WO2019198439A1 - レーザ溶接方法 - Google Patents

レーザ溶接方法 Download PDF

Info

Publication number
WO2019198439A1
WO2019198439A1 PCT/JP2019/011444 JP2019011444W WO2019198439A1 WO 2019198439 A1 WO2019198439 A1 WO 2019198439A1 JP 2019011444 W JP2019011444 W JP 2019011444W WO 2019198439 A1 WO2019198439 A1 WO 2019198439A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
measured
optical axis
laser
value
Prior art date
Application number
PCT/JP2019/011444
Other languages
English (en)
French (fr)
Inventor
櫻井 通雄
徹 酒井
健太 久保田
毅吏 浦島
大智 東
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020513145A priority Critical patent/JP7113315B2/ja
Priority to EP19786062.0A priority patent/EP3778102B1/en
Priority to CN201980025333.0A priority patent/CN112004637B/zh
Publication of WO2019198439A1 publication Critical patent/WO2019198439A1/ja
Priority to US17/066,854 priority patent/US20210023655A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • B23K26/043Automatically aligning the laser beam along the beam path, i.e. alignment of laser beam axis relative to laser beam apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/705Beam measuring device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels

Definitions

  • the present invention relates to a laser welding method.
  • Patent Document 1 laser light and measurement light are superimposed on the same axis and irradiated into the keyhole of the welded portion, and the measurement light reflected at the bottom of the keyhole is passed through a beam splitter to an optical interferometer.
  • a configuration in which the light is incident is disclosed.
  • the optical interferometer can measure the optical path length of the measurement light, the depth of the keyhole is specified as the penetration depth of the weld from the measured optical path length.
  • the depth of the keyhole may not be specified accurately.
  • the cross section of the bottom of the keyhole has a curved shape with a shallow penetration at the front part in the welding direction.
  • the measurement beam is shifted in front of the laser beam in the welding direction, the measurement beam is irradiated not on the deepest part of the keyhole but on the curved part that is shallower than the deepest part. . For this reason, a depth shallower than the actual deepest part of the keyhole may be measured.
  • the present invention has been made in view of such a point, and an object thereof is to be able to accurately specify the penetration depth of the welded portion.
  • the aspect of the present disclosure is directed to a laser welding method in which a welded portion is welded with a laser beam, and the following solution is taken.
  • the step of irradiating the laser beam and measurement light having a wavelength different from that of the laser beam coaxially and irradiating the welded portion is set to a first direction, a second direction opposite to the first direction, a third direction intersecting the first direction, and a second direction opposite to the third direction.
  • laser welding is performed while moving the irradiation positions of the laser beam and the measurement beam from the first direction to the fourth direction, and the penetration depth of the weld is measured in each direction. Then, the optical axis deviation direction is determined by relatively comparing a plurality of measurement values, and when laser welding is performed in the optical axis deviation direction, a correction value is added to the measurement value measured during laser welding. ing.
  • the measurement beam is shifted in front of the laser beam in the welding direction, the measurement beam is irradiated not on the deepest part of the keyhole of the weld but on the shallower part of the weld than the deepest part. Therefore, a depth shallower than the actual deepest part of the keyhole is measured.
  • the laser welding apparatus when the laser welding apparatus is activated, the irradiation positions of the laser light and the measurement light are changed from the first direction to the fourth direction. Laser welding is performed while moving in each direction.
  • the optical axis shift has occurred in the first direction
  • it is measured when performing laser welding in the first direction, which is the front of the welding direction, during actual laser welding work.
  • the correction value is added to the measured value.
  • the correction value may be set to 1 mm. .
  • the measured value actually measured during laser welding is shallower than the actual deepest part of the keyhole, but it is measured by adding the correction value. Variation in values can be suppressed.
  • the second aspect is the first aspect, In the step of determining the optical axis deviation, a plurality of measurement values are compared with a predetermined reference value, and a direction in which a measurement value smaller than the reference value is measured is determined as the optical axis deviation direction. It is what.
  • the direction in which the measurement value smaller than the predetermined reference value is measured is determined as the optical axis deviation direction.
  • a third aspect is the second aspect, In the step of determining the optical axis deviation direction, when a measurement value smaller than the reference value is measured in two directions of the first direction and the third direction, a direction between the first direction and the third direction is determined. The optical axis deviation direction is determined.
  • the direction between them is determined as the optical axis deviation direction.
  • the first direction is the front direction and the third direction is the left direction, it can be determined that the measurement light is shifted in the left front direction with respect to the laser light.
  • the depth of the actual deepest part of the keyhole obtained in advance by experiments or the like is 4 mm
  • the measured value in the first direction is 3.3 mm
  • the measured value in the third direction is 3.3 mm.
  • the first direction is determined.
  • the direction between the direction and the third direction and closer to the first direction is determined as the optical axis deviation direction.
  • the The direction closer to one direction is determined as the optical axis deviation direction.
  • the first direction is the forward direction and the third direction is the left direction
  • the depth of the actual deepest part of the keyhole obtained in advance by experiments or the like is 4 mm
  • the measured value in the first direction is 3.1 mm.
  • the measured value in the third direction is 3.5 mm. If the measured value in the first direction is smaller than the measured value in the third direction as in this case, for example, in a direction inclined 30 ° forward and to the left of the laser light according to the ratio of the measured values. It can be determined that the measurement light is deviated from the optical axis.
  • a fifth aspect is the fourth aspect, In the step of adding the correction value, the correction value added to the measurement value measured while moving in the first direction is more than the correction value added to the measurement value measured while moving in the third direction. Is also large.
  • the correction value added to the measurement value measured while moving in the first direction is made larger than the correction value added to the measurement value measured while moving in the third direction.
  • the first direction and the correction value in the third direction may be 0.5 mm.
  • a sixth aspect is any one of the first to fifth aspects, In the step of determining the optical axis deviation direction, the measurement value and the reference value are compared based on a table in which a plurality of reference values determined according to the output of the laser beam and the welding speed are stored. It is characterized by.
  • the reference value used for comparison with the measured value is determined based on the output of the laser beam and the welding speed, and is stored in a table. Thereby, when comparing a measured value and a reference value, the reference value according to welding conditions can be referred from a table.
  • the direction in which the shallowest measurement value is measured among the plurality of measurement values is determined as the optical axis deviation direction.
  • the direction in which the shallowest measurement value is measured is determined as the optical axis misalignment direction.
  • An eighth aspect is any one of the first to seventh aspects, In the step of adding the correction value, a difference between a deepest measurement value among a plurality of measurement values and a measurement value measured during laser welding toward the optical axis deviation direction is set as the correction value. It is what.
  • the difference between the deepest measurement value among the plurality of measurement values and the measurement value in the optical axis deviation direction is set as the correction value.
  • a ninth aspect is any one of the first to seventh aspects, In the step of adding the correction value, a measurement value measured during laser welding in a direction opposite to the optical axis deviation direction, and a measurement measured during laser welding in the optical axis deviation direction. The difference from the value is used as the correction value.
  • the difference between the measured value in the direction opposite to the optical axis deviation direction and the measured value in the optical axis deviation direction is used as the correction value.
  • the penetration depth of the welded portion can be specified with high accuracy.
  • FIG. 1 is a schematic diagram of a laser welding apparatus according to the present embodiment.
  • FIG. 2 is a schematic diagram showing the configuration of the laser irradiation head.
  • FIG. 3 is a side sectional view showing the positional relationship between the laser beam, the measurement beam, and the keyhole.
  • FIG. 4 is a side cross-sectional view showing the positional relationship between the laser beam, the measurement beam, and the keyhole when the optical axis shift of the measurement beam occurs.
  • FIG. 5 is a graph comparing the measurement results of the penetration depth when no optical axis deviation occurs and when an optical axis deviation occurs.
  • FIG. 6 is a diagram illustrating the positional relationship between the direction of the optical axis shift of the measurement light with respect to the laser light and the moving direction of the laser light and the measurement light in the front-rear and left-right directions.
  • FIG. 7 is a graph comparing the measurement results of the penetration depth when no optical axis deviation occurs and when the optical axis deviation occurs and a correction value is added to the measured value.
  • FIG. 8 is a flowchart showing an operation for measuring the penetration depth of the weld.
  • FIG. 9 is a diagram illustrating a positional relationship between the direction of the optical axis shift of the measurement light with respect to the laser light according to the first modification and the moving direction of the laser light and the measurement light in the front-rear and left-right directions.
  • FIG. 10 is a diagram illustrating a positional relationship between the direction of the optical axis deviation of the measurement light with respect to the laser light according to the second modification and the moving direction of the laser light and the measurement light in the front-rear and
  • the laser welding apparatus 10 includes a laser oscillator 11 that outputs laser light L, an optical interferometer 12 that outputs measurement light S, and directs the laser light L and measurement light S toward a welding object 30.
  • a laser irradiation head 20 irradiation unit for irradiating, a robot 18 to which the laser irradiation head 20 is attached and moving the laser irradiation head 20, and a control for performing laser welding by controlling the operations of the laser irradiation head 20 and the robot 18 Device 16.
  • Laser oscillator 11 outputs laser light L based on a command from control device 16.
  • the laser oscillator 11 and the laser irradiation head 20 are connected by an optical fiber 19.
  • the laser light L is transmitted from the laser oscillator 11 to the laser irradiation head 20 via the optical fiber 19.
  • the optical interferometer 12 includes a measurement light oscillator 13 that outputs a measurement light S having a wavelength different from that of the laser light L, and a measurement unit 14 that measures a penetration depth of a welded part 35 described later.
  • the measurement light oscillator 13 outputs the measurement light S based on a command from the control device 16.
  • the optical interferometer 12 and the laser irradiation head 20 are connected by an optical fiber 19.
  • the measurement light S is transmitted from the optical interferometer 12 to the laser irradiation head 20 via the optical fiber 19.
  • the laser irradiation head 20 is attached to the arm tip portion of the robot 18 and forms an image of the laser light L and the measuring light S on the welding object 30 based on a command from the control device 16.
  • the robot 18 moves the laser irradiation head 20 to a designated position based on a command from the control device 16 and scans the laser light L and the measurement light S.
  • the control device 16 is connected to the laser oscillator 11, the optical interferometer 12, and the robot 18. In addition to the moving speed of the laser irradiation head 20, the control device 16 starts and stops the output of the laser light L, the output intensity of the laser light L, and the like. It also has a function to control. Although described in detail later, the control device 16 includes a determination unit 17 that determines the penetration depth of the welded part 35 based on a plurality of measurement values measured by the measurement unit 14.
  • the welding object 30 has an upper metal plate 31 and a lower metal plate 32 that are stacked one above the other.
  • the laser welding apparatus 10 welds the upper metal plate 31 and the lower metal plate 32 by irradiating the upper surface of the upper metal plate 31 with the laser beam L.
  • the penetration depth of the welded portion 35 can be measured simultaneously with laser welding.
  • the laser irradiation head 20 includes a first collimating lens 21 and a first focus lens 22 through which the laser light L passes, and a second collimating lens 23 through which the measurement light S passes. And a second focus lens 24, a beam splitter 25 that couples the laser light L and the measurement light S into a coaxial light beam, a first parallel plate 26, and a second parallel plate 27.
  • the beam splitter 25 is a dichroic mirror, and the wavelength to be transmitted and reflected is set so as to transmit the laser light L from the laser oscillator 11 and reflect the measurement light S from the optical interferometer 12.
  • the wavelength difference between the laser beam L and the measurement beam S is 100 nm or more.
  • the first parallel plate 26 and the second parallel plate 27 are connected to a motor (not shown) and rotate according to a command from the control device 16.
  • the laser beam L output from the laser oscillator 11 is sent to the laser irradiation head 20 through the optical fiber 19.
  • the laser light L that has entered the laser irradiation head 20 is collimated by the first collimating lens 21 and condensed by the first focus lens 22.
  • the laser light L collected by the first focus lens 22 passes through the beam splitter 25.
  • the measurement light S output from the optical interferometer 12 is sent to the laser irradiation head 20 through the optical fiber 19.
  • the measuring light S that has entered the laser irradiation head 20 is collimated by the second collimating lens 23 and condensed by the second focus lens 24. Thereafter, the measurement light S is superimposed concentrically and coaxially with the laser light L by the beam splitter 25.
  • the second focus lens 24 also has a function of causing the measurement light S reflected from the welded portion 35 to enter the optical interferometer 12 again via the beam splitter 25.
  • the laser beam L and the measurement beam S superimposed on the same axis pass through the first parallel plate 26 and the second parallel plate 27 controlled by the control device 16, so that the laser beam L and the measurement beam S are transmitted.
  • the irradiation position (focal length) is determined, and the laser beam L and the measurement light are irradiated to the welded portion 35 of the welding object 30.
  • the laser irradiation head 20 rotates the first parallel flat plate 26 and the second parallel flat plate 27 so that the laser light L and the measurement light S are in a circular orbit, and is rotated. Can do. That is, the first parallel plate 26 and the second parallel plate 27 constitute an irradiation position changing unit that can change the irradiation positions of the laser light L and the measurement light S.
  • the irradiation position of the laser beam L and the measuring beam S can be moved in the welding region of the welding object 30.
  • the laser welding apparatus 10 when welding the welded portion 35 of the welding object 30 having the upper metal plate 31 and the lower metal plate 32, the upper metal plate 31 from above the welding object 30.
  • a laser beam L is irradiated on the upper surface of the substrate.
  • the welded part 35 irradiated with the laser beam L is melted from the upper part, and a molten pool 36 is formed in the welded part 35.
  • the molten metal evaporates from the molten pool 36, and the keyhole 37 is formed by the pressure of the vapor generated during the evaporation.
  • the molten pool 36 and the keyhole 37 are combined and handled as the welded portion 35. Behind the weld pool 36 in the welding direction, the molten pool 36 is solidified to form a solidified portion 38.
  • the measurement light S emitted from the optical interferometer 12 is superimposed concentrically and coaxially with the laser light L from the laser oscillator 11 by the beam splitter 25, and is irradiated inside the keyhole 37.
  • the irradiated measurement light S is reflected at the bottom 37 a of the keyhole 37 and enters the optical interferometer 12 via the beam splitter 25.
  • the optical path length of the measurement light S incident on the optical interferometer 12 is measured by the measurement unit 14.
  • the depth of the keyhole 37 is specified as the penetration depth of the welded portion 35 from the measured optical path length.
  • the quality of the welded portion 35 is determined based on the specified penetration depth.
  • the laser welding apparatus 10 can perform the penetration depth measurement function and the laser welding function simultaneously.
  • the beam splitter 25 may be distorted by heat, and an optical axis shift between the laser light L and the measurement light S may occur.
  • the optical interferometer 12 measures the depth of the keyhole 37 to be shallower than the actual depth, so that the penetration depth is accurately determined. It may not be possible to measure well.
  • the keyhole 37 is formed by the pressure of steam at the time of evaporation when the metal melted in the welded portion 35 evaporates.
  • the shape of the formed keyhole 37 varies depending on the irradiation time of the laser light L and the state of the molten pool 36.
  • the front inner wall portion of the keyhole 37 in the welding direction tends to be curved toward the rear of the keyhole 37 as the moving speed (welding speed) of the laser irradiation head 20 increases. Therefore, in order to reduce the curvature of the curved portion of the bottom 37a of the keyhole 37, it is preferable to appropriately set the laser welding speed.
  • the optical interferometer 12 measures the depth of the keyhole 37 with the position where the measurement light S is reflected as the position of the bottom 37a.
  • the optical interferometer 12 measures the depth of the keyhole 37 to be shallower than the actual depth.
  • the depth D shallower than the actual depth Dmin of the keyhole 37 is measured.
  • the welded portion 35 cannot be accurately inspected from the depth of the keyhole 37 measured to be shallower than the actual depth.
  • the plate thickness of the upper metal plate 31 is 1 mm
  • the plate thickness of the lower metal plate 32 is 4.3 mm
  • the optical axis of the measurement light S is the welding direction more than the optical axis of the laser light L. It is assumed that there is a deviation of 100 ⁇ m in front of.
  • FIG. 5 is a graph when the depth of the keyhole 37 is measured as the penetration depth of the welded portion 35 from the surface of the welding object 30 or a virtual surface serving as a reference. As shown in FIG. 5, when the penetration depth is measured while moving in the direction in which the optical axis shift occurs, the measured value of the depth of the keyhole 37 changes in the vicinity of 3 mm. On the other hand, when the optical axis deviation does not occur, the measured value of the depth of the keyhole 37 changes around 4 mm.
  • the measurement value becomes shallow when the measurement light S is shifted in the optical axis forward of the welding direction with respect to the laser light L.
  • the measurement is performed in the backward or left-right direction of the laser light L in the welding direction.
  • the measured value of the depth of the keyhole 37 changes around 4 mm.
  • the laser light L and the measurement light S are used when the laser welding apparatus 10 is started. Laser welding was performed while moving the irradiation position in the front-rear and left-right directions.
  • the laser welding apparatus 10 irradiates the welding object 30 with the laser light L and the measuring light S while moving in four directions from the first direction to the fourth direction. 30 is welded.
  • the first direction is the forward direction
  • the second direction is the backward direction
  • the third direction is the left direction
  • the fourth direction is the right direction.
  • the measurement light S is shifted by 100 ⁇ m from the laser light L in the forward direction.
  • the laser welding apparatus 10 performs laser welding along a rectangular welding path as indicated by a center line in FIG. Specifically, first, laser welding is performed while the laser beam L and the measurement beam S are advanced with the position of the lower left corner in FIG. 6 as a base point. After reaching the upper left corner in FIG. 6, laser welding is similarly performed while the laser beam L and the measuring beam S are moved rightward, backward, and leftward.
  • laser welding is performed while moving the irradiation positions of the laser beam L and the measuring beam S in the four directions, front, rear, left, and right, and the penetration depth of the welded portion 35 is measured in each direction.
  • the determination unit 17 determines the direction of the optical axis deviation of the measurement light S by comparing a plurality of measurement values measured during laser welding with a predetermined reference value.
  • the predetermined reference value is, for example, a value indicating a penetration depth determined in advance according to the output of the laser beam L and the welding speed, in other words, the output of the laser beam L obtained in advance through experiments or the like. Or the depth of the keyhole 37 as the penetration depth according to the welding speed, and is stored in the determination unit 17 as a table.
  • the reference value may be set to 4 mm, or the reference value may be set to about 3.8 mm, for example, in consideration of variations in the measurement value. .
  • the direction of the optical axis deviation of the measurement light S with respect to the laser light L is not known at the time of starting the laser welding apparatus 10, by comparing the measured values with the reference values, The direction in which the measurement value smaller than the reference value is measured can be determined as the optical axis misalignment direction in which the measurement light S is misaligned with the laser light L.
  • the actual depth of the keyhole 37 is 4 mm, whereas the measured value measured when the laser light L and the measuring light S are advanced is 3 mm. Therefore, the difference value, that is, 1 mm is corrected. What is necessary is just to add to a measured value as a value.
  • step S101 the laser irradiation head 20 irradiates the laser beam L and the measurement light S coaxially and irradiates the welded portion 35, and then proceeds to step S102.
  • step S102 the penetration depth of the welded part 35 is measured based on the measurement light S reflected by the welded part 35 while moving the irradiation positions of the laser light L and the measuring light S forward, and the process proceeds to step S103.
  • step S103 the penetration depth of the welded part 35 is measured based on the measurement light S reflected by the welded part 35 while moving the irradiation positions of the laser light L and the measuring light S to the right, and the process proceeds to step S104.
  • step S104 the penetration depth of the welded portion 35 is measured based on the measurement light S reflected by the welded portion 35 while moving the irradiation positions of the laser light L and the measuring light S in the backward direction, and the process proceeds to step S105.
  • step S105 the penetration depth of the welded portion 35 is measured based on the measurement light S reflected by the welded portion 35 while moving the irradiation positions of the laser light L and the measuring light S leftward, and the process proceeds to step S106.
  • step S106 the determination unit 17 determines whether or not a plurality of measurement values measured while moving in the front, rear, left, and right directions are smaller than a predetermined reference value. If “YES” at step S106, the process branches to step S107. If “NO” at step S106, the process branches to step S108.
  • step S107 the direction in which the measurement value smaller than the reference value is measured is determined as the optical axis misalignment direction in which the measurement light S is deviated from the laser beam L, and the process proceeds to step S109.
  • step S108 it is determined that no optical axis deviation has occurred, and the process proceeds to step S109.
  • step S109 the penetration depth of the welded portion 35 is measured while laser welding is performed on the welded portion 35 of the welding object 30, and the process proceeds to step S110.
  • step S110 when laser welding is performed in the direction of optical axis misalignment, a correction value is added to the measurement value measured during laser welding, and the process is terminated.
  • the measurement light S is deviated from the optical axis with respect to the laser light L, the variation in the measurement value can be suppressed and the penetration depth of the weld 35 can be specified with high accuracy.
  • FIG. 9 is a diagram illustrating a positional relationship between the direction of the optical axis shift of the measurement light with respect to the laser light according to the first modification and the moving direction of the laser light and the measurement light in the front-rear and left-right directions.
  • the measurement light S is offset by 100 ⁇ m from the laser light L in the direction inclined 45 ° forward and to the left.
  • the laser welding apparatus 10 performs laser welding along a rectangular welding path as indicated by a center line in FIG. Specifically, first, laser welding is performed while the laser beam L and the measurement beam S are advanced with the position of the lower left corner of FIG. 9 as a base point. After reaching the upper left corner of FIG. 9, laser welding is similarly performed while the laser beam L and the measuring beam S are moved rightward, backward, and leftward.
  • laser welding is performed while moving the irradiation positions of the laser beam L and the measuring beam S in the four directions, front, rear, left, and right, and the penetration depth of the welded portion 35 is measured in each direction.
  • the measurement beam S when performing laser welding while moving the laser beam L and the measurement beam S forward and left, the measurement beam S is irradiated ahead of the laser beam L in the welding direction.
  • the measured value when moving forward and when moving left is smaller than the reference value.
  • the actual deepest depth of the keyhole 37 obtained in advance through experiments or the like is 4 mm
  • the measured value when moving forward is 3.3 mm
  • the measured value when moving left is 3.3 mm.
  • the measurement light S is deviated from the optical axis in a direction inclined 45 ° forward of the laser light L and leftward. Can be determined.
  • the actual depth of the keyhole 37 is 4 mm, whereas the measured value measured when the laser beam L and the measuring beam S are moving forward and left is 3.3 mm. That is, 0.7 mm may be added as a correction value to the measurement value.
  • FIG. 10 is a diagram illustrating a positional relationship between the direction of the optical axis deviation of the measurement light with respect to the laser light according to the second modification and the moving direction of the laser light and the measurement light in the front-rear and left-right directions.
  • the measurement light S is shifted by 100 ⁇ m from the laser light L in the direction inclined 30 ° to the left and forward.
  • the laser welding apparatus 10 performs laser welding along a rectangular welding path as indicated by a center line in FIG. Specifically, first, laser welding is performed while the laser beam L and the measurement beam S are advanced with the position of the lower left corner of FIG. 10 as a base point. After reaching the upper left corner of FIG. 10, laser welding is performed while the laser beam L and the measuring beam S are moved rightward, backward, and leftward in the same manner.
  • laser welding is performed while moving the irradiation positions of the laser beam L and the measuring beam S in the four directions, front, rear, left, and right, and the penetration depth of the welded portion 35 is measured in each direction.
  • the measurement beam S when performing laser welding while moving the laser beam L and the measurement beam S forward and left, the measurement beam S is irradiated ahead of the laser beam L in the welding direction.
  • the measured value when moving forward and when moving left is smaller than the reference value.
  • the actual deepest depth of the keyhole 37 obtained in advance through experiments or the like is 4 mm
  • the measured value when traveling forward is 3.1 mm
  • the measured value when traveling left is 3.5 mm.
  • the front side of the laser beam L is moved forward and forward in accordance with the ratio of the measured values. It can be determined that the measurement light S is shifted in the direction closer to the direction, that is, in the direction tilted 30 ° to the left and forward of the laser light L.
  • the actual depth of the keyhole 37 is 4 mm
  • the measured value measured when the laser light L and the measuring light S are advanced is 3.1 mm. .9 mm may be added as a correction value to the measured value.
  • the difference value that is, 0.5 mm may be added to the measured value as a correction value.
  • laser welding is performed while moving the irradiation positions of the laser light L and the measurement light S along the rectangular welding path.
  • the present embodiment is limited to this form. Not what you want. For example, it may be moved along a circular or other polygonal welding path. Also, instead of continuously moving in the front / rear / right / left direction, move in the first direction, then move to another location, then move in the second direction or the third direction, etc. Also good. Further, the moving direction of the irradiation position of the laser beam L and the measuring beam S may be clockwise or counterclockwise.
  • a plurality of measurement values are compared with a predetermined reference value, and the direction in which the measurement value smaller than the reference value is measured is determined as the optical axis deviation direction.
  • the present invention is not limited to this. Not what you want.
  • the direction in which the shallowest measurement value among the plurality of measurement values is measured may be determined as the optical axis deviation direction.
  • the reference value and the measured value are obtained by using the value of the depth of the keyhole 37 as the penetration depth according to the output of the laser beam L and the welding speed, which is obtained in advance through experiments or the like, as a reference value.
  • the present invention is not limited to this form.
  • the difference between the deepest measurement value among the plurality of measurement values and the measurement value in the optical axis deviation direction may be used as the correction value. Further, the difference between the measured value in the direction opposite to the optical axis deviation direction and the measured value in the optical axis deviation direction may be used as the correction value.
  • the configuration in which the upper metal plate 31 and the lower metal plate 32 are stacked to perform laser welding has been described.
  • three or more metal plates are stacked to perform laser welding. May be.
  • the present invention provides a highly practical effect that the depth of penetration of the welded portion can be specified with high accuracy, and thus is extremely useful and has high industrial applicability.

Abstract

レーザ光L及び測定光Sの照射位置を、前方向、右方向、後方向、左方向に移動させながらレーザ溶接を行い、それぞれの方向について、溶接部35の溶け込み深さを測定する。そして、基準値よりも小さな測定値が測定された方向を光軸ずれ方向と判定し、光軸ずれ方向に向かってレーザ溶接を行う場合に、レーザ溶接中に測定された測定値に補正値を加算する。

Description

レーザ溶接方法
 本発明は、レーザ溶接方法に関するものである。
 従来より、溶接部の溶け込み深さを直接測定することで、溶接部の品質を評価するようにしたレーザ溶接装置が知られている(例えば、特許文献1参照)。
 特許文献1には、レーザ光と測定光とを同軸上に重ね合わせて溶接部のキーホール内部に照射して、キーホールの底部で反射した測定光を、ビームスプリッタを介して光干渉計に入射させるようにした構成が開示されている。ここで、光干渉計では、測定光の光路長を測定できるため、測定した光路長からキーホールの深さを、溶接部の溶け込み深さとして特定するようにしている。
特開2012-236196号公報
 しかしながら、例えば、ビームスプリッタが熱によって歪んでしまい、レーザ光と測定光との光軸ずれが生じた場合には、キーホールの深さを正確に特定することができなくなるおそれがある。
 具体的に、キーホールの底部の断面は、溶接方向の前方の部分で溶け込みが浅い湾曲形状となっている。ここで、レーザ光よりも溶接方向の前方に測定光が光軸ずれした場合には、キーホールの最深部ではなく、最深部よりも溶け込みの浅い湾曲部分に測定光が照射されることとなる。そのため、キーホールの実際の最深部よりも浅い深さが測定されてしまうおそれがあった。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、溶接部の溶け込み深さを精度良く特定することができるようにすることにある。
 本開示の態様は、レーザ光で溶接部を溶接するレーザ溶接方法を対象とし、次のような解決手段を講じた。
 すなわち、第1の態様は、前記レーザ光と、該レーザ光とは波長の異なる測定光とを同軸に重ね合わせて前記溶接部に照射するステップと、
 前記レーザ光及び前記測定光の照射位置を、第1方向、該第1方向とは逆向きの第2方向、該第1方向と交差する第3方向、該第3方向とは逆向きの第4方向に少なくとも移動させながらレーザ溶接を行うステップと、
 前記レーザ溶接中に前記溶接部で反射した前記測定光に基づいて、該溶接部の溶け込み深さを測定するステップと、
 測定された複数の測定値の相対比較により、前記レーザ光に対して前記測定光が光軸ずれした光軸ずれ方向を判定するステップと、
 前記光軸ずれ方向に向かってレーザ溶接を行う場合に、該レーザ溶接中に測定された測定値に対して所定の補正値を加算するステップとを備えたことを特徴とするものである。
 第1の態様では、レーザ光及び測定光の照射位置を、第1方向から第4方向にそれぞれ移動させながらレーザ溶接を行い、それぞれの方向について、溶接部の溶け込み深さを測定する。そして、複数の測定値を相対比較して光軸ずれ方向を判定し、光軸ずれ方向に向かってレーザ溶接を行う場合に、レーザ溶接中に測定された測定値に補正値を加算するようにしている。
 これにより、レーザ光に対して測定光が光軸ずれした場合でも、測定値のばらつきを抑えて、溶接部の溶け込み深さを精度良く特定することができる。
 具体的に、レーザ光よりも溶接方向の前方に測定光が光軸ずれした場合には、溶接部のキーホールの最深部ではなく、最深部よりも溶け込みの浅い部分に測定光が照射されてしまい、キーホールの実際の最深部よりも浅い深さが測定されてしまう。
 そこで、レーザ光に対してどの方向に測定光が光軸ずれしているのかを確認するために、レーザ溶接装置の起動時などに、レーザ光及び測定光の照射位置を第1方向から第4方向にそれぞれ移動させながらレーザ溶接を行う。
 その結果、例えば、第1方向に光軸ずれが生じていると判定された場合、実際のレーザ溶接作業時には、溶接方向の前方となる第1方向に向かってレーザ溶接を行う際に、測定された測定値に補正値を加算する。
 ここで、例えば、予め実験等により求めたキーホールの実際の最深部の深さが4mmであり、第1方向に移動中の測定値が3mmの場合には、補正値を1mmとすればよい。
 このように、光軸ずれが生じていると、レーザ溶接中に実際に測定された測定値は、キーホールの実際の最深部よりも浅い深さとなるが、補正値を加算することで、測定値のばらつきを抑えることができる。
 第2の態様は、第1の態様において、
 前記光軸ずれを判定するステップでは、複数の測定値と所定の基準値とを比較して、該基準値よりも小さな測定値が測定された方向を前記光軸ずれ方向と判定することを特徴とするものである。
 第2の態様では、所定の基準値よりも小さな測定値が測定された方向を、光軸ずれ方向と判定するようにしている。
 第3の態様は、第2の態様において、
 前記光軸ずれ方向を判定するステップでは、第1方向及び第3方向の2方向で前記基準値よりも小さな測定値が測定された場合に、該第1方向及び第3方向の間の方向を光軸ずれ方向と判定することを特徴とするものである。
 第3の態様では、基準値よりも小さな測定値が第1方向及び第3方向の2方向で測定された場合に、その間の方向を光軸ずれ方向と判定している。例えば、第1方向が前方向、第3方向が左方向であった場合に、レーザ光に対して左前方向に測定光が光軸ずれしていると判定することができる。
 ここで、例えば、予め実験等により求めたキーホールの実際の最深部の深さが4mmであり、第1方向の測定値が3.3mm、第3方向の測定値が3.3mmであったとする。この場合のように、第1方向と第3方向との測定値が同じであれば、レーザ光よりも前方で且つ左方に45°傾いた方向に測定光が光軸ずれしていると判定することができる。
 第4の態様は、第3の態様において、
 前記光軸ずれ方向を判定するステップでは、前記第1方向を移動中に測定された測定値の方が、前記第3方向を移動中に測定された測定値よりも小さい場合に、該第1方向及び第3方向の間で且つ該第1方向寄りの方向を光軸ずれ方向と判定することを特徴とするものである。
 第4の態様では、第1方向を移動中に測定された測定値が、第3方向を移動中に測定された測定値よりも小さい場合に、第1方向及び第3方向の間で且つ第1方向寄りの方向を光軸ずれ方向と判定している。
 ここで、例えば、第1方向が前方向、第3方向が左方向であり、予め実験等により求めたキーホールの実際の最深部の深さが4mm、第1方向の測定値が3.1mm、第3方向の測定値が3.5mmであったとする。この場合のように、第1方向の測定値が第3方向の測定値よりも小さければ、測定値の比率に応じて、例えば、レーザ光よりも前方で且つ左方に30°傾いた方向に測定光が光軸ずれしていると判定することができる。
 第5の態様は、第4の態様において、
 前記補正値を加算するステップでは、前記第1方向を移動中に測定された測定値に加算する補正値の方が、前記第3方向を移動中に測定された測定値に加算する補正値よりも大きいことを特徴とするものである。
 第5の態様では、第1方向を移動中に測定された測定値に加算する補正値を、第3方向を移動中に測定された測定値に加算する補正値よりも大きくしている。
 例えば、予め実験等により求めたキーホールの実際の最深部の深さが4mm、第1方向の測定値が3.1mm、第3方向の測定値が3.5mmの場合には、第1方向の補正値を0.9mm、第3方向の補正値を0.5mmとすればよい。
 第6の態様は、第1乃至第5の態様のうち何れか1つにおいて、
 前記光軸ずれ方向を判定するステップでは、前記レーザ光の出力及び溶接速度に応じて決定される複数の基準値が記憶されたテーブルに基づいて、前記測定値と前記基準値とを比較することを特徴とするものである。
 第6の態様では、測定値との比較に用いられる基準値は、レーザ光の出力及び溶接速度に基づいて決定されるものであり、テーブルに記憶されている。これにより、測定値と基準値とを比較する際に、溶接条件に応じた基準値をテーブルから参照することができる。
 第7の態様は、第1の態様において、
 前記光軸ずれを判定するステップでは、複数の測定値のうち最も浅い測定値が測定された方向を前記光軸ずれ方向と判定することを特徴とするものである。
 第7の態様では、最も浅い測定値が測定された方向を、光軸ずれ方向と判定するようにしている。
 第8の態様は、第1乃至第7の態様のうち何れか1つにおいて、
 前記補正値を加算するステップでは、複数の測定値のうち最も深い測定値と、前記光軸ずれ方向に向かってレーザ溶接中に測定された測定値との差分を前記補正値とすることを特徴とするものである。
 第8の態様では、複数の測定値のうち最も深い測定値と、光軸ずれ方向の測定値との差分を、補正値とするようにしている。
 第9の態様は、第1乃至第7の態様のうち何れか1つにおいて、
 前記補正値を加算するステップでは、前記光軸ずれ方向とは逆向きの方向に向かってレーザ溶接中に測定された測定値と、該光軸ずれ方向に向かってレーザ溶接中に測定された測定値との差分を前記補正値とすることを特徴とするものである。
 第9の態様では、光軸ずれ方向とは逆向きの方向の測定値と、光軸ずれ方向の測定値との差分を、補正値とするようにしている。
 本開示の態様によれば、溶接部の溶け込み深さを精度良く特定することができる。
図1は、本実施形態に係るレーザ溶接装置の模式図である。 図2は、レーザ照射ヘッドの構成を示す模式図である。 図3は、レーザ光、測定光、キーホールの位置関係を示す側面断面図である。 図4は、測定光の光軸ずれが生じたときのレーザ光、測定光、キーホールの位置関係を示す側面断面図である。 図5は、光軸ずれが生じていない場合と、光軸ずれが生じている場合とで、溶け込み深さの測定結果を比較したグラフ図である。 図6は、レーザ光に対する測定光の光軸ずれの方向と、レーザ光及び測定光の前後左右の移動方向との位置関係を示す図である。 図7は、光軸ずれが生じていない場合と、光軸ずれが生じており且つ測定値に補正値を加算した場合とで、溶け込み深さの測定結果を比較したグラフ図である。 図8は、溶接部の溶け込み深さの測定動作を示すフローチャート図である。 図9は、本変形例1に係るレーザ光に対する測定光の光軸ずれの方向と、レーザ光及び測定光の前後左右の移動方向との位置関係を示す図である。 図10は、本変形例2に係るレーザ光に対する測定光の光軸ずれの方向と、レーザ光及び測定光の前後左右の移動方向との位置関係を示す図である。
 以下、本発明の実施形態を図面に基づいて説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。
 図1に示すように、レーザ溶接装置10は、レーザ光Lを出力するレーザ発振器11と、測定光Sを出力する光干渉計12と、レーザ光L及び測定光Sを溶接対象物30に向けて照射するレーザ照射ヘッド20(照射部)と、レーザ照射ヘッド20が取り付けられてレーザ照射ヘッド20を移動させるロボット18と、レーザ照射ヘッド20やロボット18の動作を制御してレーザ溶接を行う制御装置16とを備えている。
 レーザ発振器11は、制御装置16からの指令に基づいて、レーザ光Lを出力する。レーザ発振器11とレーザ照射ヘッド20とは、光ファイバ19で接続されている。レーザ光Lは、光ファイバ19を介して、レーザ発振器11からレーザ照射ヘッド20に伝送される。
 光干渉計12は、レーザ光Lとは波長の異なる測定光Sを出力する測定光発振器13と、後述する溶接部35の溶け込み深さを測定する測定部14とを有する。測定光発振器13は、制御装置16からの指令に基づいて、測定光Sを出力する。光干渉計12とレーザ照射ヘッド20とは、光ファイバ19で接続されている。測定光Sは、光ファイバ19を介して、光干渉計12からレーザ照射ヘッド20に伝送される。
 レーザ照射ヘッド20は、ロボット18のアーム先端部分に取り付けられており、制御装置16からの指令に基づいて、レーザ光L及び測定光Sを溶接対象物30で結像する。
 ロボット18は、制御装置16からの指令に基づいて、レーザ照射ヘッド20を指定された位置まで移動させ、レーザ光L及び測定光Sを走査する。
 制御装置16は、レーザ発振器11、光干渉計12、ロボット18と接続されており、レーザ照射ヘッド20の移動速度の他に、レーザ光Lの出力開始や停止、レーザ光Lの出力強度などを制御する機能も備えている。詳しくは後述するが、制御装置16は、測定部14で測定された複数の測定値に基づいて、溶接部35の溶け込み深さを判定する判定部17を有する。
 溶接対象物30は、上下に重ね合わされた上側金属板31と下側金属板32とを有する。レーザ溶接装置10は、上側金属板31の上面にレーザ光Lを照射することで、上側金属板31と下側金属板32とを溶接する。
 ここで、本実施形態に係るレーザ溶接装置10では、レーザ溶接と同時に溶接部35の溶け込み深さの測定を行うことができるようになっている。
 具体的に、図2に示すように、レーザ照射ヘッド20は、レーザ光Lが通過する第1のコリメートレンズ21及び第1のフォーカスレンズ22と、測定光Sが通過する第2のコリメートレンズ23及び第2のフォーカスレンズ24と、レーザ光Lと測定光Sとを同軸の光束に結合するビームスプリッタ25と、第1の平行平板26と、第2の平行平板27とを有する。
 ビームスプリッタ25は、ダイクロイックミラーであり、レーザ発振器11からのレーザ光Lを透過し、光干渉計12からの測定光Sを反射するように、透過・反射させる波長が設定されている。
 このとき、ビームスプリッタ25で、レーザ光Lと測定光Sとを十分に分離するために、レーザ光Lと測定光Sとの波長差を100nm以上とすることが望ましい。
 第1の平行平板26及び第2の平行平板27は、図示しないモータに接続され、制御装置16からの指令に従って回転する。
 レーザ発振器11から出力されたレーザ光Lは、光ファイバ19を通ってレーザ照射ヘッド20に送られる。レーザ照射ヘッド20に入ったレーザ光Lは、第1のコリメートレンズ21によって平行化され、第1のフォーカスレンズ22によって集光される。第1のフォーカスレンズ22で集光されたレーザ光Lは、ビームスプリッタ25を透過する。
 一方、光干渉計12から出力された測定光Sは、光ファイバ19を通ってレーザ照射ヘッド20に送られる。レーザ照射ヘッド20に入った測定光Sは、第2のコリメートレンズ23によって平行化され、第2のフォーカスレンズ24によって集光される。その後、測定光Sは、ビームスプリッタ25によって、レーザ光Lと同心・同軸上に重ね合わされる。
 なお、第2のフォーカスレンズ24は、溶接部35から反射した測定光Sを、ビームスプリッタ25を介して、光干渉計12に再度、入射させる機能も有している。
 そして、同軸に重ね合わされたレーザ光Lと測定光Sとは、制御装置16によって制御された第1の平行平板26及び第2の平行平板27を通ることによって、レーザ光L及び測定光Sの照射位置(焦点距離)が決定され、溶接対象物30の溶接部35にレーザ光L及び測定光が照射される。
 このとき、レーザ照射ヘッド20は、第1の平行平板26及び第2の平行平板27を回転させることにより、レーザ光Lと測定光Sとが円軌道となるように回転させ、旋回移動させることができる。つまり、第1の平行平板26及び第2の平行平板27は、レーザ光L及び測定光Sの照射位置を変更可能な照射位置変化部を構成している。
 また、ロボット18によって、レーザ照射ヘッド20を移動させることで、溶接対象物30における溶接領域において、レーザ光L及び測定光Sの照射位置を移動させることができる。
 図3に示すように、レーザ溶接装置10では、上側金属板31と下側金属板32とを有する溶接対象物30の溶接部35を溶接するにあたり、溶接対象物30の上方から上側金属板31の上面にレーザ光Lが照射される。
 レーザ光Lの照射された溶接部35は、その上部から溶融し、溶接部35に溶融池36が形成される。溶接部35が溶融する際に、溶融池36から溶融金属が蒸発し、蒸発時に生じる蒸気の圧力によってキーホール37が形成される。ここでは、溶融池36とキーホール37とを合わせて溶接部35として扱う。溶融池36の溶接方向の後方には、溶融池36が凝固することで凝固部38が形成される。
 このとき、光干渉計12から出射される測定光Sが、ビームスプリッタ25により、レーザ発振器11からのレーザ光Lと同心・同軸上に重ね合わされ、キーホール37の内部に照射される。照射された測定光Sは、キーホール37の底部37aで反射し、ビームスプリッタ25を介して、光干渉計12に入射する。
 光干渉計12に入射した測定光Sの光路長は、測定部14で測定される。測定部14では、測定した光路長からキーホール37の深さを、溶接部35の溶け込み深さとして特定する。レーザ溶接装置10では、特定した溶け込み深さに基づいて、溶接部35の良否を判断するようにしている。
 以上の構成により、レーザ溶接装置10は、溶け込み深さ測定機能と、レーザ溶接機能とを同時に行うことを可能とする。
 ところで、例えば、ビームスプリッタ25が熱によって歪んでしまい、レーザ光Lと測定光Sとの光軸ずれが生じることがある。そして、レーザ光Lと測定光Sとの光軸ずれが生じた場合には、光干渉計12が、キーホール37の深さを実際の深さよりも浅く測定してしまい、溶け込み深さを精度良く測定することができない場合がある。
 具体的に、キーホール37は、溶接部35で溶融した金属が蒸発し、蒸発時の蒸気の圧力によって形成される。形成されるキーホール37の形状は、レーザ光Lの照射時間や溶融池36の状態によって変化する。
 ここで、キーホール37の溶接方向の前方の内壁部は、レーザ照射ヘッド20の移動速度(溶接速度)が速くなるほど、キーホール37の後方に向かって湾曲した形状となる傾向を示す。そこで、キーホール37の底部37aの湾曲部分の曲率を低減するために、レーザ溶接速度を適切に設定するのが好ましい。
 しかしながら、レーザ溶接速度を適切に設定したとしても、キーホール37の開口径と底部37aの孔径とを略等しくするのは困難であり、キーホール37の溶接方向の前方の内壁部では、溶け込みが浅い湾曲形状が生じてしまうこととなる。
 そのため、図4の仮想線で示すように、測定光Sが、レーザ光Lに対して溶接方向の前方に光軸ずれした場合には、キーホール37の底部37aの位置と、測定光Sのスポットの中心の位置とが一致しなくなり、測定光Sが底部37aに照射されない状態が生じ得る。
 底部37aに測定光Sが照射されない状態、例えば、測定光Sが、レーザ光Lに対して溶接方向の前方に光軸ずれして、キーホール37の前側の内壁部に測定光Sが照射された状態では、測定光Sの反射した位置を底部37aの位置として、光干渉計12は、キーホール37の深さを測定する。
 つまり、底部37aに測定光Sが照射されなければ、光干渉計12は、キーホール37の深さを実際の深さよりも浅く測定してしまう。図4に示す例では、キーホール37の実際の深さDminよりも浅い深さDを測定することとなる。このように、実際の深さよりも浅く測定したキーホール37の深さからは、精度良く溶接部35の検査を行うことはできない。
 以下、光軸ずれが生じていない場合と、光軸ずれが生じている場合とで、溶接部35の溶け込み深さ、つまり、キーホール37の深さの測定値がどのように変化するのかについて説明する。
 図4に示す例では、上側金属板31の板厚が1mm、下側金属板32の板厚が4.3mmであり、測定光Sの光軸が、レーザ光Lの光軸よりも溶接方向の前方に100μmずれているものとする。
 図5は、溶接対象物30の表面又は基準となる仮想の面からの、溶接部35の溶け込み深さとして、キーホール37の深さを測定したときのグラフ図である。図5に示すように、光軸ずれが生じている方向に移動させながら溶け込み深さを測定した場合には、キーホール37の深さの測定値が3mm付近を推移している。これに対し、光軸ずれが生じていない場合には、キーホール37の深さの測定値が4mm付近を推移している。
 なお、測定値が浅くなるのは、測定光Sがレーザ光Lに対して溶接方向の前方に光軸ずれしている場合なので、例えば、レーザ光Lの溶接方向の後方向や左右方向に測定光Sが光軸ずれしている場合は、キーホール37の深さの測定値が4mm付近を推移することとなる。
 そこで、本実施形態では、レーザ光Lに対してどの方向に測定光Sが光軸ずれしているのかを確認するために、レーザ溶接装置10の起動時などに、レーザ光L及び測定光Sの照射位置を前後左右方向にそれぞれ移動させながらレーザ溶接を行うようにした。
 図6に示すように、レーザ溶接装置10は、溶接対象物30に対して、第1方向から第4方向の4方向に移動しながらレーザ光L及び測定光Sを照射して、溶接対象物30を溶接する。以下、第1方向は前方向、第2方向は後方向、第3方向は左方向、第4方向は右方向として説明する。また、図6に示す例では、測定光Sが、レーザ光Lに対して前方向に100μm光軸ずれしている。
 レーザ溶接装置10は、図6に中心線で示すような四角形状の溶接経路に沿ってレーザ溶接を行う。具体的に、まず、図6の左下角部の位置を基点として、レーザ光L及び測定光Sを前進させながらレーザ溶接を行う。図6の左上角部に到達した後は、同様に、レーザ光L及び測定光Sを右進、後進、左進させながらレーザ溶接を行う。
 これにより、レーザ光L及び測定光Sの照射位置を、前後左右の4方向に移動させながらレーザ溶接を行い、それぞれの方向について、溶接部35の溶け込み深さを測定する。
 そして、判定部17において、レーザ溶接中に測定された複数の測定値を所定の基準値と比較することにより、測定光Sの光軸ずれの方向を判定する。ここで、所定の基準値は、例えば、レーザ光Lの出力や溶接速度に応じて予め決定される溶け込み深さを示す値であり、言い換えると、予め実験等により求めた、レーザ光Lの出力や溶接速度に応じた溶け込み深さとしてのキーホール37の深さの値であり、判定部17にテーブルとして記憶されている。
 本実施形態では、キーホール37の最深部の深さが4mmであるので、基準値を4mm、又は、測定値のばらつきを考慮して、例えば、基準値を3.8mm程度に設定すればよい。
 図6に示す例では、レーザ光L及び測定光Sを前進させながらレーザ溶接を行う場合に、測定値が3mm付近を推移して基準値よりも小さくなる。一方、レーザ光L及び測定光Sを右進、後進、左進させながらレーザ溶接を行う場合には、測定値が4mm付近を推移するため、基準値よりも小さくなることはない。
 このように、レーザ溶接装置10の起動時などで、レーザ光Lに対する測定光Sの光軸ずれの方向が分からない場合でも、測定された複数の測定値と基準値とを比較することで、基準値よりも小さな測定値が測定された方向を、レーザ光Lに対して測定光Sが光軸ずれした光軸ずれ方向と判定することができる。
 そして、このような光軸ずれ方向の判定を行った後、実際にレーザ溶接を開始する場合には、レーザ光L及び測定光Sを前進させながらレーザ溶接するときの測定値に対して所定の補正値を加算するようにしている。
 具体的に、キーホール37の実際の深さは4mmであるのに対し、レーザ光L及び測定光Sの前進時に測定された測定値は3mmであるので、その差分値、つまり、1mmを補正値として、測定値に加算すればよい。
 図7に示すように、レーザ光L及び測定光Sの前進時に測定された測定値に対して補正値を加算すると、補正値を加算した後の測定値は、4mm付近を推移することとなる。これにより、測定値のばらつきを抑えることができる。
 なお、レーザ光L及び測定光Sの右進、後進、左進時に測定された測定値については、4mm付近を推移するため、補正値を加算する必要はない。
 以下、溶接部35の溶け込み深さの測定動作について、図8のフローチャート図を用いて説明する。図8に示すように、まず、ステップS101では、レーザ照射ヘッド20においてレーザ光Lと測定光Sとを同軸に重ね合わせて溶接部35に照射し、ステップS102に進む。
 ステップS102では、レーザ光L及び測定光Sの照射位置を前方向に移動させながら、溶接部35で反射した測定光Sに基づいて溶接部35の溶け込み深さを測定し、ステップS103に進む。
 ステップS103では、レーザ光L及び測定光Sの照射位置を右方向に移動させながら、溶接部35で反射した測定光Sに基づいて溶接部35の溶け込み深さを測定し、ステップS104に進む。
 ステップS104では、レーザ光L及び測定光Sの照射位置を後方向に移動させながら、溶接部35で反射した測定光Sに基づいて溶接部35の溶け込み深さを測定し、ステップS105に進む。
 ステップS105では、レーザ光L及び測定光Sの照射位置を左方向に移動させながら、溶接部35で反射した測定光Sに基づいて溶接部35の溶け込み深さを測定し、ステップS106に進む。
 ステップS106では、判定部17において、前後左右のそれぞれの方向に移動させながら測定した複数の測定値が所定の基準値よりも小さいかを判定する。ステップS106での判定が「YES」の場合には、ステップS107に分岐する。ステップS106での判定が「NO」の場合には、ステップS108に分岐する。
 ステップS107では、基準値よりも小さな測定値が測定された方向を、レーザ光Lに対して測定光Sが光軸ずれした光軸ずれ方向と判定し、ステップS109に進む。
 ステップS108では、光軸ずれが生じていないと判定し、ステップS109に進む。
 ステップS109では、溶接対象物30の溶接部35に対してレーザ溶接を行いながら、溶接部35の溶け込み深さの測定を行い、ステップS110に進む。
 ステップS110では、光軸ずれ方向に向かってレーザ溶接を行う場合に、レーザ溶接中に測定された測定値に対して補正値を加算して、処理を終了する。
 これにより、レーザ光Lに対して測定光Sが光軸ずれした場合でも、測定値のばらつきを抑えて、溶接部35の溶け込み深さを精度良く特定することができる。
 《変形例1》
 図9は、本変形例1に係るレーザ光に対する測定光の光軸ずれの方向と、レーザ光及び測定光の前後左右の移動方向との位置関係を示す図である。図9に示す例では、測定光Sが、レーザ光Lよりも前方で且つ左方に45°傾いた方向に100μm光軸ずれしている。
 レーザ溶接装置10は、図9に中心線で示すような四角形状の溶接経路に沿ってレーザ溶接を行う。具体的に、まず、図9の左下角部の位置を基点として、レーザ光L及び測定光Sを前進させながらレーザ溶接を行う。図9の左上角部に到達した後は、同様に、レーザ光L及び測定光Sを右進、後進、左進させながらレーザ溶接を行う。
 これにより、レーザ光L及び測定光Sの照射位置を、前後左右の4方向に移動させながらレーザ溶接を行い、それぞれの方向について、溶接部35の溶け込み深さを測定する。
 図9に示す例では、レーザ光L及び測定光Sを前進及び左進させながらレーザ溶接を行う場合に、レーザ光Lよりも溶接方向の前方に測定光Sが照射されることとなるので、前進時と左進時との測定値が基準値よりも小さくなる。
 そのため、レーザ溶接装置10の起動時などで、レーザ光Lに対する測定光Sの光軸ずれの方向が分からない場合でも、レーザ光Lに対してどの方向に光軸ずれが生じているかを判定することができる。
 例えば、予め実験等により求めたキーホール37の実際の最深部の深さが4mmであり、前進時の測定値が3.3mm、左進時の測定値が3.3mmであったとする。この場合のように、前進時と左進時との測定値が同じであれば、レーザ光Lよりも前方で且つ左方に45°傾いた方向に測定光Sが光軸ずれしていると判定することができる。
 そして、このような光軸ずれ方向の判定を行った後、実際にレーザ溶接を開始する場合には、レーザ光L及び測定光Sを前進及び左進させながらレーザ溶接するときの測定値に対して所定の補正値を加算するようにしている。
 具体的に、キーホール37の実際の深さは4mmであるのに対し、レーザ光L及び測定光Sの前進時及び左進時に測定された測定値は3.3mmであるので、その差分値、つまり、0.7mmを補正値として、測定値に加算すればよい。
 《変形例2》
 図10は、本変形例2に係るレーザ光に対する測定光の光軸ずれの方向と、レーザ光及び測定光の前後左右の移動方向との位置関係を示す図である。図10に示す例では、測定光Sが、レーザ光Lよりも前方で且つ左方に30°傾いた方向に100μm光軸ずれしている。
 レーザ溶接装置10は、図10に中心線で示すような四角形状の溶接経路に沿ってレーザ溶接を行う。具体的に、まず、図10の左下角部の位置を基点として、レーザ光L及び測定光Sを前進させながらレーザ溶接を行う。図10の左上角部に到達した後は、同様に、レーザ光L及び測定光Sを右進、後進、左進させながらレーザ溶接を行う。
 これにより、レーザ光L及び測定光Sの照射位置を、前後左右の4方向に移動させながらレーザ溶接を行い、それぞれの方向について、溶接部35の溶け込み深さを測定する。
 図10に示す例では、レーザ光L及び測定光Sを前進及び左進させながらレーザ溶接を行う場合に、レーザ光Lよりも溶接方向の前方に測定光Sが照射されることとなるので、前進時と左進時との測定値が基準値よりも小さくなる。
 そのため、レーザ溶接装置10の起動時などで、レーザ光Lに対する測定光Sの光軸ずれの方向が分からない場合でも、レーザ光Lに対してどの方向に光軸ずれが生じているかを判定することができる。
 例えば、予め実験等により求めたキーホール37の実際の最深部の深さが4mmであり、前進時の測定値が3.1mm、左進時の測定値が3.5mmであったとする。この場合のように、前進時に測定された測定値の方が、左進時に測定された測定値よりも小さい場合には、測定値の比率に応じて、レーザ光Lよりも左前方向で且つ前方向寄りの方向、つまり、レーザ光Lよりも前方で且つ左方に30°傾いた方向に測定光Sが光軸ずれしていると判定することができる。
 そして、このような光軸ずれ方向の判定を行った後、実際にレーザ溶接を開始する場合には、レーザ光L及び測定光Sを前進及び左進させながらレーザ溶接するときの測定値に対して所定の補正値を加算するようにしている。
 具体的に、キーホール37の実際の深さは4mmであるのに対し、レーザ光L及び測定光Sの前進時に測定された測定値は3.1mmであるので、その差分値、つまり、0.9mmを補正値として、測定値に加算すればよい。また、レーザ光L及び測定光Sの左進時に測定された測定値は3.5mmであるので、その差分値、つまり、0.5mmを補正値として、測定値に加算すればよい。
 《その他の実施形態》
 前記実施形態については、以下のような構成としてもよい。
 本実施形態では、光軸ずれ方向を判定するために、四角形状の溶接経路に沿ってレーザ光L及び測定光Sの照射位置を移動させながらレーザ溶接を行うようにしたが、この形態に限定するものではない。例えば、円形状やその他の多角形状の溶接経路に沿って移動させてもよい。また、前後左右方向に連続的に移動させるのではなく、第1方向に移動させた後、別の場所に移動してから第2方向や第3方向に移動させる等、不連続で移動させてもよい。また、レーザ光L及び測定光Sの照射位置の移動方向は、時計回りであっても良いし、反時計回りであっても良い。
 また、本実施形態では、複数の測定値と所定の基準値とを比較して、基準値よりも小さな測定値が測定された方向を光軸ずれ方向と判定するようにしたが、これに限定するものではない。例えば、複数の測定値のうち最も浅い測定値が測定された方向を、光軸ずれ方向と判定するようにしてもよい。
 また、本実施形態では、予め実験等により求めた、レーザ光Lの出力や溶接速度に応じた溶け込み深さとしてのキーホール37の深さの値を基準値として、この基準値と測定値との差分を補正値として用いているが、この形態に限定するものではない。
 例えば、予め基準値を設けていない場合であれば、複数の測定値のうち最も深い測定値と光軸ずれ方向の測定値との差分を補正値として用いてもよい。また、光軸ずれ方向とは逆向きの方向の測定値と光軸ずれ方向の測定値との差分を補正値として用いてもよい。
 また、本実施形態では、上側金属板31及び下側金属板32の2枚を重ねてレーザ溶接を行う構成について説明したが、例えば、3枚以上の金属板を重ねてレーザ溶接を行うようにしてもよい。
 以上説明したように、本発明は、溶接部の溶け込み深さを精度良く特定することができるという実用性の高い効果が得られることから、きわめて有用で産業上の利用可能性は高い。
 10  レーザ溶接装置
 14  測定部
 17  判定部
 20  レーザ照射ヘッド
 35  溶接部
  L  レーザ光
  S  測定光

Claims (9)

  1.  レーザ光で溶接部を溶接するレーザ溶接方法であって、
     前記レーザ光と、該レーザ光とは波長の異なる測定光とを同軸に重ね合わせて前記溶接部に照射するステップと、
     前記レーザ光及び前記測定光の照射位置を、第1方向、該第1方向とは逆向きの第2方向、該第1方向と交差する第3方向、該第3方向とは逆向きの第4方向に少なくとも移動させながらレーザ溶接を行うステップと、
     前記レーザ溶接中に前記溶接部で反射した前記測定光に基づいて、該溶接部の溶け込み深さを測定するステップと、
     測定された複数の測定値の相対比較により、前記レーザ光に対して前記測定光が光軸ずれした光軸ずれ方向を判定するステップと、
     前記光軸ずれ方向に向かってレーザ溶接を行う場合に、該レーザ溶接中に測定された測定値に対して所定の補正値を加算するステップとを備えたことを特徴とするレーザ溶接方法。
  2.  請求項1において、
     前記光軸ずれを判定するステップでは、複数の測定値と所定の基準値とを比較して、該基準値よりも小さな測定値が測定された方向を前記光軸ずれ方向と判定することを特徴とするレーザ溶接方法。
  3.  請求項2において、
     前記光軸ずれ方向を判定するステップでは、第1方向及び第3方向の2方向で前記基準値よりも小さな測定値が測定された場合に、該第1方向及び第3方向の間の方向を光軸ずれ方向と判定することを特徴とするレーザ溶接方法。
  4.  請求項3において、
     前記光軸ずれ方向を判定するステップでは、前記第1方向を移動中に測定された測定値の方が、前記第3方向を移動中に測定された測定値よりも小さい場合に、該第1方向及び第3方向の間で且つ該第1方向寄りの方向を光軸ずれ方向と判定することを特徴とするレーザ溶接方法。
  5.  請求項4において、
     前記補正値を加算するステップでは、前記第1方向を移動中に測定された測定値に加算する補正値の方が、前記第3方向を移動中に測定された測定値に加算する補正値よりも大きいことを特徴とするレーザ溶接方法。
  6.  請求項1乃至5のうち何れか1つにおいて、
     前記光軸ずれ方向を判定するステップでは、前記レーザ光の出力及び溶接速度に応じて決定される複数の基準値が記憶されたテーブルに基づいて、前記測定値と前記基準値とを比較することを特徴とするレーザ溶接方法。
  7.  請求項1において、
     前記光軸ずれを判定するステップでは、複数の測定値のうち最も浅い測定値が測定された方向を前記光軸ずれ方向と判定することを特徴とするレーザ溶接方法。
  8.  請求項1乃至7のうち何れか1つにおいて、
     前記補正値を加算するステップでは、複数の測定値のうち最も深い測定値と、前記光軸ずれ方向に向かってレーザ溶接中に測定された測定値との差分を前記補正値とすることを特徴とするレーザ溶接方法。
  9.  請求項1乃至7のうち何れか1つにおいて、
     前記補正値を加算するステップでは、前記光軸ずれ方向とは逆向きの方向に向かってレーザ溶接中に測定された測定値と、該光軸ずれ方向に向かってレーザ溶接中に測定された測定値との差分を前記補正値とすることを特徴とするレーザ溶接方法。
PCT/JP2019/011444 2018-04-13 2019-03-19 レーザ溶接方法 WO2019198439A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020513145A JP7113315B2 (ja) 2018-04-13 2019-03-19 レーザ溶接方法
EP19786062.0A EP3778102B1 (en) 2018-04-13 2019-03-19 Laser welding methods
CN201980025333.0A CN112004637B (zh) 2018-04-13 2019-03-19 激光焊接方法
US17/066,854 US20210023655A1 (en) 2018-04-13 2020-10-09 Laser welding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018077694 2018-04-13
JP2018-077694 2018-04-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/066,854 Continuation US20210023655A1 (en) 2018-04-13 2020-10-09 Laser welding method

Publications (1)

Publication Number Publication Date
WO2019198439A1 true WO2019198439A1 (ja) 2019-10-17

Family

ID=68164039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011444 WO2019198439A1 (ja) 2018-04-13 2019-03-19 レーザ溶接方法

Country Status (5)

Country Link
US (1) US20210023655A1 (ja)
EP (1) EP3778102B1 (ja)
JP (1) JP7113315B2 (ja)
CN (1) CN112004637B (ja)
WO (1) WO2019198439A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210602A1 (ja) * 2020-04-17 2021-10-21 パナソニックIpマネジメント株式会社 レーザ溶接方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236196A (ja) 2011-05-10 2012-12-06 Panasonic Corp レーザ溶接装置及びレーザ溶接方法
WO2014132503A1 (ja) * 2013-02-27 2014-09-04 三菱重工業株式会社 加工装置および加工方法
US20160039045A1 (en) * 2013-03-13 2016-02-11 Queen's University At Kingston Methods and Systems for Characterizing Laser Machining Properties by Measuring Keyhole Dynamics Using Interferometry
US20160356595A1 (en) * 2015-06-02 2016-12-08 Lessmueller Lasertechnik Gmbh Measurement device for a laser processing system and a method for performing position measurements by means of a measurement beam on a workpiece

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007014974A (ja) * 2005-07-06 2007-01-25 Nissan Motor Co Ltd レーザ溶接方法およびレーザ溶接装置
JP5994807B2 (ja) * 2014-03-31 2016-09-21 ブラザー工業株式会社 レーザ加工装置、制御方法、及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236196A (ja) 2011-05-10 2012-12-06 Panasonic Corp レーザ溶接装置及びレーザ溶接方法
WO2014132503A1 (ja) * 2013-02-27 2014-09-04 三菱重工業株式会社 加工装置および加工方法
US20160039045A1 (en) * 2013-03-13 2016-02-11 Queen's University At Kingston Methods and Systems for Characterizing Laser Machining Properties by Measuring Keyhole Dynamics Using Interferometry
US20160356595A1 (en) * 2015-06-02 2016-12-08 Lessmueller Lasertechnik Gmbh Measurement device for a laser processing system and a method for performing position measurements by means of a measurement beam on a workpiece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210602A1 (ja) * 2020-04-17 2021-10-21 パナソニックIpマネジメント株式会社 レーザ溶接方法

Also Published As

Publication number Publication date
US20210023655A1 (en) 2021-01-28
EP3778102B1 (en) 2023-10-04
JPWO2019198439A1 (ja) 2021-04-22
JP7113315B2 (ja) 2022-08-05
CN112004637A (zh) 2020-11-27
EP3778102A4 (en) 2021-07-07
EP3778102A1 (en) 2021-02-17
CN112004637B (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
WO2019198441A1 (ja) レーザ溶接方法
JP6645960B2 (ja) 工作物へのレーザービームの進入深さを測定する方法、及び、レーザー加工装置
JP7126220B2 (ja) レーザ溶接方法及びレーザ溶接装置
JP2021530360A (ja) インラインコヒーレントイメージング(ici)を用いた、ウォブル加工を監視及び/または制御するためのシステム及び方法
JP2018153842A (ja) 計測装置およびレーザ溶接装置
JP7126221B2 (ja) レーザ溶接装置
EP3395490B1 (en) Laser welding method and laser welding apparatus
JP7203306B2 (ja) レーザ溶接装置及びレーザ溶接方法
WO2019159660A1 (ja) レーザ溶接装置及びレーザ溶接方法
WO2019198439A1 (ja) レーザ溶接方法
JP2019181538A (ja) レーザ溶接装置及びレーザ溶接方法
JP7398622B2 (ja) レーザ加工ヘッド及びレーザ加工システム
JP2020199513A (ja) レーザ加工機及びレーザ加工機の制御方法
JP2018140426A (ja) レーザ溶接装置
JP2021037527A (ja) レーザ加工装置および光学調整方法
WO2021210602A1 (ja) レーザ溶接方法
US20230330776A1 (en) Method of manufacturing metal component and laser welding apparatus
WO2023176047A1 (ja) レーザー溶接装置及びレーザー溶接方法
JP2023108708A (ja) レーザ溶接装置及びレーザ溶接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19786062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513145

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019786062

Country of ref document: EP