WO2019205545A1 - 一种太阳能电池组件 - Google Patents

一种太阳能电池组件 Download PDF

Info

Publication number
WO2019205545A1
WO2019205545A1 PCT/CN2018/112404 CN2018112404W WO2019205545A1 WO 2019205545 A1 WO2019205545 A1 WO 2019205545A1 CN 2018112404 W CN2018112404 W CN 2018112404W WO 2019205545 A1 WO2019205545 A1 WO 2019205545A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
layer
elastic
cell module
strip
Prior art date
Application number
PCT/CN2018/112404
Other languages
English (en)
French (fr)
Inventor
黄敏艳
Original Assignee
Huang Minyan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huang Minyan filed Critical Huang Minyan
Priority to KR1020187037917A priority Critical patent/KR102133580B1/ko
Publication of WO2019205545A1 publication Critical patent/WO2019205545A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present application relates to the field of solar cell technology, and in particular to a solar cell module.
  • Solar energy is an environmentally friendly green renewable energy source.
  • Solar cells can use the semiconductor PN junction or PIN junction to convert the solar light energy into electrical energy, and do not require any mechanical motion during the conversion process, and will not pollute the environment, and become the most potential solar energy utilization.
  • silicon-based solar cells have been widely used due to high efficiency and mature manufacturing processes.
  • Existing silicon-based solar cells include monocrystalline silicon solar cells, polycrystalline silicon solar cells, and amorphous silicon thin film solar cells.
  • Existing silicon-based solar modules generally include a glass cover plate, a first EVA adhesive layer, a solar cell sheet layer, a second EVA adhesive layer, and a solar battery back sheet.
  • the phase is usually in phase. A gap is left between adjacent solar cells, and the presence of the gap causes insufficient utilization of sunlight to the surface of the solar cell module, thereby reducing the output power of the solar cell module.
  • the purpose of the present application is to overcome the deficiencies of the prior art described above and to provide a solar cell module.
  • a solar cell module proposed by the present application includes:
  • the upper surface of the metal substrate is provided with a plurality of strip-shaped protrusions connected in series, the strip-shaped protrusions having an isosceles triangle in cross section, and two inclined sides of the strip-shaped protrusions and the strip
  • the bottom surface of the convex protrusion has an angle of 15°-30°, and the lower surface of the metal substrate is provided with a plurality of columnar protrusions arranged in an array;
  • each of the inclined sides of each of the strip-shaped protrusions is provided with the rectangular solar cell sheet, a width of the rectangular solar cell sheet and the tilt of the strip-shaped protrusion The sides are the same width;
  • the transparent cover plate is disposed on the encapsulant layer
  • the upper surface of the first resin substrate is provided with a plurality of first column-shaped grooves distributed in an array, and a part of each of the columnar protrusions of the lower surface of the metal substrate is embedded in the corresponding In a cylindrical groove, a lower surface of the first resin substrate is provided with a plurality of second cylindrical grooves distributed in an array;
  • the upper surface of the second resin substrate is provided with a plurality of third column-shaped grooves distributed in an array, and another portion of each elastic column is embedded in the corresponding third cylindrical groove;
  • An elastic layer disposed on a lower surface of the second resin substrate
  • the outer weather resistant resin layer is disposed on a lower surface of the elastic layer.
  • the material of the metal substrate is one of aluminum, copper and iron
  • the top surface of the columnar protrusion is circular
  • the diameter of the columnar protrusion is 1-3 cm
  • the pitch of the adjacent columnar protrusions is 3-5 mm
  • the height of the columnar protrusions is 0.5-2 mm.
  • the insulating varnish layer has a thickness of 20 to 50 ⁇ m.
  • adjacent rectangular solar cells are electrically connected by a solder ribbon, and the rectangular solar cell has a size of 10 mm * 125 mm.
  • the material of the encapsulant layer is EVA.
  • the material of the first resin substrate and the second resin substrate is one of PET, PEN, PC, PP, and PMMA.
  • the first cylindrical groove has a depth of 0.2-0.8 mm
  • the second cylindrical groove and the third cylindrical groove have a depth of 0.15-0.6 mm
  • the diameter of the elastic column is 1-3 cm
  • the spacing of the adjacent elastic columns is 3-5 mm
  • the height of the elastic column is 0.5-2 mm.
  • the solar cell module, further, the elastic column and the elastic layer are made of rubber, the elastic layer has a thickness of 0.3-0.5 mm, and the outer weather resistant resin layer is made of polytetrafluoroethylene and polyvinylidene fluoride. Ethylene, polyvinyl fluoride or ethylene-tetrafluoroethylene copolymer, the outer weather resistant resin layer having a thickness of 100 to 200 ⁇ m.
  • the cell sheet is disposed on the inclined side surface of the strip-shaped protrusion of the metal substrate, and the angle between the inclined side surface of the strip-shaped protrusion and the bottom surface of the strip-shaped protrusion is 15 °-30°, the above-mentioned angle setting ensures that each solar cell can obtain sufficient sunlight, on the other hand, it can increase the number of cells in the solar cell module, thereby increasing the output power of the solar cell module.
  • the lower surface of the metal substrate of the present application is provided with a plurality of columnar protrusions arranged in an array, and only a part of each of the columnar protrusions is embedded in the first resin substrate, so that the metal substrate and the first resin Forming a gap between the substrates to expose the columnar protrusions, the existence of the gap can quickly transfer the heat generated by the solar cell sheet to the air, effectively improving the heat dissipation performance of the solar cell module; setting in the first resin substrate and the second resin substrate There are a plurality of elastic columns, and an elastic layer is disposed between the second resin substrate and the outer weather resistant resin layer, and the arrangement of the double elastic structure can be effectively improved Damping performance of the solar cell module.
  • the solar cell module of the present application has greater output power and excellent heat dissipation performance and The seismic performance further makes the solar cell module have a longer service life and better stability.
  • FIG. 1 is a schematic structural view of a solar cell module of the present application.
  • Figure 2 is a schematic cross-sectional view taken along line A-A' of Figure 1.
  • the present application provides a solar cell module, comprising: a metal substrate 1, the upper surface of the metal substrate 1 is provided with a plurality of strip-shaped protrusions 11 connected in sequence, the strip-shaped protrusions 11 is an isosceles triangle, and the angle between the two inclined side faces 12 of the strip-shaped protrusions 11 and the bottom surface 13 of the strip-shaped protrusions is 15°-30°, and the lower surface of the metal substrate 1 a plurality of columnar protrusions 14 arranged in an array; an insulating varnish layer 2 completely covering the upper surface of the metal substrate 1; a plurality of rectangular solar cells 3, each of the strips The rectangular solar cell sheet 3 is disposed on each inclined side surface 12 of the protrusion 11, and the width of the rectangular solar cell sheet 3 is the same as the width of the inclined side surface 12 of the strip-shaped protrusion 11; a layer 4, the encapsulant layer 4 completely covers the upper surface of the rectangular solar cell sheet 3 and the metal substrate 1; a transparent
  • the angle between the two inclined side faces 12 of the strip-shaped protrusions 11 and the bottom surface 13 of the strip-shaped protrusions in the solar cell module is 15°-30°, when the angle between the inclined side surface and the bottom surface is greater than 30 At °°, the solar cell placed on the inclined side cannot receive sufficient illumination, which leads to a decrease in the output power of the single solar cell, which in turn leads to a relatively small increase in the output power of the solar cell module, and at the same time, as the number of clamping angles increases
  • the thickness of the solar cell module is thicker, which leads to an increase in the overall manufacturing cost; when the angle between the inclined side surface and the bottom surface is less than 15°, the number of cell sheets in the entire solar cell module is increased, thereby leading to the solar cell module.
  • the output power increase is relatively small.
  • the material of the metal substrate 1 is one of aluminum, copper and iron, the top surface of the columnar protrusion 14 is circular, and the columnar protrusion 14 has a diameter of 1-3 cm and adjacent columnar protrusions.
  • the pitch of 14 is 3-5 mm, and the height of the columnar projections 14 is 0.5-2 mm.
  • the insulating varnish layer 2 has a thickness of 20 to 50 ⁇ m. Adjacent to the rectangular solar cell sheets 3 are electrically connected by a solder ribbon, and the rectangular solar cell sheet 3 has a size of 10 mm * 125 mm.
  • the material of the encapsulant layer 4 is EVA.
  • the material of the first resin substrate 6 and the second resin substrate 8 is one of PET, PEN, PC, PP, and PMMA.
  • the first cylindrical groove 61 has a depth of 0.2-0.8 mm
  • the second cylindrical groove 62 and the third cylindrical groove 81 have a depth of 0.15-0.6 mm
  • the elastic column 7 The diameter is 1-3 cm, the spacing of the adjacent elastic columns 7 is 3-5 mm, and the height of the elastic column 7 is 0.5-2 mm.
  • the material of the elastic column 7 and the elastic layer 9 is rubber, the thickness of the elastic layer 9 is 0.3-0.5 mm, and the material of the outer weather resistant resin layer 10 is polytetrafluoroethylene, polyvinylidene fluoride, poly A vinyl fluoride or ethylene-tetrafluoroethylene copolymer, the outer weather resistant resin layer 10 has a thickness of 100 to 200 ⁇ m.
  • the present application provides a solar cell module, comprising: a metal substrate 1, the upper surface of which is provided with a plurality of strip-shaped protrusions 11 connected in series, the strip-shaped protrusions 11 is an isosceles triangle, the angle between the two inclined side faces 12 of the strip-shaped protrusions 11 and the bottom surface 13 of the strip-shaped protrusions is 23°, and the lower surface of the metal substrate 1 is disposed.
  • a columnar protrusion 14 arranged in an array; an insulating varnish layer 2, the insulating varnish layer 2 completely covering the upper surface of the metal substrate 1; a plurality of rectangular solar cell sheets 3, each of the strip-shaped protrusions 11 Each of the inclined side faces 12 is provided with the rectangular solar cell sheet 3, and the width of the rectangular solar cell sheet 3 is the same as the width of the inclined side surface 12 of the strip-shaped protrusions 11; the encapsulant layer 4, The encapsulant layer 4 completely covers the upper surface of the rectangular solar cell sheet 3 and the metal substrate 1; the transparent cover 5 is disposed on the encapsulant layer 4; the first resin a substrate 6, the upper surface of the first resin substrate 6 is provided with a plurality of arrays a cylindrical recess 61 in which a portion of each of the columnar projections 14 of the lower surface of the metal substrate 1 is embedded in the corresponding first cylindrical recess 61, the lower surface of which is disposed on the lower surface of the first resin substrate 6.
  • the metal substrate 1 is made of aluminum, the top surface of the columnar protrusions 14 is circular, the columnar protrusions 14 have a diameter of 2 cm, and the adjacent columnar protrusions 14 have a pitch of 4 mm.
  • the height of the columnar projections 14 is 1.5 mm.
  • the insulating varnish layer 2 has a thickness of 40 ⁇ m. Adjacent to the rectangular solar cell sheets 3 are electrically connected by a solder ribbon, and the rectangular solar cell sheet 3 has a size of 10 mm * 125 mm.
  • the material of the encapsulant layer 4 is EVA.
  • the material of the first resin substrate 6 and the second resin substrate 8 is PET.
  • the first cylindrical groove 61 has a depth of 0.5 mm
  • the second cylindrical groove 62 and the third cylindrical groove 81 have a depth of 0.4 mm
  • the elastic column 7 has a diameter of 2 cm.
  • the distance between the adjacent elastic columns 7 is 4 mm
  • the height of the elastic columns 7 is 1.5 mm.
  • the elastic column 7 and the elastic layer 9 are made of rubber
  • the elastic layer 9 has a thickness of 0.4 mm
  • the outer weather resistant resin layer 10 is made of polytetrafluoroethylene
  • the outer weather resistant resin layer 10 is The thickness is 150 microns.
  • This embodiment provides another solar cell module, which is different from the first embodiment in that the angle between the two inclined side faces 12 of the strip-shaped protrusions 11 and the bottom surface 13 of the strip-shaped protrusions is 18°, the metal substrate 1 is made of copper, the top surface of the columnar protrusions 14 is circular, the columnar protrusions 14 have a diameter of 3 cm, and the adjacent columnar protrusions 14 have a pitch of 5 mm. The height of the columnar projections 14 is 2 mm.
  • the insulating varnish layer 2 has a thickness of 50 ⁇ m.
  • the material of the first resin substrate 6 and the second resin substrate 8 is PEN.
  • the first cylindrical groove 61 has a depth of 0.8 mm
  • the second cylindrical groove 62 and the third cylindrical groove 81 have a depth of 0.6 mm
  • the elastic column 7 has a diameter of 3 cm.
  • the distance between the adjacent elastic columns 7 is 5 mm
  • the height of the elastic column 7 is 2 mm.
  • the elastic layer 9 has a thickness of 0.5 mm
  • the outer weather resistant resin layer 10 is made of polyvinylidene fluoride
  • the outer weather resistant resin layer 10 has a thickness of 200 ⁇ m.
  • This embodiment provides another solar cell module, which is different from the first embodiment in that the angle between the two inclined side faces 12 of the strip-shaped protrusions 11 and the bottom surface 13 of the strip-shaped protrusions is 28°, the metal substrate 1 is made of iron, the top surface of the columnar protrusions 14 is circular, the columnar protrusions 14 have a diameter of 1 cm, and the adjacent columnar protrusions 14 have a pitch of 3 mm. The height of the columnar projections 14 is 0.5 mm.
  • the insulating varnish layer 2 has a thickness of 20 ⁇ m.
  • the material of the first resin substrate 6 and the second resin substrate 8 is PP.
  • the first cylindrical groove 61 has a depth of 0.2 mm
  • the second cylindrical groove 62 and the third cylindrical groove 81 have a depth of 0.15 mm
  • the elastic column 7 has a diameter of 1 cm.
  • the distance between the adjacent elastic columns 7 is 3 mm
  • the height of the elastic columns 7 is 0.5 mm.
  • the elastic column 7 and the elastic layer 9 are made of rubber
  • the elastic layer 9 has a thickness of 0.3 mm
  • the outer weather resistant resin layer 10 is made of ethylene-tetrafluoroethylene copolymer, and the outer weather resistant resin.
  • Layer 10 has a thickness of 100 microns.

Abstract

一种太阳能电池组件,太阳能电池组件中通过在金属基板(1)的上下表面分别设置条形凸起(11)和柱状凸起(14),所述条形凸起(11)的两个倾斜侧面(12)与所述条形凸起(11)的底面(13)的夹角均为15°-30°,每个所述条形凸起(11)的每个倾斜侧面(12)上均设置有太阳能电池片(3),且在金属基板(1)下设置树脂基板(6,8)、弹性柱(7)、弹性层(9),使得太阳能电池组件具有更大的输出功率的同时,还具有优异的散热性能和抗震性能,进而使得该太阳能电池组件的使用寿命更长且稳定性更好。

Description

一种太阳能电池组件 技术领域
本申请涉及太阳能电池技术领域,特别是涉及一种太阳能电池组件。
背景技术
太阳能最大的优势在于其取之不尽,用之不竭,而且在使用过程中不会破坏生态平衡、污染环境。因此,太阳能是一种环境友好的绿色可再生能源。太阳能电池可以利用半导体PN结或PIN结将太阳光的光能转换为电能,且转换过程中不需要任何机械运动,且不会污染环境,而成为最有潜力的太阳能的利用方式。在现有的各类太阳能电池中,硅基太阳能电池由于效率高、制造工艺成熟而得到广泛的应用。现有的硅基太阳能电池包括单晶硅太阳能电池、多晶硅太阳能电池以及非晶硅薄膜太阳能电池。现有的硅基太阳能组件通常包括玻璃盖板、第一EVA胶层、太阳能电池片层、第二EVA胶层以及太阳能电池背板,为了方便相邻太阳能电池片的电连接,通常会在相邻太阳能电池片之间留有间隙,而间隙的存在导致照射至太阳能电池组件表面的太阳光利用不充分,进而降低了太阳能电池组件的输出功率。
发明内容
本申请的目的是克服上述现有技术的不足,提供一种太阳能电池组件。
为实现上述目的,本申请提出的一种太阳能电池组件,包括:
金属基板,所述金属基板的上表面设置有多个依次相连的条形凸起,所述条形凸起的截面为等腰三角形,所述条形凸起的两个倾斜侧面与所述条形凸起的底面的夹角均为15°-30°,所述金属基板的下表面设置有多个呈阵列排布的柱状凸起;
绝缘漆层,所述绝缘漆层完全覆盖所述金属基板的上表面;
多个长方形太阳能电池片,每个所述条形凸起的每个倾斜侧面上均设 置有所述长方形太阳能电池片,所述长方形太阳能电池片的宽度与所述条形凸起的所述倾斜侧面的宽度相同;
封装胶层,所述封装胶层完全覆盖所述长方形太阳能电池片和所述金属基板的上表面;
透明盖板,所述透明盖板设置于所述封装胶层之上;
第一树脂基板,所述第一树脂基板的上表面设置多个呈阵列分布的第一柱型凹槽,所述金属基板的下表面的每个柱状凸起的一部分嵌入到相应的所述第一柱型凹槽中,所述第一树脂基板的下表面设置有多个呈阵列分布的第二柱形凹槽;
多个弹性柱,每个弹性柱的一部分嵌入到相应的所述第二柱形凹槽中;
第二树脂基板,所述第二树脂基板的上表面设置多个呈阵列分布的第三柱型凹槽,每个弹性柱的另一部分嵌入到相应的所述第三柱形凹槽中;
弹性层,所述弹性层设置于所述第二树脂基板的下表面;
外耐候树脂层,所述外耐候树脂层设置于所述弹性层的下表面。
如上太阳能电池组件,进一步,所述金属基板的材质为铝、铜和铁中的一种,所述柱状凸起的顶面为圆形,所述柱状凸起的直径为1-3厘米,相邻柱状凸起的间距为3-5毫米,所述柱状凸起的高度为0.5-2毫米。
如上太阳能电池组件,进一步,所述绝缘漆层的厚度为20-50微米。
如上太阳能电池组件,进一步,相邻所述长方形太阳能电池片之间通过焊带电连接,所述长方形太阳能电池片的尺寸为10mm*125mm。
如上太阳能电池组件,进一步,所述封装胶层的材质为EVA。
如上太阳能电池组件,进一步,所述第一树脂基板和所述第二树脂基板的材质为PET、PEN、PC、PP、PMMA中的一种。
如上太阳能电池组件,进一步,所述第一柱形凹槽的深度为0.2-0.8毫米,所述第二柱型凹槽以及所述第三柱形凹槽的深度为0.15-0.6毫米,所述弹性柱的直径为1-3厘米,相邻所述弹性柱的间距为3-5毫米,所述弹性柱 的高度为0.5-2毫米。
如上太阳能电池组件,进一步,所述弹性柱和所述弹性层的材质为橡胶,所述弹性层的厚度为0.3-0.5毫米,所述外耐候树脂层的材质为聚四氟乙烯、聚偏氟乙烯、聚氟乙烯或乙烯-四氟乙烯共聚物,所述外耐候树脂层的厚度均为100-200微米。
与现有技术相比,本申请的有益效果在于:
本申请的太阳能电池组件中,电池片设置于金属基板的条形凸起的倾斜侧面上,且设置所述条形凸起的倾斜侧面与所述条形凸起的底面的夹角均为15°-30°,上述夹角的设置,一方面可以确保每个太阳能电池都可以获得充足的太阳光,另一方面可以增加太阳能电池组件中电池片的个数,进而增加太阳能电池组件的输出功率;本申请中金属基板的下表面设置有多个呈阵列排布的柱状凸起,且每个柱状凸起中仅有一部分嵌入第一树脂基板中,使得所述金属基板与所述第一树脂基板之间形成暴露柱状凸起的空隙,该空隙的存在可以将太阳能电池片产生的热量快速传导至空气中,有效提高太阳能电池组件的散热性能;在第一树脂基板和第二树脂基板中设置有多个弹性柱,且在第二树脂基板和外耐候树脂层之间设置有弹性层,双重弹性结构的设置可以有效提高太阳能电池组件的减震性能。与现有的太阳能电池组件相比,通过优化本申请的太阳能电池组件具体结构以及各部件的具体尺寸,使得本申请的太阳能电池组件具有更大的输出功率的同时,还具有优异的散热性能和抗震性能,进而使得该太阳能电池组件的使用寿命更长且稳定性更好。
附图说明
图1为本申请的太阳能电池组件的结构示意图。
图2为图1中沿A-A’的截面示意图。
具体实施方式
如图1-2所示,本申请提出一种太阳能电池组件,包括:金属基板1, 所述金属基板1的上表面设置有多个依次相连的条形凸起11,所述条形凸起11的截面为等腰三角形,所述条形凸起11的两个倾斜侧面12与所述条形凸起的底面13的夹角均为15°-30°,所述金属基板1的下表面设置有多个呈阵列排布的柱状凸起14;绝缘漆层2,所述绝缘漆层2完全覆盖所述金属基板1的上表面;多个长方形太阳能电池片3,每个所述条形凸起11的每个倾斜侧面12上均设置有所述长方形太阳能电池片3,所述长方形太阳能电池片3的宽度与所述条形凸起11的所述倾斜侧面12的宽度相同;封装胶层4,所述封装胶层4完全覆盖所述长方形太阳能电池片3和所述金属基板1的上表面;透明盖板5,所述透明盖板5设置于所述封装胶层4之上;第一树脂基板6,所述第一树脂基板6的上表面设置多个呈阵列分布的第一柱型凹槽61,所述金属基板1的下表面的每个柱状凸起14的一部分嵌入到相应的所述第一柱型凹槽61中,所述第一树脂基板6的下表面设置有多个呈阵列分布的第二柱形凹槽62;多个弹性柱7,每个弹性柱7的一部分嵌入到相应的所述第二柱形凹槽62中;第二树脂基板8,所述第二树脂基板8的上表面设置多个呈阵列分布的第三柱型凹槽81,每个弹性柱7的另一部分嵌入到相应的所述第三柱形凹槽81中;弹性层9,所述弹性层9设置于所述第二树脂基板8的下表面;外耐候树脂层10,所述外耐候树脂层10设置于所述弹性层9的下表面。
所述太阳能电池组件中所述条形凸起11的两个倾斜侧面12与所述条形凸起的底面13的夹角均为15°-30°,当倾斜侧面与底面的夹角大于30°时,放置于倾斜侧面的太阳能电池片无法得到充足的光照,进而导致单个太阳能电池片的输出功率降低,进而导致太阳能电池组件的输出功率增加相对较少,同时随着夹角度数的增加将导致太阳能电池组件的厚度较厚,进而导致整体的制造成本增加;当倾斜侧面与底面的夹角小于15°时,整个太阳能电池组件中电池片增加的个数较少,进而导致太阳能电池组件的输出功率增加相对较少。所述金属基板1的材质为铝、铜和铁中的一种, 所述柱状凸起14的顶面为圆形,所述柱状凸起14的直径为1-3厘米,相邻柱状凸起14的间距为3-5毫米,所述柱状凸起14的高度为0.5-2毫米。所述绝缘漆层2的厚度为20-50微米。相邻所述长方形太阳能电池片3之间通过焊带电连接,所述长方形太阳能电池片3的尺寸为10mm*125mm。所述封装胶层4的材质为EVA。所述第一树脂基板6和所述第二树脂基板8的材质为PET、PEN、PC、PP、PMMA中的一种。所述第一柱形凹槽61的深度为0.2-0.8毫米,所述第二柱型凹槽62以及所述第三柱形凹槽81的深度为0.15-0.6毫米,所述弹性柱7的直径为1-3厘米,相邻所述弹性柱7的间距为3-5毫米,所述弹性柱7的高度为0.5-2毫米。所述弹性柱7和所述弹性层9的材质为橡胶,所述弹性层9的厚度为0.3-0.5毫米,所述外耐候树脂层10的材质为聚四氟乙烯、聚偏氟乙烯、聚氟乙烯或乙烯-四氟乙烯共聚物,所述外耐候树脂层10的厚度均为100-200微米。
实施例1
如图1-2所示,本申请提出一种太阳能电池组件,包括:金属基板1,所述金属基板1的上表面设置有多个依次相连的条形凸起11,所述条形凸起11的截面为等腰三角形,所述条形凸起11的两个倾斜侧面12与所述条形凸起的底面13的夹角均为23°,所述金属基板1的下表面设置有多个呈阵列排布的柱状凸起14;绝缘漆层2,所述绝缘漆层2完全覆盖所述金属基板1的上表面;多个长方形太阳能电池片3,每个所述条形凸起11的每个倾斜侧面12上均设置有所述长方形太阳能电池片3,所述长方形太阳能电池片3的宽度与所述条形凸起11的所述倾斜侧面12的宽度相同;封装胶层4,所述封装胶层4完全覆盖所述长方形太阳能电池片3和所述金属基板1的上表面;透明盖板5,所述透明盖板5设置于所述封装胶层4之上;第一树脂基板6,所述第一树脂基板6的上表面设置多个呈阵列分布的第一柱型凹槽61,所述金属基板1的下表面的每个柱状凸起14的一部分嵌入到相应的所述第一柱型凹槽61中,所述第一树脂基板6的下表面设置有多个 呈阵列分布的第二柱形凹槽62;多个弹性柱7,每个弹性柱7的一部分嵌入到相应的所述第二柱形凹槽62中;第二树脂基板8,所述第二树脂基板8的上表面设置多个呈阵列分布的第三柱型凹槽81,每个弹性柱7的另一部分嵌入到相应的所述第三柱形凹槽81中;弹性层9,所述弹性层9设置于所述第二树脂基板8的下表面;外耐候树脂层10,所述外耐候树脂层10设置于所述弹性层9的下表面。
其中,所述金属基板1的材质为铝,所述柱状凸起14的顶面为圆形,所述柱状凸起14的直径为2厘米,相邻柱状凸起14的间距为4毫米,所述柱状凸起14的高度为1.5毫米。所述绝缘漆层2的厚度为40微米。相邻所述长方形太阳能电池片3之间通过焊带电连接,所述长方形太阳能电池片3的尺寸为10mm*125mm。所述封装胶层4的材质为EVA。所述第一树脂基板6和所述第二树脂基板8的材质为PET。所述第一柱形凹槽61的深度为0.5毫米,所述第二柱型凹槽62以及所述第三柱形凹槽81的深度为0.4毫米,所述弹性柱7的直径为2厘米,相邻所述弹性柱7的间距为4毫米,所述弹性柱7的高度为1.5毫米。所述弹性柱7和所述弹性层9的材质为橡胶,所述弹性层9的厚度为0.4毫米,所述外耐候树脂层10的材质为聚四氟乙烯,所述外耐候树脂层10的厚度均为150微米。
通过测试表明,与现有相同规格的太阳能电池组件相比,本申请的太阳能电池组件的输出功率比现有组件的输出功率增加了12%。
实施例2
本实施例提供另一种太阳能电池组件,与实施例1相比,区别仅在于,所述条形凸起11的两个倾斜侧面12与所述条形凸起的底面13的夹角均为18°,所述金属基板1的材质为铜,所述柱状凸起14的顶面为圆形,所述柱状凸起14的直径为3厘米,相邻柱状凸起14的间距为5毫米,所述柱状凸起14的高度为2毫米。所述绝缘漆层2的厚度为50微米。所述第一树脂基板6和所述第二树脂基板8的材质为PEN。所述第一柱形凹槽61的 深度为0.8毫米,所述第二柱型凹槽62以及所述第三柱形凹槽81的深度为0.6毫米,所述弹性柱7的直径为3厘米,相邻所述弹性柱7的间距为5毫米,所述弹性柱7的高度为2毫米。所述弹性层9的厚度为0.5毫米,所述外耐候树脂层10的材质为聚偏氟乙烯,所述外耐候树脂层10的厚度均为200微米。
通过测试表明,与现有相同规格的太阳能电池组件相比,本申请的太阳能电池组件的输出功率比现有组件的输出功率增加了5%。
实施例3
本实施例提供另一种太阳能电池组件,与实施例1相比,区别仅在于,所述条形凸起11的两个倾斜侧面12与所述条形凸起的底面13的夹角均为28°,所述金属基板1的材质为铁,所述柱状凸起14的顶面为圆形,所述柱状凸起14的直径为1厘米,相邻柱状凸起14的间距为3毫米,所述柱状凸起14的高度为0.5毫米。所述绝缘漆层2的厚度为20微米。所述第一树脂基板6和所述第二树脂基板8的材质为PP。所述第一柱形凹槽61的深度为0.2毫米,所述第二柱型凹槽62以及所述第三柱形凹槽81的深度为0.15毫米,所述弹性柱7的直径为1厘米,相邻所述弹性柱7的间距为3毫米,所述弹性柱7的高度为0.5毫米。所述弹性柱7和所述弹性层9的材质为橡胶,所述弹性层9的厚度为0.3毫米,所述外耐候树脂层10的材质为乙烯-四氟乙烯共聚物,所述外耐候树脂层10的厚度均为100微米。
通过测试表明,与现有相同规格的太阳能电池组件相比,本申请的太阳能电池组件的输出功率比现有组件的输出功率增加了7%。
以上所述是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (8)

  1. 一种太阳能电池组件,其特征在于:包括:
    金属基板,所述金属基板的上表面设置有多个依次相连的条形凸起,所述条形凸起的截面为等腰三角形,所述条形凸起的两个倾斜侧面与所述条形凸起的底面的夹角均为15°-30°,所述金属基板的下表面设置有多个呈阵列排布的柱状凸起;
    绝缘漆层,所述绝缘漆层完全覆盖所述金属基板的上表面;
    多个长方形太阳能电池片,每个所述条形凸起的每个倾斜侧面上均设置有所述长方形太阳能电池片,所述长方形太阳能电池片的宽度与所述条形凸起的所述倾斜侧面的宽度相同;
    封装胶层,所述封装胶层完全覆盖所述长方形太阳能电池片和所述金属基板的上表面;
    透明盖板,所述透明盖板设置于所述封装胶层之上;
    第一树脂基板,所述第一树脂基板的上表面设置多个呈阵列分布的第一柱型凹槽,所述金属基板的下表面的每个柱状凸起的一部分嵌入到相应的所述第一柱型凹槽中,所述第一树脂基板的下表面设置有多个呈阵列分布的第二柱形凹槽;
    多个弹性柱,每个弹性柱的一部分嵌入到相应的所述第二柱形凹槽中;
    第二树脂基板,所述第二树脂基板的上表面设置多个呈阵列分布的第三柱型凹槽,每个弹性柱的另一部分嵌入到相应的所述第三柱形凹槽中;
    弹性层,所述弹性层设置于所述第二树脂基板的下表面;
    外耐候树脂层,所述外耐候树脂层设置于所述弹性层的下表面。
  2. 根据权利要求1所述的太阳能电池组件,其特征在于:所述金属基板的材质为铝、铜和铁中的一种,所述柱状凸起的顶面为圆形,所述柱状凸起的直径为1-3厘米,相邻柱状凸起的间距为3-5毫米,所述柱状凸起的高度为0.5-2毫米。
  3. 根据权利要求1所述的太阳能电池组件,其特征在于:所述绝缘漆层的厚度为20-50微米。
  4. 根据权利要求1所述的太阳能电池组件,其特征在于:相邻所述长方形太阳能电池片之间通过焊带电连接,所述长方形太阳能电池片的尺寸为10mm*125mm。
  5. 根据权利要求1所述的太阳能电池组件,其特征在于:所述封装胶层的材质为EVA。
  6. 根据权利要求1所述的太阳能电池组件,其特征在于:所述第一树脂基板和所述第二树脂基板的材质为PET、PEN、PC、PP、PMMA中的一种。
  7. 根据权利要求2所述的太阳能电池组件,其特征在于:所述第一柱形凹槽的深度为0.2-0.8毫米,所述第二柱型凹槽以及所述第三柱形凹槽的深度为0.15-0.6毫米,所述弹性柱的直径为1-3厘米,相邻所述弹性柱的间距为3-5毫米,所述弹性柱的高度为0.5-2毫米。
  8. 根据权利要求1所述的太阳能电池组件,其特征在于:所述弹性柱和所述弹性层的材质为橡胶,所述弹性层的厚度为0.3-0.5毫米,所述外耐候树脂层的材质为聚四氟乙烯、聚偏氟乙烯、聚氟乙烯或乙烯-四氟乙烯共聚物,所述外耐候树脂层的厚度均为100-200微米。
PCT/CN2018/112404 2018-04-25 2018-10-29 一种太阳能电池组件 WO2019205545A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020187037917A KR102133580B1 (ko) 2018-04-25 2018-10-29 태양전지 컴포넌트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810379925.X 2018-04-25
CN201810379925.XA CN108376721A (zh) 2018-04-25 2018-04-25 一种太阳能电池组件

Publications (1)

Publication Number Publication Date
WO2019205545A1 true WO2019205545A1 (zh) 2019-10-31

Family

ID=63032893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112404 WO2019205545A1 (zh) 2018-04-25 2018-10-29 一种太阳能电池组件

Country Status (3)

Country Link
KR (1) KR102133580B1 (zh)
CN (1) CN108376721A (zh)
WO (1) WO2019205545A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108376721A (zh) * 2018-04-25 2018-08-07 海门市绣羽工业设计有限公司 一种太阳能电池组件
CN110534600A (zh) * 2019-08-07 2019-12-03 河海大学常州校区 一种提高太阳光利用率光伏组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575797A1 (en) * 1992-06-25 1993-12-29 Siemens Solar Industries International, Inc. Photovoltaic module with specular reflector
CN102222709A (zh) * 2010-04-16 2011-10-19 通用电气公司 可展开的太阳面板系统
CN102969379A (zh) * 2012-11-27 2013-03-13 中国科学院物理研究所嘉兴工程中心 一种锯齿形斜面封装高效光伏组件
CN203165925U (zh) * 2013-03-20 2013-08-28 嘉兴乾和新能源科技有限公司 一种带有箱体结构2d封装的高效光伏组件
US9780719B2 (en) * 2014-08-22 2017-10-03 Solarcity Corporation East-west photovoltaic array with spaced apart photovoltaic modules for improved aerodynamic efficiency
CN108376721A (zh) * 2018-04-25 2018-08-07 海门市绣羽工业设计有限公司 一种太阳能电池组件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124375A (ja) 2010-12-09 2012-06-28 Sony Chemical & Information Device Corp 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2015046440A (ja) 2013-08-27 2015-03-12 株式会社小糸製作所 太陽電池モジュール
CN206551586U (zh) 2016-12-26 2017-10-13 浙江龙游展宇有机玻璃有限公司 一种太阳能高强度亚克力板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575797A1 (en) * 1992-06-25 1993-12-29 Siemens Solar Industries International, Inc. Photovoltaic module with specular reflector
CN102222709A (zh) * 2010-04-16 2011-10-19 通用电气公司 可展开的太阳面板系统
CN102969379A (zh) * 2012-11-27 2013-03-13 中国科学院物理研究所嘉兴工程中心 一种锯齿形斜面封装高效光伏组件
CN203165925U (zh) * 2013-03-20 2013-08-28 嘉兴乾和新能源科技有限公司 一种带有箱体结构2d封装的高效光伏组件
US9780719B2 (en) * 2014-08-22 2017-10-03 Solarcity Corporation East-west photovoltaic array with spaced apart photovoltaic modules for improved aerodynamic efficiency
CN108376721A (zh) * 2018-04-25 2018-08-07 海门市绣羽工业设计有限公司 一种太阳能电池组件

Also Published As

Publication number Publication date
CN108376721A (zh) 2018-08-07
KR20190125160A (ko) 2019-11-06
KR102133580B1 (ko) 2020-07-13

Similar Documents

Publication Publication Date Title
US8410350B2 (en) Modular solar panels with heat exchange
JP2007123725A (ja) Cis系薄膜太陽電池モジュール及びその製造方法
WO2019205545A1 (zh) 一种太阳能电池组件
CN107093635B (zh) 一种光伏组件及其制备方法
TWM461152U (zh) 太陽能電池模組
CN201584423U (zh) 新型太阳能电池组件
CN106992222B (zh) 一种散热型太阳能电池组件及其制备方法
CN201975407U (zh) 一种太阳能光伏组件玻璃
WO2019205534A1 (zh) 一种硅基太阳能电池板
CN108389923B (zh) 一种单晶硅电池组件
KR101731201B1 (ko) 태양 전지 모듈
CN208298843U (zh) 一种光电转换器件封装结构
RU2690728C1 (ru) Концентраторно-планарный солнечный фотоэлектрический модуль
CN102184996A (zh) 一种提高光伏组件温度稳定性的方法及太阳能光伏组件
US20180294370A1 (en) Hybrid solar module
US20190353882A1 (en) Solar concentrator apparatus and solar collector array
CN211654832U (zh) 一种耐候高效太阳能组件
CN208240699U (zh) 一种光伏组件
CN208014715U (zh) 一种太阳能电池组件
CN210073873U (zh) 一种电池背板
CN109216488B (zh) 一种轻便自清洁散热型高发电增益光伏瓦
CN208062075U (zh) 一种单晶硅电池组件
WO2019178725A1 (zh) 一种太阳能电池组件封装用背板
CN108389924A (zh) 一种光电转换器件封装结构
CN201985112U (zh) 具有温度稳定性的太阳能光伏组件

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187037917

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916698

Country of ref document: EP

Kind code of ref document: A1