WO2019205532A1 - 一种单晶硅电池组件 - Google Patents

一种单晶硅电池组件 Download PDF

Info

Publication number
WO2019205532A1
WO2019205532A1 PCT/CN2018/111686 CN2018111686W WO2019205532A1 WO 2019205532 A1 WO2019205532 A1 WO 2019205532A1 CN 2018111686 W CN2018111686 W CN 2018111686W WO 2019205532 A1 WO2019205532 A1 WO 2019205532A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal plate
thermally conductive
thickness
metal
Prior art date
Application number
PCT/CN2018/111686
Other languages
English (en)
French (fr)
Inventor
黄孝如
Original Assignee
Huang Xiaoru
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huang Xiaoru filed Critical Huang Xiaoru
Priority to AU2018286566A priority Critical patent/AU2018286566A1/en
Publication of WO2019205532A1 publication Critical patent/WO2019205532A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present application relates to the field of solar cell technology, and in particular to a single crystal silicon cell module.
  • the photovoltaic backsheet is located at the outermost layer on the back of the PV module, protecting the PV cell from moisture and oxygen in an outdoor environment.
  • the existing photovoltaic backsheets are divided into two types: one is a glue-coated composite back sheet film, and the fluorine film or EVA film is laminated on both sides of the PET polyester film, and the three-layer structure is common, such as TPT, TPE, KPK and the like.
  • the other is to coat the back sheet film, and the fluororesin is coated on both sides of the PET polyester film, and dried to form a film.
  • the temperature rise of photovoltaic modules will seriously affect the photoelectric conversion efficiency of photovoltaic cells, resulting in a significant decrease in the efficiency of silicon cells. Therefore, the heat dissipation performance and stability of photovoltaic backplanes will affect the conversion efficiency and service life of silicon cells. .
  • the purpose of the present application is to overcome the deficiencies of the prior art described above and to provide a single crystal silicon battery assembly.
  • the single crystal silicon battery assembly includes:
  • a back protective plate comprising a first metal plate, a PET layer bonded to an upper surface of the first metal plate, an upper surface of the PET layer bonded with an ABS layer, the upper side of the ABS layer
  • the surface is provided with a first polyolefin bonding layer, and a plurality of first columnar grooves arranged in an array are disposed on the upper surface of the first metal plate, the first columnar grooves penetrating the first polyolefin a bonding layer, the ABS layer and the PET layer and exposing an upper surface of the first metal plate, wherein each of the first column-shaped grooves is embedded with a thermally conductive elastic column, and an upper end portion of the thermally conductive elastic column Exposed to the first polyolefin bonding layer, a bottom surface of the thermally conductive elastic column is in contact with the first metal plate, the thermally conductive elastic column comprises a metal aluminum core, and a side surface of the metal aluminum core is provided with an isoprene a rubber layer, a surface of the
  • thermally conductive silicone sheet a thermally conductive silicone sheet, the thermally conductive silicone sheet being disposed on a lower surface of the first metal plate;
  • the second metal plate is disposed on a lower surface of the thermal conductive silica sheet, a lower surface of the second metal plate is bonded with a PEN layer, and a lower surface of the PEN layer is bonded with a polyethylene layer a lower surface of the polyethylene layer is bonded with a fluorine-containing resin layer, and a plurality of second column-shaped grooves arranged in an array are disposed on a lower surface of the second metal plate, and the second column-shaped groove is penetrated
  • the fluorine-containing resin layer, the polyethylene layer, and the PEN layer expose the lower surface of the second metal plate, and each of the second column-shaped grooves is embedded with a metal pillar, and the top surface of the metal pillar is Contacting a lower surface of the second metal plate, the lower end portion of the metal post is exposed to the fluorine-containing resin layer;
  • thermal conductive encapsulant layer covering the back protective plate, wherein the upper end portion of the thermally conductive elastic column exposed to the first polyolefin bonding layer is embedded in the first In the thermal conductive encapsulant layer;
  • the solar cell sheet layer is disposed on the second encapsulant layer, the solar cell sheet layer comprises a plurality of single crystal silicon solar cell sheets;
  • the monocrystalline silicon cell assembly further, the first metal plate and the second metal plate are made of one of aluminum, copper, stainless steel, and aluminum-magnesium alloy, the first metal plate and the second
  • the thickness of the metal plate is 100-200 microns
  • the thickness of the PET layer is 2-4 mm
  • the thickness of the ABS layer is 0.5-1 mm
  • the thickness of the first polyolefin bonding layer is 100-150. Micron.
  • the metal aluminum core has a diameter of 3-6 mm
  • the isoprene rubber layer has a thickness of 5-8 mm
  • the second polyolefin bonding layer has a thickness of 50- 100 microns.
  • the PEN layer has a thickness of 2 to 4 mm
  • the polyethylene layer has a thickness of 300 to 600 ⁇ m
  • the fluorine-containing resin layer has a thickness of 50 to 150 ⁇ m.
  • the metal pillar is made of aluminum or copper, and the diameter of the second columnar groove is 1-2 cm in diameter with respect to the metal pillar, and the metal pillar is exposed to the lower end of the fluorine-containing resin layer. The length is 0.5-2 mm.
  • the first thermally conductive encapsulant layer comprises a polyolefin resin and a thermally conductive nanoparticle, wherein the thermally conductive nanoparticle is alumina, aluminum nitride, boron nitride, silicon nitride, or magnesium oxide.
  • the thermally conductive nanoparticles have a particle diameter of 100-200 nm
  • the second encapsulant layer and the third encapsulant layer are made of polyolefin.
  • the first thermal conductive encapsulant layer has a thickness of 400-500 microns
  • the second encapsulant layer has a thickness of 50-100 microns
  • the third encapsulant layer has a thickness of 200- 300 micrometers
  • the upper end portion of the thermally conductive elastic column embedded in the first thermal conductive encapsulant layer has a length of 200-400 micrometers.
  • the monocrystalline silicon battery assembly further, the fluororesin layer is made of polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, ethylene-chlorotrifluoroethylene copolymer or ethylene-four. Fluoroethylene copolymer.
  • a first columnar groove is formed in the multilayer resin layer on the surface of the first metal plate, and each of the first columnar grooves is embedded with a heat conductive elastic column, so that the formation is performed.
  • the plurality of thermally conductive elastic columns respectively form a plurality of heat dissipating passages, and the heat generated by the solar cell sheet can be quickly transmitted to the first metal plate, and the first metal plate and the second metal plate are disposed between the first metal plate and the second metal plate.
  • the thermal conductive silicone sheet facilitates heat transfer, and the back protective plate has excellent seismic resistance.
  • the thermally conductive elastic column comprises a metal aluminum core, an isoprene rubber layer and a second polyolefin bonding layer, so that the thermal conductive elastic column has excellent thermal conductivity while also having excellent cushioning and shock absorbing performance.
  • the design of the double shock absorbing structure makes the solar cell chip not damage and break even if the single crystal silicon battery assembly collides.
  • the upper end of the thermal conductive elastic column is embedded in the first thermal conductive encapsulant layer, and the area of the thermal conductive elastic column and the first thermal conductive encapsulation layer is increased, thereby further improving the stability and thermal conductivity of the single crystal silicon battery assembly.
  • the surface of the package backsheet has a polyolefin bonding layer, and an ultra-thin second encapsulant layer is disposed between the first thermally conductive encapsulant layer and the monocrystalline silicon cell sheet layer, so that the entire battery assembly is more easily bonded into one body.
  • the single crystal silicon battery assembly of the present application is thick overall, and has excellent heat dissipation performance and seismic performance. And the water vapor barrier performance ensures that the photoelectric conversion efficiency of the single crystal silicon cell is not attenuated, ensuring stable output power and suitable for long-term use.
  • FIG. 1 is a schematic structural view of a heat dissipation type solar cell module of the present application.
  • FIG. 2 is a schematic structural view of a bottom surface of a thermally conductive elastic column of the present application.
  • 3 is a top plan view of the package protection board of the present application.
  • FIG. 4 is a bottom view of the package protection panel of the present application.
  • the present application provides a single crystal silicon battery assembly including: a back protective plate 1 including a first metal plate 11 at the A top surface of a metal plate 11 is bonded with a PET layer 12, and an upper surface of the PET layer 12 is bonded with an ABS layer 13.
  • the upper surface of the ABS layer 13 is provided with a first polyolefin bonding layer 14,
  • the upper surface of the first metal plate 11 is provided with a plurality of first columnar grooves 15 arranged in an array, the first columnar grooves 15 penetrating the first polyolefin bonding layer 14 and the ABS layer 13
  • the PET layer 12 and exposing the upper surface of the first metal plate 11 each of the first cylindrical grooves 15 is embedded with a thermal conductive elastic column 2, and the upper end portion of the thermally conductive elastic column 2 is exposed a first polyolefin bonding layer 14, a bottom surface of the thermally conductive elastic column 2 is in contact with the first metal plate 11,
  • the thermally conductive elastic column 2 comprises a metal aluminum core 21, and a side surface of the metal aluminum core 21 is disposed
  • There is an isoprene rubber layer 22, the surface of the isoprene rubber layer 22 is provided with a second polyolefin bonding layer 23; a thermal conductive silica sheet 3, the thermal conductive
  • a second metal plate 4 disposed on a lower surface of the thermally conductive silicone sheet 3, a lower surface of the second metal plate 4 bonded with a PEN layer 41, a lower surface of the PEN layer 41
  • a polyethylene layer 42 is bonded, a lower surface of the polyethylene layer 42 is bonded with a fluorine-containing resin layer 43, and a plurality of second columnar recesses arranged in an array are disposed on the lower surface of the second metal plate 4.
  • each of the second columnar grooves 44 is embedded in a metal column 5, the top surface of the metal column 5 is in contact with the lower surface of the second metal plate 4, the lower end of the metal column 5 is exposed to the fluorine-containing resin layer 43;
  • a first thermal conductive encapsulant layer 6 covering the back protective plate 1 , the upper end of the thermally conductive elastic column 2 exposed in the first polyolefin bonding layer 14 being embedded
  • a second encapsulant layer 7 covering the first thermal adhesive encapsulant layer 6
  • a solar cell sheet layer covering the solar cell sheet layer setting On the second encapsulant layer, the solar cell sheet layer comprises a plurality of single crystal silicon solar cell sheets 8; a third encapsulant layer 9, the third encapsulant layer 9 covering the solar cell sheet layer;
  • the transparent cover 10 is disposed on the third encapsulant layer 9.
  • the material of the first metal plate 11 and the second metal plate 4 is one of aluminum, copper, stainless steel, and aluminum-magnesium alloy, and the first metal plate 11 and the second metal plate 4
  • the thickness of the PET layer 12 is 2-4 mm
  • the thickness of the ABS layer 13 is 0.5-1 mm
  • the thickness of the first polyolefin bonding layer 14 is 100-150. Micron.
  • the metal aluminum core 21 has a diameter of 3 to 6 mm
  • the isoprene rubber layer 22 has a thickness of 5 to 8 mm
  • the second polyolefin bonding layer 23 has a thickness of 50 to 100 ⁇ m.
  • the PEN layer 41 has a thickness of 2-4 mm
  • the polyethylene layer 42 has a thickness of 300-600 ⁇ m
  • the fluororesin layer 43 has a thickness of 50-150 ⁇ m
  • the metal pillar 5 The material is aluminum or copper
  • the diameter of the second columnar groove 44 and the diameter of the metal post 5 are both 1-2 cm
  • the metal post 5 is exposed at the lower end of the fluorine-containing resin layer 43.
  • the length is 0.5-2 mm.
  • the first thermally conductive encapsulant layer 6 comprises a polyolefin resin and thermally conductive nanoparticles, and the thermally conductive nanoparticles are one of alumina, aluminum nitride, boron nitride, silicon nitride, and magnesium oxide.
  • the thermally conductive nanoparticles have a particle diameter of 100-200 nm, and the second encapsulant layer 7 and the third encapsulant layer 9 are made of polyolefin.
  • the first thermal conductive encapsulant layer 6 has a thickness of 400-500 micrometers
  • the second encapsulant layer 7 has a thickness of 50-100 micrometers
  • the third encapsulant layer 9 has a thickness of 200-300 micrometers.
  • the length of the upper end portion of the thermally conductive elastic column 2 embedded in the first thermally conductive encapsulant layer is 200-400 microns.
  • the material of the fluorine-containing resin layer 43 is polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, ethylene-chlorotrifluoroethylene copolymer or ethylene-tetrafluoroethylene copolymer.
  • the present application provides a single crystal silicon battery assembly including: a back protective plate 1 including a first metal plate 11 at the A top surface of a metal plate 11 is bonded with a PET layer 12, and an upper surface of the PET layer 12 is bonded with an ABS layer 13.
  • the upper surface of the ABS layer 13 is provided with a first polyolefin bonding layer 14,
  • the upper surface of the first metal plate 11 is provided with a plurality of first columnar grooves 15 arranged in an array, the first columnar grooves 15 penetrating the first polyolefin bonding layer 14 and the ABS layer 13
  • the PET layer 12 and exposing the upper surface of the first metal plate 11 each of the first cylindrical grooves 15 is embedded with a thermal conductive elastic column 2, and the upper end portion of the thermally conductive elastic column 2 is exposed a first polyolefin bonding layer 14, a bottom surface of the thermally conductive elastic column 2 is in contact with the first metal plate 11,
  • the thermally conductive elastic column 2 comprises a metal aluminum core 21, and a side surface of the metal aluminum core 21 is disposed
  • There is an isoprene rubber layer 22, the surface of the isoprene rubber layer 22 is provided with a second polyolefin bonding layer 23; a thermal conductive silica sheet 3, the thermal conductive
  • a second metal plate 4 disposed on a lower surface of the thermally conductive silicone sheet 3, a lower surface of the second metal plate 4 bonded with a PEN layer 41, a lower surface of the PEN layer 41
  • a polyethylene layer 42 is bonded, a lower surface of the polyethylene layer 42 is bonded with a fluorine-containing resin layer 43, and a plurality of second columnar recesses arranged in an array are disposed on the lower surface of the second metal plate 4.
  • each of the second columnar grooves 44 is embedded in a metal column 5, the top surface of the metal column 5 is in contact with the lower surface of the second metal plate 4, the lower end of the metal column 5 is exposed to the fluorine-containing resin layer 43;
  • a first thermal conductive encapsulant layer 6 covering the back protective plate 1 , the upper end of the thermally conductive elastic column 2 exposed in the first polyolefin bonding layer 14 being embedded
  • a second encapsulant layer 7 covering the first thermal adhesive encapsulant layer 6
  • a solar cell sheet layer covering the solar cell sheet layer setting On the second encapsulant layer, the solar cell sheet layer comprises a plurality of single crystal silicon solar cell sheets 8; a third encapsulant layer 9, the third encapsulant layer 9 covering the solar cell sheet layer;
  • the transparent cover 10 is disposed on the third encapsulant layer 9.
  • the material of the first metal plate 11 and the second metal plate 4 is aluminum, and the thickness of the first metal plate 11 and the second metal plate 4 are both 150 micrometers, and the PET layer 12
  • the thickness is 3 mm
  • the thickness of the ABS layer 13 is 0.8 mm
  • the thickness of the first polyolefin bonding layer 14 is 120 ⁇ m.
  • the metal aluminum core 21 has a diameter of 5 mm
  • the isoprene rubber layer 22 has a thickness of 7 mm
  • the second polyolefin bonding layer 23 has a thickness of 80 ⁇ m.
  • the thickness of the PEN layer 41 is 3 mm
  • the thickness of the polyethylene layer 42 is 400 ⁇ m
  • the thickness of the fluorine-containing resin layer 43 is 100 ⁇ m
  • the material of the metal pillar 5 is aluminum
  • the second The diameter of the columnar groove 44 and the diameter of the metal post 5 are both 1.5 cm
  • the length of the metal post 5 exposed to the lower end portion of the fluorine-containing resin layer 43 is 1 mm.
  • the first thermally conductive encapsulant layer 6 comprises a polyolefin resin and a thermally conductive nanoparticle, the thermally conductive nanoparticle is aluminum nitride, the thermally conductive nanoparticle has a particle diameter of 150 nm, and the second encapsulant 7 and the The material of the third encapsulant layer 9 is polyolefin.
  • the thickness of the first thermal conductive encapsulant layer 6 is 450 micrometers
  • the thickness of the second encapsulating adhesive layer 7 is 90 micrometers
  • the thickness of the third encapsulating adhesive layer 9 is 250 micrometers
  • the thermal conductive elastic column 2 is embedded in the
  • the length of the upper end portion in the first thermally conductive encapsulant layer is 300 micrometers.
  • the material of the fluorine-containing resin layer 43 is polytetrafluoroethylene.
  • This embodiment provides another single crystal silicon battery assembly, which is different from the first embodiment in that the material of the first metal plate 11 and the second metal plate 4 is copper, and the first metal plate 11 and the second metal plate 4 each have a thickness of 200 ⁇ m, the PET layer 12 has a thickness of 4 mm, the ABS layer 13 has a thickness of 0.5 mm, and the thickness of the first polyolefin bonding layer 14 It is 150 microns.
  • the metal aluminum core 21 has a diameter of 3 mm, the isoprene rubber layer 22 has a thickness of 5 mm, and the second polyolefin bonding layer 23 has a thickness of 50 ⁇ m.
  • the thickness of the PEN layer 41 is 2 mm
  • the thickness of the polyethylene layer 42 is 600 ⁇ m
  • the thickness of the fluorine-containing resin layer 43 is 150 ⁇ m
  • the material of the metal pillar 5 is copper
  • the second The diameter of the columnar groove 44 and the diameter of the metal post 5 are both 1 cm
  • the length of the metal post 5 exposed to the lower end portion of the fluorine-containing resin layer 43 is 0.5 mm.
  • the thermally conductive nanoparticle in the first thermally conductive encapsulant layer 6 is boron nitride, the thermally conductive nanoparticle has a particle diameter of 100 nm, and the first thermally conductive encapsulant 6 has a thickness of 500 micrometers, and the second encapsulant
  • the thickness of the layer 7 is 100 micrometers
  • the thickness of the third encapsulant layer 9 is 300 micrometers
  • the length of the upper end portion of the thermally conductive elastic pillar 2 embedded in the first thermally conductive encapsulant layer is 400 micrometers.
  • the material of the fluorine-containing resin layer 43 is polyvinylidene fluoride.
  • This embodiment provides another single crystal silicon battery assembly, which is different from the first embodiment in that the first metal plate 11 and the second metal plate 4 are made of stainless steel, and the first metal plate is 11 and the second metal plate 4 each have a thickness of 100 ⁇ m, the PET layer 12 has a thickness of 2 mm, the ABS layer 13 has a thickness of 1 mm, and the thickness of the first polyolefin bonding layer 14 It is 100 microns.
  • the metal aluminum core 21 has a diameter of 6 mm, the isoprene rubber layer 22 has a thickness of 8 mm, and the second polyolefin bonding layer 23 has a thickness of 100 ⁇ m.
  • the thickness of the PEN layer 41 is 4 mm
  • the thickness of the polyethylene layer 42 is 300 ⁇ m
  • the thickness of the fluorine-containing resin layer 43 is 50 ⁇ m
  • the material of the metal pillar 5 is copper
  • the second The diameter of the columnar groove 44 and the diameter of the metal post 5 are both 2 cm
  • the length of the metal post 5 exposed to the lower end portion of the fluorine-containing resin layer 43 is 2 mm.
  • the thermally conductive nanoparticles in the first thermally conductive encapsulant layer 6 are alumina, and the thermally conductive nanoparticles have a particle diameter of 200 nm.
  • the first thermally conductive encapsulant layer 6 has a thickness of 400 micrometers
  • the second encapsulant layer 7 has a thickness of 50 micrometers
  • the third encapsulant layer 9 has a thickness of 200 micrometers
  • the thermally conductive elastic column 2 is embedded therein.
  • the upper end portion of the first thermally conductive encapsulant layer has a length of 200 microns.
  • the material of the fluorine-containing resin layer 43 is an ethylene-tetrafluoroethylene copolymer.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请提供一种单晶硅电池组件,所述单晶硅电池组件包括背面保护板、第一导热封装胶层、第二封装胶层、太阳能电池片层、第三封装胶层以及透明盖板,所述背面保护板包括设置在第一金属板表面的多个导热弹性柱,在第一金属板与第二金属板之间设置有导热硅胶片,在第二金属板的下表面具有多个金属柱,所述金属柱的下端部裸露于所述含氟树脂层,使得其具有优异的散热性能、抗震性能以及水汽阻隔性能,确保单晶硅电池的光电转换效率不衰减,确保其输出功率稳定,适于长期使用。

Description

一种单晶硅电池组件 技术领域
本申请涉及太阳能电池技术领域,特别是涉及一种单晶硅电池组件。
背景技术
随着科技的发展和进步,对能源的需求也急剧增加,其中常用的能源来自化石能源石油、煤炭和天然气。由于石化能源总储藏量有限,且为不可再生能源,因而全球面临着严峻的能源形势,使得人们对风能、地热、太阳能等新兴可再生能源的探索日益迫切。其中,太阳能作为一种取之不尽,用之不竭的绿色可再生能源逐渐受到人们的广泛关注,太阳能电池相关技术也日益蓬勃发展。光伏背板位于光伏组件背面的最外层,在室外环境下保护光伏电池片不受潮气和氧气的影响。现有的光伏背板分为两种:一种为涂胶复合式背板膜,在PET聚酯薄膜两面复合氟膜或者EVA胶膜,三层结构,常见的有TPT、TPE、KPK等结构;另一种为涂覆背板膜,在PET聚酯薄膜两面涂覆氟树脂,经干燥固化成膜。光伏组件的温度升高将严重影响光伏电池片的光电转换效率,导致硅电池片的效率大幅度下降,所以光伏背板散热性能和稳固性的优劣将影响硅电池片的转换效率和使用寿命。
发明内容
本申请的目的是克服上述现有技术的不足,提供一种单晶硅电池组件。
为实现上述目的,本申请提出的一种单晶硅电池组件,所述单晶硅电池组件包括:
背面保护板,所述背面保护板包括第一金属板,在所述第一金属板的上表面粘结有PET层,所述PET层的上表面粘结有ABS层,所述ABS层的上表面设置有第一聚烯烃粘结层,在所述第一金属板的上表面设置有多个呈阵列排布的第一柱状凹槽,所述第一柱状凹槽贯穿所述第一聚烯烃粘 结层、所述ABS层以及所述PET层并暴露所述第一金属板的上表面,每个所述第一柱状凹槽中均嵌入一个导热弹性柱,所述导热弹性柱的上端部裸露于所述第一聚烯烃粘结层,所述导热弹性柱的底面与所述第一金属板接触,所述导热弹性柱包括金属铝芯,所述金属铝芯的侧表面设置有异戊橡胶层,所述异戊橡胶层的表面设置有第二聚烯烃粘结层;
导热硅胶片,所述导热硅胶片设置于所述第一金属板的下表面;
第二金属板,所述第二金属板设置于所述导热硅胶片的下表面,所述第二金属板的下表面粘结有PEN层,所述PEN层的下表面粘结有聚乙烯层,所述聚乙烯层的下表面粘结有含氟树脂层,在所述第二金属板的下表面设置有多个呈阵列排布的第二柱状凹槽,所述第二柱状凹槽贯穿所述含氟树脂层、聚乙烯层以及PEN层并暴露所述第二金属板的下表面,每个所述第二柱状凹槽中均嵌入一个金属柱,所述金属柱的顶表面与所述第二金属板的下表面接触,所述金属柱的下端部裸露于所述含氟树脂层;
第一导热封装胶层,所述第一导热封装胶层覆盖所述背面保护板,所述导热弹性柱中裸露于所述第一聚烯烃粘结层的所述上端部嵌入到所述第一导热封装胶层中;
第二封装胶层,所述第二封装胶层覆盖所述第一导热封装胶层;
太阳能电池片层,所述太阳能电池片层设置于所述第二封装胶层上,所述太阳能电池片层包括多个单晶硅太阳能电池片;
第三封装胶层,所述第三封装胶层覆盖所述太阳能电池片层;
透明盖板,所述透明盖板设置于所述第三封装胶层之上。
如上单晶硅电池组件,进一步,所述第一金属板和所述第二金属板的材质为铝、铜、不锈钢以及铝镁合金中的一种,所述第一金属板和所述第二金属板的厚度均为100-200微米,所述PET层的厚度为2-4毫米,所述ABS层的厚度为0.5-1毫米,所述第一聚烯烃粘结层的厚度为100-150微米。
如上单晶硅电池组件,进一步,所述金属铝芯的直径为3-6毫米,所述 异戊橡胶层的厚度为5-8毫米,所述第二聚烯烃粘结层的厚度为50-100微米。
如上单晶硅电池组件,进一步,所述PEN层的厚度为2-4毫米,所述聚乙烯层的厚度为300-600微米,所述含氟树脂层的厚度为50-150微米,所述金属柱的材质为铝或铜,所述第二柱状凹槽的直径与所述金属柱的直径均为1-2厘米,所述金属柱裸露于所述含氟树脂层的所述下端部的长度为0.5-2毫米。
如上单晶硅电池组件,进一步,所述第一导热封装胶层包括聚烯烃树脂以及导热纳米颗粒,所述导热纳米颗粒为氧化铝、氮化铝、氮化硼、氮化硅、氧化镁中的一种,所述导热纳米颗粒的粒径为100-200纳米,所述第二封装胶层和所述第三封装胶层的材质为聚烯烃。
如上单晶硅电池组件,进一步,第一导热封装胶层的厚度为400-500微米,所述第二封装胶层的厚度为50-100微米,所述第三封装胶层的厚度为200-300微米,所述导热弹性柱嵌入到所述第一导热封装胶层中的所述上端部的长度为200-400微米。
如上单晶硅电池组件,进一步,所述含氟树脂层的材质为聚四氟乙烯、聚三氟氯乙烯、聚偏氟乙烯、聚氟乙烯、乙烯-三氟氯乙烯共聚物或乙烯-四氟乙烯共聚物。
与现有技术相比,本申请的有益效果在于:
本申请的单晶硅电池组件中,在第一金属板上表面的多层树脂层中形成第一柱状凹槽,每个所述第一柱状凹槽中均嵌入一个导热弹性柱,使得在形成较厚的背板中,多个导热弹性柱分别形成多条散热通路,可以将太阳能电池片产生的热量快速传导至第一金属板,且在第一金属板与第二金属板之间设置有导热硅胶片,方便传热,且使得该背面保护板具有优异的抗震性能,在第二金属板的下表面设置PEN层、聚乙烯层以及含氟树脂层,并形成第二柱状凹槽以嵌入金属柱,使得整个背面保护板具有优异导热形 成的同时,第一、第二金属板的存在可以有效防止水汽侵入单晶硅电池组件。通过优化导热弹性柱的结构,所述导热弹性柱包括金属铝芯,、异戊橡胶层以及第二聚烯烃粘结层,使得导热弹性柱具有优异的导热性能同时还具有优异的缓冲减震性能,双重减震结构的设计使得单晶硅电池组件即使发生碰撞,太阳能电池片也不会损坏破碎。导热弹性柱的上端嵌入到第一导热封装胶层,增加导热弹性柱和第一导热封装层的面积,进一步提高单晶硅电池组件的稳固性和导热性能。封装背板的表面具有聚烯烃粘结层,且在第一导热封装胶层与单晶硅电池片层之间具有一超薄的第二封装胶层,使得整个电池组件更易粘结为一体。与现有的电池组件相比,通过优化本申请的单晶硅电池组件的具体结构以及各层的具体尺寸,使得本申请的单晶硅电池组件整体较厚,具有优异的散热性能、抗震性能以及水汽阻隔性能,确保单晶硅电池的光电转换效率不衰减,确保其输出功率稳定,适于长期使用。
附图说明
图1为本申请的散热型太阳能电池组件的结构示意图。
图2为本申请的导热弹性柱的底面的结构示意图。
图3为本申请的封装保护板的俯视图。
图4为本申请的封装保护板的仰视图。
具体实施方式
如图1-4所示,本申请提出一种单晶硅电池组件,所述单晶硅电池组件包括:背面保护板1,所述背面保护板1包括第一金属板11,在所述第一金属板11的上表面粘结有PET层12,所述PET层12的上表面粘结有ABS层13,所述ABS层13的上表面设置有第一聚烯烃粘结层14,在所述第一金属板11的上表面设置有多个呈阵列排布的第一柱状凹槽15,所述第一柱状凹槽15贯穿所述第一聚烯烃粘结层14、所述ABS层13以及所述PET层12并暴露所述第一金属板11的上表面,每个所述第一柱状凹槽15中均 嵌入一个导热弹性柱2,所述导热弹性柱2的上端部裸露于所述第一聚烯烃粘结层14,所述导热弹性柱2的底面与所述第一金属板11接触,所述导热弹性柱2包括金属铝芯21,所述金属铝芯21的侧表面设置有异戊橡胶层22,所述异戊橡胶层22的表面设置有第二聚烯烃粘结层23;导热硅胶片3,所述导热硅胶片3设置于所述第一金属板11的下表面;
第二金属板4,所述第二金属板4设置于所述导热硅胶片3的下表面,所述第二金属板4的下表面粘结有PEN层41,所述PEN层41的下表面粘结有聚乙烯层42,所述聚乙烯层42的下表面粘结有含氟树脂层43,在所述第二金属板4的下表面设置有多个呈阵列排布的第二柱状凹槽44,所述第二柱状凹槽44贯穿所述含氟树脂层43、聚乙烯层42以及PEN层41并暴露所述第二金属板4的下表面,每个所述第二柱状凹槽44中均嵌入一个金属柱5,所述金属柱5的顶表面与所述第二金属板4的下表面接触,所述金属柱5的下端部裸露于所述含氟树脂层43;
第一导热封装胶层6,所述第一导热封装胶层6覆盖所述背面保护板1,所述导热弹性柱2中裸露于所述第一聚烯烃粘结层14的所述上端部嵌入到所述第一导热封装胶层6中;第二封装胶层7,所述第二封装胶层7覆盖所述第一导热封装胶层6;太阳能电池片层,所述太阳能电池片层设置于所述第二封装胶层上,所述太阳能电池片层包括多个单晶硅太阳能电池片8;第三封装胶层9,所述第三封装胶层9覆盖所述太阳能电池片层;透明盖板10,所述透明盖板10设置于所述第三封装胶层9之上。
进一步,所述第一金属板11和所述第二金属板4的材质为铝、铜、不锈钢以及铝镁合金中的一种,所述第一金属板11和所述第二金属板4的厚度均为100-200微米,所述PET层12的厚度为2-4毫米,所述ABS层13的厚度为0.5-1毫米,所述第一聚烯烃粘结层14的厚度为100-150微米。
进一步,所述金属铝芯21的直径为3-6毫米,所述异戊橡胶层22的厚度为5-8毫米,所述第二聚烯烃粘结层23的厚度为50-100微米。
进一步,所述PEN层41的厚度为2-4毫米,所述聚乙烯层42的厚度为300-600微米,所述含氟树脂层43的厚度为50-150微米,所述金属柱5的材质为铝或铜,所述第二柱状凹槽44的直径与所述金属柱5的直径均为1-2厘米,所述金属柱5裸露于所述含氟树脂层43的所述下端部的长度为0.5-2毫米。
进一步,所述第一导热封装胶层6包括聚烯烃树脂以及导热纳米颗粒,所述导热纳米颗粒为氧化铝、氮化铝、氮化硼、氮化硅、氧化镁中的一种,所述导热纳米颗粒的粒径为100-200纳米,所述第二封装胶层7和所述第三封装胶层9的材质为聚烯烃。
进一步,第一导热封装胶层6的厚度为400-500微米,所述第二封装胶层7的厚度为50-100微米,所述第三封装胶层9的厚度为200-300微米,所述导热弹性柱2嵌入到所述第一导热封装胶层中的所述上端部的长度为200-400微米。
进一步,所述含氟树脂层43的材质为聚四氟乙烯、聚三氟氯乙烯、聚偏氟乙烯、聚氟乙烯、乙烯-三氟氯乙烯共聚物或乙烯-四氟乙烯共聚物。
实施例1
如图1-4所示,本申请提出一种单晶硅电池组件,所述单晶硅电池组件包括:背面保护板1,所述背面保护板1包括第一金属板11,在所述第一金属板11的上表面粘结有PET层12,所述PET层12的上表面粘结有ABS层13,所述ABS层13的上表面设置有第一聚烯烃粘结层14,在所述第一金属板11的上表面设置有多个呈阵列排布的第一柱状凹槽15,所述第一柱状凹槽15贯穿所述第一聚烯烃粘结层14、所述ABS层13以及所述PET层12并暴露所述第一金属板11的上表面,每个所述第一柱状凹槽15中均嵌入一个导热弹性柱2,所述导热弹性柱2的上端部裸露于所述第一聚烯烃粘结层14,所述导热弹性柱2的底面与所述第一金属板11接触,所述导热弹性柱2包括金属铝芯21,所述金属铝芯21的侧表面设置有异戊橡胶层 22,所述异戊橡胶层22的表面设置有第二聚烯烃粘结层23;导热硅胶片3,所述导热硅胶片3设置于所述第一金属板11的下表面;
第二金属板4,所述第二金属板4设置于所述导热硅胶片3的下表面,所述第二金属板4的下表面粘结有PEN层41,所述PEN层41的下表面粘结有聚乙烯层42,所述聚乙烯层42的下表面粘结有含氟树脂层43,在所述第二金属板4的下表面设置有多个呈阵列排布的第二柱状凹槽44,所述第二柱状凹槽44贯穿所述含氟树脂层43、聚乙烯层42以及PEN层41并暴露所述第二金属板4的下表面,每个所述第二柱状凹槽44中均嵌入一个金属柱5,所述金属柱5的顶表面与所述第二金属板4的下表面接触,所述金属柱5的下端部裸露于所述含氟树脂层43;
第一导热封装胶层6,所述第一导热封装胶层6覆盖所述背面保护板1,所述导热弹性柱2中裸露于所述第一聚烯烃粘结层14的所述上端部嵌入到所述第一导热封装胶层6中;第二封装胶层7,所述第二封装胶层7覆盖所述第一导热封装胶层6;太阳能电池片层,所述太阳能电池片层设置于所述第二封装胶层上,所述太阳能电池片层包括多个单晶硅太阳能电池片8;第三封装胶层9,所述第三封装胶层9覆盖所述太阳能电池片层;透明盖板10,所述透明盖板10设置于所述第三封装胶层9之上。
其中,所述第一金属板11和所述第二金属板4的材质为铝,所述第一金属板11和所述第二金属板4的厚度均为150微米,所述PET层12的厚度为3毫米,所述ABS层13的厚度为0.8毫米,所述第一聚烯烃粘结层14的厚度为120微米。所述金属铝芯21的直径为5毫米,所述异戊橡胶层22的厚度为7毫米,所述第二聚烯烃粘结层23的厚度为80微米。所述PEN层41的厚度为3毫米,所述聚乙烯层42的厚度为400微米,所述含氟树脂层43的厚度为100微米,所述金属柱5的材质为铝,所述第二柱状凹槽44的直径与所述金属柱5的直径均为1.5厘米,所述金属柱5裸露于所述含氟树脂层43的所述下端部的长度为1毫米。所述第一导热封装胶层6包 括聚烯烃树脂以及导热纳米颗粒,所述导热纳米颗粒为氮化铝,所述导热纳米颗粒的粒径为150纳米,所述第二封装胶层7和所述第三封装胶层9的材质为聚烯烃。第一导热封装胶层6的厚度为450微米,所述第二封装胶层7的厚度为90微米,所述第三封装胶层9的厚度为250微米,所述导热弹性柱2嵌入到所述第一导热封装胶层中的所述上端部的长度为300微米。所述含氟树脂层43的材质为聚四氟乙烯。
实施例2
本实施例提供另一种单晶硅电池组件,与实施例1相比,区别仅在于,所述第一金属板11和所述第二金属板4的材质为铜,所述第一金属板11和所述第二金属板4的厚度均为200微米,所述PET层12的厚度为4毫米,所述ABS层13的厚度为0.5毫米,所述第一聚烯烃粘结层14的厚度为150微米。所述金属铝芯21的直径为3毫米,所述异戊橡胶层22的厚度为5毫米,所述第二聚烯烃粘结层23的厚度为50微米。所述PEN层41的厚度为2毫米,所述聚乙烯层42的厚度为600微米,所述含氟树脂层43的厚度为150微米,所述金属柱5的材质为铜,所述第二柱状凹槽44的直径与所述金属柱5的直径均为1厘米,所述金属柱5裸露于所述含氟树脂层43的所述下端部的长度为0.5毫米。所述第一导热封装胶层6中的导热纳米颗粒为氮化硼,所述导热纳米颗粒的粒径为100纳米,第一导热封装胶层6的厚度为500微米,所述第二封装胶层7的厚度为100微米,所述第三封装胶层9的厚度为300微米,所述导热弹性柱2嵌入到所述第一导热封装胶层中的所述上端部的长度为400微米。所述含氟树脂层43的材质为聚偏氟乙烯。
实施例3
本实施例提供另一种单晶硅电池组件,与实施例1相比,区别仅在于,所述第一金属板11和所述第二金属板4的材质为不锈钢,所述第一金属板11和所述第二金属板4的厚度均为100微米,所述PET层12的厚度为2 毫米,所述ABS层13的厚度为1毫米,所述第一聚烯烃粘结层14的厚度为100微米。所述金属铝芯21的直径为6毫米,所述异戊橡胶层22的厚度为8毫米,所述第二聚烯烃粘结层23的厚度为100微米。所述PEN层41的厚度为4毫米,所述聚乙烯层42的厚度为300微米,所述含氟树脂层43的厚度为50微米,所述金属柱5的材质为铜,所述第二柱状凹槽44的直径与所述金属柱5的直径均为2厘米,所述金属柱5裸露于所述含氟树脂层43的所述下端部的长度为2毫米。所述第一导热封装胶层6中的导热纳米颗粒为氧化铝,所述导热纳米颗粒的粒径为200纳米。第一导热封装胶层6的厚度为400微米,所述第二封装胶层7的厚度为50微米,所述第三封装胶层9的厚度为200微米,所述导热弹性柱2嵌入到所述第一导热封装胶层中的所述上端部的长度为200微米。所述含氟树脂层43的材质为乙烯-四氟乙烯共聚物。
以上所述是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (7)

  1. 一种单晶硅电池组件,其特征在于:所述单晶硅电池组件包括:
    背面保护板,所述背面保护板包括第一金属板,在所述第一金属板的上表面粘结有PET层,所述PET层的上表面粘结有ABS层,所述ABS层的上表面设置有第一聚烯烃粘结层,在所述第一金属板的上表面设置有多个呈阵列排布的第一柱状凹槽,所述第一柱状凹槽贯穿所述第一聚烯烃粘结层、所述ABS层以及所述PET层并暴露所述第一金属板的上表面,每个所述第一柱状凹槽中均嵌入一个导热弹性柱,所述导热弹性柱的上端部裸露于所述第一聚烯烃粘结层,所述导热弹性柱的底面与所述第一金属板接触,所述导热弹性柱包括金属铝芯,所述金属铝芯的侧表面设置有异戊橡胶层,所述异戊橡胶层的表面设置有第二聚烯烃粘结层;
    导热硅胶片,所述导热硅胶片设置于所述第一金属板的下表面;
    第二金属板,所述第二金属板设置于所述导热硅胶片的下表面,所述第二金属板的下表面粘结有PEN层,所述PEN层的下表面粘结有聚乙烯层,所述聚乙烯层的下表面粘结有含氟树脂层,在所述第二金属板的下表面设置有多个呈阵列排布的第二柱状凹槽,所述第二柱状凹槽贯穿所述含氟树脂层、聚乙烯层以及PEN层并暴露所述第二金属板的下表面,每个所述第二柱状凹槽中均嵌入一个金属柱,所述金属柱的顶表面与所述第二金属板的下表面接触,所述金属柱的下端部裸露于所述含氟树脂层;
    第一导热封装胶层,所述第一导热封装胶层覆盖所述背面保护板,所述导热弹性柱中裸露于所述第一聚烯烃粘结层的所述上端部嵌入到所述第一导热封装胶层中;
    第二封装胶层,所述第二封装胶层覆盖所述第一导热封装胶层;
    太阳能电池片层,所述太阳能电池片层设置于所述第二封装胶层上,所述太阳能电池片层包括多个单晶硅太阳能电池片;
    第三封装胶层,所述第三封装胶层覆盖所述太阳能电池片层;
    透明盖板,所述透明盖板设置于所述第三封装胶层之上。
  2. 根据权利要求1所述的单晶硅电池组件,其特征在于:所述第一金属板和所述第二金属板的材质为铝、铜、不锈钢以及铝镁合金中的一种,所述第一金属板和所述第二金属板的厚度均为100-200微米,所述PET层的厚度为2-4毫米,所述ABS层的厚度为0.5-1毫米,所述第一聚烯烃粘结层的厚度为100-150微米。
  3. 根据权利要求2所述的单晶硅电池组件,其特征在于:所述金属铝芯的直径为3-6毫米,所述异戊橡胶层的厚度为5-8毫米,所述第二聚烯烃粘结层的厚度为50-100微米。
  4. 根据权利要求2所述的单晶硅电池组件,其特征在于:所述PEN层的厚度为2-4毫米,所述聚乙烯层的厚度为300-600微米,所述含氟树脂层的厚度为50-150微米,所述金属柱的材质为铝或铜,所述第二柱状凹槽的直径与所述金属柱的直径均为1-2厘米,所述金属柱裸露于所述含氟树脂层的所述下端部的长度为0.5-2毫米。
  5. 根据权利要求1所述的单晶硅电池组件,其特征在于:所述第一导热封装胶层包括聚烯烃树脂以及导热纳米颗粒,所述导热纳米颗粒为氧化铝、氮化铝、氮化硼、氮化硅、氧化镁中的一种,所述导热纳米颗粒的粒径为100-200纳米,所述第二封装胶层和所述第三封装胶层的材质为聚烯烃。
  6. 根据权利要求5所述的单晶硅电池组件,其特征在于:第一导热封装胶层的厚度为400-500微米,所述第二封装胶层的厚度为50-100微米,所述第三封装胶层的厚度为200-300微米,所述导热弹性柱嵌入到所述第一导热封装胶层中的所述上端部的长度为200-400微米。
  7. 根据权利要求1所述的单晶硅电池组件,其特征在于:所述含氟树脂层的材质为聚四氟乙烯、聚三氟氯乙烯、聚偏氟乙烯、聚氟乙烯、乙烯-三氟氯乙烯共聚物或乙烯-四氟乙烯共聚物。
PCT/CN2018/111686 2018-04-26 2018-10-24 一种单晶硅电池组件 WO2019205532A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2018286566A AU2018286566A1 (en) 2018-04-26 2018-10-24 Monocrystalline silicon cell assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810385317.X 2018-04-26
CN201810385317.XA CN108389923B (zh) 2018-04-26 2018-04-26 一种单晶硅电池组件

Publications (1)

Publication Number Publication Date
WO2019205532A1 true WO2019205532A1 (zh) 2019-10-31

Family

ID=63066115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111686 WO2019205532A1 (zh) 2018-04-26 2018-10-24 一种单晶硅电池组件

Country Status (3)

Country Link
CN (1) CN108389923B (zh)
AU (1) AU2018286566A1 (zh)
WO (1) WO2019205532A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108389923B (zh) * 2018-04-26 2020-08-04 江苏久联新能源科技有限公司 一种单晶硅电池组件
CN110656371A (zh) * 2019-09-19 2020-01-07 安徽若水化工有限公司 一种太阳能电池用的掺镓铟导热阻燃型单晶硅材料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664208A (zh) * 2012-05-09 2012-09-12 华东理工大学 一种增效散热太阳电池组件及其制备方法
FR3029367A1 (fr) * 2014-11-27 2016-06-03 Systovi Panneau photovoltaique avec radiateurs
CN106847972A (zh) * 2017-03-29 2017-06-13 江苏福克斯新能源科技有限公司 一种太阳能电池组件及其制备方法
CN106992222A (zh) * 2017-03-29 2017-07-28 江苏福克斯新能源科技有限公司 一种散热型太阳能电池组件及其制备方法
CN107093635A (zh) * 2017-03-29 2017-08-25 江苏福克斯新能源科技有限公司 一种光伏组件及其制备方法
CN108389923A (zh) * 2018-04-26 2018-08-10 海门市采薇纺织科技有限公司 一种单晶硅电池组件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202434552U (zh) * 2011-12-16 2012-09-12 新高电子材料(中山)有限公司 用耐候性高导热率涂层制作的太阳能背板及太阳能电池板
JP5813519B2 (ja) * 2012-01-16 2015-11-17 三菱電機株式会社 太陽電池モジュールの製造方法
WO2015139284A1 (en) * 2014-03-21 2015-09-24 Dupont (China) Research & Development And Management Co., Ltd. Integrated back-sheets for back-contact solar cell modules
CN204733125U (zh) * 2015-05-14 2015-10-28 开县伟朋科技服务中心 可弯折式太阳能电池组件
CN208062075U (zh) * 2018-04-26 2018-11-06 海门市采薇纺织科技有限公司 一种单晶硅电池组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664208A (zh) * 2012-05-09 2012-09-12 华东理工大学 一种增效散热太阳电池组件及其制备方法
FR3029367A1 (fr) * 2014-11-27 2016-06-03 Systovi Panneau photovoltaique avec radiateurs
CN106847972A (zh) * 2017-03-29 2017-06-13 江苏福克斯新能源科技有限公司 一种太阳能电池组件及其制备方法
CN106992222A (zh) * 2017-03-29 2017-07-28 江苏福克斯新能源科技有限公司 一种散热型太阳能电池组件及其制备方法
CN107093635A (zh) * 2017-03-29 2017-08-25 江苏福克斯新能源科技有限公司 一种光伏组件及其制备方法
CN108389923A (zh) * 2018-04-26 2018-08-10 海门市采薇纺织科技有限公司 一种单晶硅电池组件

Also Published As

Publication number Publication date
CN108389923A (zh) 2018-08-10
AU2018286566A1 (en) 2019-11-14
CN108389923B (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
US20110017275A1 (en) Solar panel back sheet with improved heat dissipation
WO2019205534A1 (zh) 一种硅基太阳能电池板
US20140326306A1 (en) Highly efficient solar cell module
WO2019205532A1 (zh) 一种单晶硅电池组件
CN202487599U (zh) 一种太阳能光伏组件
WO2019205533A1 (zh) 一种光伏电池板
US20110197950A1 (en) Photovoltaic module and method for manufacturing the same
CN208298843U (zh) 一种光电转换器件封装结构
CN208240700U (zh) 一种光伏电池板
CN208062075U (zh) 一种单晶硅电池组件
WO2019205545A1 (zh) 一种太阳能电池组件
WO2017133571A1 (zh) 光伏组件
CN205428962U (zh) 一种基于cigs柔性光伏电池薄片的建筑光伏光热一体化构件
CN210692556U (zh) 一种耐高低温长寿命太阳能光伏背板
CN208111460U (zh) 一种硅基太阳能电池板
CN108565308B (zh) 一种光伏电池组件及其制造方法
WO2019178725A1 (zh) 一种太阳能电池组件封装用背板
JPH1056189A (ja) 太陽電池モジュール
CN203205450U (zh) 高效型太阳能光伏光热组件
CN108389921A (zh) 一种减震型太阳能电池板
CN108767039B (zh) 一种光伏电池板及其制备方法
CN207967016U (zh) 一种太阳能电池组件封装用背板
KR102652131B1 (ko) 방열 강판형 슁글드 태양광 모듈 및 그 제조방법
WO2019178724A1 (zh) 一种减震型光伏背板
CN219007313U (zh) 一种光伏背板、光伏组件和光伏系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018286566

Country of ref document: AU

Date of ref document: 20181024

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916480

Country of ref document: EP

Kind code of ref document: A1