WO2019207976A1 - 光通信コネクタ、光送信器、光受信器、光通信システム及び光通信ケーブル - Google Patents

光通信コネクタ、光送信器、光受信器、光通信システム及び光通信ケーブル Download PDF

Info

Publication number
WO2019207976A1
WO2019207976A1 PCT/JP2019/009592 JP2019009592W WO2019207976A1 WO 2019207976 A1 WO2019207976 A1 WO 2019207976A1 JP 2019009592 W JP2019009592 W JP 2019009592W WO 2019207976 A1 WO2019207976 A1 WO 2019207976A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical communication
communication connector
component
light
Prior art date
Application number
PCT/JP2019/009592
Other languages
English (en)
French (fr)
Inventor
寛 森田
一彰 鳥羽
山本 真也
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201980026901.9A priority Critical patent/CN112041718B/zh
Priority to US17/047,161 priority patent/US11474300B2/en
Publication of WO2019207976A1 publication Critical patent/WO2019207976A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • G02B6/325Optical coupling means having lens focusing means positioned between opposed fibre ends comprising a transparent member, e.g. window, protective plate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • G02B6/3838Means for centering or aligning the light guide within the ferrule using grooves for light guides
    • G02B6/3839Means for centering or aligning the light guide within the ferrule using grooves for light guides for a plurality of light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • G02B6/3841Means for centering or aligning the light guide within the ferrule using rods, balls for light guides
    • G02B6/3842Means for centering or aligning the light guide within the ferrule using rods, balls for light guides for a plurality of light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3853Lens inside the ferrule
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3882Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using rods, pins or balls to align a pair of ferrule ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements

Definitions

  • This technology relates to an optical communication connector, an optical transmitter, an optical receiver, an optical communication system, and an optical communication cable used for optical communication.
  • an optical communication connector used for optical communication a configuration including a light transmitting member to which an optical fiber is connected and a lens provided on the light transmitting member is often used.
  • the light emitted from the optical fiber is transmitted through the light transmission member, collimated (parallelized) by the lens, and emitted from the optical communication connector.
  • the collimated light is incident on the optical communication connector of the other party and condensed on the optical fiber, and an optical signal is transmitted.
  • the collimated light diameter is small, when foreign matter such as dust is mixed between the optical communication connectors, the collimated light is blocked and communication is hindered. Therefore, it is preferable that the collimated light diameter is large. is there.
  • the distance between the optical fiber and the lens may be increased. However, if the distance between the optical fiber and the lens is increased, the distance between the optical fiber and the counterpart optical fiber is also increased.
  • the light emitted from the optical communication connector may be condensed at a position off the counterpart optical fiber and may not enter the counterpart optical fiber.
  • Patent Document 1 discloses an optical fiber terminal in which a coreless fiber is bonded to an end of an optical fiber and a recess is formed at the end thereof. The light emitted from the optical fiber is transmitted through the coreless fiber and is expanded by the recess.
  • Patent Document 1 it is necessary to join a coreless fiber for each optical fiber, which increases costs.
  • an object of the present technology to provide an optical communication connector, an optical transmitter, an optical receiver, an optical communication system, and an optical communication cable that can prevent deterioration in communication quality at low cost.
  • an optical communication connector is an optical communication connector that can be optically coupled spatially, and includes a first lens and a second lens.
  • the first lens expands the light emitted from the light emitter.
  • the second lens shapes and emits light incident from the first lens.
  • the light emitted from the light emitter is magnified by the first lens and shaped by the second lens. For this reason, even if the distance between the light emitter and the second lens is short, the light diameter of the emitted light from the second lens can be increased. By shortening the distance between the light emitter and the second lens, it is possible to prevent the influence on the optical communication due to the deviation of the light emitter, and to improve the resistance to contamination by expanding the light diameter.
  • the second lens may shape the light emitted from the first lens into collimated light.
  • a connector main body that defines relative positions of the light emitter, the first lens, and the second lens may be further included.
  • the light emitter is an optical fiber
  • the connector body has a hole into which the optical fiber is inserted,
  • the optical fiber may be fixed to the connector body with an adhesive injected into the hole.
  • the light emitter may be a light emitting element.
  • the connector main body may include a first component to which the light emitter is fixed and a second component on which the second lens is provided.
  • the first lens is a concave lens formed in a concave shape provided on a joint surface of the first component with the second component
  • the second lens may be a convex lens formed in a convex shape provided on the opposite side of the second component to the first component.
  • the first lens is a concave lens formed in a concave shape provided on a joint surface with the first component in the second component
  • the second lens may be a convex lens formed in a convex shape provided on the opposite side of the second component to the first component.
  • the first lens is a concave lens formed in a concave shape provided on a joint surface of the first component with the second component
  • the second lens is a convex lens formed in a convex shape, provided on the opposite side of the second component to the first component
  • the optical communication connector is formed in a concave shape provided on a joint surface with the first component in the second component, and expands the light incident from the first lens, and is applied to the second lens.
  • a third lens to be incident may be further provided.
  • the optical connector is disposed between the first component and the second component, and expands the light incident from the first lens and the light incident from the third lens. And further comprising a third component provided with a fourth lens to be enlarged, The second component is further provided with a fifth lens that expands the light incident from the fourth lens and makes the light incident on the second lens.
  • the first lens is a concave lens formed in a concave shape provided on a joint surface of the first component with the third component
  • the second lens is a convex lens formed in a convex shape, provided on the opposite side to the third component in the second component
  • the third lens is a concave lens formed in a concave shape provided on a joint surface with the first component in the third component
  • the fourth lens is a concave lens formed in a concave shape provided on the joint surface of the third component with the second component
  • the fifth lens may be a concave lens formed in a concave shape provided on a joint surface between the second component and the third component.
  • the first lens is a concave lens formed in a concave shape provided at the tip of the hole
  • the second lens is a convex lens formed in a convex shape provided in the connector body. Good.
  • the optical communication connector may further include a contact surface that is provided around the first lens at the tip of the hole and is in contact with the optical fiber.
  • the optical communication connector is A fixing member into which the optical fiber is inserted; You may further comprise the contact surface provided in the circumference
  • the connector main body may have a reflecting portion that reflects the light incident from the light emitter toward the first lens.
  • the second component may seal a recess that forms the first lens.
  • an optical communication connector is an optical communication connector that can be optically coupled spatially, and includes a first lens and a second lens.
  • the first lens condenses the shaped incident light.
  • the second lens condenses light incident from the first lens on a photoreceptor.
  • an optical transmitter includes a light emitter and an optical communication connector.
  • the optical communication connector is an optical communication connector that can be optically coupled spatially, and forms a first lens that expands light emitted from the light emitter, and light that enters from the first lens.
  • a second lens that emits light.
  • an optical receiver includes a light receiver and an optical communication connector.
  • the optical communication connector is an optical communication connector that can be optically coupled spatially, and the first lens that collects the formed incident light and the light that enters from the first lens are collected on the light receiver.
  • a second lens that emits light.
  • an optical communication system includes a first optical communication connector and a second optical communication connector.
  • the first optical communication connector is an optical communication connector that can spatially couple light, and forms a first lens that expands light emitted from a light emitter and light that enters from the first lens.
  • a second lens that emits light.
  • the second optical communication connector is an optical communication connector that can be attached to and detached from the first optical communication connector and can be optically coupled spatially, and collects light incident from the second lens.
  • a fourth lens for condensing the light incident from the third lens on the photoreceptor.
  • an optical communication cable includes an optical fiber, a first optical communication connector, and a second optical communication connector.
  • the first optical communication connector is a spatially optically connectable optical communication connector, and includes a first lens on which molded light is incident and light incident from the first lens on the optical fiber.
  • the second optical communication connector is an optical communication connector that can be optically coupled spatially, and forms a third lens that expands light incident from the optical fiber and light incident from the third lens.
  • a fourth lens that emits light.
  • an optical communication connector As described above, according to the present technology, it is possible to provide an optical communication connector, an optical transmitter, an optical receiver, an optical communication system, and an optical communication cable that can prevent deterioration in communication quality at low cost. .
  • FIG. 1 is a perspective view of an optical communication connector according to a first embodiment of the present technology. It is a perspective view of the optical communication connector. It is sectional drawing of the same optical communication connector. It is sectional drawing of the same optical communication connector and an optical fiber. It is a schematic diagram which shows the path
  • FIG. 1 and 2 are perspective views showing the optical communication connector 100 according to the present embodiment, as viewed from opposite directions. As shown in these drawings, a plurality of optical fibers 120 are connected to the optical communication connector 100. Further, the number of optical fibers connected to the optical communication connector 100 may be one.
  • FIG. 3 is a cross-sectional view of the optical communication connector 100
  • FIG. 4 is a cross-sectional view of the optical communication connector 100 to which the optical fiber 120 is connected.
  • the optical fiber 120 includes a core 121 and a clad 122.
  • the optical fiber 120 may be a single mode fiber or a multimode fiber.
  • the optical communication connector 100 includes a connector main body 150, and the connector main body 150 includes a first component 151 and a second component 152.
  • the first component 151 is provided with an optical fiber insertion hole 161, an adhesive injection hole 162, and a first lens 163.
  • the first component 151 is made of a light transmissive material such as glass or synthetic resin.
  • the first component 151 may be made of a silicon material that transmits light of a specific wavelength, such as used as a material for MEMS (Micro Electro Mechanical Systems).
  • the optical fiber insertion hole 161 is a hole into which the optical fiber 120 is inserted as shown in FIG. 4, and is formed at a certain length from the end of the first component 151 opposite to the second component 152. Yes.
  • One optical fiber insertion hole 161 is provided for each optical fiber 120 as shown in FIG.
  • Each optical fiber 120 is inserted into the optical fiber insertion hole 161 and fixed to the first component 151 with an adhesive 164 as shown in FIG.
  • the adhesive injection hole 162 is a hole communicating with each optical fiber insertion hole 161.
  • the adhesive 164 is injected around the optical fiber 120 from the adhesive injection hole 162.
  • the adhesive 164 is not particularly limited as long as it can fix the optical fiber 120. However, the adhesive 164 also flows between the tip of the optical fiber insertion hole 161 and the optical fiber 120 as shown in FIG. Those are preferred. Further, the adhesive material 164 may be a refractive index matching material. Note that the adhesive 164 may not flow between the tip of the optical fiber insertion hole 161 and the optical fiber 120.
  • FIG. 5 is a schematic diagram showing a path of light L in the optical communication connector 100. As shown in the figure, the light L emitted from the core 121 of the optical fiber 120 passes through the adhesive 164 and the first component 151 and enters the first lens 163, and is expanded by the first lens 163.
  • the first lens 163 may be a concave lens formed in a concave shape provided on a joint surface 151 a that is a joint surface with the second component 152 in the first component 151.
  • the concave portion forming the first lens 163 is sealed by the second component 152 to prevent dust and the like from being mixed.
  • One first lens 163 is provided for each of the optical fibers 120, and is arranged so that the optical axis of the emitted light of each optical fiber 120 coincides with the center of each first lens 163.
  • the second component 152 is bonded to the first component 151, and is provided with a second lens 171, a light transmission space 172, and a connection portion 173 (see FIG. 1).
  • the second part 152 is made of a light transmissive material similar to that of the first part 151.
  • the light transmissive material constituting the second part 152 may be the same as or different from the light transmissive material constituting the first part 151.
  • the second lens 171 shapes the light L incident from the first lens 163 as shown in FIG.
  • the second lens 171 can form incident light into collimated light, but may be formed into light suitable for other transmissions.
  • the second lens 171 can be a convex lens formed in a convex shape provided on the second component 152 on the opposite side to the first component 151.
  • One second lens 171 is provided for each of the optical fibers 120 and is arranged so that the optical axis of the emitted light of each first lens 163 coincides with the center of each second lens 171.
  • the light transmission space 172 is a space that is formed around the second lens 171 by a recess provided in the second component 152 and through which the light L emitted from the second lens 171 passes.
  • connection unit 173 connects the optical communication connector 100 and the optical communication connector to be connected (hereinafter referred to as a counterpart connector), and fixes the relative positions of the two.
  • the connecting portion 173 can be a concave portion that fits into a convex portion provided in the counterpart connector, or a convex portion that fits into a concave portion provided in the counterpart connector.
  • connection portion 173 may be anything that can fix the relative position with the counterpart connector.
  • connection part 173 may not be provided in the second component 152, and a connection mechanism that can fix the relative position with the counterpart connector may be provided around the optical communication connector 100.
  • the joining of the second part 152 to the first part 151 can be performed by fitting with a concave part and a convex part provided respectively.
  • the first component 151 and the second component 152 may be bonded together after adjusting the optical axes of the first lens 163 and the second lens 171 to coincide with each other using an image processing system or the like.
  • the relative positions of the optical fiber 120, the first lens 163, and the second lens 171 are defined by the connector body 150.
  • the optical communication connector 100 has the above configuration. In the above description, the case where the light L is emitted from the optical fiber 120, that is, the case where the optical fiber 120 serves as a light emitter has been described.
  • the light L is incident on the optical communication connector 100 from the counterpart connector and is condensed on the optical fiber 120, that is, the optical fiber 120 may be a light receiver.
  • the light L shaped into collimated light or the like from the counterpart connector enters the second lens 171 (see FIG. 5).
  • the second lens 171 collects the incident light L on the first lens 163.
  • the first lens 163 collects the light L incident from the second lens 171 on the core 121 of the optical fiber 120.
  • optical communication connector 100 The operation of the optical communication connector 100 will be described.
  • the optical fiber 120 is a light emitter
  • the light L emitted from the core 121 of the optical fiber 120 is expanded by the first lens 163 and shaped by the second lens 171 as described above.
  • the light diameter (diameter D in FIG. 5) can be increased.
  • the optical fiber 120 is a light receiver
  • the light incident on the second lens 171 is condensed on the first lens 163 and condensed on the core 121 by the first lens 163.
  • the light diameter D of the light L incident on the second lens 171 can be increased while shortening the distance R between the optical fiber 120 and the second lens 171.
  • FIG. 6 is a perspective view of a connector set including two optical communication connectors 100
  • FIG. 7 is a cross-sectional view of the connector set to which two optical communication connectors 100 are connected.
  • one optical communication connector 100 is an optical communication connector 100A
  • the other optical communication connector 100 is an optical communication connector 100B
  • the optical fiber 120 connected to the optical communication connector 100A is referred to as an optical fiber 120A
  • the optical fiber 120 connected to the optical communication connector 100B is referred to as an optical fiber 120B.
  • the optical communication connector 100A and the optical communication connector 100B are connected to each other by the connection portion 173 and the like included in each.
  • the light L When the light L is transmitted from the optical fiber 120A to the optical communication connector 100A, the light L enters the first lens 163 from the core 121 of the optical fiber 120A as shown in FIG.
  • the light L is magnified by the first lens 163 and shaped by the second lens 171.
  • the light L emitted from the second lens 171 travels through the light transmission space 172 and enters the optical communication connector 100B.
  • the light L is condensed on the first lens 163 by the second lens 171 and is condensed on the core 121 of the optical fiber 120B by the first lens 163.
  • the light L when the light L is supplied from the optical fiber 120B to the optical communication connector 100B, the light L enters the first lens 163 from the core 121 of the optical fiber 120B as shown in FIG.
  • the light L is magnified by the first lens 163 and shaped by the second lens 171.
  • the light L emitted from the second lens 171 travels through the light transmission space 172 and enters the optical communication connector 100A.
  • the light L is condensed on the first lens 163 by the second lens 171 and is condensed on the core 121 of the optical fiber 120A by the first lens 163.
  • the light L is transmitted between the optical communication connector 100A and the optical communication connector 100B via the optical transmission space 172, that is, optically coupled spatially.
  • FIG. 8 is a schematic diagram of an optical communication connector 190 having a general configuration according to a comparative example.
  • the optical communication connector 190 includes an optical fiber 191, a light transmission member 192, and a lens 193.
  • the optical fiber 191 includes a core 194 and a clad 195.
  • the length of the light transmitting member 192, that is, the distance between the core 194 and the lens 193 is defined as a distance A.
  • the light L emitted from the core 194 passes through the light transmitting member 192 and is formed into collimated light by the lens 193.
  • the optical axis of the light L is indicated by a broken line, and the light diameter of the collimated light is indicated as a light diameter B.
  • FIG. 8B shows the path of the light L when the aperture ratio NA is half (X / 2) with respect to the structure of FIG. As shown in FIG. 8B, the emission angle of the light L is ⁇ / 2, and the light diameter of the collimated light is B / 2.
  • FIG. 9 is a schematic diagram showing the influence of foreign matter on light.
  • foreign matter C such as dust
  • the open efficiency NA is X / 2
  • the collimated light has the light diameter B / 2
  • all of the collimated light is shielded and light Signals may be interrupted.
  • FIG. 10 is a schematic diagram showing the optical communication connector 190 when the aperture ratio NA is X / 2 and the distance between the core 194 and the lens 193 is A ⁇ 2. As shown in the figure, by increasing the distance between the core 194 and the lens 193, the diameter of the collimated light can be increased even if the aperture ratio is small.
  • FIG. 11 is a schematic diagram showing the influence of this distance, and shows how light is transmitted between the two optical communication connectors 190.
  • one optical communication connector 190 is referred to as an optical communication connector 190A
  • the other optical communication connector 190 is referred to as an optical communication connector 190B
  • an optical fiber included in the optical communication connector 190A is referred to as an optical fiber 191A
  • an optical fiber included in the optical communication connector 190B is referred to as an optical fiber 191B.
  • the optical fiber 191A when transmitting light between the two optical communication connectors 190, the optical fiber 191A may be inclined.
  • the inclination of the optical fiber is caused by, for example, insufficient accuracy of components, insufficient accuracy during mounting, or deformation of components due to heat.
  • the optical communication connector 190 when the aperture ratio is small, it is difficult to achieve both resistance to foreign matters and resistance to the inclination of the optical fiber, and it is difficult to ensure communication quality.
  • the single mode fiber has a smaller aperture ratio than the multimode fiber, and the above problem is likely to occur.
  • the light emitted from the optical fiber 120 is enlarged by the first lens 163 (see FIG. 5) and then incident on the second lens 171 for shaping the light. .
  • the distance R between the optical fiber 120 and the second lens 171 is small, the light diameter D of the emitted light from the second lens 171 can be increased.
  • the optical communication connector 100 can be formed by inserting the optical fiber 120 into the optical fiber insertion hole 161 and injecting the adhesive 164 from the adhesive injection hole 162.
  • processing for individual optical fibers for example, processing such as bonding of materials having different refractive indices is unnecessary, and the cost can be reduced. This is particularly effective when the multi-channel structure has a large number of optical fibers.
  • FIG. 12 is a schematic diagram of the optical communication cable 50 according to the present embodiment. As shown in the figure, two optical communication connectors 100 can be connected to both ends of one optical fiber 120 to form an optical communication cable 50.
  • FIG. 13 is a block diagram of the optical communication system 10 according to the present embodiment. As shown in FIG. 1, the optical communication system 10 includes an electronic device 11 and an optical communication cable 21.
  • the electronic device 11 includes an optical communication unit 13.
  • the optical communication unit 13 includes a light emitting unit 114, a light receiving unit 15, an optical transmission path 16, an optical transmission path 17, and an optical communication connector 100A (see FIG. 7).
  • the light emitting unit 14 includes a laser element such as VCSEL (Vertical Cavity Surface Emitting LASER) or a light emitting element such as an LED (light emitting diode), and is connected to the optical transmission line 16.
  • the light emitting unit 14 converts the electrical signal output from the electronic device 11 into an optical signal, and outputs the optical signal to the optical communication connector 100 ⁇ / b> A via the optical transmission path 16.
  • the optical transmission line 16 can be realized by an optical fiber 120A (see FIG. 7).
  • the light receiving unit 15 includes a light receiving element such as a photodiode and is connected to the optical transmission path 17.
  • the light receiving unit 15 converts an optical signal transmitted from the optical communication connector 100 ⁇ / b> A via the optical transmission path 17 into an electrical signal and outputs the electrical signal to the electronic device 11.
  • the optical transmission line 17 can be realized by the optical fiber 120A (see FIG. 7).
  • the optical communication cable 21 includes a cable body 22 and an optical communication connector 100B (see FIG. 7).
  • the cable body 22 can be realized by the optical fiber 120B (see FIG. 7).
  • the optical communication cable 21 may have the same configuration as the optical communication cable 50, and the other end of the cable body 22 may be connected to another electronic device.
  • the cable body 22 may connect the optical communication connector 100B to another optical communication connector and transmit an optical signal between the two optical communication connectors.
  • the optical transmission path 16 connected to the light emitting section 14 functions as a light emitter
  • the optical transmission path 17 connected to the light receiving section 15 functions as a light receiver.
  • the light transmitter 14, the optical transmission line 16, and the optical communication connector 100A constitute an optical transmitter
  • the light receiver 15, the optical transmission line 17, and the optical communication connector 100A constitute an optical receiver.
  • the electronic device 11 may include only one of an optical transmitter and an optical receiver.
  • the electronic device 11 is, for example, a mobile electronic device such as a mobile phone, a smartphone, a PHS, a PDA, a tablet PC, a laptop computer, a video camera, an IC recorder, a portable media player, an electronic notebook, an electronic dictionary, a calculator, a portable game machine, It can be an electronic device such as a desktop computer, a display device, a television receiver, a radio receiver, a video recorder, a printer, a car navigation system, a game machine, a router, a hub, an optical line termination unit (ONU).
  • a mobile electronic device such as a mobile phone, a smartphone, a PHS, a PDA, a tablet PC, a laptop computer, a video camera, an IC recorder, a portable media player, an electronic notebook, an electronic dictionary, a calculator, a portable game machine
  • It can be an electronic device such as a desktop computer, a display device, a television receiver, a radio receiver, a video recorder,
  • the electronic device 11 can constitute a part or all of an electric product such as a refrigerator, a washing machine, a clock, an intercom, an air conditioner, a humidifier, an air cleaner, a lighting fixture, a cooking utensil, or a vehicle.
  • an electric product such as a refrigerator, a washing machine, a clock, an intercom, an air conditioner, a humidifier, an air cleaner, a lighting fixture, a cooking utensil, or a vehicle.
  • the detailed hardware configuration of the electronic device 11 is not particularly limited, but may be, for example, as shown in FIG. FIG. 14 is a block diagram for explaining a hardware configuration of the electronic apparatus 11.
  • the electronic device 11 mainly includes a CPU 71, a ROM 72, and a RAM 73.
  • the electronic device 11 further includes a host bus 74, a bridge 75, an external bus 76, an interface 77, an input device 78, an output device 79, a storage device 80, a drive 81, and a connection port 82. And a communication device 83.
  • the CPU 71 functions as an arithmetic processing unit and a control unit, and controls all or a part of the operation in the electronic apparatus 11 according to various programs recorded in the ROM 72, RAM 73, storage device 80, or removable recording medium 84.
  • the ROM 72 temporarily stores programs used by the CPU 71, parameters that change as appropriate during execution of the programs, and the like. These are connected to each other by a host bus 74 constituted by an internal bus such as a CPU bus.
  • the host bus 74 is connected to an external bus 76 such as a PCI (Peripheral Component Interconnect / Interface) bus via a bridge 75.
  • PCI Peripheral Component Interconnect / Interface
  • the input device 78 is an operation means operated by the user such as a mouse, a keyboard, a touch panel, a button, a switch, and a lever.
  • the input device 78 may be, for example, remote control means (so-called remote control) using infrared rays or other radio waves, or may be an external connection device 85 such as a mobile phone or a PDA that supports the operation of the electronic device 11. There may be.
  • the input device 78 includes, for example, an input control circuit that generates an input signal based on information input by the user using the operation unit and outputs the input signal to the CPU 71.
  • a user of the electronic device 11 can input various data and instruct a processing operation to the electronic device 11 by operating the input device 78.
  • the output device 79 is a device that can notify the user of the acquired information visually or audibly.
  • Such devices include display devices such as CRT display devices, liquid crystal display devices, plasma display devices, EL display devices and lamps, audio output devices such as speakers and headphones, printer devices, mobile phones, and facsimiles.
  • the output device 79 outputs, for example, results obtained by various processes performed by the electronic device 11. Specifically, the display device displays results obtained by various processes performed by the electronic device 11 as text or images.
  • the audio output device converts an audio signal composed of reproduced audio data, acoustic data, and the like into an analog signal and outputs the analog signal.
  • the storage device 80 is a data storage device configured as an example of a storage unit of the electronic device 11.
  • the storage device 80 is configured by a magnetic storage device such as an HDD (Hard Disk Drive), a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like.
  • the storage device 80 stores programs executed by the CPU 71, various data, various data acquired from the outside, and the like.
  • the drive 81 is a reader / writer for a recording medium, and is built in or externally attached to the electronic device 11.
  • the drive 81 reads information recorded on a removable recording medium 84 such as a mounted magnetic disk, optical disk, magneto-optical disk, or semiconductor memory, and outputs the information to the RAM 73.
  • the drive 81 can also write a record on a removable recording medium 84 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the removable recording medium 84 is, for example, a DVD medium, an HD-DVD medium, a Blue-ray medium, or the like.
  • the removable recording medium 84 may be a compact flash (registered trademark) (CompactFlash: CF), a flash memory, an SD memory card (Secure Digital memory card), or the like.
  • the removable recording medium 84 may be, for example, an IC card (Integrated Circuit card) on which a non-contact IC chip is mounted, an electronic device, or the like.
  • the connection port 82 is a port for directly connecting a device to the electronic device 11.
  • Examples of the connection port 82 include a USB (Universal Serial Bus) port, an IEEE 1394 port, a SCSI (Small Computer System Interface) port, and the like.
  • As another example of the connection port 82 there are an RS-232C port, an optical digital terminal, an HDMI (registered trademark) (High-Definition Multimedia Interface) port, and the like.
  • the optical digital terminal may be configured as the optical communication unit 13 including the optical communication connector 100 described above.
  • the communication device 83 is a communication interface configured with a communication device for connecting to the communication network 86, for example.
  • the communication device 83 includes the optical communication unit 13 including the optical communication connector 100 described above.
  • the communication device 83 may be a router for optical communication.
  • the communication device 83 may further include, for example, a communication card for wired or wireless LAN (Local Area Network), Bluetooth (registered trademark), or WUSB (Wireless USB).
  • the communication device 83 may be configured to include a router for ADSL (Asymmetric Digital Subliner Line), a modem for various communication, or the like.
  • ADSL Asymmetric Digital Subliner Line
  • the communication device 83 transmits and receives signals and the like in accordance with a predetermined protocol such as FTTx such as FTTR, FTTB, FTTH, and FTTD, and TCP / IP, for example, with the Internet and other communication devices. Can do.
  • the communication network 86 connected to the communication device 83 is configured by a wired or wirelessly connected network or the like, and may be, for example, the Internet, a home LAN, infrared communication, radio wave communication, satellite communication, or the like. .
  • FIG. 15 is a cross-sectional view showing an optical communication connector 200 according to the second embodiment of the present technology. As shown in the figure, an optical fiber 120 is connected to the optical communication connector 200. The number of optical fibers 120 may be one or plural.
  • the optical communication connector 200 includes a connector main body 250, and the connector main body 250 includes a first component 251 and a second component 252.
  • the first component 251 is made of a light transmissive material similar to that of the first embodiment, and is provided with an optical fiber insertion hole 261 and an adhesive injection hole 262.
  • the optical fiber insertion hole 261 is a hole into which the optical fiber 120 is inserted, and is formed with a certain length from the end of the first component 251 opposite to the second component 252.
  • One optical fiber insertion hole 261 is provided for each optical fiber 120.
  • Each optical fiber 120 is inserted into the optical fiber insertion hole 261 and fixed to the first component 251 by the adhesive 264.
  • the adhesive 264 is preferably light transmissive and may be a refractive index matching material.
  • the adhesive injection hole 262 is a hole that communicates with each optical fiber insertion hole 261.
  • the adhesive 264 is injected around the optical fiber 120 from the adhesive injection hole 262.
  • the second component 252 is bonded to the first component 251 and is provided with a first lens 271, a second lens 272, and a light transmission space 273.
  • the second component 252 is made of the same light transmissive material as in the first embodiment.
  • the first lens 271 expands the light emitted from the core 121 of the optical fiber 120. As shown in FIG. 15, the light L emitted from the optical fiber 120 passes through the adhesive 264 and the first component 251, enters the first lens 271, and is expanded by the first lens 271.
  • the first lens 271 can be a concave lens formed in a concave shape provided on a joint surface 252a which is a joint surface of the second component 252 with the first component 251.
  • the concave portion constituting the first lens 271 is sealed with the first component 251.
  • One first lens 271 is provided for each of the optical fibers 120 and is arranged so that the optical axis of the emitted light of each optical fiber 120 coincides with the center of each first lens 271.
  • the second lens 272 shapes the light L incident from the first lens 271 as shown in FIG.
  • the second lens 272 can shape incident light into collimated light, but may be shaped into light suitable for other transmissions.
  • the second lens 272 may be a convex lens that is provided on the opposite side of the second component 152 from the first component 251 and has a convex shape.
  • One second lens 272 is provided for each of the optical fibers 120 and is arranged so that the optical axis of the emitted light of each first lens 271 coincides with the center of each second lens 271.
  • the light transmission space 273 is a space that is formed around the second lens 272 by a concave portion provided in the second component 252 and through which the light L emitted from the second lens 272 passes.
  • the joining of the second part 252 to the first part 251 can be performed by fitting or bonding with a concave part and a convex part provided respectively.
  • the relative positions of the optical fiber 120 and the first lens 271 and the second lens 272 are defined by the connector body 250.
  • the light emitted from the optical fiber 120 is expanded by the first lens 271 and then incident on the second lens 272 that shapes the light. Thereby, even if the distance of the optical fiber 120 and the 2nd lens 272 is short, the optical diameter of the emitted light of the 2nd lens 272 can be enlarged.
  • the optical communication connector set in which the two optical communication connectors 200 are connected it is possible to achieve both the resistance against the entry of foreign matter and the resistance to the inclination of the optical fiber 120, and to ensure the communication quality.
  • the second lens 272 condenses the light L on the first lens 271, and the first lens 271 condenses the light L on the core 121.
  • an optical communication cable and an optical communication system can be realized using the optical communication connector 200.
  • FIG. 16 is a cross-sectional view showing an optical communication connector 300 according to the third embodiment of the present technology.
  • FIG. 16A is an overall view
  • FIG. 16B is an enlarged view.
  • an optical fiber 120 is connected to the optical communication connector 300.
  • the number of optical fibers 120 may be one or plural.
  • the optical communication connector 300 includes a connector main body 350, and the connector main body 350 includes a first component 351 and a second component 352.
  • the first component 351 is made of a light transmissive material similar to that of the first embodiment, and is provided with an optical fiber insertion hole 361, an adhesive injection hole 362, and a first lens 363.
  • the optical fiber insertion hole 361 is a hole into which the optical fiber 120 is inserted, and is formed to have a certain length from the end of the first component 351 opposite to the second component 352.
  • One optical fiber insertion hole 361 is provided for each optical fiber 120.
  • Each optical fiber 120 is inserted into the optical fiber insertion hole 361 and fixed to the first component 351 by the adhesive 364.
  • the adhesive 364 is preferably light transmissive and may be a refractive index matching material.
  • the adhesive injection hole 362 is a hole that communicates with each optical fiber insertion hole 361.
  • the adhesive 364 is injected around the optical fiber 120 from the adhesive injection hole 362.
  • the first lens 363 expands the light L emitted from the core 121 of the optical fiber 120. As shown in FIG. 16B, the light L emitted from the optical fiber 120 passes through the adhesive 364 and the first component 351, enters the first lens 363, and is expanded by the first lens 363.
  • the first lens 363 may be a concave lens formed in a concave shape provided on a joint surface 351 a that is a joint surface with the second component 352 in the first component 351. it can.
  • One first lens 363 is provided for each of the optical fibers 120, and is arranged so that the optical axis of the emitted light of each optical fiber 120 coincides with the center of each first lens 363.
  • the second component 352 is bonded to the first component 351, and a second lens 371, a light transmission space 372, and a third lens 373 are provided.
  • the second component 352 is made of a light transmissive material similar to that of the first embodiment.
  • the third lens 373 expands the light emitted from the first lens 363 as shown in FIG.
  • the third lens 373 may be a concave lens formed in a concave shape provided on a joint surface 352a that is a joint surface of the second component 352 with the first component 351.
  • the concave portion forming the third lens 373 and the concave portion forming the first lens 363 form a communicating space, and this space is sealed by the first component 351 and the second component 352.
  • One third lens 373 is provided for each of the optical fibers 120 and is arranged such that the optical axis of the emitted light of each first lens 363 coincides with the center of each third lens 373.
  • the second lens 371 shapes the light L incident from the third lens 373.
  • the second lens 371 can form incident light into collimated light, but may be formed into light suitable for other transmissions.
  • the second lens 371 can be a convex lens formed in a convex shape provided on the opposite side of the second component 352 from the first component 351.
  • One second lens 371 is provided for each of the optical fibers 120 and is arranged so that the optical axis of the emitted light of each third lens 373 coincides with the center of each second lens 371.
  • the light transmission space 372 is a space formed around the second lens 371 by a concave portion provided in the second component 352, and through which the light L emitted from the second lens 371 passes.
  • the joining of the second part 352 to the first part 351 can be performed by fitting or bonding with a concave part and a convex part provided respectively.
  • the relative positions of the optical fiber 120 and the first lens 363, the second lens 371, and the third lens 373 are defined by the connector main body 350.
  • the light emitted from the optical fiber 120 is expanded by the first lens 363 and the third lens 373 and then incident on the second lens 371 for shaping the light.
  • the optical diameter of the emitted light of the 2nd lens 371 can be enlarged.
  • the optical communication connector set in which the two optical communication connectors 300 are connected it is possible to achieve both the resistance against the entry of foreign matter and the resistance to the inclination of the optical fiber 120, and the communication quality can be ensured.
  • the distance between the optical fiber 120 and the second lens 371 can be further shortened while ensuring the light diameter of the emitted light of the second lens 371.
  • the second lens 371 condenses the light L on the third lens 373
  • the third lens 373 condenses the light L on the first lens 363.
  • the first lens 363 collects the light L on the core 121.
  • an optical communication cable and an optical communication system can be realized using the optical communication connector 300.
  • FIG. 17 is a cross-sectional view showing an optical communication connector 400 according to the fourth embodiment of the present technology. As shown in the figure, the optical fiber 120 is connected to the optical communication connector 400. The number of optical fibers 120 may be one or plural.
  • the optical communication connector 400 includes a connector main body 450, and the connector main body 450 includes a first component 451, a second component 452, and a third component 453.
  • the first component 451 is made of a light transmissive material similar to that of the first embodiment, and is provided with an optical fiber insertion hole 461, an adhesive injection hole 462, and a first lens 463.
  • the optical fiber insertion hole 461 is a hole into which the optical fiber 120 is inserted, and is formed with a certain length from the end of the first component 451 opposite to the third component 453.
  • One optical fiber insertion hole 461 is provided for each optical fiber 120.
  • Each optical fiber 120 is inserted into the optical fiber insertion hole 461 and fixed to the first component 451 by the adhesive 464.
  • the adhesive 464 is preferably a material having optical transparency, and may be a refractive index matching material.
  • the adhesive injection hole 462 is a hole that communicates with each optical fiber insertion hole 461.
  • the adhesive 464 is injected around the optical fiber 120 from the adhesive injection hole 462.
  • the first lens 463 expands the light L emitted from the core 121 of the optical fiber 120.
  • the light L emitted from the optical fiber 120 passes through the adhesive 464 and the first component 451, enters the first lens 463, and is expanded by the first lens 463.
  • the first lens 463 can be a concave lens formed in a concave shape provided on a joint surface 451a which is a joint surface of the first component 451 with the third component 453.
  • One first lens 463 is provided for each of the optical fibers 120, and is arranged so that the optical axis of the emitted light of each optical fiber 120 coincides with the center of each first lens 463.
  • the third component 453 is disposed between the first component 451 and the second component 452, and is joined to the first component 451 and the second component 452.
  • the third component 453 is provided with a third lens 481 and a fourth lens 482.
  • the third component 453 is made of a light transmissive material such as glass, synthetic resin, or silicon material.
  • the third lens 481 expands the light L emitted from the first lens 463.
  • the third lens 481 can be a concave lens formed in a concave shape provided on a joint surface 453a that is a joint surface of the third component 453 with the first component 451.
  • the concave portion forming the third lens 481 and the concave portion forming the first lens 463 form a communicating space, and this space is sealed by the first component 451 and the third component 453.
  • One third lens 481 is provided for each of the optical fibers 120 and is arranged so that the optical axis of the emitted light of each first lens 463 coincides with the center of each third lens 481.
  • the fourth lens 482 expands the light L emitted from the third lens 481.
  • the fourth lens 482 may be a concave lens formed in a concave shape provided on a joint surface 453b which is a joint surface of the third component 453 with the second component 452.
  • One fourth lens 482 is provided for each of the optical fibers 120 and is arranged so that the optical axis of the emitted light of each third lens 481 coincides with the center of each fourth lens 482.
  • the second component 452 is joined to the third component 453, and a second lens 471, a light transmission space 472, and a fifth lens 473 are provided.
  • the second component 452 is made of a light transmissive material similar to that of the first embodiment.
  • the fifth lens 473 enlarges the light emitted from the fourth lens 482 as shown in FIG.
  • the fifth lens 473 may be a concave lens formed in a concave shape provided on a joint surface 452a that is a joint surface of the second component 452 with the third component 453.
  • the concave portion forming the fifth lens 473 and the concave portion forming the fourth lens 482 form a communicating space, and this space is sealed by the third component 453 and the second component 452.
  • One fifth lens 473 is provided for each of the optical fibers 120 and is arranged so that the optical axis of the emitted light of each fourth lens 482 coincides with the center of each fifth lens 473.
  • the second lens 471 shapes the light L incident from the fifth lens 473.
  • the second lens 471 can shape incident light into collimated light, but may be shaped into light suitable for other transmissions.
  • the second lens 471 may be a convex lens formed in a convex shape, provided on the opposite side of the second component 452 from the third component 453.
  • One second lens 471 is provided for each of the optical fibers 120, and the second lens 471 is disposed so that the optical axis of the emitted light of each fifth lens 473 coincides with the center of each second lens 471.
  • the light transmission space 472 is a space that is formed around the second lens 471 by a recess provided in the second component 452 and through which the light L emitted from the second lens 471 passes.
  • the joining of the third component 453 and the first component 451 and the joining of the second component 452 and the third component 453 can be performed by fitting or bonding with a concave portion and a convex portion provided respectively.
  • the relative positions of the optical fiber 120 and the first lens 463, the second lens 471, the third lens 481, the fourth lens 482, and the fifth lens 473 are defined by the connector main body 450.
  • the light emitted from the optical fiber 120 is expanded by the first lens 463, the third lens 481, the fourth lens 482, and the fifth lens 473, and then incident on the second lens 471 that shapes the light. Thereby, even if the distance between the optical fiber 120 and the second lens 471 is short, the light diameter of the emitted light from the second lens 471 can be increased.
  • the optical communication connector set in which the two optical communication connectors 400 are connected it is possible to achieve both the resistance against the entry of foreign matter and the resistance to the inclination of the optical fiber 120, and the communication quality can be ensured.
  • the third lens 481, the fourth lens 482, and the fifth lens 473 are provided, and the optical fiber 120 and the second lens 471 are secured while ensuring the diameter of the emitted light from the second lens 471. Can be further shortened.
  • the second lens 471 condenses the light L on the fifth lens 473
  • the fifth lens 473 condenses the light L on the fourth lens 482.
  • the fourth lens 482 condenses the light L on the third lens 481
  • the third lens 481 condenses the light L on the first lens 463.
  • the first lens 463 collects the light L on the core 121.
  • an optical communication cable and an optical communication system can be realized using the optical communication connector 400.
  • FIG. 18 is a cross-sectional view showing an optical communication connector 500 according to the fifth embodiment of the present technology. As shown in the figure, an optical fiber 120 is connected to the optical communication connector 500. The number of optical fibers 120 may be one or plural.
  • the optical communication connector 500 includes a connector main body 550, and the connector main body 550 includes a first component 551 and a second component 552.
  • the first component 551 is made of a light transmissive material similar to that of the first embodiment, and is provided with an optical fiber insertion hole 561, an adhesive injection hole 562, and a first lens 563.
  • the optical fiber insertion hole 561 is a hole into which the optical fiber 120 is inserted, and is formed with a certain length from the end of the first component 551 opposite to the second component 552.
  • One optical fiber insertion hole 561 is provided for each optical fiber 120.
  • Each optical fiber 120 is inserted into the optical fiber insertion hole 561 and fixed to the first component 551 by the adhesive 564.
  • the adhesive 564 may be light transmissive or may be a refractive index matching material.
  • the adhesive injection hole 562 is a hole communicating with each optical fiber insertion hole 561.
  • the adhesive 564 is injected around the optical fiber 120 from the adhesive injection hole 562.
  • the first lens 563 expands the light emitted from the core 121 of the optical fiber 120.
  • the first lens 563 is a concave lens formed by making the tip of the optical fiber insertion hole 561 into a concave shape.
  • the adhesive injection hole 562 is provided so as to communicate with the optical fiber insertion hole 561 at a position away from the first lens 563. This prevents the adhesive 564 from flowing between the optical fiber 120 and the first lens 563 and changing the optical characteristics.
  • the light L emitted from the optical fiber 120 passes through the space between the optical fiber 120 and the first lens 563, enters the first lens 563, and is expanded by the first lens 563.
  • One first lens 563 is provided for each of the optical fibers 120, and is arranged so that the optical axis of the emitted light of each optical fiber 120 coincides with the center of each first lens 563.
  • the second part 552 is joined to the first part 551, and a second lens 571 and a light transmission space 572 are provided.
  • the second component 552 is made of a light transmissive material similar to that of the first embodiment.
  • the second lens 571 shapes the light L incident from the first lens 563.
  • the second lens 571 can form incident light into collimated light, but may be formed into light suitable for other transmissions.
  • the second lens 571 can be a convex lens formed in a convex shape provided on the opposite side of the second component 552 to the first component 551.
  • One second lens 571 is provided for each of the optical fibers 120, and is arranged such that the optical axis of the emitted light of each first lens 563 coincides with the center of each second lens 571.
  • the light transmission space 572 is a space that is formed around the second lens 571 by a recess provided in the second component 552 and through which the light L emitted from the second lens 571 passes.
  • the joining of the second component 552 to the first component 551 can be performed by fitting or bonding with a concave portion and a convex portion provided respectively.
  • the relative positions of the optical fiber 120, the first lens 563, and the second lens 571 are defined by the connector body 550.
  • the light emitted from the optical fiber 120 is enlarged by the first lens 563 and then incident on the second lens 571 for shaping the light.
  • the optical diameter of the emitted light of the 2nd lens 571 can be enlarged.
  • the optical communication connector set in which the two optical communication connectors 500 are connected it is possible to achieve both the resistance against the entry of foreign matter and the resistance to the inclination of the optical fiber 120, and to ensure the communication quality.
  • the second lens 571 condenses the light L on the first lens 563
  • the first lens 563 condenses the light L on the core 121.
  • the connector main body 550 is composed of the first component 551 and the second component 552, but may be composed of one component.
  • FIG. 19 is a schematic diagram showing an optical communication connector 500 in which the connector main body 550 is composed of one component.
  • the optical fiber insertion hole 561, the adhesive injection hole 562, the first lens 563, the second lens 571, and the light transmission space 572 may be provided in the connector main body 550 made of one component.
  • an optical communication cable and an optical communication system can be realized using the optical communication connector 500.
  • FIG. 20 is a cross-sectional view showing an optical communication connector 600 according to the sixth embodiment of the present technology. As shown in the figure, the optical fiber 120 is connected to the optical communication connector 600. The number of optical fibers 120 may be one or plural.
  • the optical communication connector 600 includes a connector main body 650, and the connector main body 650 includes a first component 651 and a second component 652.
  • the first component 651 is made of a light-transmitting material similar to that of the first embodiment, and is provided with an optical fiber insertion hole 661, an adhesive injection hole 662 and a first lens 663.
  • the optical fiber insertion hole 661 is a hole into which the optical fiber 120 is inserted, and is formed with a certain length from the end of the first component 651 opposite to the second component 652.
  • One optical fiber insertion hole 661 is provided for each optical fiber 120.
  • Each optical fiber 120 is inserted into the optical fiber insertion hole 661 and fixed to the first component 651 by the adhesive 664.
  • the adhesive 664 may be light transmissive or a refractive index matching material.
  • the adhesive injection hole 662 is a hole communicating with each optical fiber insertion hole 661.
  • the adhesive 664 is injected around the optical fiber 120 from the adhesive injection hole 662.
  • the first lens 663 expands the light L emitted from the core 121 of the optical fiber 120. As shown in FIG. 20, the first lens 663 is a concave lens formed by making the tip of the optical fiber insertion hole 661 concave.
  • An optical fiber contact surface 661a is provided around the first lens 663 at the tip of the optical fiber insertion hole 661.
  • the optical fiber 120 is inserted into the optical fiber insertion hole 661 and comes into contact with the optical fiber contact surface 661a.
  • the positional deviation of the optical fiber 120 is prevented, and the positional accuracy of the optical fiber 120 is improved.
  • the adhesive injection hole 662 communicates with the optical fiber insertion hole 661 at a position spaced from the first lens 663, and the adhesive 664 flows between the optical fiber 120 and the first lens 663 to change the optical characteristics. It has been prevented.
  • the light L emitted from the optical fiber 120 passes through the space between the optical fiber 120 and the first lens 663, enters the first lens 663, and is expanded by the first lens 663.
  • One first lens 663 is provided for each of the optical fibers 120, and is arranged so that the optical axis of the emitted light of each optical fiber 120 coincides with the center of each first lens 663.
  • the second component 652 is bonded to the first component 651, and a second lens 671 and a light transmission space 672 are provided.
  • the second component 652 is made of a light transmissive material similar to that of the first embodiment.
  • the second lens 671 shapes the light L incident from the first lens 663.
  • the second lens 671 can form incident light into collimated light, but may be formed into light suitable for other transmissions.
  • the second lens 671 can be a convex lens formed in a convex shape provided on the opposite side of the second component 652 to the first component 651.
  • One second lens 671 is provided for each of the optical fibers 120, and the second lens 671 is disposed so that the optical axis of the emitted light of each first lens 663 coincides with the center of each second lens 671.
  • the light transmission space 672 is a space that is formed around the second lens 671 by a recess provided in the second component 652 and through which the light L emitted from the second lens 671 passes.
  • the joining of the second component 652 to the first component 651 can be performed by fitting or bonding with a concave portion and a convex portion provided respectively.
  • the relative positions of the optical fiber 120, the first lens 663, and the second lens 671 are defined by the connector body 650.
  • the light emitted from the optical fiber 120 is enlarged by the first lens 663 and then incident on the second lens 671 for shaping the light.
  • the light diameter of the emitted light of the 2nd lens 671 can be enlarged.
  • the optical communication connector set in which the two optical communication connectors 600 are connected it is possible to achieve both the resistance against the entry of foreign matter and the resistance to the inclination of the optical fiber 120, and to ensure the communication quality.
  • the second lens 671 condenses the light L on the first lens 663
  • the first lens 663 condenses the light L on the core 121.
  • the connector main body 650 is composed of the first component 651 and the second component 652, but may be composed of one component.
  • FIG. 21 is a schematic diagram showing an optical communication connector 600 in which the connector main body 650 is made of one component.
  • the optical fiber insertion hole 661, the adhesive injection hole 662, the first lens 663, the optical fiber contact surface 661a, the second lens 671, and the light transmission space 672 are provided in the connector main body 650 formed of one component. It may be provided.
  • an optical communication cable and an optical communication system can be realized using the optical communication connector 600.
  • FIG. 22 is a cross-sectional view showing an optical communication connector 700 according to the seventh embodiment of the present technology. As shown in the figure, an optical fiber 120 is connected to the optical communication connector 700. The number of optical fibers 120 may be one or plural.
  • the optical communication connector 700 includes a connector main body 750 and a fixing member 790.
  • the connector main body 750 includes a first part 751 and a second part 752.
  • the first component 751 is made of a light transmissive material similar to that of the first embodiment, and is provided with an optical fiber insertion hole 761, an adhesive injection hole 762, and a first lens 763.
  • the optical fiber insertion hole 761 is a hole into which the optical fiber 120 and the fixing member 790 are inserted as shown in FIG. 22, and has a certain length from the end of the first part 751 opposite to the second part 752. Is formed.
  • One optical fiber insertion hole 761 is provided for each optical fiber 120.
  • the adhesive injection hole 762 is a hole that communicates with each optical fiber insertion hole 761.
  • the first lens 763 expands the light emitted from the core 121 of the optical fiber 120.
  • the first lens 763 is a concave lens formed by making the tip of the optical fiber insertion hole 761 concave.
  • a fixing member contact surface 761 a is provided around the first lens 763 at the tip of the optical fiber insertion hole 761.
  • the fixing member 790 is made of a light transmissive material, and is configured such that the optical fiber 120 can be inserted.
  • the fixing member 790 contacts the fixing member contact surface 761a in a state where the optical fiber 120 is inserted, and the relative position with respect to the first component 751 is defined.
  • the fixing member 790 is fixed to the first component 751 by the adhesive 764 injected from the adhesive injection hole 762.
  • the adhesive 764 may be light transmissive or a refractive index matching material.
  • the light L emitted from the optical fiber 120 passes through the fixing member 790 and the space between the fixing member 790 and the first lens 763, enters the first lens 763, and is expanded by the first lens 763.
  • One first lens 763 is provided for each of the optical fibers 120, and the optical axis of the emitted light of each optical fiber 120 is arranged so as to coincide with the center of each first lens 763.
  • the second component 752 is bonded to the first component 751, and a second lens 771 and a light transmission space 772 are provided.
  • the second component 752 is made of a light transmissive material similar to that of the first embodiment.
  • the second lens 771 shapes the light L incident from the first lens 763 as shown in FIG.
  • the second lens 771 can form incident light into collimated light, but it may be formed into light suitable for other transmissions.
  • the second lens 771 can be a convex lens formed in a convex shape provided on the opposite side of the second component 752 to the first component 751.
  • One second lens 771 is provided for each of the optical fibers 120, and is arranged so that the optical axis of the emitted light of each first lens 763 coincides with the center of each second lens 771.
  • the light transmission space 772 is a space formed around the second lens 771 by a recess provided in the second component 752 and through which the light L emitted from the second lens 771 passes.
  • the joining of the second part 752 to the first part 751 can be performed by fitting or bonding with a concave part and a convex part provided respectively.
  • the relative positions of the optical fiber 120, the first lens 763, and the second lens 771 are defined by the connector main body 750.
  • the light emitted from the optical fiber 120 is expanded by the first lens 763 and then incident on the second lens 771 that forms the light. Thereby, even if the distance of the optical fiber 120 and the 2nd lens 771 is short, the light diameter of the emitted light of the 2nd lens 771 can be enlarged.
  • the optical communication connector set in which the two optical communication connectors 700 are connected it is possible to satisfy both the resistance against the entry of foreign matter and the resistance to the inclination of the optical fiber 120, and the communication quality can be ensured.
  • the second lens 771 condenses the light L on the first lens 763
  • the first lens 763 condenses the light L on the core 121.
  • the connector main body 750 is composed of the first component 751 and the second component 752, but may be composed of one component.
  • FIG. 23 is a schematic diagram showing an optical communication connector 700 in which the connector main body 750 is made of one component.
  • the optical fiber insertion hole 761, the adhesive injection hole 762, the first lens 763, the fixing member abutting surface 761a, the second lens 771, and the light transmission space 772 are provided in the connector main body 750 formed of one component. It may be provided.
  • an optical communication cable and an optical communication system can be realized using the optical communication connector 700.
  • FIG. 24 is a cross-sectional view showing an optical communication connector 800 according to the fifth embodiment of the present technology. As shown in the figure, the optical fiber 120 is connected to the optical communication connector 800. The number of optical fibers 120 may be one or plural.
  • the optical communication connector 800 includes a connector body 850.
  • the connector main body 850 includes a first part 851 and a second part 852.
  • the first component 851 is made of a light-transmitting material similar to that of the first embodiment, and is provided with an optical fiber insertion hole 861, a reflecting portion 862, and a first lens 863.
  • the optical fiber insertion hole 861 is extended in a direction different from the direction in which the first lens 863 is located, and a reflection portion 862 is provided at the tip of the optical fiber insertion hole 861.
  • One optical fiber insertion hole 861 is provided for each optical fiber 120.
  • Each optical fiber 120 is inserted into the optical fiber insertion hole 861 and fixed to the first component 351 by the adhesive 864.
  • the adhesive 864 may be light transmissive or a refractive index matching material.
  • the reflection unit 862 reflects the light emitted from the core 121 of the optical fiber 120 toward the first lens 863.
  • the reflecting portion 862 may be a surface formed by the material of the first component 851 or a surface formed by a light reflecting member such as metal disposed at the tip of the optical fiber insertion hole 861.
  • the first lens 863 expands the light emitted from the core 121 of the optical fiber 120. As shown in FIG. 24, the light L emitted from the optical fiber 120 is reflected by the reflecting portion 862, enters the first lens 863, and is enlarged by the first lens 863.
  • the first lens 863 can be a concave lens formed in a concave shape provided on a joint surface 851a which is a joint surface with the second component 852 in the first component 851.
  • a recess that forms the first lens 863 is sealed with a second component 852.
  • One first lens 863 is provided for each of the optical fibers 120, and the optical axis of the light emitted from each optical fiber 120 is aligned with the center of each first lens 863 via each reflector 862. Is arranged.
  • the second part 852 is joined to the first part 851 and a second lens 871 and a light transmission space 872 are provided.
  • the second component 852 is made of a light transmissive material similar to that of the first embodiment.
  • the second lens 871 shapes the light L incident from the first lens 863.
  • the second lens 871 can shape incident light into collimated light, but it may be shaped into light suitable for other transmissions.
  • the second lens 871 can be a convex lens formed by a convex portion provided on the opposite side of the second component 852 to the first component 851.
  • One second lens 871 is provided for each of the optical fibers 120, and is arranged so that the optical axis of the emitted light of each first lens 863 coincides with the center of each second lens 871.
  • the light transmission space 872 is a space that is formed around the second lens 871 by a recess provided in the second component 852 and through which the light L emitted from the second lens 871 passes.
  • the joining of the second part 852 to the first part 851 can be performed by fitting or bonding with a concave part and a convex part provided respectively.
  • the relative positions of the optical fiber 120, the first lens 863, and the second lens 871 are defined by the connector main body 850.
  • the light emitted from the optical fiber 120 is expanded by the first lens 863 and then incident on the second lens 871 that forms the light. Thereby, even if the optical path between the optical fiber 120 and the second lens 871 is short, the light diameter of the emitted light from the second lens 871 can be increased.
  • the optical communication connector set in which the two optical communication connectors 800 are connected it is possible to achieve both the resistance against the entry of foreign matter and the resistance to the inclination of the optical fiber 120, and to ensure the communication quality.
  • the degree of freedom in designing the optical communication connector 800 can be improved.
  • the second lens 871 condenses the light L on the first lens 863, and the first lens 863 passes the light L through the reflector 862 to the core 121. Condensed to
  • an optical communication cable and an optical communication system can be realized using the optical communication connector 800.
  • optical communication connector In each of the above embodiments, an optical fiber is connected to the optical communication connector, but an optical element may be mounted on the optical communication connector instead of the optical fiber.
  • FIG. 25 is a cross-sectional view showing an optical communication connector 900 according to a ninth embodiment of the present technology. As shown in the figure, an optical element 130 is mounted on the optical communication connector 900.
  • the optical element 130 is a laser element such as VCSEL (Vertical Cavity Surface Emitting LASER), a light emitting element such as an LED (light emitting diode), or a light receiving element such as a PD (photodiode).
  • VCSEL Vertical Cavity Surface Emitting LASER
  • a light emitting element such as an LED (light emitting diode)
  • a light receiving element such as a PD (photodiode).
  • the number of optical elements 130 mounted on the optical communication connector 900 may be one or plural.
  • the optical communication connector 900 includes a connector main body 950, and the connector main body 950 includes a first component 951 and a second component 952.
  • the first component 951 is made of a light transmissive material similar to that of the first embodiment, and is provided with a first lens 961.
  • the first lens 961 expands the light L emitted from the optical element 130. As shown in FIG. 25, the light L emitted from the optical element 130 passes through the first component 951 and enters the first lens 961, and is expanded by the first lens 961.
  • the first lens 961 can be a concave lens formed in a concave shape provided on a joint surface 951a which is a joint surface of the first component 951 with the second component 952.
  • the concave portion forming the first lens 961 is sealed with the second component 952.
  • One first lens 961 is provided for each of the optical elements 130 and is arranged so that the optical axis of the emitted light of each optical element 130 coincides with the center of each first lens 961.
  • the second component 952 is bonded to the first component 951, and a second lens 971 and a light transmission space 972 are provided.
  • the second component 952 is made of a light transmissive material similar to that of the first embodiment.
  • the second lens 971 shapes the light L incident from the first lens 961.
  • the second lens 971 can form incident light into collimated light, but may be formed into light suitable for other transmissions.
  • the second lens 971 may be a convex lens formed in a convex shape provided on the opposite side of the second component 952 to the first component 951.
  • One second lens 971 is provided for each of the optical elements 130 and is arranged so that the optical axis of the emitted light of each first lens 961 coincides with the center of each second lens 971.
  • the light transmission space 972 is a space that is formed around the second lens 971 by a recess provided in the second component 952 and through which the light L emitted from the second lens 971 passes.
  • the joining of the second part 952 to the first part 951 can be performed by fitting or bonding with a concave part and a convex part provided respectively.
  • the relative positions of the optical element 130, the first lens 961, and the second lens 971 are defined by the connector body 950.
  • the light emitted from the optical element 130 is enlarged by the first lens 961 and then incident on the second lens 971 for shaping the light. Thereby, even if the distance between the optical element 130 and the second lens 971 is short, the light diameter of the emitted light from the second lens 971 can be increased.
  • the optical communication connector set in which the two optical communication connectors 900 are connected it is possible to achieve both the resistance against the entry of foreign matter and the resistance to the inclination of the optical element 130, and to ensure the communication quality.
  • the second lens 971 condenses the light L on the first lens 961
  • the first lens 961 condenses the light L on the optical element 130.
  • an optical communication system can be realized using the optical communication connector 900.
  • the light emitting unit 14 and the light receiving unit 15 can be directly connected to the optical communication connector 100A without passing through the optical transmission path 16 and the optical transmission path 17, and this structure is It can be realized by the optical communication connector 900.
  • FIG. 26 is a cross-sectional view showing an optical communication connector 1000 having another configuration of the present technology. As shown in the figure, the optical communication connector 1000 is provided with an optical element 130 mounted on a fixed substrate 131.
  • the number of optical elements 130 arranged in the optical communication connector 1000 may be one or plural.
  • the fixed substrate 131 is fixed to the optical communication connector 1000 by bonding or the like. Further, the fixed substrate 131 may be fixed to a housing that exists further outside the connector main body 1050 so that the relative positions of the connector main body 1050 and the fixed substrate 131 are matched.
  • the optical communication connector 1000 includes a connector main body 1050, and the connector main body 1050 includes a first part 1051 and a second part 1052.
  • the first component 1051 is made of a light-transmitting material, and is provided with an opening 1061, a reflecting portion 1062, and a first lens 1063.
  • the opening 1061 is an opening provided in the first component 1051.
  • a reflective portion 1062 is provided at the tip of the opening 1061.
  • the reflection unit 1062 reflects the light emitted from the optical element 130 toward the first lens 1063.
  • the reflecting portion 1062 may be a surface formed by the material of the first component 1051 or may be a surface formed by a light reflecting member such as a metal disposed at the tip of the opening 1061.
  • the first lens 1063 expands the light emitted from the optical element 130. As shown in FIG. 26, the light L emitted from the optical element 130 is reflected by the reflecting portion 1062 and enters the first lens 1063, and is enlarged by the first lens 1063.
  • the first lens 1063 can be a concave lens formed in a concave shape provided on a joint surface 1051a which is a joint surface of the first component 1051 with the second component 1052.
  • the concave portion forming the first lens 1063 is sealed with the second component 1052.
  • One first lens 1063 is provided for each of the optical elements 130 so that the optical axis of the emitted light of each optical element 130 coincides with the center of each first lens 1063 via each reflecting portion 1062. Is arranged.
  • the second component 1052 is bonded to the first component 1051, and a second lens 1071 and a light transmission space 1072 are provided.
  • the second component 1052 is made of a light transmissive material similar to that of the first embodiment.
  • the second lens 1071 shapes the light L incident from the first lens 1063.
  • the second lens 1071 can shape incident light into collimated light, but it may be shaped into light suitable for other transmissions.
  • the second lens 1071 can be a convex lens formed in a convex shape provided on the opposite side of the second component 1052 from the first component 1051.
  • One second lens 1071 is provided for each of the optical elements 130, and is arranged so that the optical axis of the emitted light of each first lens 1063 coincides with the center of each second lens 1071.
  • the light transmission space 1072 is a space formed around the second lens 1071 by a recess provided in the second component 1052 and through which the light L emitted from the second lens 1071 passes.
  • the joining of the second part 1052 to the first part 1051 can be performed by fitting or bonding with a concave part and a convex part provided respectively.
  • the relative positions of the optical element 130, the first lens 1063, and the second lens 1071 are defined by the connector main body 1050.
  • the light emitted from the optical element 130 is expanded by the first lens 1063 and then incident on the second lens 1071 that forms the light. Thereby, even if the optical path between the optical element 130 and the second lens 1071 is short, the light diameter of the emitted light from the second lens 1071 can be increased.
  • the optical communication connector set in which the two optical communication connectors 1000 are connected it is possible to achieve both resistance to the entry of foreign matter and resistance to the inclination of the optical element 130, and to ensure communication quality.
  • the second lens 1071 condenses the light L on the first lens 1063, and the first lens 1063 transmits the light L through the reflection unit 1062 to the optical element. Condensed at 130.
  • the light emitting unit 14 and the light receiving unit 15 are directly connected to the optical communication connector 100A without passing through the optical transmission path 16 and the optical transmission path 17. It is possible to realize an optical communication system using the optical communication connector 1000.
  • optical communication connectors described in the above embodiments can be connected to each other, and may be connected to the optical communication connectors described in other embodiments.
  • the optical communication connector 100 and the optical communication connector 200 can be connected.
  • optical communication system and the optical communication cable according to the present technology include at least two optical communication connectors, these optical communication connectors may be optical communication connectors according to different embodiments.
  • An optical communication connector capable of optical coupling spatially, A first lens that magnifies light emitted from the light emitter;
  • An optical communication connector comprising: a second lens that shapes and emits light incident from the first lens.
  • the optical communication connector according to (1) above, The second lens is an optical communication connector that forms light emitted from the first lens into collimated light.
  • An optical communication connector further comprising: a connector body that defines relative positions of the light emitter, the first lens, and the second lens.
  • the optical communication connector according to (3) above,
  • the light emitter is an optical fiber
  • the connector body has a hole into which the optical fiber is inserted
  • the optical fiber connector is fixed to the connector body with an adhesive injected into the hole.
  • the optical communication connector according to (3) above,
  • the light emitter is a light emitting element.
  • the optical communication connector according to any one of (3) to (5) above,
  • the connector main body is an optical communication connector having a first component to which the light emitter is fixed and a second component having the second lens.
  • the optical communication connector according to (6) above The first lens is a concave lens formed in a concave shape provided on a joint surface of the first component with the second component, The optical communication connector, wherein the second lens is a convex lens formed in a convex shape, provided on the opposite side of the second component to the first component.
  • the optical communication connector according to (6) above The first lens is a concave lens formed in a concave shape provided on a joint surface with the first component in the second component, The optical communication connector, wherein the second lens is a convex lens formed in a convex shape, provided on the opposite side of the second component to the first component.
  • the optical communication connector according to (6) above,
  • the first lens is a concave lens formed in a concave shape provided on a joint surface of the first component with the second component
  • the second lens is a convex lens formed in a convex shape, provided on the opposite side of the second component to the first component
  • the optical communication connector is formed in a concave shape provided on a joint surface of the second component with the first component, and expands light incident from the first lens, and the second lens.
  • An optical communication connector further comprising a third lens that is incident on the lens.
  • the first lens is a concave lens formed in a concave shape provided on a joint surface of the first component with the third component
  • the second lens is a convex lens formed in a convex shape, provided on the opposite side to the third component in the second component
  • the third lens is a concave lens formed in a concave shape provided on a joint surface with the first component in the third component
  • the fourth lens is a concave lens formed in a concave shape provided on the joint surface of the third component with the second component
  • the optical communication connector, wherein the fifth lens is a concave lens formed in a concave shape provided on a joint surface of the second component with the third component.
  • the optical communication connector according to (4) above,
  • the first lens is a concave lens formed in a concave shape provided at the tip of the hole
  • the second lens is a convex lens formed in a convex shape provided in the connector body. connector.
  • optical communication connector according to (11) above, An optical communication connector, further comprising a contact surface provided around the first lens at a tip of the hole and in contact with the optical fiber.
  • the optical communication connector according to any one of (3) to (13) above,
  • the connector main body includes an optical communication connector having a reflecting portion that reflects light incident from the light emitter toward the first lens.
  • the optical communication connector according to (7) above, The second component is an optical communication connector that seals a recess that forms the first lens.
  • An optical communication connector capable of optical coupling spatially, A first lens that condenses the shaped incident light;
  • An optical communication connector comprising: a second lens that condenses light incident from the first lens on a photoreceptor.
  • a light emitter capable of optically coupling spatially, a first lens for enlarging light emitted from the light emitter, and a second lens for shaping and emitting light incident from the first lens
  • An optical transmitter comprising: an optical communication connector comprising:
  • An optical receiver comprising: an optical communication connector comprising:
  • An optical communication connector capable of optically coupling spatially, a first lens for enlarging light emitted from a light emitter, and a second lens for shaping and emitting light incident from the first lens
  • a first optical communication connector comprising: An optical communication connector that is detachable from the first optical communication connector and is spatially optically connectable, a third lens that collects light incident from the second lens, and the first lens
  • An optical communication system comprising: a second optical communication connector comprising: a fourth lens that condenses the light incident from the third lens on the photoreceptor.
  • An optical communication connector capable of optically coupling spatially, comprising: a first lens on which molded light is incident; and a second lens that condenses light incident from the first lens on the optical fiber.
  • a first optical communication connector comprising: An optical communication connector capable of optically coupling spatially, a third lens for enlarging light incident from the optical fiber, and a fourth lens for shaping and emitting light incident from the third lens
  • An optical communication cable comprising: a second optical communication connector comprising:
  • Optical communication system 50 Optical communication cable 100, 200, 300, 400, 500, 600, 700, 800, 900, 100 DESCRIPTION OF SYMBOLS 120 ... Optical fiber 130 ... Optical element 150, 250, 350, 450, 550, 650, 750, 850, 950, 1050 ... Connector main body 163, 271, 363, 463, 563, 663, 763, 863, 961, 1063 ... First lens 171, 272, 371, 471, 571, 671, 771, 871, 971, 1071 ... second lens 373, 481 ... third lens 482 ... fourth lens 473 ... fifth lens

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

【課題】低コストで通信品質の低下を防止することが可能な光通信コネクタ、光送信器、光受信器、光通信システム及び光通信ケーブルを提供すること。 【解決手段】本技術に係る光通信コネクタは、空間的に光結合可能な光通信コネクタであって、第1のレンズと、第2のレンズとを具備する。上記第1のレンズは、発光体から出射された光を拡大する。上記第2のレンズは、上記第1のレンズから入射する光を成形して出射する。

Description

光通信コネクタ、光送信器、光受信器、光通信システム及び光通信ケーブル
 本技術は、光通信に用いられる光通信コネクタ、光送信器、光受信器、光通信システム及び光通信ケーブルに関する。
 光通信に用いられる光通信コネクタとして、光ファイバが接続される光透過部材と、光透過部材に設けられたレンズを備える構成が多く用いられる。光ファイバから出射された光は、光透過部材を透過し、レンズによってコリメート化(平行化)されて光通信コネクタから出射される。
 コリメート光は相手方の光通信コネクタに入射して光ファイバに集光され、光信号が伝送される。ここで、コリメート光の光径が小さいと、光通信コネクタ間にダスト等の異物が混入した際にコリメート光が遮られて通信に支障が生じるため、コリメート光の光径は大きい方が好適である。
 コリメート光の光径を大きくするためには光ファイバとレンズの間の距離を長くすればよい。しかしながら、光ファイバとレンズの間の距離を長くすると、光ファイバと相手方光ファイバの間の距離も長くなる。
 このため、光軸に対して光ファイバの角度ズレが生じた場合に光通信コネクタからの出射光が相手方光ファイバから外れた位置に集光され、相手方光ファイバに入射しなくなるおそれがある。
 これは、マルチモードファイバよりもNA(開口率)が小さく、光ファイバ出射光の出射角が小さいシングルモードファイバの場合に特に問題となる。
 これに対し、特許文献1には、光ファイバの端部にコアレスファイバを接合し、その末端に凹部を形成した光ファイバ端末が開示されている。光ファイバから出射された光はコアレスファイバを透過し、凹部によって拡大される構造となっている。
特開2004-302292号公報
 しかしながら、特許文献1の構成では、光ファイバ毎にコアレスファイバを接合する必要があり、コストが増加する。特に光通信のチャネル数が増えると多数の光ファイバにそれぞれ接合処理を行う必要があり、コストが大幅に増加する。
 以上のような事情に鑑み、本技術の目的は、低コストで通信品質の低下を防止することが可能な光通信コネクタ、光送信器、光受信器、光通信システム及び光通信ケーブルを提供することにある。
 上記目的を達成するため、本技術に係る光通信コネクタは、空間的に光結合可能な光通信コネクタであって、第1のレンズと、第2のレンズとを具備する。
 上記第1のレンズは、発光体から出射された光を拡大する。
 上記第2のレンズは、上記第1のレンズから入射する光を成形して出射する。
 この構成によれば、発光体から出射された光は第1のレンズによって拡大され、第2のレンズにおいて成形される。このため、発光体と第2のレンズの距離が短くても第2のレンズの出射光の光径を大きくすることが可能となる。発光体と第2のレンズの距離を短縮することにより、発光体のずれによる光通信への影響を防止すると共に、光径の拡大により異物混入への耐性を向上させることが可能である。
 上記第2のレンズは、上記第1のレンズから出射された光をコリメート光に成形してもよい。
 上記発光体、上記第1のレンズ及び上記第2のレンズの相対位置を規定するコネクタ本体をさらに具備してもよい。
 上記発光体は光ファイバであり、
 上記コネクタ本体は、上記光ファイバが挿入される孔を有し、
 上記光ファイバは、上記孔に注入された接着材によって上記コネクタ本体に対して固定されていてもよい。
 上記発光体は発光素子であってもよい。
 上記コネクタ本体は、上記発光体が固定される第1の部品と、上記第2のレンズが設けられた第2の部品とを有してもよい。
 上記第1のレンズは、上記第1の部品において上記第2の部品との接合面に設けられた、凹形状に形成された凹レンズであり、
 上記第2のレンズは、上記第2の部品において上記第1の部品とは反対側に設けられた、凸形状に形成された凸レンズであってもよい。
 上記第1のレンズは、上記第2の部品において上記第1の部品との接合面に設けられた、凹形状に形成された凹レンズであり、
 上記第2のレンズは、上記第2の部品において上記第1の部品とは反対側に設けられた、凸形状に形成された凸レンズであってもよい。
 上記第1のレンズは、上記第1の部品において上記第2の部品との接合面に設けられた、凹形状に形成された凹レンズであり、
 上記第2のレンズは、上記第2の部品において上記第1の部品とは反対側に設けられた、凸形状に形成された凸レンズであり、
 上記光通信コネクタは、上記第2の部品において上記第1の部品との接合面に設けられた凹形状に形成され、上記第1のレンズから入射する光を拡大し、上記第2のレンズに入射させる第3のレンズをさらに具備してもよい。
 上記光コネクタは、上記第1の部品と上記第2の部品の間に配置され、上記第1のレンズから入射する光を拡大する第3のレンズと、上記第3のレンズから入射する光を拡大する第4のレンズが設けられた第3の部品をさらに具備し、
 上記第2の部品にはさらに、上記第4のレンズから入射する光を拡大し、上記第2のレンズに入射させる第5のレンズが設けられ、
 上記第1のレンズは、上記第1の部品において上記第3の部品との接合面に設けられた、凹形状に形成された凹レンズであり、
 上記第2のレンズは、上記第2の部品において上記第3の部品とは反対側に設けられた、凸形状に形成された凸レンズであり、
 上記第3のレンズは、上記第3の部品において上記第1の部品との接合面に設けられた、凹形状に形成された凹レンズであり、
 上記第4のレンズは、上記第3の部品において上記第2の部品との接合面に設けられた、凹形状に形成された凹レンズであり、
 上記第5のレンズは、上記第2の部品において上記第3の部品との接合面に設けられた、凹形状に形成された凹レンズであってもよい。
 上記第1のレンズは、上記孔の先端に設けられた、凹形状に形成された凹レンズであり
 上記第2のレンズは上記コネクタ本体に設けられた、凸形状に形成された凸レンズであってもよい。
 上記光通信コネクタは、上記孔の先端において上記第1のレンズの周囲に設けられ、上記光ファイバが当接する当接面をさらに具備してもよい。
 上記光通信コネクタは、
 上記光ファイバが挿入される固定部材と、
 上記孔の先端において上記第1のレンズの周囲に設けられ、上記固定部材が当接する当接面をさらに具備してもよい。
 上記コネクタ本体は、上記発光体から入射する光を上記第1のレンズに向けて反射する反射部を有してもよい。
 上記第2の部品は、上記第1のレンズを形成する凹部を封止してもよい。
 上記目的を達成するため、本技術に係る光通信コネクタは、空間的に光結合可能な光通信コネクタであって、第1のレンズと、第2のレンズとを具備する。
 上記第1のレンズは、成形された入射光を集光する。
 上記第2のレンズは、上記第1のレンズから入射する光を受光体に集光する。
 上記目的を達成するため、本技術に係る光送信器は、発光体と、光通信コネクタとを具備する。
 上記光通信コネクタは、空間的に光結合可能な光通信コネクタであって、上記発光体から出射された光を拡大する第1のレンズと、上記第1のレンズから入射する光を成形して出射する第2のレンズとを備える。
 上記目的を達成するため、本技術に係る光受信器は、受光体と、光通信コネクタとを具備する。
 上記光通信コネクタは、空間的に光結合可能な光通信コネクタであって、成形された入射光を集光する第1のレンズと、上記第1のレンズから入射する光を上記受光体に集光する第2のレンズとを備える。
 上記目的を達成するため、本技術に係る光通信システムは、第1の光通信コネクタと、第2の光通信コネクタとを具備する。
 上記第1の光通信コネクタは、空間的に光結合可能な光通信コネクタであって、発光体から出射された光を拡大する第1のレンズと、上記第1のレンズから入射する光を成形して出射する第2のレンズとを備える。
 上記第2の光通信コネクタは、上記第1の光通信コネクタに対して着脱可能であり、空間的に光結合可能な光通信コネクタであって、上記第2のレンズから入射する光を集光する第3のレンズと、上記第3のレンズから入射する光を受光体に集光する第4のレンズとを備える。
 上記目的を達成するため、本技術に係る光通信ケーブルは、光ファイバと、第1の光通信コネクタと、第2の光通信コネクタとを具備する。
 上記第1の光通信コネクタは、空間的に光結合可能な光通信コネクタであって、成形された光が入射する第1のレンズと、上記第1のレンズから入射する光を上記光ファイバに集光する第2のレンズとを備える。
 上記第2の光通信コネクタは、空間的に光結合可能な光通信コネクタであって、上記光ファイバから入射する光を拡大する第3のレンズと、上記第3のレンズから入射する光を成形して出射する第4のレンズとを備える。
 以上のように、本技術によれば、低コストで通信品質の低下を防止することが可能な光通信コネクタ、光送信器、光受信器、光通信システム及び光通信ケーブルを提供することができる。
本技術の第1の実施形態に係る光通信コネクタの斜視図である。 同光通信コネクタの斜視図である。 同光通信コネクタの断面図である。 同光通信コネクタ及び光ファイバの断面図である。 同光通信コネクタにおける光の経路を示す模式図である。 同光通信コネクタから構成されるコネクタセットの斜視図である。 同光通信コネクタから構成されるコネクタセットの断面図である。 比較例に係る光通信コネクタの模式図である。 比較例に係る光通信コネクタの模式図である。 比較例に係る光通信コネクタの模式図である。 比較例に係る光通信コネクタの模式図である。 本技術の第1の実施形態に係る光通信コネクタを備える光通信ケーブルの断面図である。 同光通信コネクタを備える光通信システムの模式図である。 同光通信コネクタを備える光通信システムの電子機器の構成を示す模式図である。 本技術の第2の実施形態に係る光通信コネクタの断面図である。 本技術の第3の実施形態に係る光通信コネクタの断面図である。 本技術の第4の実施形態に係る光通信コネクタの断面図である。 本技術の第5の実施形態に係る光通信コネクタの断面図である。 本技術の第5の実施形態に係る光通信コネクタの断面図である。 本技術の第6の実施形態に係る光通信コネクタの断面図である。 本技術の第6の実施形態に係る光通信コネクタの断面図である。 本技術の第7の実施形態に係る光通信コネクタの断面図である。 本技術の第7の実施形態に係る光通信コネクタの断面図である。 本技術の第8の実施形態に係る光通信コネクタの断面図である。 本技術の第9の実施形態に係る光通信コネクタの断面図である。 本技術の第10の実施形態に係る光通信コネクタの断面図である。
 (第1の実施形態)
 本技術の第1の実施形態に係る光通信コネクタについて説明する。
 図1及び図2は、本実施形態に係る光通信コネクタ100を示す斜視図であり、互いに反対方向から見た図である。これらの図に示すように光通信コネクタ100には複数の光ファイバ120が接続されている。また、光通信コネクタ100に接続される光ファイバの数は1本であってもよい。
 図3は光通信コネクタ100の断面図であり、図4は光ファイバ120を接続した光通信コネクタ100の断面図である。図4に示すように光ファイバ120は、コア121及びクラッド122を備える。光ファイバ120はシングルモードファイバであってもよくマルチモードファイバであってもよい。
 図3に示すように、光通信コネクタ100は、コネクタ本体150を備え、コネクタ本体150は、第1部品151及び第2部品152から構成されている。
 第1部品151には、光ファイバ挿入孔161、接着材注入孔162及び第1レンズ163が設けられている。第1部品151はガラス又は合成樹脂等の光透過性材料からなる。また、第1部品151はMEMS(Micro Electro Mechanical Systems)の材料として用いられるような特定の波長の光を透過するシリコン材からなるものであってもよい。
 光ファイバ挿入孔161は、図4に示すように光ファイバ120が挿入される孔であり、第1部品151において、第2部品152とは反対側の端部から一定の長さに形成されている。
 光ファイバ挿入孔161は、図2に示すように一本の光ファイバ120に対して一つずつが設けられる。各光ファイバ120は光ファイバ挿入孔161に挿入され、図4に示すように接着材164によって第1部品151に固定される。
 接着材注入孔162は、各光ファイバ挿入孔161に連通する孔である。接着材164はこの接着材注入孔162から光ファイバ120の周囲に注入される。
 接着材164は、光ファイバ120を固定できるものであれば特に限定されないが、図4に示すように光ファイバ挿入孔161の先端と光ファイバ120の間にも流入するため、光透過性を有するものが好適である。また、接着材164は屈折率整合材であってもよい。なお、接着材164は、光ファイバ挿入孔161の先端と光ファイバ120の間に流入させなくてもよい。
 第1レンズ163は、光ファイバ120のコア121から出射された光を拡大する。図5は、光通信コネクタ100における光Lの経路を示す模式図である。同図に示すように、光ファイバ120のコア121から出射された光Lは、接着材164及び第1部品151を透過して第1レンズ163に入射し、第1レンズ163によって拡大される。
 第1レンズ163は、図4に示すように、第1部品151における第2部品152との接合面である接合面151aに設けられた、凹形状に形成された凹レンズとすることができる。第1レンズ163を形成する凹部は、第2部品152によって封止され、塵埃等の混入が防止されている。
 第1レンズ163は、光ファイバ120のそれぞれに対して一つずつが設けられ、各光ファイバ120の出射光の光軸が各第1レンズ163の中心に一致するように配置されている。
 第2部品152は、第1部品151に接合され、第2レンズ171、光伝達空間172及び接続部173(図1参照)が設けられている。第2部品152は第1部品151と同様の光透過性材料からなる。第2部品152を構成する光透過性材料は第1部品151を構成する光透過性材料と同一でもよく、異なってもよい。
 第2レンズ171は、図5に示すように、第1レンズ163から入射した光Lを成形する。第2レンズ171は、入射光をコリメート光に成形するものとすることができるが、他の伝送に適した光に成形してもよい。
 第2レンズ171は、第2部品152において、第1部品151とは反対側に設けられた、凸形状に形成された凸レンズとすることができる。第2レンズ171は、光ファイバ120のそれぞれに対して一つずつが設けられ、各第1レンズ163の出射光の光軸が各第2レンズ171の中心に一致するように配置されている。
 光伝達空間172は、第2部品152に設けられた凹部によって第2レンズ171の周囲に形成され、第2レンズ171から出射した光Lが通過する空間である。
 接続部173は、光通信コネクタ100と接続対象の光通信コネクタ(以下、相手方コネクタ)を接続し、両者の相対位置を固定する。接続部173は相手方コネクタに設けられた凸部に嵌合する凹部、又は相手方コネクタに設けられた凹部に嵌合する凸部とすることができる。
 また、接続部173はこの他にも相手方コネクタとの相対位置を固定することが可能なものであればよい。さらに、第2部品152には接続部173が設けられず、光通信コネクタ100の周囲に相手方コネクタとの相対位置を固定することが可能な接続機構が設けられてもよい。
 第2部品152の第1部品151に対する接合は、それぞれに設けられた凹部と凸部による嵌合によって行うことができる。また、画像処理システム等で第1レンズ163と第2レンズ171の光軸が一致するように調整した上で、第1部品151と第2部品152を接着によって接合してもよい。
 このようにコネクタ本体150によって光ファイバ120と第1レンズ163及び第2レンズ171の相対位置が規定される。
 光通信コネクタ100は以上のような構成を有する。なお、上記説明では、光ファイバ120から光Lが出射される場合、即ち光ファイバ120が発光体となる場合について説明した。ここで、光通信コネクタ100は、相手方コネクタから光通信コネクタ100に光Lが入射し、光ファイバ120に集光される場合、即ち光ファイバ120が受光体となる場合もある。
 この場合、相手方コネクタからコリメート光等に成形された光Lが第2レンズ171に入射する(図5参照)。第2レンズ171は、入射した光Lを第1レンズ163に集光する。第1レンズ163は、第2レンズ171から入射した光Lを光ファイバ120のコア121に集光する。
 [光通信コネクタの動作]
 光通信コネクタ100の動作について説明する。光ファイバ120が発光体となる場合、上記のように光ファイバ120のコア121から出射された光Lは、第1レンズ163によって拡大され、第2レンズ171によって成形される。
 光ファイバ120と第2レンズ171の間に第1レンズ163を設けることによって、光ファイバ120と第2レンズ171の距離(図5中、距離R)が小さくても、第2レンズ171の出射光の光径(図5中、径D)を大きくすることができる。
 また、光ファイバ120が受光体となる場合、第2レンズ171に入射した光は第1レンズ163に集光され、第1レンズ163によってコア121に集光される。
 この場合も、第1レンズ163を設けることによって光ファイバ120と第2レンズ171の距離Rを短くしながら、第2レンズ171へ入射する光Lの光径Dを大きくすることができる。
 [光通信コネクタセットについて]
 光通信コネクタ100は相手方の光通信コネクタ100と接続することが可能である。図6は2つの光通信コネクタ100からなるコネクタセットの斜視図であり、図7は2つの光通信コネクタ100を接続したコネクタセットの断面図である。
 以下の説明において一方の光通信コネクタ100を光通信コネクタ100Aとし、他方の光通信コネクタ100を光通信コネクタ100Bとする。また、光通信コネクタ100Aに接続された光ファイバ120を光ファイバ120Aとし、光通信コネクタ100Bに接続された光ファイバ120を光ファイバ120Bとする。
 上述のように、光通信コネクタ100Aと光通信コネクタ100Bは、それぞれが備える接続部173等によって互いに接続されている。
 光ファイバ120Aから光Lが光通信コネクタ100Aに伝達されると、図7に示すように光Lは、光ファイバ120Aのコア121から第1レンズ163に入射する。光Lは第1レンズ163によって拡大され、第2レンズ171によって成形される。
 第2レンズ171から出射された光Lは、光伝達空間172を進行し、光通信コネクタ100Bに入射する。光通信コネクタ100Bにおいて光Lは、第2レンズ171によって第1レンズ163に集光され、第1レンズ163によって光ファイバ120Bのコア121に集光される。
 また、光ファイバ120Bから光Lが光通信コネクタ100Bに供給されると、図7に示すように光Lは、光ファイバ120Bのコア121から第1レンズ163に入射する。光Lは第1レンズ163によって拡大され、第2レンズ171によって成形される。
 第2レンズ171から出射された光Lは、光伝達空間172を進行し、光通信コネクタ100Aに入射する。光通信コネクタ100Aにおいて光Lは、第2レンズ171によって第1レンズ163に集光され、第1レンズ163によって光ファイバ120Aのコア121に集光される。
 このように光Lは光通信コネクタ100Aと光通信コネクタ100Bの間で光伝達空間172を介して伝送され、即ち空間的に光結合する。
 [光通信コネクタによる効果]
 光通信コネクタによる効果について、比較例との比較の上で説明する。
 図8は、比較例に係る、一般的構成を有する光通信コネクタ190の模式図である。図8(a)に示すように光通信コネクタ190は、光ファイバ191、光透過部材192及びレンズ193を備え、光ファイバ191はコア194及びクラッド195を備える。光透過部材192の長さ、即ちコア194とレンズ193の距離を距離Aとする。
 コア194から出射された光Lは光透過部材192を透過し、レンズ193によってコリメート光に成形される。光Lの光軸を破線で示し、コリメート光の光径を光径Bとして示す。コア194から出射される光Lの出射角θは、コア194と光透過部材192の屈折率差による開口率NAによって決まる。図8(a)の構成では開口率NA=Xとする。
 図8(b)は、図8(a)の構造に対して開口率NAが半分(X/2)の場合の光Lの経路を示す。図8(b)に示すように光Lの出射角はθ/2となり、コリメート光の光径はB/2となる。
 図9は、異物による光への影響を示す模式図である。塵等の異物Cが混入すると、図9(b)に示すように開効率NAがX/2であり、コリメート光が光径B/2となる場合にはコリメート光の全部が遮蔽され、光信号が遮断されるおそれがある。
 一方、図9(a)に示すように、開効率NAがXであり、コリメート光が光径Bとなる場合には、異物Cによってコリメート光の一部のみが遮蔽され、光信号は伝達される。このように、光通信コネクタ190から出射されるコリメート光は光径が大きいほど通信パワーが確保されやすくなる。
 開口率が小さい場合にコリメート光の光径を大きくするためには、コア194とレンズ193の距離を長くすればよい。図10は、開口率NAがX/2であり、コア194とレンズ193の距離がA×2の場合の光通信コネクタ190を示す模式図である。同図に示すように、コア194とレンズ193の距離を大きくすることにより、開口率が小さくてもコリメート光の光径を大きくすることができる。
 しかしながら、コア194とレンズ193の距離を大きくすると別の問題が生じる。図11はこの距離による影響を示す模式図であり、2つの光通信コネクタ190の間で光が伝送される様子を示す。以下の説明において一方の光通信コネクタ190を光通信コネクタ190Aとし、他方の光通信コネクタ190を光通信コネクタ190Bとする。また、光通信コネクタ190Aが備える光ファイバを光ファイバ191Aとし、光通信コネクタ190Bが備える光ファイバを光ファイバ191Bとする。
 図11(a)に示すように、二つの光通信コネクタ190間で光を伝送する際、光ファイバ191Aに傾きが生じる場合がある。光ファイバの傾きは例えば、部品の精度不足や実装時の精度不足、熱による部品の変形によって生じる。
 図11(a)に示すように、光ファイバ間の距離が短い場合には、光ファイバ191Aに傾きが生じても光通信コネクタ190Aから出射された光Lが光ファイバ191Bのコア194に入射し、光通信が可能である。
 一方、図11(b)に示すように光ファイバ間の距離が長い場合、光ファイバ191Aの傾きによる影響が大きくなるため、光ファイバ191Aに傾きが生じると光通信コネクタ190Aから出射された光Lは光ファイバ191Bのコア194に入射せず、光通信が遮断される。
 以上のように、光通信コネクタ190では開口率が小さい場合、異物の混入に対する耐性と、光ファイバの傾きに対する耐性を両立させることができず、通信品質の確保が困難である。特にシングルモードファイバはマルチモードファイバに対して開口率が小さく、上記問題が生じやすい。
 ここで、本実施形態に係る光通信コネクタ100では上記のように、第1レンズ163(図5参照)によって光ファイバ120の出射光を拡大した上で光を成形する第2レンズ171に入射させる。
 このため、光ファイバ120と第2レンズ171の距離Rが小さくても、第2レンズ171の出射光の光径Dを大きくすることができる。
 したがって、開口率が小さくても異物の混入に対する耐性と、光ファイバ120の傾きに対する耐性を両立させることが可能となり、通信品質を確保することができる。
 さらに、光通信コネクタ100では、光ファイバ120を光ファイバ挿入孔161に挿入し、接着材注入孔162から接着材164を注入することによって作成することが可能である。
 このため、個々の光ファイバに対する加工、例えば屈折折率が異なる物質の接合といった加工が不要となり、コストを低減させることができる。これは光ファイバが多数となる多チャネル構造の場合に特に大きな効果が得られる。
 [光通信ケーブルの構成]
 上記光通信コネクタ100を備える光通信ケーブルについて説明する。図12は、本実施形態に係る光通信ケーブル50の模式図である。同図に示すように、2つの光通信コネクタ100を1本の光ファイバ120の両端に接続し、光通信ケーブル50とすることが可能である。
 [光通信システムの構成]
 上記光通信コネクタ100を用いた光通信システムについて説明する。図13は、本実施形態に係る光通信システム10のブロック図である。同図に示すように、光通信システム10は、電子機器11と光通信ケーブル21から構成されている。
 図13に示すように、電子機器11は光通信部13を備える。光通信部13は、発光部114、受光部15、光伝送路16、光伝送路17及び光通信コネクタ100A(図7参照)を備える。
 発光部14は、VCSEL(Vertical Cavity Surface Emitting LASER)等のレーザー素子又はLED(light emitting diode)等の発光素子を備え、光伝送路16に接続されている。発光部14は、電子機器11から出力された電気信号を光信号に変換し、光伝送路16を介して光通信コネクタ100Aに出力する。光伝送路16は光ファイバ120A(図7参照)によって実現することができる。
 受光部15は、フォトダイオード等の受光素子を備え、光伝送路17に接続されている。受光部15は、光通信コネクタ100Aから光伝送路17を介して伝送される光信号を電気信号に変換し、電子機器11に出力する。光伝送路17は光ファイバ120A(図7参照)によって実現することができる。
 光通信ケーブル21は、ケーブル本体22と、光通信コネクタ100B(図7参照)を備える。ケーブル本体22は、光ファイバ120B(図7参照)によって実現することができる。光通信ケーブル21は、上記光通信ケーブル50と同一の構成であってもよく、ケーブル本体22の他端は別の電子機器に接続されてもよい。
 ケーブル本体22は、光通信コネクタ100Bと他の光通信コネクタを接続し、両光通信コネクタの間で光信号を伝送してもよい。
 発光部14に接続された光伝送路16は発光体として機能し、受光部15に接続された光伝送路17は受光体として機能する。発光部14、光伝送路16及び光通信コネクタ100Aによって光送信器が構成され、受光部15、光伝送路17及び光通信コネクタ100Aによって光受信器が構成されている。電子機器11は、光送信器と光受信器のいずれか一方のみを備えるものであってもよい。
 電子機器11は、例えば、携帯電話、スマートフォン、PHS、PDA、タブレットPC、ラップトップコンピュータ、ビデオカメラ、ICレコーダ、携帯メディアプレーヤ、電子手帳、電子辞書、電卓、携帯ゲーム機等のモバイル電子機器や、デスクトップコンピュータ、ディスプレイ装置、テレビ受信機、ラジオ受信機、ビデオレコーダ、プリンタ、カーナビゲーションシステム、ゲーム機、ルータ、ハブ、光回線終端装置(ONU)等の電子機器であることができる。あるいは、電子機器11は、冷蔵庫、洗濯機、時計、インターホン、空調設備、加湿器、空気清浄器、照明器具、調理器具等の電気製品または車両の一部または全部を構成することができる。
 電子機器11の詳細なハードウェア構成は、特に限定されないが、例えば、図14に示すようなものとすることができる。図14は、電子機器11のハードウェア構成を説明するためのブロック図である。
 電子機器11は、主に、CPU71と、ROM72と、RAM73と、を備える。また、電子機器11は、更に、ホストバス74と、ブリッジ75と、外部バス76と、インタフェース77と、入力装置78と、出力装置79と、ストレージ装置80と、ドライブ81と、接続ポート82と、通信装置83とを備える。
 CPU71は、演算処理装置及び制御装置として機能し、ROM72、RAM73、ストレージ装置80、又はリムーバブル記録媒体84に記録された各種プログラムに従って、電子機器11内の動作全般またはその一部を制御する。ROM72は、CPU71が使用するプログラムや、プログラムの実行において適宜変化するパラメータ等を一時記憶する。これらはCPUバス等の内部バスにより構成されるホストバス74により相互に接続されている。
 ホストバス74は、ブリッジ75を介して、PCI(Peripheral Component Interconnect/Interface)バスなどの外部バス76に接続されている。
 入力装置78は、例えば、マウス、キーボード、タッチパネル、ボタン、スイッチおよびレバーなどユーザが操作する操作手段である。また、入力装置78は、例えば、赤外線やその他の電波を利用したリモートコントロール手段(いわゆるリモコン)であってもよいし、電子機器11の操作に対応した携帯電話やPDA等の外部接続機器85であってもよい。さらに、入力装置78は、例えば、上記の操作手段を用いてユーザにより入力された情報に基づいて入力信号を生成し、CPU71に出力する入力制御回路などから構成されている。電子機器11のユーザは、この入力装置78を操作することにより、電子機器11に対して各種のデータを入力したり処理動作を指示したりすることができる。
 出力装置79は、取得した情報をユーザに対して視覚的または聴覚的に通知することが可能な装置で構成される。このような装置として、CRTディスプレイ装置、液晶ディスプレイ装置、プラズマディスプレイ装置、ELディスプレイ装置及びランプなどの表示装置や、スピーカおよびヘッドホン等の音声出力装置や、プリンタ装置、携帯電話、ファクシミリなどがある。出力装置79は、例えば、電子機器11が行った各種処理により得られた結果を出力する。具体的には、表示装置は、電子機器11が行った各種処理により得られた結果を、テキストまたはイメージで表示する。他方、音声出力装置は、再生された音声データや音響データ等からなるオーディオ信号をアナログ信号に変換して出力する。
 ストレージ装置80は、電子機器11の記憶部の一例として構成されたデータ格納用の装置である。ストレージ装置80は、例えばHDD(Hard Disk Drive)等の磁気記憶部デバイス、半導体記憶デバイス、光記憶デバイス、または光磁気記憶デバイス等により構成される。このストレージ装置80は、CPU71が実行するプログラムや各種データ、および外部から取得した各種のデータなどを格納する。
 ドライブ81は、記録媒体用リーダライタであり、電子機器11に内蔵、或いは外付けされる。ドライブ81は、装着されている磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリ等のリムーバブル記録媒体84に記録されている情報を読み出して、RAM73に出力する。また、ドライブ81は、装着されている磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリ等のリムーバブル記録媒体84に記録を書き込むことも可能である。リムーバブル記録媒体84は、例えば、DVDメディア、HD-DVDメディア、Blue-rayメディア等である。また、リムーバブル記録媒体84は、コンパクトフラッシュ(登録商標)(CompactFlash:CF)、フラッシュメモリ、またはSDメモリカード(Secure Disital memory card)等であってもよい。また、リムーバブル記録媒体84は、例えば非接触型ICチップを搭載したICカード(Intergrated Circuit card)または電子機器等であってもよい。
 接続ポート82は、機器を電子機器11に直接接続するためのポートである。接続ポート82の一例として、USB(Univaersal Serial Bus)ポート、IEEE1394ポート、SCSI(Small Computaer System Interface)ポート等がある。接続ポート82の別の例として、RS-232Cポート、光デジタル端子、HDMI(登録商標)(High-Definition Multimedia Interface)ポート等がある。この接続ポート82に外部接続機器85を接続することで、電子機器11は、外部接続機器85から直接各種のデータを取得したり、外部接続機器85に各種のデータを提供したりする。なお、上記の光デジタル端子を上述した光通信コネクタ100を含む光通信部13として構成してもよい。
 通信装置83は、例えば、通信網86に接続するための通信デバイス等で構成された通信インタフェースである。本実施形態において、通信装置83は、上述した光通信コネクタ100を含む光通信部13を含んで構成されている。通信装置83は、光通信用のルータであってもよい。また、通信装置83は、例えば、有線又は無線LAN(Local Area Network)、Bluetooth(登録商標)、またはWUSB(Wireless USB)用の通信カード等を更に含んでもよい。また、通信装置83は、ADSL(Asymmetric Digital Subacriber Line)用のルータ、または、各種通信用のモデム等を含んで構成されていてもよい。この通信装置83は、例えば、インターネットや他の通信機器との間で、例えばFTTR、FTTB、FTTH、FTTD等のFTTxや、TCP/IP等の所定のプロトコルに則して信号等を送受信することができる。また、通信装置83に接続される通信網86は、有線または無線によって接続されたネットワーク等により構成され、例えば、インターネット、家庭内LAN、赤外線通信、ラジオ波通信または衛星通信等であってもよい。
 (第2の実施形態)
 本技術の第2の実施形態に係る光通信コネクタについて説明する。
 [光通信コネクタの構成]
 図15は、本技術の第2の実施形態に係る光通信コネクタ200を示す断面図である。同図に示すように光通信コネクタ200には光ファイバ120が接続されている。光ファイバ120の数は1本でも複数本でもよい。
 図15に示すように、光通信コネクタ200は、コネクタ本体250を備え、コネクタ本体250は、第1部品251及び第2部品252から構成されている。
 第1部品251は第1の実施形態と同様の光透過性材料からなり、光ファイバ挿入孔261及び接着材注入孔262が設けられている。
 光ファイバ挿入孔261は、光ファイバ120が挿入される孔であり、第1部品251において、第2部品252とは反対側の端部から一定の長さに形成されている。
 光ファイバ挿入孔261は一本の光ファイバ120に対して一つずつが設けられる。各光ファイバ120は光ファイバ挿入孔261に挿入され、接着材264によって第1部品251に固定される。接着材264は光透過性を有するものが好適であり、屈折率整合材であってもよい。
 接着材注入孔262は、各光ファイバ挿入孔261に連通する孔である。接着材264はこの接着材注入孔262から光ファイバ120の周囲に注入される。
 第2部品252は第1部品251に接合され、第1レンズ271、第2レンズ272及び光伝達空間273が設けられている。第2部品252は、第1の実施形態と同様の光透過性材料からなる。
 第1レンズ271は、光ファイバ120のコア121から出射された光を拡大する。図15に示すように、光ファイバ120から出射された光Lは、接着材264及び第1部品251を透過して第1レンズ271に入射し、第1レンズ271によって拡大される。
 第1レンズ271は、第2部品252における第1部品251との接合面である接合面252aに設けられた、凹形状に形成された凹レンズとすることができる。第1レンズ271を構成する凹部は、第1部品251によって封止されている。
 第1レンズ271は、光ファイバ120のそれぞれに対して一つずつが設けられ、各光ファイバ120の出射光の光軸が各第1レンズ271の中心に一致するように配置されている。
 第2レンズ272は、図15に示すように、第1レンズ271から入射した光Lを成形する。第2レンズ272は、入射光をコリメート光に成形するものとすることができるが、他の伝送に適した光に成形してもよい。
 第2レンズ272は、第2部品152において、第1部品251とは反対側に設けられた、凸形状に形成された凸レンズとすることができる。第2レンズ272は、光ファイバ120のそれぞれに対して一つずつが設けられ、各第1レンズ271の出射光の光軸が各第2レンズ271の中心に一致するように配置されている。
 光伝達空間273は、第2部品252に設けられた凹部によって第2レンズ272の周囲に形成され、第2レンズ272から出射した光Lが通過する空間である。
 第2部品252の第1部品251に対する接合は、それぞれに設けられた凹部と凸部による嵌合や接着等によって行うことができる。
 このようにコネクタ本体250によって光ファイバ120と第1レンズ271及び第2レンズ272の相対位置が規定される。
 光通信コネクタ200では光通信コネクタ100と同様に、第1レンズ271によって光ファイバ120の出射光を拡大した上で光を成形する第2レンズ272に入射させる。これにより、光ファイバ120と第2レンズ272の距離が短くても、第2レンズ272の出射光の光径を大きくすることができる。
 このため、二つの光通信コネクタ200を接続した光通信コネクタセットにおいて、異物の混入に対する耐性と、光ファイバ120の傾きに対する耐性を両立させることが可能となり、通信品質を確保することができる。
 なお、光通信コネクタ200に成形された光Lが入射する場合、第2レンズ272は光Lを第1レンズ271に集光し、第1レンズ271は光Lをコア121に集光する
 [光通信ケーブル及び光通信システムについて]
 第1の実施形態と同様に、光通信コネクタ200を用いて光通信ケーブル及び光通信システムを実現することが可能である。
 (第3の実施形態)
 本技術の第3の実施形態に係る光通信コネクタについて説明する。
 [光通信コネクタの他の構成]
 図16は、本技術の第3の実施形態に係る光通信コネクタ300を示す断面図である。図16(a)は全体図であり、図16(b)は拡大図である。同図に示すように光通信コネクタ300には光ファイバ120が接続されている。光ファイバ120の数は1本でも複数本でもよい。
 図16に示すように、光通信コネクタ300は、コネクタ本体350を備え、コネクタ本体350は、第1部品351及び第2部品352から構成されている。
 第1部品351は第1の実施形態と同様の光透過性材料からなり、光ファイバ挿入孔361、接着材注入孔362及び第1レンズ363が設けられている。
 光ファイバ挿入孔361は、光ファイバ120が挿入される孔であり、第1部品351において、第2部品352とは反対側の端部から一定の長さに形成されている。
 光ファイバ挿入孔361は一本の光ファイバ120に対して一つずつが設けられる。各光ファイバ120は光ファイバ挿入孔361に挿入され、接着材364によって第1部品351に固定される。接着材364は光透過性を有するものが好適であり、屈折率整合材であってもよい。
 接着材注入孔362は、各光ファイバ挿入孔361に連通する孔である。接着材364はこの接着材注入孔362から光ファイバ120の周囲に注入される。
 第1レンズ363は、光ファイバ120のコア121から出射された光Lを拡大する。図16(b)に示すように、光ファイバ120から出射された光Lは、接着材364及び第1部品351を透過して第1レンズ363に入射し、第1レンズ363によって拡大される。
 第1レンズ363は、図16(b)に示すように、第1部品351における第2部品352との接合面である接合面351aに設けられた、凹形状に形成された凹レンズとすることができる。
 第1レンズ363は、光ファイバ120のそれぞれに対して一つずつが設けられ、各光ファイバ120の出射光の光軸が各第1レンズ363の中心に一致するように配置されている。
 第2部品352は第1部品351に接合され、第2レンズ371、光伝達空間372及び第3レンズ373が設けられている。第2部品352は、第1の実施形態と同様の光透過性材料からなる。
 第3レンズ373は、図16(b)に示すように、第1レンズ363から出射された光を拡大する。第3レンズ373は、第2部品352における第1部品351との接合面である接合面352aに設けられた、凹形状に形成された凹レンズとすることができる。
 第3レンズ373を形成する凹部と第1レンズ363を形成する凹部は連通した空間を形成し、この空間は第1部品351と第2部品352によって封止されている。
 第3レンズ373は、光ファイバ120のそれぞれに対して一つずつが設けられ、各第1レンズ363の出射光の光軸が各第3レンズ373の中心に一致するように配置されている。
 第2レンズ371は、第3レンズ373から入射した光Lを成形する。第2レンズ371は、入射光をコリメート光に成形するものとすることができるが、他の伝送に適した光に成形してもよい。
 第2レンズ371は、第2部品352において、第1部品351とは反対側に設けられた、凸形状に形成された凸レンズとすることができる。第2レンズ371は、光ファイバ120のそれぞれに対して一つずつが設けられ、各第3レンズ373の出射光の光軸が各第2レンズ371の中心に一致するように配置されている。
 光伝達空間372は、第2部品352に設けられた凹部によって第2レンズ371の周囲に形成され、第2レンズ371から出射した光Lが通過する空間である。
 第2部品352の第1部品351に対する接合は、それぞれに設けられた凹部と凸部による嵌合や接着等によって行うことができる。
 このようにコネクタ本体350によって光ファイバ120と第1レンズ363、第2レンズ371及び第3レンズ373の相対位置が規定される。
 光通信コネクタ300では、第1レンズ363及び第3レンズ373によって光ファイバ120の出射光を拡大した上で光を成形する第2レンズ371に入射させる。これにより、光ファイバ120と第2レンズ371の距離が短くても、第2レンズ371の出射光の光径を大きくすることができる。
 このため、二つの光通信コネクタ300を接続した光通信コネクタセットにおいて、異物の混入に対する耐性と、光ファイバ120の傾きに対する耐性を両立させることが可能となり、通信品質を確保することができる。
 ここで、光通信コネクタ300では第3レンズ373を設けることによって、第2レンズ371の出射光の光径を確保しながら、光ファイバ120と第2レンズ371の距離をより短くすることができる。
 なお、光通信コネクタ300に成形された光Lが入射する場合、第2レンズ371は光Lを第3レンズ373に集光し、第3レンズ373は光Lを第1レンズ363に集光する。第1レンズ363は光Lをコア121に集光する。
 [光通信ケーブル及び光通信システムについて]
 第1の実施形態と同様に、光通信コネクタ300を用いて光通信ケーブル及び光通信システムを実現することが可能である。
 (第4の実施形態)
 本技術の第4の実施形態に係る光通信コネクタについて説明する。
 [光通信コネクタの他の構成]
 図17は、本技術の第4の実施形態に係る光通信コネクタ400を示す断面図である。同図に示すように光通信コネクタ400には光ファイバ120が接続されている。光ファイバ120の数は1本でも複数本でもよい。
 図17に示すように、光通信コネクタ400は、コネクタ本体450を備え、コネクタ本体450は、第1部品451、第2部品452及び第3部品453から構成されている。
 第1部品451は第1の実施形態と同様の光透過性材料からなり、光ファイバ挿入孔461、接着材注入孔462及び第1レンズ463が設けられている。
 光ファイバ挿入孔461は、光ファイバ120が挿入される孔であり、第1部品451において、第3部品453とは反対側の端部から一定の長さに形成されている。
 光ファイバ挿入孔461は一本の光ファイバ120に対して一つずつが設けられる。各光ファイバ120は光ファイバ挿入孔461に挿入され、接着材464によって第1部品451に固定される。接着材464は光透過性を有するものが好適であり、屈折率整合材であってもよい。
 接着材注入孔462は、各光ファイバ挿入孔461に連通する孔である。接着材464はこの接着材注入孔462から光ファイバ120の周囲に注入される。
 第1レンズ463は、光ファイバ120のコア121から出射された光Lを拡大する。光ファイバ120から出射された光Lは、接着材464及び第1部品451を透過して第1レンズ463に入射し、第1レンズ463によって拡大される。
 第1レンズ463は、第1部品451における第3部品453との接合面である接合面451aに設けられた、凹形状に形成された凹レンズとすることができる。
 第1レンズ463は、光ファイバ120のそれぞれに対して一つずつが設けられ、各光ファイバ120の出射光の光軸が各第1レンズ463の中心に一致するように配置されている。
 第3部品453は、第1部品451及び第2部品452の間に配置され、第1部品451及び第2部品452に接合されている。第3部品453には第3レンズ481及び第4レンズ482が設けられている。第3部品453はガラス、合成樹脂又はシリコン材等の光透過性材料からなる。
 第3レンズ481は、第1レンズ463から出射された光Lを拡大する。第3レンズ481は、第3部品453における第1部品451との接合面である接合面453aに設けられた、凹形状に形成された凹レンズとすることができる。
 第3レンズ481を形成する凹部と第1レンズ463を形成する凹部は連通した空間を形成し、この空間は第1部品451と第3部品453によって封止されている。
 第3レンズ481は、光ファイバ120のそれぞれに対して一つずつが設けられ、各第1レンズ463の出射光の光軸が各第3レンズ481の中心に一致するように配置されている。
 第4レンズ482は、第3レンズ481から出射された光Lを拡大する。第4レンズ482は、第3部品453における第2部品452との接合面である接合面453bに設けられた、凹形状に形成された凹レンズとすることができる。
 第4レンズ482は、光ファイバ120のそれぞれに対して一つずつが設けられ、各第3レンズ481の出射光の光軸が各第4レンズ482の中心に一致するように配置されている。
 第2部品452は第3部品453に接合され、第2レンズ471、光伝達空間472及び第5レンズ473が設けられている。第2部品452は第1の実施形態と同様の光透過性材料からなる。
 第5レンズ473は、図17に示すように、第4レンズ482から出射された光を拡大する。第5レンズ473は、第2部品452における第3部品453との接合面である接合面452aに設けられた、凹形状に形成された凹レンズとすることができる。
 第5レンズ473を形成する凹部と第4レンズ482を形成する凹部は連通した空間を形成し、この空間は第3部品453と第2部品452によって封止されている。
 第5レンズ473は、光ファイバ120のそれぞれに対して一つずつが設けられ、各第4レンズ482の出射光の光軸が各第5レンズ473の中心に一致するように配置されている。
 第2レンズ471は、第5レンズ473から入射した光Lを成形する。第2レンズ471は、入射光をコリメート光に成形するものとすることができるが、他の伝送に適した光に成形してもよい。
 第2レンズ471は、第2部品452において、第3部品453とは反対側に設けられた、凸形状に形成された凸レンズとすることができる。第2レンズ471は、光ファイバ120のそれぞれに対して一つずつが設けられ、各第5レンズ473の出射光の光軸が各第2レンズ471の中心に一致するように配置されている。
 光伝達空間472は、第2部品452に設けられた凹部によって第2レンズ471の周囲に形成され、第2レンズ471から出射した光Lが通過する空間である。
 第3部品453と第1部品451の接合及び第2部品452と第3部品453の接合は、それぞれに設けられた凹部と凸部による嵌合や接着等によって行うことができる。
 このようにコネクタ本体450によって光ファイバ120と第1レンズ463、第2レンズ471、第3レンズ481、第4レンズ482及び第5レンズ473の相対位置が規定される。
 光通信コネクタ400では、第1レンズ463、第3レンズ481、第4レンズ482及び第5レンズ473によって光ファイバ120の出射光を拡大した上で光を成形する第2レンズ471に入射させる。これにより、光ファイバ120と第2レンズ471の距離が短くても、第2レンズ471の出射光の光径を大きくすることができる。
 このため、二つの光通信コネクタ400を接続した光通信コネクタセットにおいて、異物の混入に対する耐性と、光ファイバ120の傾きに対する耐性を両立させることが可能となり、通信品質を確保することができる。
 ここで、光通信コネクタ400では第3レンズ481、第4レンズ482及び第5レンズ473を設けることによって、第2レンズ471の出射光の光径を確保しながら、光ファイバ120と第2レンズ471の距離をさらに短くすることができる。
 なお、光通信コネクタ400に成形された光Lが入射する場合、第2レンズ471は光Lを第5レンズ473に集光し、第5レンズ473は光Lを第4レンズ482に集光する。第4レンズ482は光Lを第3レンズ481に集光し、第3レンズ481は光Lを第1レンズ463に集光する。第1レンズ463は光Lをコア121に集光する。
 [光通信ケーブル及び光通信システムについて]
 第1の実施形態と同様に、光通信コネクタ400を用いて光通信ケーブル及び光通信システムを実現することが可能である。
 (第5の実施形態)
 本技術の第5の実施形態に係る光通信コネクタについて説明する。
 [光通信コネクタの他の構成]
 図18は、本技術の第5の実施形態に係る光通信コネクタ500を示す断面図である。同図に示すように光通信コネクタ500には光ファイバ120が接続されている。光ファイバ120の数は1本でも複数本でもよい。
 図18に示すように、光通信コネクタ500は、コネクタ本体550を備え、コネクタ本体550は、第1部品551及び第2部品552から構成されている。
 第1部品551は、第1の実施形態と同様の光透過性材料からなり、光ファイバ挿入孔561、接着材注入孔562及び第1レンズ563が設けられている。
 光ファイバ挿入孔561は、光ファイバ120が挿入される孔であり、第1部品551において、第2部品552とは反対側の端部から一定の長さに形成されている。
 光ファイバ挿入孔561は一本の光ファイバ120に対して一つずつが設けられる。各光ファイバ120は光ファイバ挿入孔561に挿入され、接着材564によって第1部品551に固定される。接着材564は光透過性を有するものでもよく、屈折率整合材であってもよい。
 接着材注入孔562は、各光ファイバ挿入孔561に連通する孔である。接着材564はこの接着材注入孔562から光ファイバ120の周囲に注入される。
 第1レンズ563は、光ファイバ120のコア121から出射された光を拡大する。第1レンズ563は光ファイバ挿入孔561の先端を凹形状とすることによって形成された凹レンズである。
 接着材注入孔562は、第1レンズ563から離間した位置において光ファイバ挿入孔561に連通するように設けられている。これにより、接着材564が光ファイバ120と第1レンズ563の間に流入して光学特性を変化させることが防止されている。
 光ファイバ120から出射された光Lは、光ファイバ120と第1レンズ563の間の空間を通過して第1レンズ563に入射し、第1レンズ563によって拡大される。
 第1レンズ563は、光ファイバ120のそれぞれに対して一つずつが設けられ、各光ファイバ120の出射光の光軸が各第1レンズ563の中心に一致するように配置されている。
 第2部品552は第1部品551に接合され、第2レンズ571及び光伝達空間572が設けられている。第2部品552は、第1の実施形態と同様の光透過性材料からなる。
 第2レンズ571は、第1レンズ563から入射した光Lを成形する。第2レンズ571は、入射光をコリメート光に成形するものとすることができるが、他の伝送に適した光に成形してもよい。
 第2レンズ571は、第2部品552において、第1部品551とは反対側に設けられた、凸形状に形成された凸レンズとすることができる。第2レンズ571は、光ファイバ120のそれぞれに対して一つずつが設けられ、各第1レンズ563の出射光の光軸が各第2レンズ571の中心に一致するように配置されている。
 光伝達空間572は、第2部品552に設けられた凹部によって第2レンズ571の周囲に形成され、第2レンズ571から出射した光Lが通過する空間である。
 第2部品552の第1部品551に対する接合は、それぞれに設けられた凹部と凸部による嵌合や接着等によって行うことができる。
 このようにコネクタ本体550によって光ファイバ120と第1レンズ563及び第2レンズ571の相対位置が規定される。
 光通信コネクタ500では、第1レンズ563によって光ファイバ120の出射光を拡大した上で光を成形する第2レンズ571に入射させる。これにより、光ファイバ120と第2レンズ571の距離が短くても、第2レンズ571の出射光の光径を大きくすることができる。
 このため、二つの光通信コネクタ500を接続した光通信コネクタセットにおいて、異物の混入に対する耐性と、光ファイバ120の傾きに対する耐性を両立させることが可能となり、通信品質を確保することができる。
 なお、光通信コネクタ500に成形された光Lが入射する場合、第2レンズ571は光Lを第1レンズ563に集光し、第1レンズ563は光Lをコア121に集光する。
 また、上記説明ではコネクタ本体550は、第1部品551及び第2部品552から構成されるとしたが、一つの部品から構成されてもよい。図19は、コネクタ本体550が一つの部品からなる光通信コネクタ500を示す模式図である。
 同図に示すように、光ファイバ挿入孔561、接着材注入孔562、第1レンズ563、第2レンズ571及び光伝達空間572は一つの部品からなるコネクタ本体550に設けられてもよい。
 [光通信ケーブル及び光通信システムについて]
 第1の実施形態と同様に、光通信コネクタ500を用いて光通信ケーブル及び光通信システムを実現することが可能である。
 (第6の実施形態)
 本技術の第6の実施形態に係る光通信コネクタについて説明する。
 [光通信コネクタの他の構成]
 図20は、本技術の第6の実施形態に係る光通信コネクタ600を示す断面図である。同図に示すように光通信コネクタ600には光ファイバ120が接続されている。光ファイバ120の数は1本でも複数本でもよい。
 図20に示すように、光通信コネクタ600は、コネクタ本体650を備え、コネクタ本体650は、第1部品651及び第2部品652から構成されている。
 第1部品651は第1の実施形態と同様の光透過性材料からなり、光ファイバ挿入孔661、接着材注入孔662及び第1レンズ663が設けられている。
 光ファイバ挿入孔661は、光ファイバ120が挿入される孔であり、第1部品651において、第2部品652とは反対側の端部から一定の長さに形成されている。
 光ファイバ挿入孔661は一本の光ファイバ120に対して一つずつが設けられる。各光ファイバ120は光ファイバ挿入孔661に挿入され、接着材664によって第1部品651に固定される。接着材664は光透過性を有するものでもよく、屈折率整合材であってもよい。
 接着材注入孔662は、各光ファイバ挿入孔661に連通する孔である。接着材664はこの接着材注入孔662から光ファイバ120の周囲に注入される。
 第1レンズ663は、光ファイバ120のコア121から出射された光Lを拡大する。図20に示すように、第1レンズ663は光ファイバ挿入孔661の先端を凹形状とすることによって形成された凹レンズである。
 光ファイバ挿入孔661の先端において第1レンズ663の周囲には、光ファイバ当接面661aが設けられている。光ファイバ120は、光ファイバ挿入孔661に挿入され、光ファイバ当接面661aに当接する。
 光ファイバ当接面661aを設けることによって、光ファイバ120の位置ずれが防止され、光ファイバ120の位置精度が向上する。
 また、接着材注入孔662は、第1レンズ663から離間した位置において光ファイバ挿入孔661に連通し、接着材664が光ファイバ120と第1レンズ663の間に流入し、光学特性を変化させることが防止されている。
 光ファイバ120から出射された光Lは、光ファイバ120と第1レンズ663の間の空間を通過して第1レンズ663に入射し、第1レンズ663によって拡大される。
 第1レンズ663は、光ファイバ120のそれぞれに対して一つずつが設けられ、各光ファイバ120の出射光の光軸が各第1レンズ663の中心に一致するように配置されている。
 第2部品652は第1部品651に接合され、第2レンズ671及び光伝達空間672が設けられている。第2部品652は第1の実施形態と同様の光透過性材料からなる。
 第2レンズ671は、第1レンズ663から入射した光Lを成形する。第2レンズ671は、入射光をコリメート光に成形するものとすることができるが、他の伝送に適した光に成形してもよい。
 第2レンズ671は、第2部品652において、第1部品651とは反対側に設けられた、凸形状に形成された凸レンズとすることができる。第2レンズ671は、光ファイバ120のそれぞれに対して一つずつが設けられ、各第1レンズ663の出射光の光軸が各第2レンズ671の中心に一致するように配置されている。
 光伝達空間672は、第2部品652に設けられた凹部によって第2レンズ671の周囲に形成され、第2レンズ671から出射した光Lが通過する空間である。
 第2部品652の第1部品651に対する接合は、それぞれに設けられた凹部と凸部による嵌合や接着等によって行うことができる。
 このようにコネクタ本体650によって光ファイバ120と第1レンズ663及び第2レンズ671の相対位置が規定される。
 光通信コネクタ600では、第1レンズ663によって光ファイバ120の出射光を拡大した上で光を成形する第2レンズ671に入射させる。これにより、光ファイバ120と第2レンズ671の距離が短くても、第2レンズ671の出射光の光径を大きくすることができる。
 このため、二つの光通信コネクタ600を接続した光通信コネクタセットにおいて、異物の混入に対する耐性と、光ファイバ120の傾きに対する耐性を両立させることが可能となり、通信品質を確保することができる。
 なお、光通信コネクタ600に成形された光Lが入射する場合、第2レンズ671は光Lを第1レンズ663に集光し、第1レンズ663は光Lをコア121に集光する。
 また、上記説明ではコネクタ本体650は、第1部品651及び第2部品652から構成されるとしたが、一つの部品から構成されてもよい。図21は、コネクタ本体650が一つの部品からなる光通信コネクタ600を示す模式図である。
 同図に示すように、光ファイバ挿入孔661、接着材注入孔662、第1レンズ663、光ファイバ当接面661a、第2レンズ671及び光伝達空間672は一つの部品からなるコネクタ本体650に設けられてもよい。
 [光通信ケーブル及び光通信システムについて]
 第1の実施形態と同様に、光通信コネクタ600を用いて光通信ケーブル及び光通信システムを実現することが可能である。
 (第7の実施形態)
 本技術の第7の実施形態に係る光通信コネクタについて説明する。
 [光通信コネクタの他の構成]
 図22は、本技術の第7の実施形態に係る光通信コネクタ700を示す断面図である。
同図に示すように光通信コネクタ700には光ファイバ120が接続されている。光ファイバ120の数は1本でも複数本でもよい。
 図22に示すように、光通信コネクタ700は、コネクタ本体750及び固定部材790を備える。コネクタ本体750は、第1部品751及び第2部品752から構成されている。
 第1部品751は第1の実施形態と同様の光透過性材料からなり、光ファイバ挿入孔761、接着材注入孔762及び第1レンズ763が設けられている。
 光ファイバ挿入孔761は、図22に示すように光ファイバ120及び固定部材790が挿入される孔であり、第1部品751において、第2部品752とは反対側の端部から一定の長さに形成されている。
 光ファイバ挿入孔761は一本の光ファイバ120に対して一つずつが設けられる。接着材注入孔762は、各光ファイバ挿入孔761に連通する孔である。
 第1レンズ763は、光ファイバ120のコア121から出射された光を拡大する。図22に示すように第1レンズ763は光ファイバ挿入孔761の先端を凹状とすることによって形成された凹レンズである。光ファイバ挿入孔761の先端において第1レンズ763の周囲には、固定部材当接面761aが設けられている。
 固定部材790は、光透過性材料からなり、光ファイバ120が挿入可能に構成されている。固定部材790は光ファイバ120が挿入された状態で、固定部材当接面761aに当接し、第1部品751に対する相対位置が規定される。
 固定部材790は接着材注入孔762から注入された接着材764によって第1部品751に固定されている。接着材764は光透過性を有するものでもよく、屈折率整合材であってもよい。固定部材790を用いることにより、固定部材当接面761aの面積を大きくし、光ファイバ120の位置精度をさらに向上させることができる。
 光ファイバ120から出射された光Lは、固定部材790及び固定部材790と第1レンズ763の間の空間を通過して第1レンズ763に入射し、第1レンズ763によって拡大される。
 第1レンズ763は、光ファイバ120のそれぞれに対して一つずつが設けられ、各光ファイバ120の出射光の光軸が各第1レンズ763の中心に一致するように配置されている。
 第2部品752は第1部品751に接合され、第2レンズ771及び光伝達空間772が設けられている。第2部品752は、第1の実施形態と同様の光透過性材料からなる。
 第2レンズ771は、図22に示すように、第1レンズ763から入射した光Lを成形する。第2レンズ771は、入射光をコリメート光に成形するものとすることができるが、他の伝送に適した光に成形してもよい。
 第2レンズ771は、第2部品752において、第1部品751とは反対側に設けられた、凸形状に形成された凸レンズとすることができる。第2レンズ771は、光ファイバ120のそれぞれに対して一つずつが設けられ、各第1レンズ763の出射光の光軸が各第2レンズ771の中心に一致するように配置されている。
 光伝達空間772は、第2部品752に設けられた凹部によって第2レンズ771の周囲に形成され、第2レンズ771から出射した光Lが通過する空間である。
 第2部品752の第1部品751に対する接合は、それぞれに設けられた凹部と凸部による嵌合や接着等によって行うことができる。
 このようにコネクタ本体750によって光ファイバ120と第1レンズ763及び第2レンズ771の相対位置が規定される。
 光通信コネクタ700では、第1レンズ763によって光ファイバ120の出射光を拡大した上で光を成形する第2レンズ771に入射させる。これにより、光ファイバ120と第2レンズ771の距離が短くても、第2レンズ771の出射光の光径を大きくすることができる。
 このため、二つの光通信コネクタ700を接続した光通信コネクタセットにおいて、異物の混入に対する耐性と、光ファイバ120の傾きに対する耐性を両立させることが可能となり、通信品質を確保することができる。
 なお、光通信コネクタ700に成形された光Lが入射する場合、第2レンズ771は光Lを第1レンズ763に集光し、第1レンズ763は光Lをコア121に集光する。
 また、上記説明ではコネクタ本体750は、第1部品751及び第2部品752から構成されるとしたが、一つの部品から構成されてもよい。図23は、コネクタ本体750が一つの部品からなる光通信コネクタ700を示す模式図である。
 同図に示すように、光ファイバ挿入孔761、接着材注入孔762、第1レンズ763、固定部材当接面761a、第2レンズ771及び光伝達空間772は一つの部品からなるコネクタ本体750に設けられてもよい。
 [光通信ケーブル及び光通信システムについて]
 第1の実施形態と同様に、光通信コネクタ700を用いて光通信ケーブル及び光通信システムを実現することが可能である。
 (第8の実施形態)
 本技術の第8の実施形態に係る光通信コネクタについて説明する。
 [光通信コネクタの他の構成]
 図24は、本技術の第5の実施形態に係る光通信コネクタ800を示す断面図である。同図に示すように光通信コネクタ800には光ファイバ120が接続されている。光ファイバ120の数は1本でも複数本でもよい。
 図24に示すように、光通信コネクタ800は、コネクタ本体850を備える。コネクタ本体850は、第1部品851及び第2部品852から構成されている。
 第1部品851は第1の実施形態と同様の光透過性材料からなり、光ファイバ挿入孔861、反射部862及び第1レンズ863が設けられている。
 光ファイバ挿入孔861は、第1レンズ863が位置する方向とは異なる方向に延伸され、光ファイバ挿入孔861の先端には反射部862が設けられている。光ファイバ挿入孔861は一本の光ファイバ120に対して一つずつが設けられる。各光ファイバ120は光ファイバ挿入孔861に挿入され、接着材864によって第1部品351に固定される。接着材864は光透過性を有するものでもよく、屈折率整合材であってもよい。
 反射部862は、光ファイバ120のコア121から出射された光を第1レンズ863に向けて反射する。反射部862は、第1部品851の材料によって形成された面であってもよく、光ファイバ挿入孔861の先端に配置された金属等の光反射部材によって形成された面であってもよい。
 第1レンズ863は、光ファイバ120のコア121から出射された光を拡大する。図24に示すように、光ファイバ120から出射された光Lは、反射部862によって反射されて第1レンズ863に入射し、第1レンズ863によって拡大される。
 第1レンズ863は、第1部品851における第2部品852との接合面である接合面851aに設けられた、凹形状に形成された凹レンズとすることができる。第1レンズ863を形成する凹部は、第2部品852によって封止されている。
 第1レンズ863は、光ファイバ120のそれぞれに対して一つずつが設けられ、各光ファイバ120の出射光の光軸が各反射部862を介して各第1レンズ863の中心に一致するように配置されている。
 第2部品852は第1部品851に接合され、第2レンズ871及び光伝達空間872が設けられている。第2部品852は、第1の実施形態と同様の光透過性材料からなる。
 第2レンズ871は、第1レンズ863から入射した光Lを成形する。第2レンズ871は、入射光をコリメート光に成形するものとすることができるが、他の伝送に適した光に成形してもよい。
 第2レンズ871は、第2部品852において、第1部品851とは反対側に設けられた凸部によって形成された凸レンズとすることができる。第2レンズ871は、光ファイバ120のそれぞれに対して一つずつが設けられ、各第1レンズ863の出射光の光軸が各第2レンズ871の中心に一致するように配置されている。
 光伝達空間872は、第2部品852に設けられた凹部によって第2レンズ871の周囲に形成され、第2レンズ871から出射した光Lが通過する空間である。
 第2部品852の第1部品851に対する接合は、それぞれに設けられた凹部と凸部による嵌合や接着等によって行うことができる。
 このようにコネクタ本体850によって光ファイバ120と第1レンズ863及び第2レンズ871の相対位置が規定される。
 光通信コネクタ800では、第1レンズ863によって光ファイバ120の出射光を拡大した上で光を成形する第2レンズ871に入射させる。これにより、光ファイバ120と第2レンズ871の間の光路が短くても、第2レンズ871の出射光の光径を大きくすることができる。
 このため、二つの光通信コネクタ800を接続した光通信コネクタセットにおいて、異物の混入に対する耐性と、光ファイバ120の傾きに対する耐性を両立させることが可能となり、通信品質を確保することができる。
 また、反射部862を設けることにより、光通信コネクタ800の設計自由度を向上させることが可能である。
 なお、光通信コネクタ800に成形された光Lが入射する場合、第2レンズ871は光Lを第1レンズ863に集光し、第1レンズ863は反射部862を介して光Lをコア121に集光する。
 [光通信ケーブル及び光通信システムについて]
 第1の実施形態と同様に、光通信コネクタ800を用いて光通信ケーブル及び光通信システムを実現することが可能である。
 (第9の実施形態)
 本技術の第9の実施形態に係る光通信コネクタについて説明する。
 [光通信コネクタの他の構成]
 上記各実施形態において、光通信コネクタには光ファイバが接続されるとしたが、光通信コネクタには光ファイバに代えて光素子が実装されてもよい。
 図25は、本技術の第9の実施形態に係る光通信コネクタ900を示す断面図である。同図に示すように光通信コネクタ900には光素子130が実装されている。
 光素子130は、VCSEL(Vertical Cavity Surface Emitting LASER)等のレーザー素子やLED(light emitting diode)等の発光素子又はPD(photodiode)等の受光素子である。光通信コネクタ900に実装される光素子130の数は一つでもよく、複数でもよい。
 図25に示すように、光通信コネクタ900は、コネクタ本体950を備え、コネクタ本体950は、第1部品951及び第2部品952から構成されている。
 第1部品951は、第1の実施形態と同様の光透過性材料からなり、第1レンズ961が設けられている。
 第1レンズ961は、光素子130から出射された光Lを拡大する。図25に示すように、光素子130から出射された光Lは、第1部品951を透過して第1レンズ961に入射し、第1レンズ961によって拡大される。
 第1レンズ961は、第1部品951における第2部品952との接合面である接合面951aに設けられた、凹形状に形成された凹レンズとすることができる。第1レンズ961を形成する凹部は、第2部品952によって封止されている。
 第1レンズ961は、光素子130のそれぞれに対して一つずつが設けられ、各光素子130の出射光の光軸が各第1レンズ961の中心に一致するように配置されている。
 第2部品952は第1部品951に接合され、第2レンズ971及び光伝達空間972が設けられている。第2部品952は、第1の実施形態と同様の光透過性材料からなる。
 第2レンズ971は、第1レンズ961から入射した光Lを成形する。第2レンズ971は、入射光をコリメート光に成形するものとすることができるが、他の伝送に適した光に成形してもよい。
 第2レンズ971は、第2部品952において、第1部品951とは反対側に設けられた、凸形状に形成された凸レンズとすることができる。第2レンズ971は、光素子130のそれぞれに対して一つずつが設けられ、各第1レンズ961の出射光の光軸が各第2レンズ971の中心に一致するように配置されている。
 光伝達空間972は、第2部品952に設けられた凹部によって第2レンズ971の周囲に形成され、第2レンズ971から出射した光Lが通過する空間である。
 第2部品952の第1部品951に対する接合は、それぞれに設けられた凹部と凸部による嵌合や接着等によって行うことができる。
 このようにコネクタ本体950によって光素子130と第1レンズ961及び第2レンズ971の相対位置が規定される。
 光通信コネクタ900では、第1レンズ961によって光素子130の出射光を拡大した上で光を成形する第2レンズ971に入射させる。これにより、光素子130と第2レンズ971の距離が短くても、第2レンズ971の出射光の光径を大きくすることができる。
 このため、二つの光通信コネクタ900を接続した光通信コネクタセットにおいて、異物の混入に対する耐性と、光素子130の傾きに対する耐性を両立させることが可能となり、通信品質を確保することができる。
 なお、光通信コネクタ900に成形された光Lが入射する場合、第2レンズ971は光Lを第1レンズ961に集光し、第1レンズ961は光Lを光素子130に集光する。
 [光通信システムについて]
 第1の実施形態と同様に、光通信コネクタ900を用いて光通信システムを実現することが可能である。例えば電子機器11(図13参照)において、発光部14及び受光部15は光伝送路16及び光伝送路17を介さずに直接に光通信コネクタ100Aに接続することも可能であり、この構造は光通信コネクタ900によって実現することが可能である。
 (第10の実施形態)
 本技術の第10の実施形態に係る光通信コネクタについて説明する。
 [光通信コネクタの他の構成]
 図26は本技術の他の構成を有する光通信コネクタ1000を示す断面図である。同図に示すように光通信コネクタ1000には、固定基板131に実装された光素子130が配置されている。
 光通信コネクタ1000に配置される光素子130の数は一つでもよく、複数でもよい。固定基板131は、接着等によって光通信コネクタ1000に対して固定されている。また、固定基板131は、コネクタ本体1050の更に外側に存在する筐体に、コネクタ本体1050と固定基板131が、相対位置が合うよう固定されてもよい。
 図26に示すように、光通信コネクタ1000は、コネクタ本体1050を備え、コネクタ本体1050は、第1部品1051及び第2部品1052から構成されている。
 第1部品1051は光透過性材料からなり、開口1061、反射部1062及び第1レンズ1063が設けられている。
 開口1061は、第1部品1051に設けられた開口である。開口1061の先端には反射部1062が設けられている。
 反射部1062は、光素子130から出射された光を第1レンズ1063に向けて反射する。反射部1062は、第1部品1051の材料によって形成された面であってもよく、開口1061の先端に配置された金属等の光反射部材によって形成された面であってもよい。
 第1レンズ1063は、光素子130から出射された光を拡大する。図26に示すように、光素子130から出射された光Lは、反射部1062によって反射されて第1レンズ1063に入射し、第1レンズ1063によって拡大される。
 第1レンズ1063は、第1部品1051における第2部品1052との接合面である接合面1051aに設けられた、凹形状に形成された凹レンズとすることができる。第1レンズ1063を形成する凹部は、第2部品1052によって封止されている。
 第1レンズ1063は、光素子130のそれぞれに対して一つずつが設けられ、各光素子130の出射光の光軸が各反射部1062を介して各第1レンズ1063の中心に一致するように配置されている。
 第2部品1052は第1部品1051に接合され、第2レンズ1071及び光伝達空間1072が設けられている。第2部品1052は第1の実施形態と同様の光透過性材料からなる。
 第2レンズ1071は、第1レンズ1063から入射した光Lを成形する。第2レンズ1071は、入射光をコリメート光に成形するものとすることができるが、他の伝送に適した光に成形してもよい。
 第2レンズ1071は、第2部品1052において、第1部品1051とは反対側に設けられた、凸形状に形成された凸レンズとすることができる。第2レンズ1071は、光素子130のそれぞれに対して一つずつが設けられ、各第1レンズ1063の出射光の光軸が各第2レンズ1071の中心に一致するように配置されている。
 光伝達空間1072は、第2部品1052に設けられた凹部によって第2レンズ1071の周囲に形成され、第2レンズ1071から出射した光Lが通過する空間である。
 第2部品1052の第1部品1051に対する接合は、それぞれに設けられた凹部と凸部による嵌合や接着等によって行うことができる。
 このようにコネクタ本体1050によって光素子130と第1レンズ1063及び第2レンズ1071の相対位置が規定される。
 光通信コネクタ1000では、第1レンズ1063によって光素子130の出射光を拡大した上で光を成形する第2レンズ1071に入射させる。これにより、光素子130と第2レンズ1071の間の光路が短くても、第2レンズ1071の出射光の光径を大きくすることができる。
 このため、二つの光通信コネクタ1000を接続した光通信コネクタセットにおいて、異物の混入に対する耐性と、光素子130の傾きに対する耐性を両立させることが可能となり、通信品質を確保することができる。
 なお、光通信コネクタ1000に成形された光Lが入射する場合、第2レンズ1071は光Lを第1レンズ1063に集光し、第1レンズ1063は反射部1062を介して光Lを光素子130に集光する。
 [光通信システムについて]
 第8の実施形態と同様に、電子機器11(図13参照)において発光部14及び受光部15を光伝送路16及び光伝送路17を介さずに直接に光通信コネクタ100Aに接続することによって、光通信コネクタ1000を用いて光通信システムを実現することが可能である。
 (各実施形態に係る光通信コネクタについて)
 上記各実施形態において説明した光通信コネクタは互いに接続可能であり、他の実施形態において説明した光通信コネクタと接続してもよい。例えば光通信コネクタ100と光通信コネクタ200を接続することも可能である。
 また、本技術に係る光通信システム及び光通信ケーブルは、少なくとも二つの光通信コネクタを備えるが、これらの光通信コネクタは異なる実施形態に係る光通信コネクタであってもよい。
 なお、本技術は以下のような構成もとることができる。
 (1)
 空間的に光結合可能な光通信コネクタであって、
 発光体から出射された光を拡大する第1のレンズと、
 上記第1のレンズから入射する光を成形して出射する第2のレンズと
 を具備する光通信コネクタ。
 (2)
 上記(1)に記載の光通信コネクタであって、
 上記第2のレンズは、上記第1のレンズから出射された光をコリメート光に成形する
 光通信コネクタ。
 (3)
 上記(1)又は(2)に記載の光通信コネクタであって、
 上記発光体、上記第1のレンズ及び上記第2のレンズの相対位置を規定するコネクタ本体
 をさらに具備する光通信コネクタ。
 (4)
 上記(3)に記載の光通信コネクタであって、
 上記発光体は光ファイバであり、
 上記コネクタ本体は、上記光ファイバが挿入される孔を有し、
 上記光ファイバは、上記孔に注入された接着材によって上記コネクタ本体に対して固定されている
 光通信コネクタ。
 (5)
 上記(3)に記載の光通信コネクタであって、
 上記発光体は発光素子である
 光通信コネクタ。
 (6)
 上記(3)から(5)のうちいずれか一つに記載の光通信コネクタであって、
 上記コネクタ本体は、上記発光体が固定される第1の部品と、上記第2のレンズが設けられた第2の部品とを有する
 光通信コネクタ。
 (7)
 上記(6)に記載の光通信コネクタであって、
 上記第1のレンズは、上記第1の部品において上記第2の部品との接合面に設けられた、凹形状に形成された凹レンズであり、
 上記第2のレンズは、上記第2の部品において上記第1の部品とは反対側に設けられた、凸形状に形成された凸レンズである
 光通信コネクタ。
 (8)
 上記(6)に記載の光通信コネクタであって、
 上記第1のレンズは、上記第2の部品において上記第1の部品との接合面に設けられた、凹形状に形成された凹レンズであり、
 上記第2のレンズは、上記第2の部品において上記第1の部品とは反対側に設けられた、凸形状に形成された凸レンズである
 光通信コネクタ。
 (9)
 上記(6)に記載の光通信コネクタであって、
 上記第1のレンズは、上記第1の部品において上記第2の部品との接合面に設けられた、凹形状に形成された凹レンズであり、
 上記第2のレンズは、上記第2の部品において上記第1の部品とは反対側に設けられた、凸形状に形成された凸レンズであり、
 上記光通信コネクタは、上記第2の部品において上記第1の部品との接合面に設けられた、凹形状に形成され、上記第1のレンズから入射する光を拡大し、上記第2のレンズに入射させる第3のレンズをさらに具備する
 光通信コネクタ。
 (10)
 上記(6)に記載の光通信コネクタであって、
 上記第1の部品と上記第2の部品の間に配置され、上記第1のレンズから入射する光を拡大する第3のレンズと、上記第3のレンズから入射する光を拡大する第4のレンズが設けられた第3の部品をさらに具備し、
 上記第2の部品にはさらに、上記第4のレンズから入射する光を拡大し、上記第2のレンズに入射させる第5のレンズが設けられ、
 上記第1のレンズは、上記第1の部品において上記第3の部品との接合面に設けられた、凹形状に形成された凹レンズであり、
 上記第2のレンズは、上記第2の部品において上記第3の部品とは反対側に設けられた、凸形状に形成された凸レンズであり、
 上記第3のレンズは、上記第3の部品において上記第1の部品との接合面に設けられた、凹形状に形成された凹レンズであり、
 上記第4のレンズは、上記第3の部品において上記第2の部品との接合面に設けられた、凹形状に形成された凹レンズであり、
 上記第5のレンズは、上記第2の部品において上記第3の部品との接合面に設けられた、凹形状に形成された凹レンズである
 光通信コネクタ。
 (11)
 上記(4)に記載の光通信コネクタであって、
 上記第1のレンズは、上記孔の先端に設けられた、凹形状に形成された凹レンズであり
 上記第2のレンズは上記コネクタ本体に設けられた、凸形状に形成された凸レンズである
 光通信コネクタ。
 (12)
 上記(11)に記載の光通信コネクタであって、
 上記孔の先端において上記第1のレンズの周囲に設けられ、上記光ファイバが当接する当接面をさらに具備する
 光通信コネクタ。
 (13)
 上記(11)に記載の光通信コネクタであって、
 上記光ファイバが挿入される固定部材と、
 上記孔の先端において上記第1のレンズの周囲に設けられ、上記固定部材が当接する当接面をさらに具備する
 光通信コネクタ。
 (14)
 上記(3)から(13)のうちいずれか一つに記載の光通信コネクタであって、
 上記コネクタ本体は、上記発光体から入射する光を上記第1のレンズに向けて反射する反射部を有する
 光通信コネクタ。
 (15)
 上記(7)に記載の光通信コネクタであって、
 上記第2の部品は、上記第1のレンズを形成する凹部を封止する
 光通信コネクタ。
 (16)
 空間的に光結合可能な光通信コネクタであって、
 成形された入射光を集光する第1のレンズと、
 上記第1のレンズから入射する光を受光体に集光する第2のレンズと
 を具備する光通信コネクタ。
 (17)
 発光体と、
 空間的に光結合可能な光通信コネクタであって、上記発光体から出射された光を拡大する第1のレンズと、上記第1のレンズから入射する光を成形して出射する第2のレンズとを備える光通信コネクタと
 を具備する光送信器。
 (18)
 受光体と、
 空間的に光結合可能な光通信コネクタであって、成形された入射光を集光する第1のレンズと、上記第1のレンズから入射する光を上記受光体に集光する第2のレンズとを備える光通信コネクタと
 を具備する光受信器。
 (19)
 空間的に光結合可能な光通信コネクタであって、発光体から出射された光を拡大する第1のレンズと、上記第1のレンズから入射する光を成形して出射する第2のレンズとを備える第1の光通信コネクタと、
 上記第1の光通信コネクタに対して着脱可能であり、空間的に光結合可能な光通信コネクタであって、上記第2のレンズから入射する光を集光する第3のレンズと、上記第3のレンズから入射する光を受光体に集光する第4のレンズとを備える第2の光通信コネクタと
 を具備する光通信システム。
 (20)
 光ファイバと、
 空間的に光結合可能な光通信コネクタであって、成形された光が入射する第1のレンズと、上記第1のレンズから入射する光を上記光ファイバに集光する第2のレンズとを備える第1の光通信コネクタと、
 空間的に光結合可能な光通信コネクタであって、上記光ファイバから入射する光を拡大する第3のレンズと、上記第3のレンズから入射する光を成形して出射する第4のレンズとを備える第2の光通信コネクタと
 を具備する光通信ケーブル。
 10…光通信システム
 50…光通信ケーブル
 100、200、300、400、500、600、700、800、900、100
 120…光ファイバ
 130…光素子
 150、250、350、450、550、650、750、850、950、1050…コネクタ本体
 163、271、363、463、563、663、763、863、961、1063…第1レンズ
 171、272、371、471、571、671、771、871、971、1071…第2レンズ
 373、481…第3レンズ
 482…第4レンズ
 473…第5レンズ

Claims (20)

  1.  空間的に光結合可能な光通信コネクタであって、
     発光体から出射された光を拡大する第1のレンズと、
     前記第1のレンズから入射する光を成形して出射する第2のレンズと
     を具備する光通信コネクタ。
  2.  請求項1に記載の光通信コネクタであって、
     前記第2のレンズは、前記第1のレンズから出射された光をコリメート光に成形する
     光通信コネクタ。
  3.  請求項1に記載の光通信コネクタであって、
     前記発光体、前記第1のレンズ及び前記第2のレンズの相対位置を規定するコネクタ本体
     をさらに具備する光通信コネクタ。
  4.  請求項3に記載の光通信コネクタであって、
     前記発光体は光ファイバであり、
     前記コネクタ本体は、前記光ファイバが挿入される孔を有し、
     前記光ファイバは、前記孔に注入された接着材によって前記コネクタ本体に対して固定されている
     光通信コネクタ。
  5.  請求項3に記載の光通信コネクタであって、
     前記発光体は発光素子である
     光通信コネクタ。
  6.  請求項3に記載の光通信コネクタであって、
     前記コネクタ本体は、前記発光体が固定される第1の部品と、前記第2のレンズが設けられた第2の部品とを有する
     光通信コネクタ。
  7.  請求項6に記載の光通信コネクタであって、
     前記第1のレンズは、前記第1の部品において前記第2の部品との接合面に設けられた、凹形状に形成された凹レンズであり、
     前記第2のレンズは、前記第2の部品において前記第1の部品とは反対側に設けられた、凸形状に形成された凸レンズである
     光通信コネクタ。
  8.  請求項6に記載の光通信コネクタであって
     前記第1のレンズは、前記第2の部品において前記第1の部品との接合面に設けられた、凹形状に形成された凹レンズであり、
     前記第2のレンズは、前記第2の部品において前記第1の部品とは反対側に設けられた、凸形状に形成された凸レンズである
     光通信コネクタ。
  9.  請求項6に記載の光通信コネクタであって、
     前記第1のレンズは、前記第1の部品において前記第2の部品との接合面に設けられた、凹形状に形成された凹レンズであり、
     前記第2のレンズは、前記第2の部品において前記第1の部品とは反対側に設けられた、凸形状に形成された凸レンズであり、
     前記光通信コネクタは、前記第2の部品において前記第1の部品との接合面に設けられた、凹形状に形成され、前記第1のレンズから入射する光を拡大し、前記第2のレンズに入射させる第3のレンズをさらに具備する
     光通信コネクタ。
  10.  請求項6に記載の光通信コネクタであって、
     前記第1の部品と前記第2の部品の間に配置され、前記第1のレンズから入射する光を拡大する第3のレンズと、前記第3のレンズから入射する光を拡大する第4のレンズが設けられた第3の部品をさらに具備し、
     前記第2の部品にはさらに、前記第4のレンズから入射する光を拡大し、前記第2のレンズに入射させる第5のレンズが設けられ、
     前記第1のレンズは、前記第1の部品において前記第3の部品との接合面に設けられた、凹形状に形成された凹レンズであり、
     前記第2のレンズは、前記第2の部品において前記第3の部品とは反対側に設けられた、凸形状に形成された凸レンズであり、
     前記第3のレンズは、前記第3の部品において前記第1の部品との接合面に設けられた、凹形状に形成された凹レンズであり、
     前記第4のレンズは、前記第3の部品において前記第2の部品との接合面に設けられた、凹形状に形成された凹レンズであり、
     前記第5のレンズは、前記第2の部品において前記第3の部品との接合面に設けられた、凹形状に形成された凹レンズである
     光通信コネクタ。
  11.  請求項4に記載の光通信コネクタであって、
     前記第1のレンズは、前記孔の先端に設けられた、凹形状に形成された凹レンズであり
     前記第2のレンズは前記コネクタ本体に設けられた、凸形状に形成された凸レンズである
     光通信コネクタ。
  12.  請求項11に記載の光通信コネクタであって、
     前記孔の先端において前記第1のレンズの周囲に設けられ、前記光ファイバが当接する当接面をさらに具備する
     光通信コネクタ。
  13.  請求項11に記載の光通信コネクタであって、
     前記光ファイバが挿入される固定部材と、
     前記孔の先端において前記第1のレンズの周囲に設けられ、前記固定部材が当接する当接面をさらに具備する
     光通信コネクタ。
  14.  請求項3に記載の光通信コネクタであって、
     前記コネクタ本体は、前記発光体から入射する光を前記第1のレンズに向けて反射する反射部を有する
     光通信コネクタ。
  15.  請求項7に記載の光通信コネクタであって、
     前記第2の部品は、前記第1のレンズを形成する凹部を封止する
     光通信コネクタ。
  16.  空間的に光結合可能な光通信コネクタであって、
     成形された入射光を集光する第1のレンズと、
     前記第1のレンズから入射する光を受光体に集光する第2のレンズと
     を具備する光通信コネクタ。
  17.  発光体と、
     空間的に光結合可能な光通信コネクタであって、前記発光体から出射された光を拡大する第1のレンズと、前記第1のレンズから入射する光を成形して出射する第2のレンズとを備える光通信コネクタと
     を具備する光送信器。
  18.  受光体と、
     空間的に光結合可能な光通信コネクタであって、成形された入射光を集光する第1のレンズと、前記第1のレンズから入射する光を前記受光体に集光する第2のレンズとを備える光通信コネクタと
     を具備する光受信器。
  19.  空間的に光結合可能な光通信コネクタであって、発光体から出射された光を拡大する第1のレンズと、前記第1のレンズから入射する光を成形して出射する第2のレンズとを備える第1の光通信コネクタと、
     前記第1の光通信コネクタに対して着脱可能であり、空間的に光結合可能な光通信コネクタであって、前記第2のレンズから入射する光を集光する第3のレンズと、前記第3のレンズから入射する光を受光体に集光する第4のレンズとを備える第2の光通信コネクタと
     を具備する光通信システム。
  20.  光ファイバと、
     空間的に光結合可能な光通信コネクタであって、成形された光が入射する第1のレンズと、前記第1のレンズから入射する光を前記光ファイバに集光する第2のレンズとを備える第1の光通信コネクタと、
     空間的に光結合可能な光通信コネクタであって、前記光ファイバから入射する光を拡大する第3のレンズと、前記第3のレンズから入射する光を成形して出射する第4のレンズとを備える第2の光通信コネクタと
     を具備する光通信ケーブル。
PCT/JP2019/009592 2018-04-26 2019-03-11 光通信コネクタ、光送信器、光受信器、光通信システム及び光通信ケーブル WO2019207976A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980026901.9A CN112041718B (zh) 2018-04-26 2019-03-11 光通信连接器、光发射器、光接收器、光通信系统和光通信线缆
US17/047,161 US11474300B2 (en) 2018-04-26 2019-03-11 Optical communication connector, optical transmitter, optical receiver, optical communication system, and optical communication cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018085421 2018-04-26
JP2018-085421 2018-04-26

Publications (1)

Publication Number Publication Date
WO2019207976A1 true WO2019207976A1 (ja) 2019-10-31

Family

ID=68293846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009592 WO2019207976A1 (ja) 2018-04-26 2019-03-11 光通信コネクタ、光送信器、光受信器、光通信システム及び光通信ケーブル

Country Status (3)

Country Link
US (1) US11474300B2 (ja)
CN (1) CN112041718B (ja)
WO (1) WO2019207976A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230294A1 (ja) * 2020-05-14 2021-11-18 ヌヴォトンテクノロジージャパン株式会社 光源モジュール
EP4191296A4 (en) * 2020-07-29 2024-07-24 Kyocera Corp OPTICAL CONNECTOR AND OPTICAL CONNECTOR MODULE

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11474300B2 (en) * 2018-04-26 2022-10-18 Sony Corporation Optical communication connector, optical transmitter, optical receiver, optical communication system, and optical communication cable
CN113423029A (zh) * 2021-08-24 2021-09-21 武汉长光科技有限公司 管理方法、系统、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161309U (ja) * 1984-04-04 1985-10-26 株式会社 冨士化学工業所 光フアイバ−用レセプタクル
JP2002350674A (ja) * 2001-05-23 2002-12-04 Nippon Sheet Glass Co Ltd 光モジュールおよびその製造方法
JP2011164182A (ja) * 2010-02-05 2011-08-25 Alps Electric Co Ltd 光コネクタ連結体
US20160320569A1 (en) * 2015-05-01 2016-11-03 Corning Optical Communications LLC Expanded-beam ferrule with high coupling efficiency for optical interface devices
JP6401888B1 (ja) * 2017-06-16 2018-10-10 京セラ株式会社 光コネクタモジュール

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1144794A (en) 1980-01-17 1983-04-19 W. John Carlsen Optical fiber connectors
JPS57182935A (en) 1981-02-25 1982-11-11 Fujitsu Ltd Electromagnetic relay
JP2593430B2 (ja) * 1984-05-02 1997-03-26 オリンパス光学工業株式会社 内視鏡用照明光学系
JP2003329877A (ja) * 2002-05-14 2003-11-19 Nippon Sheet Glass Co Ltd 光モジュール
JP2004302292A (ja) 2003-03-31 2004-10-28 Hoya Corp 光ファイバ端末とその作製方法並びに光結合器及び光部品
US7399125B1 (en) * 2006-07-26 2008-07-15 Lockheed Martin Corporation Lens array with integrated folding mirror
JP2008151843A (ja) * 2006-12-14 2008-07-03 Omron Corp 光伝送用光学部品及びその製造方法
WO2009030360A1 (de) * 2007-08-30 2009-03-12 Huber+Suhner Ag Faseroptischer steckverbinder mit einer strahlaufweitungsvorrichtung
JP5510003B2 (ja) * 2010-03-31 2014-06-04 富士通株式会社 光コネクタ及びファイバアレイの接続方法
US7985026B1 (en) * 2010-05-07 2011-07-26 Foci Fiber Optic Communications, Inc. Guiding connector for optical fiber extension
JP5754317B2 (ja) * 2011-09-15 2015-07-29 富士通株式会社 光コネクタ
JP2013164497A (ja) * 2012-02-10 2013-08-22 Enplas Corp レンズアレイおよびこれを備えた光モジュール
US9588302B2 (en) * 2012-06-01 2017-03-07 Te Connectivity Corporation Expanded-beam connector with molded lens
JP2014160172A (ja) * 2013-02-20 2014-09-04 Auto Network Gijutsu Kenkyusho:Kk 光コネクタ装置
KR101512689B1 (ko) * 2013-11-29 2015-04-22 엑스빔테크 주식회사 빔 확장형 광커넥터 어댑터 부재
US10379290B2 (en) * 2013-12-09 2019-08-13 Koninklijke Philips N.V. Optical fiber connector
US9983365B2 (en) * 2014-02-13 2018-05-29 Us Conec, Ltd. Modified MT ferrule with removed cantilevered fibers and internal lenses and mold pin
RU2678962C1 (ru) * 2014-03-06 2019-02-04 Сони Корпорейшн Оптический разъем, кабель и устройство оптической связи
JP2017040887A (ja) * 2015-08-21 2017-02-23 富士通株式会社 光導波路コネクタ
US9739948B2 (en) * 2015-12-28 2017-08-22 Sumitomo Electric Industries, Ltd. Lens-equipped connector
JP6565728B2 (ja) * 2016-02-16 2019-08-28 住友電気工業株式会社 光コネクタフェルール
US11474300B2 (en) * 2018-04-26 2022-10-18 Sony Corporation Optical communication connector, optical transmitter, optical receiver, optical communication system, and optical communication cable
JP2021192070A (ja) * 2018-09-04 2021-12-16 ソニーグループ株式会社 光通信用コネクタ、制御方法および光通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161309U (ja) * 1984-04-04 1985-10-26 株式会社 冨士化学工業所 光フアイバ−用レセプタクル
JP2002350674A (ja) * 2001-05-23 2002-12-04 Nippon Sheet Glass Co Ltd 光モジュールおよびその製造方法
JP2011164182A (ja) * 2010-02-05 2011-08-25 Alps Electric Co Ltd 光コネクタ連結体
US20160320569A1 (en) * 2015-05-01 2016-11-03 Corning Optical Communications LLC Expanded-beam ferrule with high coupling efficiency for optical interface devices
JP6401888B1 (ja) * 2017-06-16 2018-10-10 京セラ株式会社 光コネクタモジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230294A1 (ja) * 2020-05-14 2021-11-18 ヌヴォトンテクノロジージャパン株式会社 光源モジュール
EP4191296A4 (en) * 2020-07-29 2024-07-24 Kyocera Corp OPTICAL CONNECTOR AND OPTICAL CONNECTOR MODULE

Also Published As

Publication number Publication date
US11474300B2 (en) 2022-10-18
US20210124123A1 (en) 2021-04-29
CN112041718B (zh) 2023-09-05
CN112041718A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
WO2019207976A1 (ja) 光通信コネクタ、光送信器、光受信器、光通信システム及び光通信ケーブル
JP3960330B2 (ja) 光デバイスの接続構造、光デバイス、電子機器
US9274292B2 (en) Signal transmitting connector, cable having the signal transmitting connector, display apparatus having the cable, and video signal output apparatus
JP6644080B2 (ja) 光コネクタ及び光コネクタシステム並びにこれらを備えたアクティブ光ケーブル
JP2007328598A (ja) 電子装置
US8251592B2 (en) Male optical connector and female optical connector and related optical fiber coupling assembly
TW200406067A (en) Optical link device
US20040223689A1 (en) Optical communication device for rotary motion assemblies
TWI423190B (zh) 圖像顯示裝置用傳送系統及電子機器
WO2012105354A1 (ja) 光モジュール
JP7428140B2 (ja) 光コネクタ、光ケーブルおよび電子機器
US6478479B1 (en) Optical connector module with optical fibers for connecting optical module and optical fiber connector
TW201331657A (zh) 光學次組裝模組及中間光學機構
WO2020153238A1 (ja) 光コネクタ、光ケーブルおよび電子機器
JP7384172B2 (ja) 光結合コネクタ
JP2003167169A (ja) 光送受信モジュールおよびその製造方法および電子機器
JP2006030463A (ja) 光モジュール、光信号伝送装置、及び、光伝送装置
JP2003167173A (ja) 光送受信モジュールおよび電子機器
TWM551699U (zh) 免焊接光導引單元之光收發次模組
TWI633350B (zh) 光收發次模組用收容器
US9063311B2 (en) Optical fiber connector and optical fiber coupling assembly having same
JPH11352363A (ja) 光送受信装置と光送受信装置の組み立て方法
JPH10111438A (ja) 光送受信装置
JP2006145825A (ja) 光ロータリコネクタ装置
JP2000056182A (ja) 光モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP