WO2019207334A1 - 内燃機関の排気浄化装置の温度制御方法及び内燃機関の制御装置 - Google Patents

内燃機関の排気浄化装置の温度制御方法及び内燃機関の制御装置 Download PDF

Info

Publication number
WO2019207334A1
WO2019207334A1 PCT/IB2018/000628 IB2018000628W WO2019207334A1 WO 2019207334 A1 WO2019207334 A1 WO 2019207334A1 IB 2018000628 W IB2018000628 W IB 2018000628W WO 2019207334 A1 WO2019207334 A1 WO 2019207334A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
control
exhaust
gpf
exhaust gas
Prior art date
Application number
PCT/IB2018/000628
Other languages
English (en)
French (fr)
Inventor
知弘 坂田
太 吉村
良彦 岩渕
Original Assignee
日産自動車株式会社
ルノー エス、ア、エス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス、ア、エス filed Critical 日産自動車株式会社
Priority to PCT/IB2018/000628 priority Critical patent/WO2019207334A1/ja
Priority to JP2020515300A priority patent/JP6939986B2/ja
Priority to US17/050,541 priority patent/US11300065B2/en
Priority to CN201880092750.2A priority patent/CN112105804B/zh
Priority to EP18916143.3A priority patent/EP3786423B1/en
Publication of WO2019207334A1 publication Critical patent/WO2019207334A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a temperature control method for an exhaust purification device of an internal combustion engine and a control device for the internal combustion engine.
  • Patent Document 1 discloses a technique for controlling the exhaust gas temperature in accordance with the temperature of a three-way catalyst charged in a catalytic converter disposed in an exhaust passage.
  • Patent Document 1 when the temperature of the three-way catalyst is lower than the target temperature, the exhaust gas temperature is increased so that the three-way catalyst is activated. When the temperature of the three-way catalyst becomes equal to or higher than the target temperature, the three-way catalyst is activated. As a result, the control to raise the exhaust gas temperature is stopped.
  • Patent Document 1 it is determined by the temperature of the three-way catalyst of the catalytic converter whether or not the control for increasing the exhaust gas temperature is performed.
  • Patent Document 1 controls the exhaust gas temperature while paying attention only to the temperature of the three-way catalyst of the catalytic converter.
  • the internal combustion engine of the present invention has a filter for collecting exhaust particulates in the exhaust gas in the exhaust passage, and when the temperature of the filter is equal to or lower than a first predetermined temperature set in advance, a predetermined exhaust gas rise temperature is raised.
  • a filter for collecting exhaust particulates in the exhaust gas in the exhaust passage, and when the temperature of the filter is equal to or lower than a first predetermined temperature set in advance, a predetermined exhaust gas rise temperature is raised.
  • the filter by raising the temperature of the exhaust, the filter is activated early, and the discharge amount of exhaust particulates can be reduced.
  • Explanatory drawing which shows the outline of the control apparatus of the internal combustion engine which concerns on this invention.
  • Explanatory drawing which showed the relationship between the temperature of GPF and GPF collection efficiency.
  • Explanatory drawing which shows an example of the relationship between the retard correction amount of ignition timing and GPF temperature in 1st Example.
  • Explanatory drawing which shows an example of the relationship between the retard correction amount of ignition timing and GPF temperature in 1st Example.
  • Explanatory drawing which shows the temperature rising characteristic of GPF in filter temperature rising control.
  • the flowchart which shows the flow of the temperature control of the exhaust gas purification apparatus in 1st Example.
  • Explanatory drawing which shows an example of the relationship between the secondary air correction amount and GPF temperature in 2nd Example.
  • Explanatory drawing which shows an example of the relationship between the secondary air correction amount and GPF temperature in 2nd Example.
  • Explanatory drawing which shows an example of the relationship between the waste gate valve opening correction amount and GPF temperature in 3rd Example.
  • Explanatory drawing which shows an example of the relationship between the waste gate valve opening correction amount and GPF temperature in 3rd Example.
  • Explanatory drawing which shows an example of the relationship between the engine speed correction amount and GPF temperature in 4th Example.
  • Explanatory drawing which shows an example of the relationship between the engine speed correction amount and GPF temperature in 4th Example.
  • Explanatory drawing which shows an example of the relationship between the control amount of the control parameter and GPF temperature in 5th Example.
  • Explanatory drawing which shows an example of the relationship between the ignition timing retard correction amount and GPF temperature or three way catalyst temperature in 6th Example.
  • Explanatory drawing which shows an example of the relationship between the ignition timing retard correction amount and GPF temperature or three way catalyst temperature in 6th Example.
  • Explanatory drawing which shows the temperature rising characteristic of the three way catalyst and GPF in exhaust gas temperature rising control.
  • the flowchart which shows the flow of the temperature control of the exhaust gas purification device in 6th Example.
  • Explanatory drawing which shows an example of the relationship between the secondary air correction amount and GPF temperature or three way catalyst temperature in 7th Example.
  • Explanatory drawing which shows an example of the relationship between the secondary air correction amount and GPF temperature or three way catalyst temperature in 7th Example.
  • Explanatory drawing which shows an example of the relationship between the waste gate valve opening correction amount and GPF temperature or three way catalyst temperature in 8th Example. Explanatory drawing which shows an example of the relationship between the waste gate valve opening correction amount and GPF temperature or three way catalyst temperature in 8th Example. Explanatory drawing which shows an example of the relationship between the engine speed correction amount and GPF temperature or three way catalyst temperature in 9th Example. Explanatory drawing which shows an example of the relationship between the engine speed correction amount and GPF temperature or three way catalyst temperature in 9th Example. Explanatory drawing which shows an example of the relationship between the controlled variable of the control parameter in 10th Example, GPF temperature, or the three way catalyst temperature.
  • Explanatory drawing which shows an example of the relationship between the controlled variable of a control parameter, GPF temperature, or three-way catalyst temperature in 11th Example.
  • the flowchart which shows the flow of the temperature control of the exhaust gas purification apparatus in 11th Example.
  • Explanatory drawing which shows an example of the relationship between the controlled variable of a control parameter, GPF temperature, or three-way catalyst temperature in 12th Example.
  • the flowchart which shows the flow of the temperature control of the exhaust gas purification apparatus in 12th Example.
  • Explanatory drawing which shows an example of the relationship between the controlled variable of the control parameter, GPF temperature, or three-way catalyst temperature in 13th Example.
  • the flowchart which shows the flow of the temperature control of the exhaust gas purification apparatus in 13th Example.
  • FIG. 1 is an explanatory diagram showing an outline of a control device for the internal combustion engine 1.
  • the internal combustion engine 1 is a spark ignition type gasoline engine, for example, and is mounted on a vehicle such as an automobile as a drive source, and has an intake passage 2 and an exhaust passage 3.
  • the intake passage 2 is connected to the combustion chamber 6 via the intake valve 4.
  • the exhaust passage 3 is connected to the combustion chamber 6 via the exhaust valve 5.
  • the internal combustion engine 1 has, for example, an in-cylinder direct injection type configuration, and a fuel injection valve (not shown) for injecting fuel into the cylinder and a spark plug 7 are provided for each cylinder.
  • the injection timing and injection amount of the fuel injection valve and the ignition timing of the spark plug 7 are controlled by a control signal from a control unit 8 as a control unit.
  • the intake passage 2 is provided with an air cleaner 16 that collects foreign matter in intake air, an air flow meter 17 that detects the amount of intake air, and an electric throttle valve 18 that can control the amount of intake air in the cylinder. Yes.
  • the air flow meter 17 has a built-in temperature sensor and can detect (measure) the intake air temperature at the intake inlet.
  • the air flow meter 17 is disposed on the downstream side of the air cleaner 16.
  • the throttle valve 18 is provided with an actuator such as an electric motor, and its opening degree is controlled by a control signal from the control unit 8.
  • the throttle valve 18 is disposed on the downstream side of the air flow meter 17.
  • the opening (throttle opening) of the throttle valve 18 is detected by a throttle opening sensor 19.
  • a detection signal from the throttle opening sensor 19 is input to the control unit 8.
  • a three-way catalyst 21 as a catalyst, a GPF (Gasoline Particulate Filter) 22 as a filter, and a muffler 23 for silencing to reduce exhaust noise are provided in series.
  • the GPF 22 is disposed on the downstream side of the three-way catalyst 21.
  • the muffler 23 is disposed on the downstream side of the GPF 22.
  • the three-way catalyst 21 and the GPF 22 constitute an exhaust purification device that purifies exhaust exhausted from the internal combustion engine 1.
  • the three-way catalyst 21 purifies the three components of HC, CO, and NOx in the inflowing exhaust when the excess air ratio is approximately “1”, that is, when the exhaust air / fuel ratio becomes approximately the stoichiometric air / fuel ratio. .
  • the GPF 22 collects PM that is exhaust particulates (Particulate Matter) in the exhaust.
  • a filter having a wall flow honeycomb structure in which a large number of honeycomb-shaped fine passages are formed in a filter material such as cordierite and ends thereof are alternately closed is used. It is used.
  • the GPF 22 may support the same type of catalyst as the three-way catalyst 21.
  • the internal combustion engine 1 has a turbocharger 25 as a supercharger provided coaxially with a compressor 26 provided in the intake passage 2 and a turbine 27 provided in the exhaust passage 3.
  • the compressor 26 is disposed upstream of the throttle valve 18 and downstream of the air flow meter 17.
  • the turbine 27 is disposed upstream of the three-way catalyst 21.
  • the intake bypass passage 30 is connected to the intake passage 2.
  • the intake bypass passage 30 is formed so as to bypass the compressor 26 and to communicate the upstream side and the downstream side of the compressor 26.
  • the intake bypass passage 30 is provided with an electric recirculation valve 31.
  • the recirculation valve 31 is normally closed, but is opened when the throttle valve 18 is closed and the downstream side of the compressor 26 is at a high pressure. By opening the recirculation valve 31, high-pressure intake air on the downstream side of the compressor 26 can be returned to the upstream side of the compressor 26 via the intake air bypass passage 30.
  • the recirculation valve 31 is controlled to open and close by a control signal from the control unit 8.
  • the recirculation valve 31 is not controlled by the control unit 8 and may be a so-called check valve that opens only when the pressure on the downstream side of the compressor 26 exceeds a predetermined pressure. Is possible.
  • the intake passage 2 is provided with an intercooler 32 on the downstream side of the throttle valve 18 for cooling the intake air compressed (pressurized) by the compressor 26 and improving the volume efficiency.
  • the exhaust passage 3 is connected to an exhaust bypass passage 33 that bypasses the turbine 27 and connects the upstream side and the downstream side of the turbine 27.
  • the downstream end of the exhaust bypass passage 33 is connected to the exhaust passage 3 at a position upstream of the three-way catalyst 21.
  • an electric waste gate valve 34 for controlling the exhaust flow rate in the exhaust bypass passage 33 is disposed.
  • a secondary air introduction passage 37 for supplying secondary air sent out from the air pump 36 is connected to the exhaust passage 3.
  • the secondary air introduction passage 37 is connected to the exhaust passage 3 at a position upstream of the three-way catalyst 21.
  • the secondary air introduction passage 37 is connected to the exhaust passage 3 at a position upstream of the turbine 27.
  • the internal combustion engine 1 can perform exhaust gas recirculation (EGR) in which part of the exhaust gas from the exhaust passage 3 is introduced (recirculated) into the intake passage 2 as EGR gas.
  • EGR exhaust gas recirculation
  • the EGR passage 41 is connected to the EGR passage 41.
  • One end of the EGR passage 41 is connected to the exhaust passage 3 at a position between the three-way catalyst 21 and the GPF 22, and the other end is connected to the intake passage 2 at a position downstream of the air flow meter 17 and upstream of the compressor 26. It is connected.
  • the EGR passage 41 is provided with an electric EGR valve 42 that controls the flow rate of the EGR gas in the EGR passage 41 and an EGR cooler 43 that can cool the EGR gas.
  • the opening / closing operation of the EGR valve 42 is controlled by the control unit 8.
  • the control unit 8 includes a crank angle sensor 45 capable of detecting the engine speed together with the crank angle of the crankshaft 12, and an accelerator pedal (not shown).
  • An accelerator opening sensor 46 that detects the amount of depression
  • an air-fuel ratio sensor 47 that detects the exhaust air-fuel ratio upstream (inlet) of the three-way catalyst 21, and an exhaust air-fuel ratio that is downstream (outlet) of the three-way catalyst 21 are detected.
  • An oxygen sensor 48, a three-way catalyst inlet temperature sensor (third exhaust temperature sensor) 49 for detecting the exhaust temperature upstream (inlet) of the three-way catalyst 21, and an exhaust temperature on the downstream side (outlet) of the three-way catalyst 21 are detected.
  • the air-fuel ratio sensor 47 is a so-called wide-area air-fuel ratio sensor having a substantially linear output characteristic corresponding to the exhaust air-fuel ratio.
  • the oxygen sensor 48 is a sensor that detects only the rich or lean of the air-fuel ratio by changing the output voltage ON / OFF (rich, lean) in a narrow range near the theoretical air-fuel ratio.
  • the control unit 8 calculates a required load (engine load) of the internal combustion engine 1 using the detected value of the accelerator opening sensor 46.
  • the control unit 8 controls the ignition timing, the air-fuel ratio, the engine speed, etc. of the internal combustion engine 1, the control of the air pump 36 that supplies secondary air, and the opening degree of the EGR valve 42.
  • the exhaust gas recirculation control (EGR control) for recirculating a part of the exhaust gas from the exhaust passage 3 to the intake passage 2 is performed.
  • the control unit 8 also controls the opening degree of the throttle valve 18 and the waste gate valve 34.
  • the control unit 8 calculates the catalyst temperature (the bed temperature of the three-way catalyst 21), which is the temperature Tt of the three-way catalyst 21, using the detected values of the three-way catalyst inlet temperature sensor 49 and the three-way catalyst outlet temperature sensor 50. ing.
  • the temperature Tt of the three-way catalyst 21 corresponds to the second internal temperature of the exhaust purification device. Note that the temperature Tt of the three-way catalyst 21 may be corrected and calculated using the detection values of the air-fuel ratio sensor 47 and the oxygen sensor 48. Further, as the temperature Tt of the three-way catalyst 21, a temperature obtained by directly detecting the bed temperature of the three-way catalyst 21 with a temperature sensor may be used.
  • control unit 8 calculates the filter temperature of the GPF 22 (the bed temperature of the GPF 22), which is the temperature Tg of the GPF 22, using the detection values of the GPF inlet temperature sensor 51 and the GPF outlet temperature sensor 52.
  • the temperature Tg of the GPF 22 corresponds to the first internal temperature of the exhaust purification device.
  • the temperature Tg of the GPF 22 may be corrected and calculated using the detection values of the air-fuel ratio sensor 47 and the oxygen sensor 48. Further, as the temperature Tg of the GPF 22, a value obtained by directly detecting the bed temperature of the GPF 22 with a temperature sensor may be used.
  • the Brownian motion greatly affects the collection efficiency of the exhaust particles of GPF22 in a gasoline engine.
  • the GPF collection efficiency by the Brownian motion is highly dependent on the temperature of the GPF 22, the particle size of the exhaust particulates, and the space velocity of the exhaust gas flowing through the GPF 22.
  • the GPF collection efficiency increases as the temperature Tg of the GPF 22 increases.
  • the GPF collection efficiency increases as the particle size of the exhaust particulates decreases.
  • the GPF collection efficiency increases as the space velocity of the exhaust gas flowing through the GPF 22, in other words, the gas flow rate decreases.
  • FIG. 2 is an explanatory diagram showing the relationship between the temperature Tg of the GPF 22 and the GPF collection efficiency.
  • the target GPF temperature Tgt indicated by the broken line R in FIG. 2 is the lowest temperature in the temperature range where the exhaust particulate collection efficiency in the GPF 22 converges within a certain range, and is stable in a state where the GPF collection efficiency is high. This is the lower limit value of the GPF temperature. That is, the target GPF temperature Tgt is set based on the exhaust particulate collection efficiency of the GPF 22. The target GPF temperature Tgt is set lower than the temperature at which the exhaust particulates collected by the GPF 22 are removed by combustion.
  • the GPF 22 When the temperature Tg of the GPF 22 is low, the GPF gradually increases in temperature even if the internal combustion engine 1 is normally controlled, but the exhaust performance deteriorates until the GPF 22 reaches the target GPF temperature Tgt.
  • filter temperature increase control as exhaust temperature increase control is performed in order to promote the temperature increase of the GPF 22 so that the temperature Tg of the GPF 22 becomes equal to or higher than the target GPF temperature Tgt.
  • the filter temperature raising control is a control for raising the temperature of the exhaust gas so that the temperature Tg of the GPF 22 becomes equal to or higher than the target GPF temperature Tgt.
  • the normal control in this embodiment is, for example, control of an internal combustion engine in which various control parameters are set with emphasis on fuel consumption.
  • the ignition timing is set so as to have the optimum thermal efficiency, and the intake air amount is supercharged so as to become the target air amount.
  • the engine speed is controlled so as to coincide with the target engine speed set according to the operating state.
  • the filter temperature increase control in the first embodiment is a control for retarding the ignition timing of the internal combustion engine 1 as compared with the normal control when the temperature Tg of the GPF 22 is low. Specifically, as shown in FIG. 3, as the temperature Tg of the GPF 22 becomes lower than the target GPF temperature Tgt, the ignition timing retard correction amount of the internal combustion engine 1 is set larger to retard the ignition timing more greatly. That is, the filter temperature increase control in the first embodiment retards the ignition timing of the internal combustion engine 1 as compared with the normal control as the temperature Tg of the GPF 22 becomes lower than the target GPF temperature Tgt.
  • the ignition timing retard correction amount in the filter temperature raising control may be set as shown in FIG. In FIG. 4, when the temperature Tg of the GPF 22 is equal to or lower than the target GPF temperature Tgt, the ignition timing retard correction amount in the filter temperature increase control is a predetermined constant value regardless of the temperature Tg of the GPF 22. That is, when the temperature Tg of the GPF 22 is equal to or lower than the target GPF temperature Tgt, the retard amount of the ignition timing in the filter temperature increase control may be set to a predetermined constant value regardless of the temperature Tg of the GPF 22.
  • FIG. 5 is an explanatory diagram showing the temperature rise characteristics of the GPF 22 in the filter temperature rise control.
  • a characteristic line C1 indicated by a solid line in FIG. 5 indicates the temperature characteristic of the GPF 22 when the filter temperature increase control is performed immediately after the internal combustion engine 1 is started.
  • a characteristic line C2 indicated by a broken line in FIG. 5 indicates the temperature characteristic of the GPF 22 when the filter temperature increase control is not performed after the internal combustion engine 1 is started. That is, the characteristic line C2 indicates the temperature characteristic of the GPF 22 when only normal control is performed after the internal combustion engine 1 is started.
  • the filter temperature increase control When the filter temperature increase control is performed immediately after the internal combustion engine 1 is started, the temperature Tg of the GPF 22 becomes the target GPF temperature Tgt at time t1. Therefore, the characteristic line C1 indicates the result of switching from the filter temperature increase control to the normal control after time t1.
  • the temperature of the GPF 22 does not reach the target GPF temperature Tgt until time t2 when time has elapsed from time t1.
  • the GPF 22 when the temperature Tg of the GPF 22 is low, the GPF 22 can be raised to the target GPF temperature Tgt at an early stage by performing the filter temperature raising control after the internal combustion engine 1 is started. That is, by performing the filter temperature raising control, the GPF 22 can be activated as quickly as possible, and the emission of PN (Particulate Number), which is the emission amount of exhaust particulates, can be reduced.
  • PN Pularticulate Number
  • FIG. 6 is a flowchart showing a flow of temperature control of the exhaust emission control device in the first embodiment described above.
  • step S10 a temperature difference ⁇ Tg obtained by subtracting the current temperature Tg of the GPF 22 from the target GPF temperature Tgt is calculated.
  • step S11 it is determined whether or not the temperature difference ⁇ Tg is greater than zero. If the temperature difference ⁇ Tg is greater than 0, the process proceeds to step S12. When the temperature difference ⁇ Tg is 0 or less, the process proceeds to step S13.
  • step S12 the above-described filter temperature increase control is performed.
  • step S13 the normal control described above is performed.
  • the first embodiment described above relates to a temperature control method for the GPF 22 that is an exhaust purification device and a control device for the internal combustion engine 1.
  • the temperature control method for the exhaust emission control device and the control device for the internal combustion engine 1 in the second embodiment will be described.
  • the second embodiment has substantially the same configuration as that of the first embodiment described above.
  • the control parameter that is controlled to increase the temperature Tg of the GPF 22 is changed to that of the GPF 22 instead of the ignition timing. Secondary air is supplied to the upstream side.
  • the filter temperature increase control in the second embodiment is control for supplying secondary air to the upstream side of the GPF 22 as compared with the normal control when the temperature Tg of the GPF 22 is low.
  • the secondary air correction amount is set to be larger and more secondary air is supplied to the exhaust passage 3. That is, in the filter temperature increase control in the second embodiment, as the temperature Tg of the GPF 22 becomes lower than the target GPF temperature Tgt, the amount of secondary air supplied to the exhaust passage 3 is increased as compared with the normal control.
  • the secondary air correction amount in filter temperature rise control is a predetermined constant value set in advance regardless of the temperature Tg of the GPF 22. That is, when the temperature Tg of the GPF 22 is equal to or lower than the target GPF temperature Tgt, the supply amount of secondary air to the exhaust passage 3 in the filter temperature increase control may be set to a predetermined constant value regardless of the temperature Tg of the GPF 22.
  • the temperature control method for the exhaust gas purification apparatus and the control apparatus for the internal combustion engine 1 in the third embodiment will be described.
  • the third embodiment has substantially the same configuration as that of the first embodiment described above.
  • the control parameter controlled to increase the temperature Tg of the GPF 22 is changed to the waste gate instead of the ignition timing.
  • the valve opening of the valve 34 (the waste gate valve opening) is set.
  • the filter temperature increase control in the third embodiment is a control for increasing the valve opening degree of the wastegate valve 34 compared to the normal control when the temperature Tg of the GPF 22 is low. Specifically, as shown in FIG. 9, as the temperature Tg of the GPF 22 becomes lower than the target GPF temperature Tgt, the waste gate valve opening correction amount is set larger to increase the valve opening of the waste gate valve 34. . That is, in the filter temperature raising control in the third embodiment, the valve opening degree of the waste gate valve 34 is increased as compared with the normal control as the temperature Tg of the GPF 22 becomes lower than the target GPF temperature Tgt.
  • the waste gate valve opening correction amount in the filter temperature raising control may be set as shown in FIG. In FIG. 10, when the temperature Tg of the GPF 22 is equal to or lower than the target GPF temperature Tgt, the wastegate valve opening correction amount in the filter temperature increase control is a predetermined constant value set in advance regardless of the temperature Tg of the GPF 22. . That is, when the temperature Tg of the GPF 22 is equal to or lower than the target GPF temperature Tgt, the valve opening degree of the waste gate valve 34 in the filter temperature increase control may be set to a predetermined constant value regardless of the temperature Tg of the GPF 22.
  • the temperature control method for the exhaust emission control device and the control device for the internal combustion engine 1 in the fourth embodiment will be described.
  • the fourth embodiment has substantially the same configuration as that of the first embodiment described above, but in the filter temperature increase control, the control parameter to be controlled to increase the temperature Tg of the GPF 22 is changed to the ignition timing instead of the internal combustion engine.
  • the engine speed is 1.
  • the filter temperature increase control in the fourth embodiment is a control for increasing the rotational speed of the internal combustion engine 1 as compared with the normal control when the temperature Tg of the GPF 22 is low. Specifically, as shown in FIG. 11, as the temperature Tg of the GPF 22 becomes lower than the target GPF temperature Tgt, the engine speed correction amount is set to be larger and the engine speed of the internal combustion engine 1 is increased. That is, in the filter temperature raising control in the fourth embodiment, the engine speed of the internal combustion engine 1 is increased as compared with the normal control as the temperature Tg of the GPF 22 becomes lower than the target GPF temperature Tgt.
  • the engine speed correction amount in the filter temperature raising control may be set as shown in FIG. In FIG. 12, when the temperature Tg of the GPF 22 is equal to or lower than the target GPF temperature Tgt, the engine speed correction amount in the filter temperature increase control is a predetermined constant value set in advance regardless of the temperature Tg of the GPF 22. That is, when the temperature Tg of the GPF 22 is equal to or lower than the target GPF temperature Tgt, the engine speed of the internal combustion engine 1 in the filter temperature increase control may be set to a predetermined constant value regardless of the temperature Tg of the GPF 22.
  • the temperature control method for the exhaust gas purification apparatus and the control apparatus for the internal combustion engine 1 in the fifth embodiment will be described.
  • the fifth embodiment has substantially the same configuration as the first embodiment described above, but controls a plurality of control parameters in order to increase the temperature Tg of the GPF 22 in the filter temperature raising control. That is, in the fifth embodiment, the control parameters that are controlled to increase the temperature Tg of the GPF 22 are the ignition timing, the secondary air supplied to the upstream side of the GPF 22, the valve opening degree of the waste gate valve 34 (the waste gate). Valve opening) and the engine speed of the internal combustion engine 1.
  • the filter temperature raising control in the fifth embodiment when the temperature Tg of the GPF 22 is low, the ignition timing of the internal combustion engine 1 is retarded compared to the normal control, and the secondary air is supplied to the upstream side of the GPF 22 than the normal control.
  • the opening degree of the waste gate valve 34 is made larger than that in the control, and the rotational speed of the internal combustion engine 1 is made higher than that in the normal control.
  • each control parameter ignition timing, secondary air, waste gate valve opening and The amount of correction of (engine speed) becomes a predetermined constant value set in advance.
  • each control parameter ignition timing, secondary air, waste gate valve opening, and engine speed
  • the control amount is set to a predetermined constant value.
  • the correction amount of each control parameter (ignition timing, secondary air, waste gate valve opening, and engine speed) in the filter temperature raising control is such that the temperature Tg of the GPF 22 is compared with the target GPF temperature Tgt.
  • it may be set so as to increase as the value decreases. That is, in the filter temperature increase control in the fifth embodiment, as the temperature Tg of the GPF 22 becomes lower than the target GPF temperature Tgt, each control parameter (ignition timing, secondary air, waste gate valve opening, and engine speed) The control amount may be increased as compared with the normal control.
  • control parameters to be controlled to increase the temperature Tg of the GPF 22 are used in appropriate combinations among ignition timing, secondary air, waste gate valve opening, and engine speed. Also good.
  • the GPF collection efficiency correlates with the temperature Tg of the GPF 22, the particle diameter of the exhaust particulates, and the space velocity of the exhaust gas flowing through the GPF 22, as described above.
  • the secondary air is the ignition timing retard.
  • control parameter used for the filter temperature increase control may be determined in consideration of the GPF collection efficiency during the filter temperature increase control.
  • the temperature Tg of the GPF 22 is equal to or higher than the target GPF temperature Tgt, and the temperature Tt of the three-way catalyst 21 is set as the second predetermined temperature.
  • Exhaust temperature raising control is performed to promote the temperature rise of the three-way catalyst 21 and the GPF 22 so that the temperature becomes equal to or higher than the target three-way catalyst temperature Ttt.
  • the target three-way catalyst temperature Ttt is a temperature at which the catalyst of the three-way catalyst 21 is activated, and is set in advance.
  • the exhaust gas temperature raising control in the sixth embodiment is control for raising the temperature of the exhaust gas so that the temperature Tt of the three-way catalyst 21 becomes equal to or higher than the target three-way catalyst temperature Ttt and the temperature Tg of the GPF 22 becomes equal to or higher than the target GPF temperature Tgt. .
  • the exhaust gas temperature raising control in the sixth embodiment is a control for retarding the ignition timing of the internal combustion engine 1 rather than the normal control when either the temperature Tt of the three-way catalyst 21 or the temperature Tg of the GPF 22 is lower.
  • the internal combustion engine As shown in FIG. 14, as the temperature Tt of the three-way catalyst 21 becomes lower than the target three-way catalyst temperature Ttt or the temperature Tg of the GPF 22 becomes lower than the target GPF temperature Tgt, the internal combustion engine The ignition timing retard correction amount of 1 is set large, and the ignition timing is retarded greatly.
  • the ignition timing of the engine 1 is retarded as compared with the normal control.
  • the ignition timing retard correction amount in the exhaust gas temperature raising control may be set as shown in FIG. In FIG. 15, when the temperature Tt of the three-way catalyst 21 is equal to or lower than the target three-way catalyst temperature Ttt, or when the temperature Tg of the GPF 22 is equal to or lower than the target GPF temperature Tgt, the ignition in the exhaust gas temperature raising control is performed regardless of the temperature Tg of the GPF22.
  • the timing retard correction amount is a predetermined constant value set in advance.
  • the retard amount of the ignition timing in the filter temperature increase control may be set to a predetermined constant value.
  • FIG. 16 is an explanatory diagram showing the temperature rise characteristics of the three-way catalyst 21 and the GPF 22 in the exhaust gas temperature raising control.
  • a characteristic line C3 indicated by a thin solid line in FIG. 16 indicates a temperature characteristic of the three-way catalyst 21 when the exhaust gas temperature raising control is performed immediately after the internal combustion engine 1 is started.
  • a characteristic line C4 indicated by a solid line in FIG. 16 indicates the temperature characteristic of the GPF 22 when the exhaust gas temperature raising control is performed immediately after the internal combustion engine 1 is started.
  • a characteristic line C5 indicated by a broken line in FIG. 16 indicates the temperature characteristic of the GPF 22 when the filter temperature increase control is not performed after the internal combustion engine 1 is started. That is, the characteristic line C5 indicates the temperature characteristic of the GPF 22 when only normal control is performed after the internal combustion engine 1 is started.
  • the temperature Tt of the three-way catalyst 21 becomes the target three-way catalyst temperature Ttt at time t1.
  • the temperature Tg of the GPF 22 has not been raised to the target GPF temperature Tgt at the time t1. Therefore, the exhaust gas temperature raising control is continued until time t2 when the temperature Tg of the GPF 22 becomes the target GPF temperature Tgt. That is, the characteristic line C3 and the characteristic line C4 indicate the result of switching from the exhaust gas temperature raising control to the normal control after the time t2.
  • the temperature of the GPF 22 does not reach the target GPF temperature Tgt until time t3 when time has elapsed from time t2.
  • the exhaust gas temperature raising control is performed after the internal combustion engine 1 is started, so that the three-way catalyst 21 and the GPF 22 are quickly brought to their respective target temperatures. It becomes possible to raise the temperature. That is, by implementing the exhaust gas temperature raising control, the three-way catalyst 21 and the GPF 22 can be activated as quickly as possible, and CO, HC, NOx in the exhaust gas can be reduced, and the exhaust particulate emission can be reduced. The emission of a certain PN (Particulate Number) can be reduced.
  • PN Porate Number
  • FIG. 17 is a flowchart showing the flow of temperature control of the exhaust purification system in the sixth embodiment described above.
  • step S20 a temperature difference ⁇ Tt obtained by subtracting the current temperature Tt of the three-way catalyst 21 from the target three-way catalyst temperature Ttt, and a temperature difference ⁇ Tg obtained by subtracting the current temperature Tg of the GPF 22 from the target GPF temperature Tgt are obtained. calculate.
  • step S21 it is determined whether or not the temperature difference ⁇ Tt and the temperature difference ⁇ Tg are greater than zero. If either the temperature difference ⁇ Tt or the temperature difference ⁇ Tg is greater than 0, the process proceeds to step S22, and if both the temperature difference ⁇ Tt and the temperature difference ⁇ Tg are 0 or less, the process proceeds to step S23.
  • step S22 the above-described filter temperature increase control is performed.
  • step S23 the normal control described above is performed.
  • the temperature control method for the exhaust gas purification apparatus and the control apparatus for the internal combustion engine 1 in the seventh embodiment will be described.
  • the seventh embodiment has substantially the same configuration as that of the sixth embodiment described above, but control parameters for controlling the temperature Tt of the three-way catalyst 21 and the temperature Tg of the GPF 22 are increased in the exhaust gas temperature raising control.
  • the secondary air is supplied to the upstream side of the three-way catalyst 21 instead of the ignition timing.
  • the exhaust gas temperature raising control in the seventh embodiment is control for supplying secondary air to the upstream side of the three-way catalyst 21 relative to the normal control when either the temperature Tt of the three-way catalyst 21 or the temperature Tg of the GPF 22 is lower. .
  • the secondary temperature increases as the temperature Tt of the three-way catalyst 21 becomes lower than the target three-way catalyst temperature Ttt or the temperature Tg of the GPF 22 becomes lower than the target GPF temperature Tgt.
  • a large amount of secondary air is supplied to the exhaust passage 3 with a large air correction amount.
  • the exhaust gas temperature raising control in the seventh embodiment as the temperature Tt of the three-way catalyst 21 becomes lower than the target three-way catalyst temperature Ttt or the temperature Tg of the GPF 22 becomes lower than the target GPF temperature Tgt, The amount of secondary air supplied to the passage 3 is increased as compared with the normal control.
  • the secondary air correction amount in the exhaust gas temperature raising control may be set as shown in FIG. In FIG. 19, when the temperature Tt of the three-way catalyst 21 is equal to or lower than the target three-way catalyst temperature Ttt, or when the temperature Tg of the GPF 22 is equal to or lower than the target GPF temperature Tgt, the second temperature in the exhaust temperature increase control is controlled regardless of the temperature Tg of the GPF 22.
  • the next air correction amount is a predetermined constant value set in advance.
  • the supply amount of secondary air to the exhaust passage 3 in the exhaust gas temperature raising control may be set to a predetermined constant value.
  • the temperature control method for the exhaust gas purification apparatus and the control apparatus for the internal combustion engine 1 in the eighth embodiment will be described.
  • the eighth embodiment has substantially the same configuration as that of the sixth embodiment described above, but control parameters for controlling the temperature Tt of the three-way catalyst 21 and the temperature Tg of the GPF 22 in the exhaust gas temperature raising control are as follows. Instead of the ignition timing, the opening degree of the wastegate valve 34 (the wastegate valve opening degree) is obtained.
  • the exhaust gas temperature raising control in the eighth embodiment is a control for increasing the valve opening degree of the wastegate valve 34 compared to the normal control when either the temperature Tt of the three-way catalyst 21 or the temperature Tg of the GPF 22 is low. Specifically, as shown in FIG. 20, as the temperature Tt of the three-way catalyst 21 becomes lower than the target three-way catalyst temperature Ttt, or as the temperature Tg of the GPF 22 becomes lower than the target GPF temperature Tgt, the wastegate The valve opening degree of the waste gate valve 34 is increased by setting the valve opening correction amount to a large value.
  • the exhaust gas temperature raising control in the eighth embodiment is performed as the temperature Tt of the three-way catalyst 21 becomes lower than the target three-way catalyst temperature Ttt or the temperature Tg of the GPF 22 becomes lower than the target GPF temperature Tgt.
  • the valve opening degree of the gate valve 34 is increased as compared with the normal control.
  • the waste gate valve opening correction amount in the exhaust gas temperature raising control may be set as shown in FIG. In FIG. 21, when the temperature Tt of the three-way catalyst 21 is equal to or lower than the target three-way catalyst temperature Ttt, or when the temperature Tg of the GPF 22 is equal to or lower than the target GPF temperature Tgt, the exhaust temperature rise control is not dependent on the temperature Tg of the GPF 22.
  • the gate valve opening correction amount is a predetermined constant value set in advance.
  • the valve opening degree of the waste gate valve 34 in the exhaust gas temperature raising control may be set to a predetermined constant value.
  • the temperature control method for the exhaust emission control device and the control device for the internal combustion engine 1 in the ninth embodiment will be described.
  • the ninth embodiment has substantially the same configuration as that of the sixth embodiment described above, but control parameters for controlling the temperature Tt of the three-way catalyst 21 and the temperature Tg of the GPF 22 are increased in the exhaust gas temperature raising control.
  • the engine speed of the internal combustion engine 1 is used instead of the ignition timing.
  • the exhaust gas temperature raising control in the ninth embodiment is a control for increasing the rotational speed of the internal combustion engine 1 as compared with the normal control when either the temperature Tt of the three-way catalyst 21 or the temperature Tg of the GPF 22 is low. Specifically, as shown in FIG. 22, as the temperature Tt of the three-way catalyst 21 becomes lower than the target three-way catalyst temperature Ttt or the temperature Tg of the GPF 22 becomes lower than the target GPF temperature Tgt, the engine speed increases. The engine speed of the internal combustion engine 1 is increased by setting a large number correction amount.
  • the exhaust gas temperature raising control in the ninth embodiment as the temperature Tt of the three-way catalyst 21 becomes lower than the target three-way catalyst temperature Ttt or the temperature Tg of the GPF 22 becomes lower than the target GPF temperature Tgt, The engine speed of the engine 1 is increased compared to the normal control.
  • the engine speed correction amount in the exhaust gas temperature raising control may be set as shown in FIG. In FIG. 23, when the temperature Tt of the three-way catalyst 21 is equal to or lower than the target three-way catalyst temperature Ttt, or when the temperature Tg of the GPF 22 is equal to or lower than the target GPF temperature Tgt, the engine in the exhaust gas temperature raising control regardless of the temperature Tg of the GPF 22
  • the rotation speed correction amount is a predetermined constant value set in advance.
  • the engine speed of the internal combustion engine 1 in the exhaust gas temperature raising control may be set to a predetermined constant value.
  • the tenth embodiment has substantially the same configuration as the sixth embodiment described above, but controls a plurality of control parameters in order to increase the temperature Tt of the three-way catalyst 21 and the temperature Tg of the GPF 22 in the exhaust gas temperature raising control. is doing. That is, in the tenth embodiment, the control parameters that are controlled to increase the temperature Tt of the three-way catalyst 21 and the temperature Tg of the GPF 22 are ignition timing, secondary air supplied to the upstream side of the three-way catalyst 21, The opening degree of the wastegate valve 34 (the wastegate valve opening degree) and the engine speed of the internal combustion engine 1 are set.
  • the ignition timing of the internal combustion engine 1 is retarded compared to the normal control, and the secondary air is supplied to the GPF 22 rather than the normal control.
  • the opening degree of the waste gate valve 34 is made larger than that in the normal control, and the rotational speed of the internal combustion engine 1 is made higher than that in the normal control. Specifically, as shown in FIG.
  • the correction amount of each control parameter is a predetermined constant value set in advance. That is, when the temperature Tg of the GPF 22 is equal to or lower than the target GPF temperature Tgt, each control parameter (ignition timing, secondary air, waste gate valve) in the exhaust gas temperature increase control is independent of the temperature Tt of the three-way catalyst 21 and the temperature Tg of the GPF 22.
  • the control amount of the opening degree and the engine speed is set to a predetermined constant value.
  • the correction amount of each control parameter (ignition timing, secondary air, waste gate valve opening, and engine speed) in the exhaust gas temperature raising control is set such that the temperature Tt of the three-way catalyst 21 is the target three-way. You may set so that it may become so large that it becomes lower with respect to the catalyst temperature Ttt, or the temperature Tg of GPF22 becomes lower with respect to the target GPF temperature Tgt.
  • control amounts of the control parameters may be increased as compared with normal control.
  • the control parameter used for the exhaust gas temperature raising control may be determined in consideration of the GPF collection efficiency during the exhaust gas temperature raising control.
  • a control parameter that is advantageous in improving the GPF collection efficiency may be preferentially selected.
  • the ignition timing that contributes most to the increase in the temperature Tt of the three-way catalyst 21 is one of the control parameters when controlling a plurality of control parameters.
  • the temperature control method for the exhaust purification device and the control device for the internal combustion engine 1 in the eleventh embodiment will be described.
  • the eleventh embodiment has substantially the same configuration as the sixth embodiment described above, but controls a plurality of control parameters in order to increase the temperature Tt of the three-way catalyst 21 and the temperature Tg of the GPF 22 in the exhaust gas temperature raising control. is doing. That is, in the eleventh embodiment, the control parameters to be controlled to increase the temperature Tt of the three-way catalyst 21 and the temperature Tg of the GPF 22 are ignition timing, secondary air supplied to the upstream side of the three-way catalyst 21, The opening degree of the wastegate valve 34 (the wastegate valve opening degree) and the engine speed of the internal combustion engine 1 are set.
  • the exhaust gas temperature raising control consists of catalyst temperature raising control and filter temperature raising control.
  • the catalyst temperature raising control is a control for raising the temperature of the exhaust gas so that the temperature Tt of the three-way catalyst 21 becomes equal to or higher than the target three-way catalyst temperature Ttt as the second predetermined temperature when the temperature Tt of the three-way catalyst 21 is low. .
  • control parameters controlled to increase the temperature Tt of the three-way catalyst 21 are ignition timing, secondary air supplied to the upstream side of the three-way catalyst 21, and the valve opening degree of the wastegate valve 34. (West gate valve opening) and engine speed of the internal combustion engine 1.
  • the ignition timing of the internal combustion engine 1 is retarded as compared with the normal control, and the secondary air is supplied to the upstream side of the GPF 22 as compared with the normal control, and the valve opening degree of the wastegate valve 34 is larger than that in the normal control.
  • the rotational speed of the internal combustion engine 1 is made higher than that in the normal control.
  • the filter temperature raising control is a control for raising the temperature of the exhaust gas so that the temperature Tg of the GPF 22 becomes equal to or higher than the target GPF temperature Tgt as the first predetermined temperature when the temperature Tg of the GPF 22 is low.
  • control parameters controlled to increase the temperature Tg of the GPF 22 are ignition timing, secondary air supplied to the upstream side of the three-way catalyst 21, the valve opening degree of the waste gate valve 34 (the waste gate). Valve opening) and the engine speed of the internal combustion engine 1.
  • the ignition timing of the internal combustion engine 1 is retarded more than in the normal control, and the secondary air is supplied to the upstream side of the GPF 22 than in the normal control, and the valve opening degree of the wastegate valve 34 is made larger than in the normal control.
  • the rotational speed of the internal combustion engine 1 is made higher than that in the normal control.
  • the filter temperature raising control is performed after the catalyst temperature raising control. Therefore, for example, if the temperature Tg of the GPF 22 is equal to or higher than the target GPF temperature Tgt at the end of the catalyst temperature increase control, the exhaust temperature increase control ends without performing the filter temperature increase control.
  • the correction amount of each control parameter in the catalyst temperature increase control is set to be larger than the correction amount of each control parameter in the filter temperature increase control.
  • the control parameters when the temperature Tt of the three-way catalyst 21 is equal to or lower than the target three-way catalyst temperature Ttt, the control parameters (ignition timing, secondary air, waist, etc.) are used regardless of the temperature Tt of the three-way catalyst 21.
  • the correction amount of the gate valve opening and the engine speed is a predetermined constant value set in advance. That is, when the temperature Tg of the GPF 22 is equal to or lower than the target GPF temperature Tgt, the control parameters (ignition timing, secondary air, waste gate valve opening, and engine speed) in the exhaust gas temperature increase control are not dependent on the GPF 22 temperature Tg.
  • the control amount is set to a predetermined constant value.
  • each control parameter ignition timing, secondary air, waste gate valve opening, and engine speed
  • the correction amount is a predetermined constant value set in advance. That is, when the temperature Tg of the GPF 22 is equal to or lower than the target GPF temperature Tgt, the control parameters (ignition timing, secondary air, waste gate valve opening, and engine speed) in the exhaust gas temperature increase control are not dependent on the GPF 22 temperature Tg.
  • the control amount is set to a predetermined constant value.
  • the correction amount of each control parameter (ignition timing, secondary air, waste gate valve opening, and engine speed) in the catalyst temperature increase control and filter temperature increase control is the temperature of the three-way catalyst 21. You may set so that it may become so large that Tt becomes low with respect to target three-way catalyst temperature Ttt, or temperature Tg of GPF22 becomes low with respect to target GPF temperature Tgt.
  • Control amounts of control parameters may be increased as compared with normal control.
  • FIG. 26 is a flowchart showing the flow of temperature control of the exhaust purification system in the eleventh embodiment described above.
  • step S30 a temperature difference ⁇ Tt obtained by subtracting the current temperature Tt of the three-way catalyst 21 from the target three-way catalyst temperature Ttt and a temperature difference ⁇ Tg obtained by subtracting the current temperature Tg of the GPF 22 from the target GPF temperature Tgt are obtained. calculate.
  • step S31 it is determined whether or not the temperature difference ⁇ Tt and the temperature difference ⁇ Tg are greater than zero. If either one of the temperature difference ⁇ Tt and the temperature difference ⁇ Tg is greater than 0, the process proceeds to step S32. If both the temperature difference ⁇ Tt and the temperature difference ⁇ Tg are 0 or less, the process proceeds to step S35.
  • step S32 it is determined whether or not the temperature difference ⁇ Tt is greater than zero. If the temperature difference ⁇ Tt is greater than 0, the process proceeds to step S33. When the temperature difference ⁇ Tt is 0 or less, the process proceeds to step S34.
  • step S33 the catalyst temperature increase control in the eleventh embodiment is performed.
  • step S34 the filter temperature increase control in the eleventh embodiment is performed.
  • step S35 the above-described normal control is performed.
  • the control parameter used for the filter temperature increase control may be determined in consideration of the GPF collection efficiency during the filter temperature increase control.
  • a control parameter that is advantageous in improving the GPF collection efficiency may be preferentially selected.
  • the ignition timing that contributes most to the increase in the temperature Tt of the three-way catalyst 21 be one of the control parameters when controlling a plurality of control parameters.
  • the twelfth embodiment has substantially the same configuration as the sixth embodiment described above, but controls a plurality of control parameters in order to increase the temperature Tt of the three-way catalyst 21 and the temperature Tg of the GPF 22 in the exhaust gas temperature raising control. is doing. That is, in the twelfth embodiment, the control parameters that are controlled to increase the temperature Tt of the three-way catalyst 21 and the temperature Tg of the GPF 22 are ignition timing, secondary air supplied to the upstream side of the three-way catalyst 21, The opening degree of the wastegate valve 34 (the wastegate valve opening degree) and the engine speed of the internal combustion engine 1 are set.
  • the exhaust gas temperature raising control consists of catalyst temperature raising control and filter temperature raising control.
  • the catalyst temperature raising control is a control for raising the temperature of the exhaust gas so that the temperature Tt of the three-way catalyst 21 becomes equal to or higher than the target three-way catalyst temperature Ttt as the second predetermined temperature when the temperature Tt of the three-way catalyst 21 is low. .
  • control parameters controlled to increase the temperature Tt of the three-way catalyst 21 are ignition timing, secondary air supplied to the upstream side of the three-way catalyst 21, and the valve opening degree of the wastegate valve 34. (West gate valve opening) and engine speed of the internal combustion engine 1.
  • the ignition timing of the internal combustion engine 1 is retarded as compared with the normal control, and the secondary air is supplied to the upstream side of the GPF 22 as compared with the normal control, and the valve opening degree of the wastegate valve 34 is larger than that in the normal control.
  • the rotational speed of the internal combustion engine 1 is made higher than that in the normal control.
  • the filter temperature raising control is a control for raising the temperature of the exhaust gas so that the temperature Tg of the GPF 22 becomes equal to or higher than the target GPF temperature Tgt as the first predetermined temperature when the temperature Tg of the GPF 22 is low.
  • control parameters controlled to increase the temperature Tg of the GPF 22 are ignition timing, secondary air supplied to the upstream side of the three-way catalyst 21, the valve opening degree of the waste gate valve 34 (the waste gate). Valve opening) and the engine speed of the internal combustion engine 1.
  • the ignition timing of the internal combustion engine 1 is retarded more than in the normal control, and the secondary air is supplied to the upstream side of the GPF 22 than in the normal control, and the valve opening degree of the wastegate valve 34 is made larger than in the normal control.
  • the rotational speed of the internal combustion engine 1 is made higher than that in the normal control.
  • the filter temperature increase correction amount P2 as the second determination value is compared with the catalyst temperature increase correction amount P1 as the first determination value.
  • the filter temperature increase correction amount P2 is a control parameter correction amount determined according to a temperature difference ⁇ Tg obtained by subtracting the current temperature Tg of the GPF 22 from the target GPF temperature Tgt.
  • the filter temperature increase correction amount P2 increases as the temperature difference ⁇ Tg increases.
  • the catalyst temperature increase correction amount P1 is a control parameter correction amount determined according to the temperature difference ⁇ Tt obtained by subtracting the current temperature Tt of the three-way catalyst 21 from the target three-way catalyst temperature Ttt.
  • the catalyst temperature increase correction amount P1 increases as the temperature difference ⁇ Tt increases.
  • the change amount due to the temperature difference ⁇ Tg of the filter temperature increase correction amount P2 is set to be smaller than the change amount due to the temperature difference ⁇ Tt of the catalyst temperature increase correction amount P1.
  • the catalyst temperature increase control When the exhaust gas temperature increase control is performed, if the value obtained by subtracting the filter temperature increase correction amount P2 from the catalyst temperature increase correction amount P1 is greater than 0, the catalyst temperature increase control is performed. In other words, if the value obtained by subtracting the filter temperature increase correction amount P2 from the catalyst temperature increase correction amount P1 when performing the exhaust gas temperature increase control is greater than 0, the exhaust gas temperature increase correction amount P1 is used to increase the exhaust gas temperature increase.
  • the filter temperature increase control is performed. In other words, if the value obtained by subtracting the filter temperature increase correction amount P2 from the catalyst temperature increase correction amount P1 when performing the exhaust gas temperature increase control is greater than 0, the exhaust gas temperature increase correction amount P2 is used to increase the exhaust temperature increase.
  • the catalyst temperature increase correction amount P1 and the filter temperature increase correction amount P2 are compared, and the exhaust gas is heated using the larger correction amount.
  • FIG. 27 shows an example in which the filter temperature increase control is performed after the catalyst temperature control is performed.
  • the broken line indicates the catalyst temperature increase correction amount P1
  • the alternate long and short dash line indicates the filter temperature increase correction amount P2
  • the solid line indicates the larger one of the catalyst temperature increase correction amount P1 and the filter temperature increase correction amount P2. Indicates the amount.
  • the exhaust gas temperature raising control is performed using the correction amount defined by the solid line in FIG.
  • the temperature Tt of the three-way catalyst 21 does not reach the target three-way catalyst temperature Ttt when the filter temperature increase control is started.
  • FIG. 28 is a flowchart showing the flow of temperature control of the exhaust emission control device in the twelfth embodiment described above.
  • step S40 a temperature difference ⁇ Tt obtained by subtracting the current temperature Tt of the three-way catalyst 21 from the target three-way catalyst temperature Ttt and a temperature difference ⁇ Tg obtained by subtracting the current temperature Tg of the GPF 22 from the target GPF temperature Tgt are obtained. calculate.
  • step S41 it is determined whether or not the temperature difference ⁇ Tt and the temperature difference ⁇ Tg are greater than zero. If either the temperature difference ⁇ Tt or the temperature difference ⁇ Tg is greater than 0, the process proceeds to step S42, and if both the temperature difference ⁇ Tt and the temperature difference ⁇ Tg are 0 or less, the process proceeds to step S47.
  • step S42 a catalyst temperature increase correction amount P1 is calculated.
  • step S43 a filter temperature increase correction amount P2 is calculated.
  • step S44 it is determined whether or not the value obtained by subtracting the filter temperature increase correction amount P2 from the catalyst temperature increase correction amount P1 is greater than zero. If the value obtained by subtracting the filter temperature increase correction amount P2 from the catalyst temperature increase correction amount P1 is greater than 0, the process proceeds to step S45, and the value obtained by subtracting the filter temperature increase correction amount P2 from the catalyst temperature increase correction amount P1 is 0 or less. In this case, the process proceeds to step S46.
  • step S45 exhaust gas temperature increase control is performed using the catalyst temperature increase correction amount P1.
  • step S46 the exhaust gas temperature raising control is performed using the filter temperature raising correction amount P2.
  • step S47 the above-described normal control is performed.
  • the control parameter used for the filter temperature increase control may be determined in consideration of the GPF collection efficiency during the filter temperature increase control.
  • a control parameter that is advantageous in improving the GPF collection efficiency may be preferentially selected.
  • the ignition timing that contributes most to the increase in the temperature Tt of the three-way catalyst 21 is desirable to set the ignition timing that contributes most to the increase in the temperature Tt of the three-way catalyst 21 as one of the control parameters when controlling a plurality of control parameters.
  • the temperature control method for the exhaust gas purification apparatus and the control apparatus for the internal combustion engine 1 in the thirteenth embodiment will be described.
  • the thirteenth embodiment has substantially the same configuration as the sixth embodiment described above, but controls a plurality of control parameters in order to increase the temperature Tt of the three-way catalyst 21 and the temperature Tg of the GPF 22 in the exhaust gas temperature raising control. is doing. That is, in the thirteenth embodiment, the control parameters that are controlled to increase the temperature Tt of the three-way catalyst 21 and the temperature Tg of the GPF 22 are the ignition timing, the secondary air supplied to the upstream side of the three-way catalyst 21, The opening degree of the wastegate valve 34 (the wastegate valve opening degree) and the engine speed of the internal combustion engine 1 are set.
  • the exhaust gas temperature raising control consists of catalyst temperature raising control and filter temperature raising control.
  • the catalyst temperature raising control is a control for raising the temperature of the exhaust gas so that the temperature Tt of the three-way catalyst 21 becomes equal to or higher than the target three-way catalyst temperature Ttt as the second predetermined temperature when the temperature Tt of the three-way catalyst 21 is low. .
  • control parameters controlled to increase the temperature Tt of the three-way catalyst 21 are ignition timing, secondary air supplied to the upstream side of the three-way catalyst 21, and the valve opening degree of the wastegate valve 34. (West gate valve opening) and engine speed of the internal combustion engine 1.
  • the ignition timing of the internal combustion engine 1 is retarded as compared with the normal control, and the secondary air is supplied to the upstream side of the GPF 22 as compared with the normal control, and the valve opening degree of the wastegate valve 34 is larger than that in the normal control.
  • the rotational speed of the internal combustion engine 1 is made higher than that in the normal control.
  • the filter temperature raising control is a control for raising the temperature of the exhaust gas so that the temperature Tg of the GPF 22 becomes equal to or higher than the target GPF temperature Tgt as the first predetermined temperature when the temperature Tg of the GPF 22 is low.
  • control parameters controlled to increase the temperature Tg of the GPF 22 are ignition timing, secondary air supplied to the upstream side of the three-way catalyst 21, the valve opening degree of the waste gate valve 34 (the waste gate). Valve opening) and the engine speed of the internal combustion engine 1.
  • the ignition timing of the internal combustion engine 1 is retarded more than in the normal control, and the secondary air is supplied to the upstream side of the GPF 22 than in the normal control, and the valve opening degree of the wastegate valve 34 is made larger than in the normal control.
  • the rotational speed of the internal combustion engine 1 is made higher than that in the normal control.
  • the filter temperature raising control is performed after the catalyst temperature raising control. Therefore, for example, if the temperature Tg of the GPF 22 is equal to or higher than the target GPF temperature Tgt at the end of the catalyst temperature increase control, the exhaust temperature increase control ends without performing the filter temperature increase control.
  • the correction amount of each control parameter in the catalyst temperature increase control is set to be larger than the correction amount of each control parameter in the filter temperature increase control.
  • the number of control parameters in the catalyst temperature increase control is set to be larger than the number of parameters in the filter temperature increase control.
  • the control parameters in the catalyst temperature increase control are four of ignition timing, secondary air, waste gate valve opening and engine speed
  • the parameters in the filter temperature increase control are ignition timing, secondary air, waste gate There are three valve openings.
  • the control parameters for example, ignition timing, secondary air, etc.
  • the amount of correction of the waste gate valve opening and the engine speed is a predetermined constant value set in advance. That is, when the temperature Tg of the GPF 22 is equal to or lower than the target GPF temperature Tgt, the control parameters (ignition timing, secondary air, waste gate valve opening, and engine speed) in the exhaust gas temperature increase control are not dependent on the GPF 22 temperature Tg.
  • the control amount is set to a predetermined constant value.
  • each control parameter for example, ignition timing, secondary air, waste gate valve opening, and engine speed
  • the control amount is set to a predetermined constant value.
  • the correction amount of each control parameter (ignition timing, secondary air, waste gate valve opening, and engine speed) in the catalyst temperature increase control and the filter temperature increase control is the temperature of the three-way catalyst 21. You may set so that it may become so large that Tt becomes low with respect to target three-way catalyst temperature Ttt, or temperature Tg of GPF22 becomes low with respect to target GPF temperature Tgt.
  • the control amounts of the control parameters may be increased as compared with normal control.
  • FIG. 30 is a flowchart showing the flow of temperature control of the exhaust purification system in the thirteenth embodiment described above.
  • step S50 a temperature difference ⁇ Tt obtained by subtracting the current temperature Tt of the three-way catalyst 21 from the target three-way catalyst temperature Ttt and a temperature difference ⁇ Tg obtained by subtracting the current temperature Tg of the GPF 22 from the target GPF temperature Tgt are obtained. calculate.
  • step S51 it is determined whether or not the temperature difference ⁇ Tt and the temperature difference ⁇ Tg are greater than zero.
  • the process proceeds to step S52, and when both the temperature difference ⁇ Tt and the temperature difference ⁇ Tg are 0 or less, the process proceeds to step S55.
  • step S52 it is determined whether or not the temperature difference ⁇ Tt is greater than zero. If the temperature difference ⁇ Tt is greater than 0, the process proceeds to step S53. When the temperature difference ⁇ Tt is 0 or less, the process proceeds to step S54.
  • step S53 the catalyst temperature increase control in the thirteenth embodiment is performed.
  • step S54 the filter temperature increase control in the thirteenth embodiment is performed.
  • step S55 the above-described normal control is performed.
  • the control parameter used for the filter temperature increase control may be determined in consideration of the GPF collection efficiency during the filter temperature increase control.
  • control parameters that are advantageous in improving the GPF collection efficiency may be selected with priority.
  • the ignition timing that contributes most to the increase in the temperature Tt of the three-way catalyst 21 is desirable to set the ignition timing that contributes most to the increase in the temperature Tt of the three-way catalyst 21 as one of the control parameters when controlling a plurality of control parameters.
  • the control parameter controlled by the filter temperature increase control is controlled by the catalyst temperature increase control. It may be different. That is, for example, the ignition timing and the secondary air may be controlled by the catalyst temperature increase control, and the waste gate valve and the engine speed may be controlled by the filter temperature increase control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Supercharger (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

コントロールユニット(8)は、温度差(ΔTg)を計算する。温度差(ΔTg)は 、目標GPF温度(Tgt)からGPF(22)の温度(Tg)を引いたデである。 コントロールユニット(8)は、温度差(ΔTg)が0以下の場合、燃費重視の通常 制御を実施する。コントロールユニット(8)は、温度差(ΔTg)が0より大きい 場合、フィルタ昇温制御を実施する。フィルタ昇温制御は、GPF(22)の温度( Tg)が目標GPF温度(Tgt)以上となるように排気を昇温させる。

Description

内燃機関の排気浄化装置の温度制御方法及び内燃機関の制御装置
 本発明は、内燃機関の排気浄化装置の温度制御方法及び内燃機関の制御装置に関する。
 内燃機関から排出された排気を浄化する排気浄化装置が、内燃機関に接続された排気通路に設ける構成が従来から知られている。
 例えば、特許文献1には、排気通路に配置された触媒コンバータに充填された三元触媒の温度に応じて、排気ガス温度を制御する技術が開示されている。
 特許文献1では、三元触媒の温度が目標温度未満の場合、三元触媒が活性化するように排気ガス温度を上昇させ、三元触媒の温度が目標温度以上になると、三元触媒が活性化されたものとして排気ガス温度を上昇させる制御を中止している。
 しかしながら、特許文献1においては、排気ガス温度を上昇させる制御を実施するか否かが触媒コンバータの三元触媒の温度によって決定されている。
 すなわち、特許文献1は、上記触媒コンバータの三元触媒の温度にのみ着目して、排気ガス温度を制御している。
 そのため、排気通路に三元触媒とは異なる機能を有する触媒が配置された場合については、十分な検討がなされておらず、排気ガス温度を制御する上で更なる改善の余地がある。
特開平8−35418号公報
 本発明の内燃機関は、排気通路に排気中の排気微粒子を捕集するフィルタを有し、上記フィルタの温度が予め設定された第1所定温度以下の場合、排気を昇温する所定の排気昇温制御を実施する。
 本発明によれば、排気を昇温することよりフィルタが早期に活性化され、排気微粒子の排出量を低減できる。
本発明に係る内燃機関の制御装置の概略を示す説明図。 GPFの温度とGPF捕集効率の関係を示した説明図。 第1実施例における点火時期のリタード補正量とGPF温度との関係の一例を示す説明図。 第1実施例における点火時期のリタード補正量とGPF温度との関係の一例を示す説明図。 フィルタ昇温制御におけるGPFの昇温特性を示す説明図。 第1実施例における排気浄化装置の温度制御の流れを示すフローチャート。 第2実施例における二次空気補正量とGPF温度との関係の一例を示す説明図。 第2実施例における二次空気補正量とGPF温度との関係の一例を示す説明図。 第3実施例におけるウェストゲート弁開度補正量とGPF温度との関係の一例を示す説明図。 第3実施例におけるウェストゲート弁開度補正量とGPF温度との関係の一例を示す説明図。 第4実施例における機関回転数補正量とGPF温度との関係の一例を示す説明図。 第4実施例における機関回転数補正量とGPF温度との関係の一例を示す説明図。 第5実施例における制御パラメータの制御量とGPF温度との関係の一例を示す説明図。 第6実施例における点火時期リタード補正量とGPF温度または三元触媒温度との関係の一例を示す説明図。 第6実施例における点火時期リタード補正量とGPF温度または三元触媒温度との関係の一例を示す説明図。 排気昇温制御における三元触媒とGPFの昇温特性を示す説明図。 第6実施例における排気浄化装置の温度制御の流れを示すフローチャート。 第7実施例における二次空気補正量とGPF温度または三元触媒温度との関係の一例を示す説明図。 第7実施例における二次空気補正量とGPF温度または三元触媒温度との関係の一例を示す説明図。 第8実施例におけるウェストゲート弁開度補正量とGPF温度または三元触媒温度との関係の一例を示す説明図。 第8実施例におけるウェストゲート弁開度補正量とGPF温度または三元触媒温度との関係の一例を示す説明図。 第9実施例における機関回転数補正量とGPF温度または三元触媒温度との関係の一例を示す説明図。 第9実施例における機関回転数補正量とGPF温度または三元触媒温度との関係の一例を示す説明図。 第10実施例における制御パラメータの制御量とGPF温度または三元触媒温度との関係の一例を示す説明図。 第11実施例における制御パラメータの制御量とGPF温度または三元触媒温度との関係の一例を示す説明図。 第11実施例における排気浄化装置の温度制御の流れを示すフローチャート。 第12実施例における制御パラメータの制御量とGPF温度または三元触媒温度との関係の一例を示す説明図。 第12実施例における排気浄化装置の温度制御の流れを示すフローチャート。 第13実施例における制御パラメータの制御量とGPF温度または三元触媒温度との関係の一例を示す説明図。 第13実施例における排気浄化装置の温度制御の流れを示すフローチャート。
 以下、本発明の一実施例を図面に基づいて詳細に説明する。図1は、内燃機関1の制御装置の概略を示す説明図である。
 内燃機関1は、例えば火花点火式ガソリン機関であって、駆動源として自動車等の車両に搭載され、吸気通路2と排気通路3を有している。吸気通路2は、吸気弁4を介して燃焼室6に接続されている。排気通路3は、排気弁5を介して燃焼室6に接続されている。
 この内燃機関1は、例えば筒内直噴型の構成であり、シリンダ内に燃料を噴射する燃料噴射弁(図示せず)と点火プラグ7が気筒毎に設けられている。上記燃料噴射弁の噴射時期や噴射量、点火プラグ7の点火時期は制御部としてのコントロールユニット8からの制御信号によって制御されている。
 吸気通路2には、吸気中の異物を捕集するエアクリーナ16と、吸入空気量を検出するエアフローメータ17と、筒内の吸入空気量を制御可能な電動のスロットル弁18と、が設けられている。
 エアフローメータ17は、温度センサを内蔵したものであって、吸気導入口の吸気温度を検出(測定)可能となっている。エアフローメータ17は、エアクリーナ16の下流側に配置されている。
 スロットル弁18は、電動モータ等のアクチュエータを具備したものであり、コントロールユニット8からの制御信号によって、その開度が制御されている。スロットル弁18は、エアフローメータ17の下流側に配置されている。
 スロットル弁18の開度(スロットル開度)は、スロットル開度センサ19によって検出される。スロットル開度センサ19の検出信号は、コントロールユニット8に入力されている。
 排気通路3には、触媒としての三元触媒21と、フィルタとしてのGPF(Gasoline Particulate Filter)22と、排気音を低減する消音用のマフラー23と、が直列に設けられている。GPF22は、三元触媒21の下流側に配置されている。マフラー23は、GPF22の下流側に配置されている。三元触媒21とGPF22は、内燃機関1から排出された排気を浄化する排気浄化装置を構成するものである。
 三元触媒21は、空気過剰率が略「1」のとき、すなわち排気空燃比が略理論空燃比となるときに、流入する排気中のHC、CO、NOxの三成分を浄化するものである。
 GPF22は、排気中の排気微粒子(Particulate Matter)であるPMを捕集するものである。
 GPF22としては、例えば、コーディエライト等のフィルタ材料にハニカム状の多数の微細な通路を形成するととともに、その端部を交互に閉塞してなるウォールフローハニカム構造(いわゆる目封じ型)のフィルタが用いられている。なお、GPF22は、三元触媒21と同種の触媒を担持するようにしてもよい。
 また、この内燃機関1は、吸気通路2に設けられたコンプレッサ26と排気通路3に設けられたタービン27とを同軸上に備えた過給機としてのターボ過給機25を有している。コンプレッサ26は、スロットル弁18の上流側で、かつエアフローメータ17よりも下流側に配置されている。タービン27は、三元触媒21よりも上流側に配置されている。
 吸気通路2には、吸気バイパス通路30が接続されている。
 吸気バイパス通路30は、コンプレッサ26を迂回して、コンプレッサ26の上流側と下流側とを連通するように形成されている。
 吸気バイパス通路30には、電動のリサーキュレーション弁31が設けられている。リサーキュレーション弁31は、通常は閉じられているが、スロットル弁18が閉じられてコンプレッサ26の下流側が高圧になった場合等に開かれる。リサーキュレーション弁31が開くことにより、吸気バイパス通路30を介してコンプレッサ26の下流側の高圧な吸気をコンプレッサ26の上流側に戻せるようになっている。リサーキュレーション弁31は、コントロールユニット8からの制御信号によって開閉制御されている。なお、リサーキュレーション弁31としては、コントロールユニット8により開閉制御されるものではなく、コンプレッサ26下流側の圧力が所定圧力以上となったときのみ開弁するようないわゆる逆止弁を用いることも可能である。
 さらに、吸気通路2には、スロットル弁18の下流側に、コンプレッサ26により圧縮(加圧)された吸気を冷却し、体積効率を良くするインタクーラ32が設けられている。
 排気通路3には、タービン27を迂回してタービン27の上流側と下流側とを接続する排気バイパス通路33が接続されている。排気バイパス通路33の下流側端は、三元触媒21よりも上流側の位置で排気通路3に接続されている。排気バイパス通路33には、排気バイパス通路33内の排気流量を制御する電動のウェストゲート弁34が配置されている。
 排気通路3には、エアポンプ36から送り出された二次空気を供給する二次空気導入通路37が接続されている。二次空気導入通路37は、三元触媒21よりも上流側の位置で、排気通路3に接続されている。換言すれば、二次空気導入通路37は、タービン27よりも上流側の位置で、排気通路3に接続されている。なお、二次空気を排気通路3に供給するにあたっては、排気マニホールドの各排気ポートに供給してもよい。
 内燃機関1は、排気通路3から排気の一部をEGRガスとして吸気通路2へ導入(還流)する排気還流(EGR)が実施可能なものであって、排気通路3から分岐して吸気通路2に接続されたEGR通路41を有している。EGR通路41は、その一端が三元触媒21とGPF22との間の位置で排気通路3に接続され、その他端がエアフローメータ17の下流側となりコンプレッサ26の上流側となる位置で吸気通路2に接続されている。このEGR通路41には、EGR通路41内のEGRガスの流量を制御する電動のEGR弁42と、EGRガスを冷却可能なEGRクーラ43と、が設けられている。EGR弁42の開閉動作は、コントロールユニット8によって制御される。
 コントロールユニット8には、上述したエアフローメータ17、スロットル開度センサ19の検出信号のほか、クランクシャフト12のクランク角度と共に機関回転数を検出可能なクランク角センサ45、アクセルペダル(図示せず)の踏込量を検出するアクセル開度センサ46、三元触媒21の上流側(入口)の排気空燃比を検出する空燃比センサ47、三元触媒21の下流側(出口)の排気空燃比を検出する酸素センサ48、三元触媒21の上流側(入口)の排気温度を検出する三元触媒入口温度センサ(第3排気温度センサ)49、三元触媒21の下流側(出口)の排気温度を検出する三元触媒出口温度センサ(第4排気温度センサ)50、GPF22の上流側(入口)の排気温度を検出するGPF入口温度センサ(第1排気温度センサ)51、GPF22の下流側(出口)の排気温度を検出するGPF出口温度センサ(第2排気温度センサ)52、等のセンサ類の検出信号が入力されている。
 空燃比センサ47は、排気空燃比に応じたほぼリニアな出力特性を有するいわゆる広域型空燃比センサである。酸素センサ48は、理論空燃比付近の狭い範囲で出力電圧がON/OFF(リッチ、リーン)的に変化して、空燃比のリッチ、リーンのみを検知するセンサである。
 コントロールユニット8は、アクセル開度センサ46の検出値を用いて、内燃機関1の要求負荷(エンジン負荷)を算出する。
 そして、コントロールユニット8は、これらの検出信号に基づいて、内燃機関1の点火時期、空燃比、機関回転数等の制御や、二次空気を供給するエアポンプ36の制御、EGR弁42の開度を制御して排気通路3から吸気通路2に排気の一部を還流する排気還流制御(EGR制御)等を実施する。また、コントロールユニット8は、スロットル弁18及びウェストゲート弁34の開度等も制御している。
 コントロールユニット8は、三元触媒入口温度センサ49及び三元触媒出口温度センサ50の検出値を用いて、三元触媒21の温度Ttである触媒温度(三元触媒21のベッド温度)を算出している。三元触媒21の温度Ttは、排気浄化装置の第2の内部温度に相当するものである。なお、三元触媒21の温度Ttは、空燃比センサ47や酸素センサ48の検出値を用いて補正して算出するようにしてもよい。また、三元触媒21の温度Ttとしては、三元触媒21のベッド温度を温度センサで直接検出したものを用いてもよい。
 また、コントロールユニット8は、GPF入口温度センサ51及びGPF出口温度センサ52の検出値を用いて、GPF22の温度TgであるGPF22のフィルタ温度(GPF22のベッド温度)を算出している。GPF22の温度Tgは、排気浄化装置の第1の内部温度に相当するものである。なお、GPF22の温度Tgは、空燃比センサ47や酸素センサ48の検出値を用いて補正して算出するようにしてもよい。また、GPF22の温度Tgとしては、GPF22のベッド温度を温度センサで直接検出したものを用いてもよい。
 ガソリンエンジンにおけるGPF22の排気微粒子の捕集効率は、ブラウン運動が大きく影響する。ブラウン運動によるGPF捕集効率は、GPF22の温度、排気微粒子の粒径、GPF22を流れる排気の空間速度による依存性が高い。
 すなわち、GPF捕集効率は、GPF22の温度Tgが高いほど高くなる。GPF捕集効率は、排気微粒子の粒径が小さいほど高くなる。GPF捕集効率は、GPF22を流れる排気の空間速度、換言すればガス流速が低いほど高くなる。
 図2は、GPF22の温度TgとGPF捕集効率の関係を示した説明図である。
 GPF捕集効率は、実験の結果、図2に示すように、第1所定温度としての目標GPF温度Tgtまでは低いことが確認されている。図2中に破線Rで示す目標GPF温度Tgtは、GPF22における排気微粒子の捕集効率が一定範囲内に収束する温度範囲の中で最低の温度であり、GPF捕集効率が高い状態で安定するGPF温度の下限値である。つまり、目標GPF温度Tgtは、GPF22の排気微粒子の捕集効率に基づいて設定されている。なお、目標GPF温度Tgtは、GPF22に捕集された排気微粒子が燃焼除去される温度よりも低く設定されている。
 GPF22の温度Tgが低い場合、内燃機関1を通常制御していてもGPFは徐々に昇温するが、GPF22が目標GPF温度Tgtに達するまで排気性能が悪化することになる。
 そこで、GPF22の温度Tgが低い場合には、GPF22の温度Tgが目標GPF温度Tgt以上となるようにGPF22の昇温を促すために排気昇温制御としてのフィルタ昇温制御を実施する。フィルタ昇温制御は、GPF22の温度Tgが目標GPF温度Tgt以上となるように排気を昇温させる制御である。
 なお、本実施例における通常制御とは、例えば、燃費重視で各種制御パラメータの設定がなされた内燃機関の制御である。通常制御では、例えば、点火時期が最適な熱効率となるように設定され、吸入空気量が目標空気量となるように過給される。また、通常制御では、例えば、機関回転数が運転状態に応じて設定される目標機関回転数と一致するように制御される。
 第1実施例におけるフィルタ昇温制御は、GPF22の温度Tgが低いとき内燃機関1の点火時期を通常制御よりもリタードさせる制御である。具体的には、図3に示すように、GPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、内燃機関1の点火時期リタード補正量を大きく設定して点火時期を大きくリタードさせる。すなわち、第1実施例におけるフィルタ昇温制御は、GPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、内燃機関1の点火時期を通常制御に比べてリタードさせる。
 なお、フィルタ昇温制御における点火時期リタード補正量は、図4に示すように設定してもよい。図4においては、GPF22の温度Tgが目標GPF温度Tgt以下の場合、GPF22の温度Tgに関わらずフィルタ昇温制御における点火時期リタード補正量が予め設定された所定の一定値となっている。すなわち、GPF22の温度Tgが目標GPF温度Tgt以下の場合、GPF22の温度Tgによらず、フィルタ昇温制御における点火時期のリタード量を所定の一定値としてもよい。
 図5は、フィルタ昇温制御におけるGPF22の昇温特性を示す説明図である。
 図5中に実線で示す特性線C1は、内燃機関1の始動直後からフィルタ昇温制御を実施した場合のGPF22の温度特性を示している。図5中に破線で示す特性線C2は、内燃機関1の始動後にフィルタ昇温制御を実施しなかった場合のGPF22の温度特性を示している。つまり特性線C2は、内燃機関1の始動後、通常制御のみを実施した場合のGPF22の温度特性を示している。
 内燃機関1の始動直後からフィルタ昇温制御を実施した場合、時刻t1でGPF22の温度Tgが目標GPF温度Tgtとなっている。そのため、特性線C1は、時刻t1以降は、フィルタ昇温制御から通常制御に切り替えられた結果を示している。
 図5に示すように、内燃機関1の始動後、通常制御のみを実施した場合、時刻t1よりも時間が経過した時刻t2なるまでGPF22の温度が目標GPF温度Tgtに達しない。
 そのため、GPF22の温度Tgが低い場合には、内燃機関1の始動後、フィルタ昇温制御を実施することで、GPF22を早期に目標GPF温度Tgt以上に昇温させることが可能となる。すなわち、フィルタ昇温制御を実施することで、GPF22を可及的速やかに活性化させることができ、排気微粒子の排出量であるPN(Particulate Number)の排出を低減することができる。
 図6は、上述した第1実施例における排気浄化装置の温度制御の流れを示すフローチャートである。
 ステップS10では、目標GPF温度TgtからGPF22の現在の温度Tgを減じて得られる温度差ΔTgを算出する。ステップS11では、温度差ΔTgが0よりも大きいか否かを判定する。温度差ΔTgが0より大きい場合には、ステップS12へ進む。温度差ΔTgが0以下の場合には、ステップS13へ進む。ステップS12では、上述したフィルタ昇温制御を実施する。ステップS13では、上述した通常制御を実施する。
 なお、上述した第1実施例は、排気浄化装置であるGPF22の温度制御方法及び内燃機関1の制御装置に関するものである。
 以下、本発明の他の実施例について説明するが、上述した第1実施例と同一の構成要件に対しては同一の符号を付し、重複する説明を省略する。
 第2実施例における排気浄化装置の温度制御方法及び内燃機関1の制御装置について説明する。
 第2実施例は、上述した第1実施例と略同一構成となっているが、フィルタ昇温制御において、GPF22の温度Tgを上昇させるために制御する制御パラメータが、点火時期に替えてGPF22の上流側に供給される二次空気となっている。
 第2実施例におけるフィルタ昇温制御は、GPF22の温度Tgが低いとき通常制御よりも二次空気をGPF22の上流側に供給する制御である。具体的には、図7に示すように、GPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、二次空気補正量を大きく設定して多くの二次空気を排気通路3に供給する。すなわち、第2実施例におけるフィルタ昇温制御は、GPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、排気通路3への二次空気の供給量を通常制御に比べて大きくする。
 なお、フィルタ昇温制御における二次空気補正量は、図8に示すように設定してもよい。図8においては、GPF22の温度Tgが目標GPF温度Tgt以下の場合、GPF22の温度Tgに関わらずフィルタ昇温制御における二次空気補正量が予め設定された所定の一定値となっている。すなわち、GPF22の温度Tgが目標GPF温度Tgt以下の場合、GPF22の温度Tgによらず、フィルタ昇温制御における排気通路3への二次空気の供給量を所定の一定値としてもよい。
 このような第2実施例においても、上述した第1実施例と略同様の作用効果を奏することができる。
 第3実施例における排気浄化装置の温度制御方法及び内燃機関1の制御装置について説明する。
 第3実施例は、上述した第1実施例と略同一構成となっているが、フィルタ昇温制御において、GPF22の温度Tgを上昇させるために制御する制御パラメータが、点火時期に替えてウェストゲート弁34の弁開度(ウェストゲート弁開度)となっている。
 第3実施例におけるフィルタ昇温制御は、GPF22の温度Tgが低いとき通常制御よりもウェストゲート弁34の弁開度を大きくする制御である。具体的には、図9に示すように、GPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、ウェストゲート弁開度補正量を大きく設定してウェストゲート弁34の弁開度を大きくする。すなわち、第3実施例におけるフィルタ昇温制御は、GPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、ウェストゲート弁34の弁開度を通常制御に比べて大きくする。
 なお、フィルタ昇温制御におけるウェストゲート弁開度補正量は、図10に示すように設定してもよい。図10においては、GPF22の温度Tgが目標GPF温度Tgt以下の場合、GPF22の温度Tgに関わらずフィルタ昇温制御におけるウェストゲート弁開度補正量が予め設定された所定の一定値となっている。すなわち、GPF22の温度Tgが目標GPF温度Tgt以下の場合、GPF22の温度Tgによらず、フィルタ昇温制御におけるウェストゲート弁34の弁開度を所定の一定値としてもよい。
 このような第3実施例においても、上述した第1実施例と略同様の作用効果を奏することができる。
 第4実施例における排気浄化装置の温度制御方法及び内燃機関1の制御装置について説明する。
 第4実施例は、上述した第1実施例と略同一構成となっているが、フィルタ昇温制御において、GPF22の温度Tgを上昇させるために制御する制御パラメータが、点火時期に替えて内燃機関1の機関回転数となっている。
 第4実施例におけるフィルタ昇温制御は、GPF22の温度Tgが低いとき通常制御よりも内燃機関1の回転数を高くする制御である。具体的には、図11に示すように、GPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、機関回転数補正量を大きく設定して内燃機関1の機関回転数を高くする。すなわち、第4実施例におけるフィルタ昇温制御は、GPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、内燃機関1の機関回転数を通常制御に比べて高くする。
 なお、フィルタ昇温制御における機関回転数補正量は、図12に示すように設定してもよい。図12においては、GPF22の温度Tgが目標GPF温度Tgt以下の場合、GPF22の温度Tgに関わらずフィルタ昇温制御における機関回転数補正量が予め設定された所定の一定値となっている。すなわち、GPF22の温度Tgが目標GPF温度Tgt以下の場合、GPF22の温度Tgによらず、フィルタ昇温制御における内燃機関1の機関回転数を所定の一定値としてもよい。
 このような第4実施例においても、上述した第1実施例と略同様の作用効果を奏することができる。
 第5実施例における排気浄化装置の温度制御方法及び内燃機関1の制御装置について説明する。
 第5実施例は、上述した第1実施例と略同一構成となっているが、フィルタ昇温制御においてGPF22の温度Tgを上昇させるために複数の制御パラメータを制御している。すなわち、第5実施例においては、GPF22の温度Tgを上昇させるために制御する制御パラメータが、点火時期、GPF22の上流側に供給される二次空気、ウェストゲート弁34の弁開度(ウェストゲート弁開度)及び内燃機関1の機関回転数となっている。
 第5実施例におけるフィルタ昇温制御は、GPF22の温度Tgが低いとき、通常制御よりも内燃機関1の点火時期をリタードさせ、通常制御よりも二次空気をGPF22の上流側に供給し、通常制御よりもウェストゲート弁34の弁開度を大きくし、通常制御よりも内燃機関1の回転数を高くする制御である。具体的には、図13に示すように、GPF22の温度Tgが目標GPF温度Tgt以下の場合、GPF22の温度Tgに関わらず、各制御パラメータ(点火時期、二次空気、ウェストゲート弁開度及び機関回転数)の補正量がそれぞれ予め設定された所定の一定値となる。すなわち、GPF22の温度Tgが目標GPF温度Tgt以下の場合、GPF22の温度Tgによらず、フィルタ昇温制御における各制御パラメータ(点火時期、二次空気、ウェストゲート弁開度及び機関回転数)の制御量を所定の一定値としている。
 なお、第5実施例において、フィルタ昇温制御における各制御パラメータ(点火時期、二次空気、ウェストゲート弁開度及び機関回転数)の補正量は、GPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど大きくなるように設定してもよい。すなわち、第5実施例におけるフィルタ昇温制御は、GPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、各制御パラメータ(点火時期、二次空気、ウェストゲート弁開度及び機関回転数)の制御量を通常制御に比べて大きくしてもよい。
 このような第5実施例においても、上述した第1実施例と略同様の作用効果を奏することができる。
 また、第5実施例において、GPF22の温度Tgを上昇させるために制御する制御パラメータは、点火時期、二次空気、ウェストゲート弁開度及び機関回転数の中から適宜組み合わせて使用するようにしてもよい。
 なお、GPF捕集効率は、上述したように、GPF22の温度Tg、排気微粒子の粒径及びGPF22を流れる排気の空間速度と相関がある。
 GPF22の温度Tgに着目すれば、点火時期のリタードにより排気を昇温させることが、GPF捕集効率を向上させる上で最も有利である。
 排気微粒子の粒径に着目すれば、二次空気の供給による排気を昇温させることがGPF捕集効率を向上させる上で最も有利であり、次がウェストゲート弁開度、その次が機関回転数、機関回転数の次が点火時期のリタードとなる。
 GPF22を流れる排気の空間速度に着目すれば、ウェストゲート弁開度を大きくすることによる排気を昇温させることがGPF捕集効率を向上させる上で最も有利であり、次が機関回転数、その次が二次空気、二次空気の次が点火時期のリタードとなる。
 そこで、フィルタ昇温制御中のGPF捕集効率を考慮して、フィルタ昇温制御に用いる制御パラメータを決定してもよい。
 さらに言えば、第5実施例のフィルタ昇温制御においては、複数の制御パラメータを制御するにあたって、GPF捕集効率を向上させる上で有利な制御パラメータを優先して選択するのが望ましい。
 次に第6実施例における排気浄化装置の温度制御方法及び内燃機関1の制御装置について説明する。
 第6実施例は、上述した第1実施例と略同一構成となっているが、GPF22の温度Tgが目標GPF温度Tgt以上になるとともに、三元触媒21の温度Ttが第2所定温度としての目標三元触媒温度Ttt以上となるように、三元触媒21及びGPF22の昇温を促すために排気昇温制御を実施している。目標三元触媒温度Tttは、三元触媒21の触媒が活性化する温度であり、予め設定されている。
 第6実施例における排気昇温制御は、三元触媒21の温度Ttが目標三元触媒温度Ttt以上となり、GPF22の温度Tgが目標GPF温度Tgt以上となるように排気を昇温させる制御である。
 第6実施例における排気昇温制御は、三元触媒21の温度TtとGPF22の温度Tgのいずれかが低いとき内燃機関1の点火時期を通常制御よりもリタードさせる制御である。具体的には、図14に示すように、三元触媒21の温度Ttが目標三元触媒温度Tttに対して低くなるほど、またはGPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、内燃機関1の点火時期リタード補正量を大きく設定して点火時期を大きくリタードさせる。すなわち、第6実施例における排気昇温制御は、三元触媒21の温度Ttが目標三元触媒温度Tttに対して低くなるほど、またはGPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、内燃機関1の点火時期を通常制御に比べてリタードさせる。
 なお、排気昇温制御における点火時期リタード補正量は、図15に示すように設定してもよい。図15においては、三元触媒21の温度Ttが目標三元触媒温度Ttt以下の場合、またはGPF22の温度Tgが目標GPF温度Tgt以下の場合、GPF22の温度Tgに関わらず排気昇温制御における点火時期リタード補正量が予め設定された所定の一定値となるっている。すなわち、三元触媒21の温度Ttが目標三元触媒温度Ttt以下の場合、またはGPF22の温度Tgが目標GPF温度Tgt以下の場合、三元触媒21の温度TtやGPF22の温度Tgによらず、フィルタ昇温制御における点火時期のリタード量を所定の一定値としてもよい。
 図16は、排気昇温制御における三元触媒21及びGPF22の昇温特性を示す説明図である。
 図16中に細実線で示す特性線C3は、内燃機関1の始動直後から排気昇温制御を実施した場合の三元触媒21の温度特性を示している。図16中に実線で示す特性線C4は、内燃機関1の始動直後から排気昇温制御を実施した場合のGPF22の温度特性を示している。図16中に破線で示す特性線C5は、内燃機関1の始動後にフィルタ昇温制御を実施しなかった場合のGPF22の温度特性を示している。つまり特性線C5は、内燃機関1の始動後、通常制御のみを実施した場合のGPF22の温度特性を示している。
 内燃機関1の始動直後から排気昇温制御を実施した場合、時刻t1で三元触媒21の温度Ttが目標三元触媒温度Tttとなっている。GPF22の温度Tgは、時刻t1では目標GPF温度Tgtまで昇温していない。そのため、排気昇温制御は、GPF22の温度Tgが目標GPF温度Tgtとなる時刻t2まで継続する。つまり、特性線C3及び特性線C4は、時刻t2以降は、排気昇温制御から通常制御に切り替えられた結果を示している。
 図16に示すように、内燃機関1の始動後、通常制御のみを実施した場合、時刻t2よりも時間が経過した時刻t3なるまでGPF22の温度が目標GPF温度Tgtに達しない。
 そのため、三元触媒21の温度Tt及びGPF22の温度Tgが低い場合には、内燃機関1の始動後、排気昇温制御を実施することで、三元触媒21及びGPF22をそれぞれの目標温度まで速やかに昇温させることが可能となる。すなわち、排気昇温制御を実施することで、三元触媒21及びGPF22を可及的速やかに活性化させることができ、排気中のCO、HC、NOxを低減できるとともに、排気微粒子の排出量であるPN(Particulate Number)の排出を低減することができる。
 図17は、上述した第6実施例における排気浄化装置の温度制御の流れを示すフローチャートである。
 ステップS20では、目標三元触媒温度Tttから三元触媒21の現在の温度Ttを減じて得られる温度差ΔTtと、目標GPF温度TgtからGPF22の現在の温度Tgを減じて得られる温度差ΔTgを算出する。
 ステップS21では、温度差ΔTt及び温度差ΔTgが0よりも大きい否かを判定している。温度差ΔTt及び温度差ΔTgのいずれか一方が0よりも大きい場合にはステップS22へ進み、温度差ΔTt及び温度差ΔTgの双方が0以下の場合にはステップS23へ進む。ステップS22では、上述したフィルタ昇温制御を実施する。ステップS23では、上述した通常制御を実施する。
 第7実施例における排気浄化装置の温度制御方法及び内燃機関1の制御装置について説明する。
 第7実施例は、上述した第6実施例と略同一構成となっているが、排気昇温制御において、三元触媒21の温度Tt及びGPF22の温度Tgを上昇させるために制御する制御パラメータが、点火時期に替えて三元触媒21の上流側に供給される二次空気となっている。
 第7実施例における排気昇温制御は、三元触媒21の温度TtとGPF22の温度Tgのいずれかが低いとき通常制御よりも三元触媒21の上流側に二次空気を供給する制御である。具体的には、図18に示すように、三元触媒21の温度Ttが目標三元触媒温度Tttに対して低くなるほど、またはGPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、二次空気補正量を大きく設定して多くの二次空気を排気通路3に供給する。すなわち、第7実施例における排気昇温制御は、三元触媒21の温度Ttが目標三元触媒温度Tttに対して低くなるほど、またはGPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、排気通路3への二次空気の供給量を通常制御に比べて大きくする。
 なお、排気昇温制御における二次空気補正量は、図19に示すように設定してもよい。図19においては、三元触媒21の温度Ttが目標三元触媒温度Ttt以下の場合、またはGPF22の温度Tgが目標GPF温度Tgt以下の場合、GPF22の温度Tgに関わらず排気昇温制御における二次空気補正量が予め設定された所定の一定値となっている。すなわち、三元触媒21の温度Ttが目標三元触媒温度Ttt以下の場合、またはGPF22の温度Tgが目標GPF温度Tgt以下の場合、三元触媒21の温度TtやGPF22の温度Tgによらず、排気昇温制御における排気通路3への二次空気の供給量を所定の一定値としてもよい。
 このような第7実施例においても、上述した第6実施例と略同様の作用効果を奏することができる。
 第8実施例における排気浄化装置の温度制御方法及び内燃機関1の制御装置について説明する。
 第8実施例は、上述した第6実施例と略同一構成となっているが、排気昇温制御において、三元触媒21の温度Tt及びGPF22の温度Tgを上昇させるために制御する制御パラメータが、点火時期に替えてウェストゲート弁34の弁開度(ウェストゲート弁開度)となっている。
 第8実施例における排気昇温制御は、三元触媒21の温度TtとGPF22の温度Tgのいずれかが低いとき通常制御よりもウェストゲート弁34の弁開度を大きくする制御である。具体的には、図20に示すように、三元触媒21の温度Ttが目標三元触媒温度Tttに対して低くなるほど、またはGPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、ウェストゲート弁開度補正量を大きく設定してウェストゲート弁34の弁開度を大きくする。すなわち、第8実施例における排気昇温制御は、三元触媒21の温度Ttが目標三元触媒温度Tttに対して低くなるほど、またはGPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、ウェストゲート弁34の弁開度を通常制御に比べて大きくする。
 なお、排気昇温制御におけるウェストゲート弁開度補正量は、図21に示すように設定してもよい。図21においては、三元触媒21の温度Ttが目標三元触媒温度Ttt以下の場合、またはGPF22の温度Tgが目標GPF温度Tgt以下の場合、GPF22の温度Tgに関わらず排気昇温制御におけるウェストゲート弁開度補正量が予め設定された所定の一定値となっている。すなわち、三元触媒21の温度Ttが目標三元触媒温度Ttt以下の場合、またはGPF22の温度Tgが目標GPF温度Tgt以下の場合、三元触媒21の温度TtやGPF22の温度Tgによらず、排気昇温制御におけるウェストゲート弁34の弁開度を所定の一定値としてもよい。
 このような第8実施例においても、上述した第6実施例と略同様の作用効果を奏することができる。
 第9実施例における排気浄化装置の温度制御方法及び内燃機関1の制御装置について説明する。
 第9実施例は、上述した第6実施例と略同一構成となっているが、排気昇温制御において、三元触媒21の温度Tt及びGPF22の温度Tgを上昇させるために制御する制御パラメータが、点火時期に替えて内燃機関1の機関回転数となっている。
 第9実施例における排気昇温制御は、三元触媒21の温度TtとGPF22の温度Tgのいずれかが低いとき通常制御よりも内燃機関1の回転数を高くする制御である。具体的には、図22に示すように、三元触媒21の温度Ttが目標三元触媒温度Tttに対して低くなるほど、またはGPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、機関回転数補正量を大きく設定して内燃機関1の機関回転数を高くする。すなわち、第9実施例における排気昇温制御は、三元触媒21の温度Ttが目標三元触媒温度Tttに対して低くなるほど、またはGPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、内燃機関1の機関回転数の通常制御に比べて高くする。
 なお、排気昇温制御における機関回転数補正量は、図23に示すように設定してもよい。図23においては、三元触媒21の温度Ttが目標三元触媒温度Ttt以下の場合、またはGPF22の温度Tgが目標GPF温度Tgt以下の場合、GPF22の温度Tgに関わらず排気昇温制御における機関回転数補正量が予め設定された所定の一定値となっている。すなわち、三元触媒21の温度Ttが目標三元触媒温度Ttt以下の場合、またはGPF22の温度Tgが目標GPF温度Tgt以下の場合、三元触媒21の温度TtやGPF22の温度Tgによらず、排気昇温制御における内燃機関1の機関回転数を所定の一定値としてもよい。
 このような第9実施例においても、上述した第6実施例と略同様の作用効果を奏することができる。
 第10実施例における排気浄化装置の温度制御方法及び内燃機関1の制御装置について説明する。
 第10実施例は、上述した第6実施例と略同一構成となっているが、排気昇温制御において三元触媒21の温度Tt及びGPF22の温度Tgを上昇させるために複数の制御パラメータを制御している。すなわち、第10実施例においては、三元触媒21の温度Tt及びGPF22の温度Tgを上昇させるために制御する制御パラメータが、点火時期、三元触媒21の上流側に供給される二次空気、ウェストゲート弁34の弁開度(ウェストゲート弁開度)及び内燃機関1の機関回転数となっている。
 第10実施例における排気昇温制御は、三元触媒21の温度TtまたはGPF22の温度Tgが低いとき、通常制御よりも内燃機関1の点火時期をリタードさせ、通常制御よりも二次空気をGPF22の上流側に供給し、通常制御よりもウェストゲート弁34の弁開度を大きくし、通常制御よりも内燃機関1の回転数を高くする制御である。具体的には、図24に示すように、三元触媒21の温度Ttが目標三元触媒温度Ttt以下の場合、またはGPF22の温度Tgが目標GPF温度Tgt以下の場合、三元触媒21の温度TtやGPF22の温度Tgに関わらず、各制御パラメータ(点火時期、二次空気、ウェストゲート弁開度及び機関回転数)の補正量がそれぞれ予め設定された所定の一定値となっている。すなわち、GPF22の温度Tgが目標GPF温度Tgt以下の場合、三元触媒21の温度TtやGPF22の温度Tgによらず、排気昇温制御における各制御パラメータ(点火時期、二次空気、ウェストゲート弁開度及び機関回転数)の制御量を所定の一定値としている。
 なお、第10実施例において、排気昇温制御における各制御パラメータ(点火時期、二次空気、ウェストゲート弁開度及び機関回転数)の補正量は、三元触媒21の温度Ttが目標三元触媒温度Tttに対して低くなるほど、またはGPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、大きくなるように設定してもよい。すなわち、第10実施例における排気昇温制御は、三元触媒21の温度Ttが目標三元触媒温度Tttに対して低くなるほど、またはGPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、各制御パラメータ(点火時期、二次空気、ウェストゲート弁開度及び機関回転数)の制御量を通常制御に比べて大きくしてもよい。
 このような第10実施例においても、上述した第6実施例と略同様の作用効果を奏することができる。
 なお、GPF捕集効率は、上述したように、GPF22の温度Tg、排気微粒子の粒径及びGPF22を流れる排気の空間速度と相関がある。そこで、排気昇温制御中のGPF捕集効率を考慮して、排気昇温制御に用いる制御パラメータを決定してもよい。
 つまり、第10実施例のフィルタ昇温制御においては、複数の制御パラメータを制御するにあたって、GPF捕集効率を向上させる上で有利な制御パラメータを優先して選択してもよい。
 また、第10実施例の触媒昇温制御においては、複数の制御パラメータを制御するにあたって、三元触媒21の温度Ttの上昇に最も寄与する点火時期を制御パラメータの1つにすることが望ましい。
 第11実施例における排気浄化装置の温度制御方法及び内燃機関1の制御装置について説明する。
 第11実施例は、上述した第6実施例と略同一構成となっているが、排気昇温制御において三元触媒21の温度Tt及びGPF22の温度Tgを上昇させるために複数の制御パラメータを制御している。すなわち、第11実施例においては、三元触媒21の温度Tt及びGPF22の温度Tgを上昇させるために制御する制御パラメータが、点火時期、三元触媒21の上流側に供給される二次空気、ウェストゲート弁34の弁開度(ウェストゲート弁開度)及び内燃機関1の機関回転数となっている。
 さらに、排気昇温制御が触媒昇温制御とフィルタ昇温制御とからなっている。
 触媒昇温制御は、三元触媒21の温度Ttが低いとき、三元触媒21の温度Ttが第2所定温度としての目標三元触媒温度Ttt以上となるように排気を昇温する制御である。
 触媒昇温制御は、三元触媒21の温度Ttを上昇させるために制御する制御パラメータが、点火時期、三元触媒21の上流側に供給される二次空気、ウェストゲート弁34の弁開度(ウェストゲート弁開度)及び内燃機関1の機関回転数となっている。
 触媒昇温制御は、通常制御よりも内燃機関1の点火時期をリタードさせ、通常制御よりも二次空気をGPF22の上流側に供給し、通常制御よりもウェストゲート弁34の弁開度を大きくし、通常制御よりも内燃機関1の回転数を高くする制御である。
 フィルタ昇温制御は、GPF22の温度Tgが低いとき、GPF22の温度Tgが第1所定温度としての目標GPF温度Tgt以上となるように排気を昇温させる制御である。
 フィルタ昇温制御は、GPF22の温度Tgを上昇させるために制御する制御パラメータが、点火時期、三元触媒21の上流側に供給される二次空気、ウェストゲート弁34の弁開度(ウェストゲート弁開度)及び内燃機関1の機関回転数となっている。
 フィルタ昇温制御は、通常制御よりも内燃機関1の点火時期をリタードさせ、通常制御よりも二次空気をGPF22の上流側に供給し、通常制御よりもウェストゲート弁34の弁開度を大きくし、通常制御よりも内燃機関1の回転数を高くする制御である。
 そして、排気昇温制御を実施するにあたっては、フィルタ昇温制御が触媒昇温制御の後に実施されるようになっている。従って、例えば、触媒昇温制御の終了時にGPF22の温度Tgが目標GPF温度Tgt以上となっていれば、排気昇温制御は、フィルタ昇温制御を実施することなく終了する。
 触媒昇温制御における各制御パラメータの補正量は、図25に示すように、フィルタ昇温制御における各制御パラメータの補正量よりも大きくなるよう設定されている。
 また、触媒昇温制御においては、三元触媒21の温度Ttが目標三元触媒温度Ttt以下の場合、三元触媒21の温度Ttに関わらず、各制御パラメータ(点火時期、二次空気、ウェストゲート弁開度及び機関回転数)の補正量がそれぞれ予め設定された所定の一定値となっている。すなわち、GPF22の温度Tgが目標GPF温度Tgt以下の場合、GPF22の温度Tgによらず、排気昇温制御における各制御パラメータ(点火時期、二次空気、ウェストゲート弁開度及び機関回転数)の制御量を所定の一定値としている。
 フィルタ昇温制御においては、GPF22の温度Tgが目標GPF温度Tgt以下の場合、GPF22の温度Tgに関わらず、各制御パラメータ(点火時期、二次空気、ウェストゲート弁開度及び機関回転数)の補正量がそれぞれ予め設定された所定の一定値となっている。すなわち、GPF22の温度Tgが目標GPF温度Tgt以下の場合、GPF22の温度Tgによらず、排気昇温制御における各制御パラメータ(点火時期、二次空気、ウェストゲート弁開度及び機関回転数)の制御量を所定の一定値としている。
 なお、第11実施例において、触媒昇温制御及びフィルタ昇温制御における各制御パラメータ(点火時期、二次空気、ウェストゲート弁開度及び機関回転数)の補正量は、三元触媒21の温度Ttが目標三元触媒温度Tttに対して低くなるほど、またはGPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、大きくなるように設定してもよい。すなわち、第11実施例における排気昇温制御は、三元触媒21の温度Ttが目標三元触媒温度Tttに対して低くなるほど、またはGPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、各制御パラメータ(点火時期、二次空気、ウェストゲート弁開度及び機関回転数)の制御量を通常制御に比べて大きくしてもよい。
 図26は、上述した第11実施例における排気浄化装置の温度制御の流れを示すフローチャートである。
 ステップS30では、目標三元触媒温度Tttから三元触媒21の現在の温度Ttを減じて得られる温度差ΔTtと、目標GPF温度TgtからGPF22の現在の温度Tgを減じて得られる温度差ΔTgを算出する。
 ステップS31では、温度差ΔTt及び温度差ΔTgが0よりも大きい否かを判定している。温度差ΔTt及び温度差ΔTgのいずれか一方が0よりも大きい場合にはステップS32へ進み、温度差ΔTt及び温度差ΔTgの双方が0以下の場合にはステップS35へ進む。
 ステップS32では、温度差ΔTtが0よりも大きいか否かを判定する。温度差ΔTtが0より大きい場合には、ステップS33へ進む。温度差ΔTtが0以下の場合には、ステップS34へ進む。
 ステップS33では、第11実施例における触媒昇温制御を実施する。ステップS34では、第11実施例におけるフィルタ昇温制御を実施する。ステップS35では、上述した通常制御を実施する。
 このような第11実施例においても、上述した第6実施例と略同様の作用効果を奏することができる。
 なお、GPF捕集効率は、上述したように、GPF22の温度Tg、排気微粒子の粒径及びGPF22を流れる排気の空間速度と相関がある。そこで、フィルタ昇温制御中のGPF捕集効率を考慮して、フィルタ昇温制御に用いる制御パラメータを決定してもよい。
 つまり、第11実施例のフィルタ昇温制御においては、複数の制御パラメータを制御するにあたって、GPF捕集効率を向上させる上で有利な制御パラメータを優先して選択してもよい。
 また、第11実施例の触媒昇温制御においては、複数の制御パラメータを制御するにあたって、三元触媒21の温度Ttの上昇に最も寄与する点火時期を制御パラメータの1つにすることが望ましい。
 第12実施例における排気浄化装置の温度制御方法及び内燃機関1の制御装置について説明する。
 第12実施例は、上述した第6実施例と略同一構成となっているが、排気昇温制御において三元触媒21の温度Tt及びGPF22の温度Tgを上昇させるために複数の制御パラメータを制御している。すなわち、第12実施例においては、三元触媒21の温度Tt及びGPF22の温度Tgを上昇させるために制御する制御パラメータが、点火時期、三元触媒21の上流側に供給される二次空気、ウェストゲート弁34の弁開度(ウェストゲート弁開度)及び内燃機関1の機関回転数となっている。
 さらに、排気昇温制御が触媒昇温制御とフィルタ昇温制御とからなっている。
 触媒昇温制御は、三元触媒21の温度Ttが低いとき、三元触媒21の温度Ttが第2所定温度としての目標三元触媒温度Ttt以上となるように排気を昇温する制御である。
 触媒昇温制御は、三元触媒21の温度Ttを上昇させるために制御する制御パラメータが、点火時期、三元触媒21の上流側に供給される二次空気、ウェストゲート弁34の弁開度(ウェストゲート弁開度)及び内燃機関1の機関回転数となっている。
 触媒昇温制御は、通常制御よりも内燃機関1の点火時期をリタードさせ、通常制御よりも二次空気をGPF22の上流側に供給し、通常制御よりもウェストゲート弁34の弁開度を大きくし、通常制御よりも内燃機関1の回転数を高くする制御である。
 フィルタ昇温制御は、GPF22の温度Tgが低いとき、GPF22の温度Tgが第1所定温度としての目標GPF温度Tgt以上となるように排気を昇温させる制御である。
 フィルタ昇温制御は、GPF22の温度Tgを上昇させるために制御する制御パラメータが、点火時期、三元触媒21の上流側に供給される二次空気、ウェストゲート弁34の弁開度(ウェストゲート弁開度)及び内燃機関1の機関回転数となっている。
 フィルタ昇温制御は、通常制御よりも内燃機関1の点火時期をリタードさせ、通常制御よりも二次空気をGPF22の上流側に供給し、通常制御よりもウェストゲート弁34の弁開度を大きくし、通常制御よりも内燃機関1の回転数を高くする制御である。
 そして、第12実施例では、排気昇温制御を実施するにあたって、第2判定値としてのフィルタ昇温補正量P2と、第1判定値としての触媒昇温補正量P1と、を比較する。
 フィルタ昇温補正量P2は、目標GPF温度TgtからGPF22の現在の温度Tgを減じて得られる温度差ΔTgに応じて決まる制御パラメータの補正量である。フィルタ昇温補正量P2は、温度差ΔTgが大きくなるほど大きい値となる。
 触媒昇温補正量P1は、目標三元触媒温度Tttから三元触媒21の現在の温度Ttを減じて得られる温度差ΔTtに応じて決まる制御パラメータの補正量である。触媒昇温補正量P1は、温度差ΔTtが大きくなるほど大きい値となる。
 また、フィルタ昇温補正量P2の温度差ΔTgによる変化量は、触媒昇温補正量P1の温度差ΔTtによる変化量よりも小さくなるよう設定される。
 そして、排気昇温制御を実施するにあたって触媒昇温補正量P1からフィルタ昇温補正量P2を減じた値が0よりも大きい場合には、触媒昇温制御を実施する。換言すれば、排気昇温制御を実施するにあたって触媒昇温補正量P1からフィルタ昇温補正量P2を減じた値が0よりも大きい場合には、触媒昇温補正量P1を用いて排気昇温制御を実施する。
 排気昇温制御を実施するにあたって触媒昇温補正量P1からフィルタ昇温補正量P2を減じた値が0以下の場合には、フィルタ昇温制御を実施する。換言すれば、排気昇温制御を実施するにあたって触媒昇温補正量P1からフィルタ昇温補正量P2を減じた値が0よりも大きい場合には、フィルタ昇温補正量P2を用いて排気昇温制御を実施する。
 つまり、第12実施例において排気昇温制御を実施する場合、触媒昇温補正量P1とフィルタ昇温補正量P2を比較し、大きい方の補正量を利用して排気を昇温している。
 図27は、触媒温度制御の実施後に、フィルタ昇温制御を実施される例を示している。図27においては、破線は触媒昇温補正量P1を示し、一点鎖線はフィルタ昇温補正量P2を示し、実線は触媒昇温補正量P1とフィルタ昇温補正量P2のうちの大きい方の補正量を示している。第12実施例においては、図27の実線により規定される補正量を用いて排気昇温制御を実施する。
 なお、図27に示す例では、フィルタ昇温制御を開始した時点で三元触媒21の温度Ttは、目標三元触媒温度Tttにはなっていない。
 図28は、上述した第12実施例における排気浄化装置の温度制御の流れを示すフローチャートである。
 ステップS40では、目標三元触媒温度Tttから三元触媒21の現在の温度Ttを減じて得られる温度差ΔTtと、目標GPF温度TgtからGPF22の現在の温度Tgを減じて得られる温度差ΔTgを算出する。
 ステップS41では、温度差ΔTt及び温度差ΔTgが0よりも大きい否かを判定している。温度差ΔTt及び温度差ΔTgのいずれか一方が0よりも大きい場合にはステップS42へ進み、温度差ΔTt及び温度差ΔTgの双方が0以下の場合にはステップS47へ進む。
 ステップS42では、触媒昇温補正量P1を算出する。
 ステップS43では、フィルタ昇温補正量P2を算出する。
 ステップS44では、触媒昇温補正量P1からフィルタ昇温補正量P2を減じた値が0よりも大きいか否かを判定している。触媒昇温補正量P1からフィルタ昇温補正量P2を減じた値が0よりも大きい場合にはステップS45へ進み、触媒昇温補正量P1からフィルタ昇温補正量P2を減じた値が0以下の場合には、ステップS46へ進む。
 ステップS45では、触媒昇温補正量P1を用いて排気昇温制御を実施する。ステップS46では、フィルタ昇温補正量P2を用いて排気昇温制御を実施する。ステップS47では、上述した通常制御を実施する。
 このような第12実施例においても、上述した第6実施例と略同様の作用効果を奏することができる。
 なお、GPF捕集効率は、上述したように、GPF22の温度Tg、排気微粒子の粒径及びGPF22を流れる排気の空間速度と相関がある。そこで、フィルタ昇温制御中のGPF捕集効率を考慮して、フィルタ昇温制御に用いる制御パラメータを決定してもよい。
 つまり、第12実施例のフィルタ昇温制御においては、複数の制御パラメータを制御するにあたって、GPF捕集効率を向上させる上で有利な制御パラメータを優先して選択してもよい。
 また、第12実施例の触媒昇温制御においては、複数の制御パラメータを制御するにあたって、三元触媒21の温度Ttの上昇に最も寄与する点火時期を制御パラメータの1つにすることが望ましい。
 第13実施例における排気浄化装置の温度制御方法及び内燃機関1の制御装置について説明する。
 第13実施例は、上述した第6実施例と略同一構成となっているが、排気昇温制御において三元触媒21の温度Tt及びGPF22の温度Tgを上昇させるために複数の制御パラメータを制御している。すなわち、第13実施例においては、三元触媒21の温度Tt及びGPF22の温度Tgを上昇させるために制御する制御パラメータが、点火時期、三元触媒21の上流側に供給される二次空気、ウェストゲート弁34の弁開度(ウェストゲート弁開度)及び内燃機関1の機関回転数となっている。
 さらに、排気昇温制御が触媒昇温制御とフィルタ昇温制御とからなっている。
 触媒昇温制御は、三元触媒21の温度Ttが低いとき、三元触媒21の温度Ttが第2所定温度としての目標三元触媒温度Ttt以上となるように排気を昇温する制御である。
 触媒昇温制御は、三元触媒21の温度Ttを上昇させるために制御する制御パラメータが、点火時期、三元触媒21の上流側に供給される二次空気、ウェストゲート弁34の弁開度(ウェストゲート弁開度)及び内燃機関1の機関回転数となっている。
 触媒昇温制御は、通常制御よりも内燃機関1の点火時期をリタードさせ、通常制御よりも二次空気をGPF22の上流側に供給し、通常制御よりもウェストゲート弁34の弁開度を大きくし、通常制御よりも内燃機関1の回転数を高くする制御である。
 フィルタ昇温制御は、GPF22の温度Tgが低いとき、GPF22の温度Tgが第1所定温度としての目標GPF温度Tgt以上となるように排気を昇温させる制御である。
 フィルタ昇温制御は、GPF22の温度Tgを上昇させるために制御する制御パラメータが、点火時期、三元触媒21の上流側に供給される二次空気、ウェストゲート弁34の弁開度(ウェストゲート弁開度)及び内燃機関1の機関回転数となっている。
 フィルタ昇温制御は、通常制御よりも内燃機関1の点火時期をリタードさせ、通常制御よりも二次空気をGPF22の上流側に供給し、通常制御よりもウェストゲート弁34の弁開度を大きくし、通常制御よりも内燃機関1の回転数を高くする制御である。
 そして、排気昇温制御を実施するにあたっては、フィルタ昇温制御が触媒昇温制御の後に実施されるようになっている。従って、例えば、触媒昇温制御の終了時にGPF22の温度Tgが目標GPF温度Tgt以上となっていれば、排気昇温制御は、フィルタ昇温制御を実施することなく終了する。
 触媒昇温制御における各制御パラメータの補正量は、図29に示すように、フィルタ昇温制御における各制御パラメータの補正量よりも大きくなるよう設定されている。
 そして、この第13実施例においては、触媒昇温制御における制御パラメータの数が、フィルタ昇温制御におけるパラメータ数よりも多くなるよう設定されている。例えば、触媒昇温制御における制御パラメータが点火時期、二次空気、ウェストゲート弁開度及び機関回転数の4つであれば、フィルタ昇温制御におけるパラメータは、点火時期、二次空気、ウェストゲート弁開度の3つとなっている。
 また、触媒昇温制御においては、三元触媒21の温度Ttが目標三元触媒温度Ttt以下の場合、三元触媒21の温度Ttに関わらず、各制御パラメータ(例えば、点火時期、二次空気、ウェストゲート弁開度及び機関回転数)の補正量がそれぞれ予め設定された所定の一定値となっている。すなわち、GPF22の温度Tgが目標GPF温度Tgt以下の場合、GPF22の温度Tgによらず、排気昇温制御における各制御パラメータ(点火時期、二次空気、ウェストゲート弁開度及び機関回転数)の制御量を所定の一定値としている。
 フィルタ昇温制御においては、GPF22の温度Tgが目標GPF温度Tgt以下の場合、GPF22の温度Tgに関わらず、各制御パラメータ(例えば、点火時期、二次空気、ウェストゲート弁開度及び機関回転数)の補正量がそれぞれ予め設定された所定の一定値となっている。すなわち、GPF22の温度Tgが目標GPF温度Tgt以下の場合、GPF22の温度Tgによらず、排気昇温制御における各制御パラメータ(点火時期、二次空気、ウェストゲート弁開度及び機関回転数)の制御量を所定の一定値としている。
 なお、第13実施例において、触媒昇温制御及びフィルタ昇温制御における各制御パラメータ(点火時期、二次空気、ウェストゲート弁開度及び機関回転数)の補正量は、三元触媒21の温度Ttが目標三元触媒温度Tttに対して低くなるほど、またはGPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、大きくなるように設定してもよい。すなわち、第13実施例における排気昇温制御は、三元触媒21の温度Ttが目標三元触媒温度Tttに対して低くなるほど、またはGPF22の温度Tgが目標GPF温度Tgtに対して低くなるほど、各制御パラメータ(点火時期、二次空気、ウェストゲート弁開度及び機関回転数)の制御量を通常制御に比べて大きくしてもよい。
 図30は、上述した第13実施例における排気浄化装置の温度制御の流れを示すフローチャートである。
 ステップS50では、目標三元触媒温度Tttから三元触媒21の現在の温度Ttを減じて得られる温度差ΔTtと、目標GPF温度TgtからGPF22の現在の温度Tgを減じて得られる温度差ΔTgを算出する。
 ステップS51では、温度差ΔTt及び温度差ΔTgが0よりも大きい否かを判定している。温度差ΔTt及び温度差ΔTgのいずれか一方が0よりも大きい場合にはステップS52へ進み、温度差ΔTt及び温度差ΔTgの双方が0以下の場合にはステップS55へ進む。
 ステップS52では、温度差ΔTtが0よりも大きいか否かを判定する。温度差ΔTtが0より大きい場合には、ステップS53へ進む。温度差ΔTtが0以下の場合には、ステップS54へ進む。
 ステップS53では、第13実施例における触媒昇温制御を実施する。ステップS54では、第13実施例におけるフィルタ昇温制御を実施する。ステップS55では、上述した通常制御を実施する。
 このような第13実施例においても、上述した第6実施例と略同様の作用効果を奏することができる。
 なお、GPF捕集効率は、上述したように、GPF22の温度Tg、排気微粒子の粒径及びGPF22を流れる排気の空間速度と相関がある。そこで、フィルタ昇温制御中のGPF捕集効率を考慮して、フィルタ昇温制御に用いる制御パラメータを決定してもよい。
 つまり、第13実施例のフィルタ昇温制御においては、複数の制御パラメータを制御するにあたって、GPF捕集効率を向上させる上で有利な制御パラメータを優先して選択してもよい。
 また、第13実施例の触媒昇温制御においては、複数の制御パラメータを制御するにあたって、三元触媒21の温度Ttの上昇に最も寄与する点火時期を制御パラメータの1つにすることが望ましい。
 なお、上述した各実施例のうち触媒昇温制御及びフィルタ昇温制御で複数の制御パラメータを制御するものにおいては、フィルタ昇温制御で制御する制御パラメータが触媒昇温制御で制御する制御パラメータと異なるものであってもよい。すなわち、例えば、触媒昇温制御で点火時期と二次空気を制御し、フィルタ昇温制御でウェストゲート弁と機関回転数を制御するようにしてもよい。

Claims (14)

  1.  内燃機関に接続された排気通路に設けられ、上記内燃機関から排出された排気を浄化する内燃機関の排気浄化装置の温度制御方法において、
     上記排気浄化装置は、排気中の排気微粒子を捕集するフィルタを有し、
     上記フィルタの温度が予め設定された第1所定温度以下の場合には、排気を昇温する所定の排気昇温制御を実施する内燃機関の排気浄化装置の温度制御方法。
  2.  上記第1所定温度は、上記フィルタに捕集された排気微粒子が燃焼除去される温度よりも低く設定されている請求項1に記載の内燃機関の排気浄化装置の温度制御方法。
  3.  上記第1所定温度は、上記フィルタの排気微粒子の捕集効率に基づいて設定されている請求項1または2に記載の内燃機関の排気浄化装置の温度制御方法。
  4.  上記第1所定温度は、上記フィルタの排気微粒子の捕集効率が一定範囲内に収束する温度範囲の中で最低の温度に設定されている請求項3に記載の内燃機関の排気浄化装置の温度制御方法。
  5.  上記排気浄化装置は、上記フィルタの上流側に位置して排気を浄化する触媒を有し、
     上記触媒の温度が予め設定された第2所定温度以下の場合には、上記排気昇温制御を実施する請求項1~4のいずれかに記載の内燃機関の排気浄化装置の温度制御方法。
  6.  上記排気昇温制御は、上記フィルタが上記第1所定温度以上となるように排気を昇温するフィルタ昇温制御と、上記触媒が上記第2所定温度以上となるように排気を昇温する触媒昇温制御と、からなり、
     上記フィルタ昇温制御は、上記触媒昇温制御の後に実施する請求項5に記載の内燃機関の排気浄化装置の温度制御方法。
  7.  上記排気昇温制御は、上記フィルタが上記第1所定温度以上となるように排気を昇温するフィルタ昇温制御と、上記触媒が上記第2所定温度以上となるように排気を昇温する触媒昇温制御と、からなり、
     上記第1所定温度から上記フィルタの温度を減じて得られた値に応じて決まる第1判定値と、上記第2所定温度から上記触媒の温度を減じて得られた値に応じて決まる第2判定値と、を比較し、上記第1判定値の方が大きい場合には、上記フィルタ昇温制御を実施し、上記第2判定値の方が大きい場合には、上記触媒昇温制御を実施する請求項5に記載の内燃機関の排気浄化装置の温度制御方法。
  8.  上記フィルタ昇温制御と上記触媒昇温制御とでは、上記排気浄化装置の温度を上昇させるために制御する制御パラメータの制御量が異なる請求項6~7のいずれかに記載の内燃機関の排気浄化装置の温度制御方法。
  9.  上記フィルタ昇温制御と上記触媒昇温制御とでは、上記排気浄化装置の温度を上昇させるために制御する制御パラメータの数が異なる請求項6~8のいずれかに記載の内燃機関の排気浄化装置の温度制御方法。
  10.  上記排気浄化装置の温度が低いとき、上記排気浄化装置の温度を上昇させるために制御する制御パラメータである上記内燃機関の点火時期をリタードして上記排気浄化装置の温度を上昇させる請求項1~9のいずれかに記載の内燃機関の排気浄化装置の温度制御方法。
  11.  上記排気通路は、上記排気浄化装置の上流側に二次空気を供給可能なものであり、
     上記排気浄化装置の温度が低いとき、上記排気浄化装置の温度を上昇させるために制御する制御パラメータである二次空気を供給して上記排気浄化装置の温度を上昇させる請求項1~10のいずれかに記載の内燃機関の排気浄化装置の温度制御方法。
  12.  上記排気通路は、上記排気浄化装置の上流側に過給機のタービンが配置されているとともに、上記タービンを迂回する排気バイパス通路が接続され、
     上記排気バイパス通路には、当該排気バイパス通路を開閉するウェストゲート弁が配置され、
     上記排気浄化装置の温度が低いとき、上記排気浄化装置の温度を上昇させるために制御する制御パラメータであるウェストゲート弁開度を大きくして上記排気浄化装置の温度を上昇させる請求項1~11のいずれかに記載の内燃機関の排気浄化装置の温度制御方法。
  13.  上記排気浄化装置の温度が低いとき、上記排気浄化装置の温度を上昇させるために制御する制御パラメータである上記内燃機関の機関回転数を高くして上記排気浄化装置の温度を上昇させる請求項1~12のいずれかに記載の内燃機関の排気浄化装置の温度制御方法。
  14.  内燃機関に接続された排気通路内の排気を浄化する排気浄化装置と、
     上記排気浄化装置の温度を制御する制御部と、を有し、
     上記排気浄化装置は、排気通路内の排気微粒子を捕集するフィルタを有し、
     上記制御部は、上記フィルタの温度が予め設定された第1所定温度以下の場合には、排気を昇温する所定の排気昇温制御を実施する内燃機関の制御装置。
PCT/IB2018/000628 2018-04-27 2018-04-27 内燃機関の排気浄化装置の温度制御方法及び内燃機関の制御装置 WO2019207334A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/IB2018/000628 WO2019207334A1 (ja) 2018-04-27 2018-04-27 内燃機関の排気浄化装置の温度制御方法及び内燃機関の制御装置
JP2020515300A JP6939986B2 (ja) 2018-04-27 2018-04-27 内燃機関の排気浄化装置の温度制御方法及び内燃機関の制御装置
US17/050,541 US11300065B2 (en) 2018-04-27 2018-04-27 Method of controlling temperature of exhaust purification device of internal combustion engine, and internal combustion engine control device
CN201880092750.2A CN112105804B (zh) 2018-04-27 2018-04-27 内燃机的排气净化装置的温度控制方法以及内燃机的控制装置
EP18916143.3A EP3786423B1 (en) 2018-04-27 2018-04-27 Method of controlling temperature of exhaust purification device of internal combustion engine, and internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2018/000628 WO2019207334A1 (ja) 2018-04-27 2018-04-27 内燃機関の排気浄化装置の温度制御方法及び内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2019207334A1 true WO2019207334A1 (ja) 2019-10-31

Family

ID=68294928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/000628 WO2019207334A1 (ja) 2018-04-27 2018-04-27 内燃機関の排気浄化装置の温度制御方法及び内燃機関の制御装置

Country Status (5)

Country Link
US (1) US11300065B2 (ja)
EP (1) EP3786423B1 (ja)
JP (1) JP6939986B2 (ja)
CN (1) CN112105804B (ja)
WO (1) WO2019207334A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020007000A1 (de) * 2020-11-16 2022-05-19 Daimler Ag Verbrennungskraftmaschine für ein Kraftfahrzeug, insbesondere für einen Kraftwagen

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835418A (ja) 1994-07-25 1996-02-06 Nippondenso Co Ltd 排出ガス浄化装置の温度制御装置
JP2001271680A (ja) * 2000-03-27 2001-10-05 Mazda Motor Corp 筒内噴射式エンジンの制御装置
JP2001271685A (ja) * 2000-03-27 2001-10-05 Mazda Motor Corp 筒内噴射式エンジンの触媒温度制御方法及びエンジンの制御装置
JP2008115712A (ja) * 2006-11-01 2008-05-22 Toyota Motor Corp 内燃機関の排気浄化装置
JP2012107588A (ja) * 2010-11-18 2012-06-07 Mitsubishi Motors Corp 内燃機関の制御装置
JP2013047498A (ja) * 2011-08-29 2013-03-07 Fuji Heavy Ind Ltd エンジンの排気浄化装置
JP2014134157A (ja) * 2013-01-11 2014-07-24 Hino Motors Ltd 燃料添加装置
JP2015004353A (ja) * 2013-06-24 2015-01-08 トヨタ自動車株式会社 内燃機関
JP2015151894A (ja) * 2014-02-12 2015-08-24 株式会社 Acr 排気ガス昇温装置を備えた排気ガス浄化装置
JP2016164371A (ja) * 2015-03-06 2016-09-08 株式会社豊田自動織機 エンジン制御システム
JP2017210883A (ja) * 2016-05-23 2017-11-30 日立オートモティブシステムズ株式会社 車両制御装置
JP2018003641A (ja) * 2016-06-29 2018-01-11 スズキ株式会社 車両の排気浄化装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3047621B2 (ja) * 1992-05-25 2000-05-29 トヨタ自動車株式会社 ハイブリッド車のエンジン駆動発電機の制御装置
JP3757860B2 (ja) 2001-12-18 2006-03-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4367176B2 (ja) * 2003-05-16 2009-11-18 株式会社デンソー 内燃機関の排気浄化装置
JP4214982B2 (ja) * 2004-10-12 2009-01-28 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4162016B2 (ja) * 2006-06-08 2008-10-08 トヨタ自動車株式会社 内燃機関の排気浄化装置
US20080104948A1 (en) * 2006-10-31 2008-05-08 David Joseph Kapparos Method of regenerating a particulate filter
EP1918542B1 (en) * 2006-11-06 2010-12-22 GM Global Technology Operations, Inc. Operating method for a particulate filter, data processor program product and control apparatus therefore
JP4930215B2 (ja) * 2007-06-25 2012-05-16 株式会社デンソー 排気浄化装置
US8280610B2 (en) * 2009-05-27 2012-10-02 GM Global Technology Operations LLC Control systems and methods for fuel and secondary air injection
US20120096854A1 (en) * 2010-10-21 2012-04-26 Kiran Shashi Engine exhaust treatment system and method for treating exhaust gas from an engine
JP5115873B2 (ja) * 2010-12-08 2013-01-09 株式会社デンソー パティキュレートフィルタの故障検出装置
GB2492537B (en) * 2011-06-29 2014-05-14 Perkins Engines Co Ltd Method and apparatus for controlling the operation of a turbocharged internal combustion engine
JP2016130456A (ja) * 2015-01-13 2016-07-21 株式会社デンソー 内燃機関の制御装置
US9925974B2 (en) * 2016-04-26 2018-03-27 Ford Global Technologies, Llc System and methods for improving fuel economy
US10473011B2 (en) * 2016-10-04 2019-11-12 Ford Global Technologies, Llc Particulate filter regeneration system and method
CN106762040A (zh) * 2017-01-03 2017-05-31 宁波吉利罗佑发动机零部件有限公司 一种应用于汽油发动机的排放后处理系统及处理方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835418A (ja) 1994-07-25 1996-02-06 Nippondenso Co Ltd 排出ガス浄化装置の温度制御装置
JP2001271680A (ja) * 2000-03-27 2001-10-05 Mazda Motor Corp 筒内噴射式エンジンの制御装置
JP2001271685A (ja) * 2000-03-27 2001-10-05 Mazda Motor Corp 筒内噴射式エンジンの触媒温度制御方法及びエンジンの制御装置
JP2008115712A (ja) * 2006-11-01 2008-05-22 Toyota Motor Corp 内燃機関の排気浄化装置
JP2012107588A (ja) * 2010-11-18 2012-06-07 Mitsubishi Motors Corp 内燃機関の制御装置
JP2013047498A (ja) * 2011-08-29 2013-03-07 Fuji Heavy Ind Ltd エンジンの排気浄化装置
JP2014134157A (ja) * 2013-01-11 2014-07-24 Hino Motors Ltd 燃料添加装置
JP2015004353A (ja) * 2013-06-24 2015-01-08 トヨタ自動車株式会社 内燃機関
JP2015151894A (ja) * 2014-02-12 2015-08-24 株式会社 Acr 排気ガス昇温装置を備えた排気ガス浄化装置
JP2016164371A (ja) * 2015-03-06 2016-09-08 株式会社豊田自動織機 エンジン制御システム
JP2017210883A (ja) * 2016-05-23 2017-11-30 日立オートモティブシステムズ株式会社 車両制御装置
JP2018003641A (ja) * 2016-06-29 2018-01-11 スズキ株式会社 車両の排気浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3786423A4

Also Published As

Publication number Publication date
EP3786423A4 (en) 2021-03-03
CN112105804A (zh) 2020-12-18
JPWO2019207334A1 (ja) 2021-04-08
CN112105804B (zh) 2022-05-27
JP6939986B2 (ja) 2021-09-22
EP3786423A1 (en) 2021-03-03
EP3786423B1 (en) 2023-08-02
US11300065B2 (en) 2022-04-12
US20210239058A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
JP4843035B2 (ja) エンジン排気温度を維持するエンジンおよび方法
JP4120524B2 (ja) エンジンの制御装置
JP5444996B2 (ja) 内燃機関及びその制御方法
US11002199B2 (en) Method and device for the exhaust-gas aftertreatment of an internal combustion engine
WO2008127755A2 (en) Secondary air system for a combustion engine breathing system
JP5169439B2 (ja) 内燃機関制御装置及び内燃機関制御システム
JP4606939B2 (ja) 内燃機関の排気浄化装置
JP2005048743A (ja) 排気後処理装置付過給エンジンの制御装置および制御方法
JP4285141B2 (ja) ディーゼルエンジンの燃料噴射制御装置
JP2006233898A (ja) Egr装置
JP2010096049A (ja) 内燃機関の制御装置
WO2019123624A1 (ja) 内燃機関およびその制御方法
EP1631737A2 (en) System and method of gas recirculation in an internal combustion engine
JP2009002275A (ja) 内燃機関の制御装置
JP2007085198A (ja) 内燃機関の過給圧制御システム
JP2010190052A (ja) 内燃機関の過給システム
WO2019207334A1 (ja) 内燃機関の排気浄化装置の温度制御方法及び内燃機関の制御装置
JP2010270715A (ja) シーケンシャル式の2段式過給機付き内燃機関およびその制御方法
JP2009191737A (ja) エンジンの過給装置
JP7061905B2 (ja) 内燃機関システム
KR101807020B1 (ko) 엔진 제어 장치 및 엔진의 제어 방법
JP2009250057A (ja) 内燃機関の制御装置
JP2008038622A (ja) 内燃機関の排気浄化装置、及び方法
JP6699272B2 (ja) エンジンおよびその制御方法
JP4421360B2 (ja) 内燃機関の排ガス浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515300

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018916143

Country of ref document: EP