素酸化物層の屈折率よりも高い屈折率を
有する高屈折率層を真空蒸着法により成膜する。
 当該真空蒸着法では、IAD法を用いないか、又は、後述するケイ素酸化物層を成膜する工程でのIAD法におけるイオンビーム照射強度よりも小さい強度で成膜することが好ましい。
 具体的には、後述するイオン銃の電流値やイオンアシスト条件(加速電圧、加速電流、バイアス電流)等の強度を、ケイ素酸化物層を成膜する工程における各条件の値よりも小さくすることが好ましい。
<ケイ素酸化物層を成膜する工程>
 ケイ素酸化物層を形成する工程は、基材上に、ケイ素(Si)の酸化物を含有するケイ素酸化物層を真空蒸着法により成膜する。
 当該真空蒸着法では、IAD法を用いることが好ましい。
 ここで、IAD法及び当該IAD法で用いる蒸着装置について説明する。
 (蒸着装置)
 図2に示すように、本発明に係る蒸着装置1は、チャンバー2と、ドーム3と、イオン銃4と、モニターシステム5とを備えている。
 チャンバー2の底部には、複数の蒸発源6が配置されている。ここでは、蒸発源6として、2個の蒸発源6a,6bを示しているが、蒸発源6の個数は1個であってもよいし、3個以上であってもよい。蒸発源6の成膜材料(蒸着材料)を加熱して蒸発させ、チャンバー2内に設置される基材101(例えばガラス板)に成膜材料を付着させることにより、成膜材料からなる層(例えば、ケイ素酸化物層)が基材101上に成膜される。
 各蒸発源6において成膜材料を蒸発させるときの加熱方式としては、抵抗加熱、電子ビーム加熱、高周波誘導加熱、レーザービーム加熱などがあるが、いずれの方式であっても構わない。また、チャンバー2には、図示しない真空排気系が設けられており、これによってチャンバー2内が真空引きされる。
 ドーム3は、基材101を保持するホルダー(図示しない)を、少なくとも1個保持するものであり、蒸着傘とも呼ばれる。このドーム3は、断面円弧状であり、円弧の両端を結ぶ弦の中心を通り、その弦に垂直な軸AXを回転対称軸として回転する回転対称形状となっている。ドーム3が軸AXを中心に例えば一定速度で回転することにより、ホルダーを介してドーム3に保持された基材101は、軸AXの周りに一定速度で公転する。
 このドーム3は、複数のホルダーを回転半径方向(公転半径方向)及び回転方向(公転方向)に並べて保持することが可能である。これにより、複数のホルダーによって保持された複数の基材101上に同時に成膜することが可能となり、光学素子の製造効率を向上させることができる。
 イオン銃4は、本体内部にアルゴンや酸素ガスを導入してこれらをイオン化させ、イオン化されたガス分子を基材101に向けて照射する機器である。イオン銃4から上記のガス分子を基材101に照射することにより、複数の蒸発源6から蒸発する成膜材料の分子を基材101に押し付けることができ、密着性及び緻密性の高い膜を基材101上に成膜することができる。イオン銃4は、チャンバー2の底部においてドーム3の軸AX上に設置されているが、軸AXからずれた位置に設置されていても構わない。また、イオン銃4が軸AXからずれた位置に設置されている場合、上述した複数の蒸発源6のいずれかが軸AX上に位置していても構わない。
 モニターシステム5は、真空成膜中に各蒸発源6から蒸発して自身(モニターシステム5)に付着する層を監視することにより、基材101上に成膜される層の特性を監視する
システムである。このモニターシステム5により、基材101上に成膜される層の光学特性(例えば透過率、反射率、光学層厚など)を把握することができる。また、モニターシステム5は、水晶層厚モニターも含んでおり、基材101上に成膜される層の物理層厚を監視することもできる。このモニターシステム5は、層の監視結果に応じて、複数の蒸発源6のON/OFFの切り替えやイオン銃4のON/OFFの切り替え等を制御する制御部としても機能する。
 本発明では、上述した蒸着装置を用いて、ケイ素酸化物層を構成する成膜材料を、基材に形成された基材上に蒸着することでケイ素酸化物層が形成される。
 ケイ素酸化物層の成膜条件としては、成膜速度が2~8Å/secの範囲内、例えば、シンクロン社のIAD「NIS-175」を用いてイオン銃の加速電圧出力が上記装置700~10000Vの範囲、加速電流700~10000mAの範囲、バイアス電流が1400~2000mAの範囲内であって、酸素導入量30~60sccm、アルゴン導入量0~10sccmの範囲内であることが好ましい。
<反射防止層を成膜する工程>
 反射防止層を成膜する工程は、基材上に、前記低屈折率層及び第2の高屈折率層を真空蒸着法、スパッタリング法、イオンプレーティング法等の公知の方法によって成膜する。
 特に、これら低屈折率層及び第2の高屈折率層は、真空蒸着法で成膜することが好ましく、IAD法を用いないか、又は、前記ケイ素酸化物層を成膜するときのIAD法におけるイオンビーム照射強度よりも小さい強度で成膜することが好ましい。
<撥水層を形成する工程>
 撥水層を形成する工程は、真空蒸着法、塗布法などを用いて形成することが好ましく、塗布法として具体的には、スピン塗布、ディップ塗布、スプレー法などが挙げられる。
 前記工程によって得られた撥水層の表面の算術平均粗さRaは、0.7nm以上であることが、滑落性及び耐久性に優れる点で好ましく、0.8nm以上であることがより好ましい。
 なお、前記高屈折率層を成膜する工程、反射防止層を成膜する工程及び撥水層を形成する工程において、真空蒸着法を用いて成膜する場合で、かつ、IADによる成膜を行わない場合には、ケイ素酸化物層を成膜する工程で用いた前記真空蒸着装置1において、イオン銃4の駆動をOFFにして成膜すればよい。
[車載用又は屋外用の光学部材]
 本発明の光学薄膜は、基材上に設けられて、光学部材として用いられることが好ましい。光学部材としては、車載用又は屋外用の光学レンズが挙げられ、特に、車載カメラ用のレンズ(レンズユニットを構成するレンズ)であることが好ましい。 「車載カメラ」とは、自動車の車体の外方側に設置されるカメラであって、車体の公報部に設置されて後方確認用に使用されたり、車体の前方部に設置されて前方確認用又は側方確認用や、前車との距離の確認用などとして使用される。
 このような車載カメラ用のレンズユニットは、複数枚のレンズによって構成され、詳しくは、物体側に配置される物体側レンズと、像側に配置される像側レンズ群とで構成される。像側レンズ群は、複数枚のレンズとレンズ間に設けられた絞りを備えている。
 このような複数のレンズのうち、物体側レンズが外気に露出される露出面となっており、この露出面を有するレンズとして本発明に係る基材が好適に用いられ、当該レンズ上に本発明の光学薄膜が設けられる。
 前記屋外用の光学部材としては、屋外設置型の監視カメラなどが挙げられ、当該監視カメラを構成するレンズのうち、外気に露出される露出面を有するレンズとして、本発明に
係る基材が好適に用いられ、当該レンズ上に本発明の光学薄膜が用いられる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
[光学薄膜1の作製]
<高屈折率層の成膜>
 基材:ガラス基材
 成膜材料の蒸発源:抵抗加熱方式
 高屈折率層の成膜材料:HfO(Merck社製)
 上記の基材を真空蒸着装置に設置して、第1蒸発源に前記成膜材料を装填し、装置内を1×10-4Paまで減圧した後、成膜速度3Å/secで蒸着し、基材上に厚さが50nmの高屈折率層を形成した。
<ケイ素酸化物層の成膜>
 ケイ素酸化物層の成膜材料:SiO(キヤノンオプトロン社製)
 上記真空蒸着装置において、第2蒸発源に前記成膜材料を装填し、装置内を1×10-4Paまで減圧した後、成膜速度3Å/secで蒸着し、高屈折率層上に厚さが80nmのケイ素酸化物層を形成した。当該ケイ素酸化物層の形成は、IADによって行い、下記に示すIAD水準1の条件で行った。なお、下記表Iにおける「加速電圧」、「加速電流」、「バイアス電流」とは、シンクロン社の「NIS-175」の装置を用い、当該装置の加速電圧、加速電流、バイアス電流の設置値を示している。
Figure JPOXMLDOC01-appb-T000001
<撥水層の形成>
 撥水層の成膜材料:SURFCLEAR 100(SC-100)タブレット形状(キヤノンオプトロン株式会社製)
 上記真空蒸着装置において、第3蒸発源に前記成膜材料を装填し、装置内を1×10-4Paまで減圧した後、成膜速度0.3Å/secで蒸着し、ケイ素酸化物層上に厚さが15nmの撥水層を形成し、高屈折率層、ケイ素酸化物層及び撥水層からなる光学薄膜1を得た。
[光学薄膜2~10の作製]
 前記光学薄膜1の作製において、高屈折率層の成膜材料と、高屈折率層、ケイ素酸化物層及び撥水層の各厚さと、IAD水準を下記表IIに示すとおりに変更した以外は同様にして光学薄膜2~10を作製した。
 なお、下記表IIにおいて、高屈折率層の成膜材料として使用した「OA-600」とは、Taの酸化物とTiの酸化物の混合物(Ta+TiO)の市販品(キヤノンオプトロン社製)である。
[評価]
 上記で得られた各光学薄膜について、下記評価を行い、その結果を表IIに示した。
<硬度>
 各光学薄膜のケイ素酸化物層のナノインデンテーションによる硬度を測定した。測定は、前記したとおり、別途、ガラス板にケイ素酸化物層を成膜したサンプルを作製し、株式会社エリオニクス製の超極小押し込み硬さ試験機ENT-2100に稜間角115°三角錐ダイヤモンド圧子を取り付けて、これをケイ素酸化物層に押し付けて測定を行った。測定は、圧子が0.2mgf/secの加重速度で付加を与え、最大荷重0.98mNを1秒間保持した後、同様の加重速度で除荷を行い、一連の動作から得られる圧子押し込み深さと荷重曲線から最大荷重に達したときの測定値から硬度を求めた。
<算術平均粗さ>
 光学薄膜の撥水層の表面における算術平均粗さRaをJIS B 0601:2001に準じて、AFM(原子間力顕微鏡)を用いて測定した。具体的には、Buruker社製のDimension Iconを用い、測定エリアは、10μm×10μmとした。
<接触角>
 光学薄膜の撥水層の水に対する接触角を測定した。測定は、JIS R3257で規定される方法に準拠して測定し、測定条件は、温度25±5℃、湿度50±10%とした。具体的な操作の手順としては、蒸留水を撥水層上に約1.5μL滴下して、固液界面解析装置(DropMaster500、協和界面科学株式会社製)により撥水層上の5か所を測定し、測定値の平均から平均接触角を得た。接触角測定までの時間は水を滴下してから1分で測定した。
<滑落性>
 接触角計(LSE-B100W:ニック社製)に、被検物(光学薄膜を有する基材)を水平にセットし、水平に載置された基材の撥水層上に水滴7μLを滴下した。次いで、基材を傾斜させていき、画像処理にて水滴が15画素(ピクセル)移動したときの基材の角度(滑落角)を測定し、下記基準に従って滑落性を評価した。○及び△が実用上問題ないとする。なお、測定時の温度は20℃、湿度50%とした。
 (基準)
 ○:滑落角が10度以下
 △:滑落角が10度より大きく20度以下
 ×:滑落角が20度より大きい
<信頼性(耐久性)>
 被検物(光学薄膜)を亀の子束子西尾商店社の亀の子たわし(パーム素材)に2kgの加重をかけレンズの表面をこする。たわしを動かす条件はストローク5cm、回数が500往復で往復1秒とする。こすり後に、光学顕微鏡でレンズの外観を観察し、下記基準に従って信頼性を評価した。○が実用上問題ないとする。
 ○:擦傷試験で外観での傷なし
 ×:擦傷試験で外観での傷あり
Figure JPOXMLDOC01-appb-T000002
 上記結果表に示されるように、本発明の光学薄膜は、比較例の光学薄膜に比べて、滑落性及び信頼性(耐久性)に優れていることが分かる。
 また、前記光学薄膜1~10において、それぞれ基材と高屈折率層との間に、反射防止層(基材側から、SiO(低屈折率層)、OA-600(第2の高屈折率層)、SiO(低屈折率層)、OA-600(第2の高屈折率層)が順に積層された層)を形成した場合も同様に、本発明の光学薄膜は比較例の光学薄膜に比べて、滑落性及び信頼性(耐久性)に優れていた。
 本発明は、良好な滑落性を有し、かつ、屋外レンズとして使用した際に必要とされる耐久性に優れ、また、生産性が良好な光学薄膜、光学部材及び光学薄膜の製造方法に利用することができる。
 1 蒸着装置
 2 チャンバー
 3 ドーム
 4 イオン銃
 5 モニターシステム
 6,6a,6b 蒸発源
 AX 軸
 100 光学薄膜
 101 基材
 102 高屈折率層
 103 ケイ素酸化物層
 104 撥水層
 105 低屈折率層
 106 第2の高屈折率層
 107 低屈折率層
 108 第2の高屈折率層

Claims (15)

  1.  基材上に設けられる光学薄膜であって、
    ケイ素(Si)の酸化物を含有するケイ素酸化物層と、
     当該ケイ素酸化物層上に設けられて、フッ化物を含有する撥水層と、を有し、
     ナノインデンテーションで測定した前記ケイ素酸化物層の硬度が9GPa以上であり、
     AFMで測定した前記撥水層の算術平均粗さが0.7nm以上である光学薄膜。
  2.  前記ケイ素酸化物層の下に、前記ケイ素酸化物層の屈折率よりも高い屈折率を有する高屈折率層を備える請求項1に記載の光学薄膜。
  3.  前記高屈折率層が、ハフニウム(Hf)の酸化物を含む請求項2に記載の光学薄膜。
  4.  前記高屈折率層が、チタン(Ti)の酸化物と、ランタン(La)の酸化物とを含む請求項2に記載の光学薄膜。
  5.  前記ケイ素酸化物層が、アルミニウム(Al)の酸化物を含む請求項1から請求項4までのいずれか一項に記載の光学薄膜。
  6.  前記基材と前記高屈折率層との間に、前記基材側から順に、前記基材の屈折率よりも高い屈折率を有する第2の高屈折率層と、前記第2の高屈折率層よりも低い屈折率を有する低屈折率層とが設けられている請求項2から請求項4までのいずれか一項に記載の光学薄膜。
  7.  前記高屈折率層の厚さが、10nm以上である請求項2から請求項6までのいずれか一項に記載の光学薄膜。
  8.  前記撥水層における、温度20℃、水適量7μLでの滑落角が、20度以下である請求項1から請求項5までのいずれか一項に記載の光学薄膜。
  9.  前記撥水層における、温度20℃での水に対する接触角が、100度以上である請求項1から請求項6までのいずれか一項に記載の光学薄膜。
  10.  前記基材と、前記基材の上に設けられた請求項1から請求項9までのいずれか一項に記載の光学薄膜とを備えた光学部材。
  11.  前記光学部材は、車載カメラ用のレンズである請求項10に記載の光学部材。
  12.  基材上に設けられる光学薄膜の製造方法であって、
     前記基材上に、ケイ素(Si)の酸化物を含有するケイ素酸化物層を真空蒸着法により成膜する工程と、
     前記ケイ素酸化物層上に、フッ化物を含有する撥水層を形成する工程と、を備え、
     ナノインデンテーションで測定した前記ケイ素酸化物層の硬度が9GPa以上であり、
     AFMで測定した前記撥水層の算術平均粗さが0.7nm以上である光学薄膜の製造方法。
  13.  前記ケイ素の酸化物を成膜する工程の前に、前記ケイ素酸化物層の屈折率よりも高い屈
    折率を有する高屈折率層を成膜する工程を備える請求項12に記載の光学薄膜の製造方法。
  14.  前記ケイ素の酸化物を成膜する工程における前記真空蒸着法が、イオンアシストデポジション(IAD)法である請求項13に記載の光学薄膜の製造方法。
  15.  前記高屈折率層を成膜する工程における真空蒸着法が、イオンアシストデポジション(IAD)法を用いないか、又は、前記ケイ素の酸化物を成膜する工程におけるイオンアシストデポジション(IAD)法におけるイオンビーム照射強度よりも小さい強度で成膜する請求項14に記載の光学薄膜の製造方法。
PCT/JP2019/016790 2018-04-27 2019-04-19 光学薄膜、光学部材及び光学薄膜の製造方法 WO2019208426A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/050,379 US20210116608A1 (en) 2018-04-27 2019-04-19 Optical Thin-Film, Optical Member, and Method for Manufacturing Optical Thin-Film
JP2020516309A JP7279713B2 (ja) 2018-04-27 2019-04-19 光学薄膜、光学部材及び光学薄膜の製造方法
EP19791993.9A EP3751319A4 (en) 2018-04-27 2019-04-19 OPTICAL THIN FILM, OPTICAL ELEMENT AND METHOD FOR MANUFACTURING AN OPTICAL THIN FILM
CN201980027702.XA CN112005131A (zh) 2018-04-27 2019-04-19 光学薄膜、光学构件及光学薄膜的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-086079 2018-04-27
JP2018086079 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019208426A1 true WO2019208426A1 (ja) 2019-10-31

Family

ID=68294028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016790 WO2019208426A1 (ja) 2018-04-27 2019-04-19 光学薄膜、光学部材及び光学薄膜の製造方法

Country Status (5)

Country Link
US (1) US20210116608A1 (ja)
EP (1) EP3751319A4 (ja)
JP (1) JP7279713B2 (ja)
CN (1) CN112005131A (ja)
WO (1) WO2019208426A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113703074A (zh) * 2021-08-25 2021-11-26 孔运辉 一种光学薄膜及其成型方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006079046A (ja) * 2004-08-11 2006-03-23 Seiko Epson Corp 染色レンズおよび染色レンズの製造方法
JP2009199022A (ja) * 2008-02-25 2009-09-03 Hoya Corp 光学部材
JP2010243163A (ja) * 2009-04-01 2010-10-28 Seiko Epson Corp 透光性部材、時計、および透光性部材の製造方法
JP2011017782A (ja) * 2009-07-07 2011-01-27 Olympus Corp 反射防止膜
WO2013065715A1 (ja) * 2011-10-31 2013-05-10 Hoya株式会社 眼鏡レンズ
JP2013253232A (ja) 2012-05-11 2013-12-19 Daikin Industries Ltd 光学部材用表面処理剤および光学部材
WO2014129333A1 (ja) * 2013-02-22 2014-08-28 旭硝子株式会社 光学部品
JP2015040945A (ja) * 2013-08-21 2015-03-02 コニカミノルタ株式会社 車載カメラ用レンズユニット
WO2015125498A1 (ja) * 2014-02-24 2015-08-27 キヤノンオプトロン株式会社 防汚膜付光学部材およびタッチパネル式ディスプレイ
JP2017145191A (ja) * 2017-05-08 2017-08-24 セイコーエプソン株式会社 カバー部材、および携帯情報機器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011186149A (ja) * 2010-03-08 2011-09-22 Olympus Corp 光学部品及びその製造方法
US20140233106A1 (en) * 2013-02-21 2014-08-21 Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V. Object with reflection-reducing coating and method for the production thereof
JP6774383B2 (ja) * 2016-06-17 2020-10-21 日東電工株式会社 反射防止フィルムおよびその製造方法、ならびに反射防止層付き偏光板
US11624858B2 (en) * 2017-04-20 2023-04-11 Shin-Etsu Chemical Co., Ltd. Antireflective member and method of manufacture therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006079046A (ja) * 2004-08-11 2006-03-23 Seiko Epson Corp 染色レンズおよび染色レンズの製造方法
JP2009199022A (ja) * 2008-02-25 2009-09-03 Hoya Corp 光学部材
JP2010243163A (ja) * 2009-04-01 2010-10-28 Seiko Epson Corp 透光性部材、時計、および透光性部材の製造方法
JP2011017782A (ja) * 2009-07-07 2011-01-27 Olympus Corp 反射防止膜
WO2013065715A1 (ja) * 2011-10-31 2013-05-10 Hoya株式会社 眼鏡レンズ
JP2013253232A (ja) 2012-05-11 2013-12-19 Daikin Industries Ltd 光学部材用表面処理剤および光学部材
WO2014129333A1 (ja) * 2013-02-22 2014-08-28 旭硝子株式会社 光学部品
JP2015040945A (ja) * 2013-08-21 2015-03-02 コニカミノルタ株式会社 車載カメラ用レンズユニット
WO2015125498A1 (ja) * 2014-02-24 2015-08-27 キヤノンオプトロン株式会社 防汚膜付光学部材およびタッチパネル式ディスプレイ
JP2017145191A (ja) * 2017-05-08 2017-08-24 セイコーエプソン株式会社 カバー部材、および携帯情報機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3751319A4

Also Published As

Publication number Publication date
CN112005131A (zh) 2020-11-27
JP7279713B2 (ja) 2023-05-23
US20210116608A1 (en) 2021-04-22
EP3751319A1 (en) 2020-12-16
JPWO2019208426A1 (ja) 2021-05-27
EP3751319A4 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
US8789944B2 (en) Optical article and optical article production method
EP2687875B1 (en) Method for producing optical member
JP5622468B2 (ja) レンズの製造方法及びレンズ
TWI604075B (zh) Film forming method and film forming apparatus
CN113167928B (zh) 电介质多层膜、其制造方法和使用其的光学构件
JP2010231174A (ja) 光学物品およびその製造方法
JP6995491B2 (ja) 光学薄膜、光学素子、光学素子の製造方法
JP2010140008A (ja) 光学物品およびその製造方法
WO2019208426A1 (ja) 光学薄膜、光学部材及び光学薄膜の製造方法
WO2021111813A1 (ja) 光学部材及びその製造方法
US11780728B2 (en) Forming method of thin layer
JP7327385B2 (ja) 透明部材及び透明部材の製造方法
JP2010072636A (ja) 光学物品およびその製造方法
WO2020129424A1 (ja) 誘電体膜、その製造方法及びそれを用いた光学部材
WO2021261225A1 (ja) 親水性膜の製造方法、親水性膜及び光学部材
JP2010072635A (ja) 光学物品およびその製造方法
US11994653B2 (en) Transparent member and transparent-member manufacturing method
CN111218659A (zh) 成膜方法及成膜装置
JP7476564B2 (ja) 超親水膜とその製造方法及び光学部材
CN108732659B (zh) 光学薄膜和光学元件的制造方法
JPH0772306A (ja) 光学薄膜およびその成膜方法
JPH0763903A (ja) プラスチック製光学部品の光学薄膜およびその成膜方法
JPH08144048A (ja) 反射防止膜を有するプラスチックフィルムの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019791993

Country of ref document: EP

Effective date: 20200909

ENP Entry into the national phase

Ref document number: 2020516309

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE