WO2019198362A1 - 内視鏡対物光学系 - Google Patents

内視鏡対物光学系 Download PDF

Info

Publication number
WO2019198362A1
WO2019198362A1 PCT/JP2019/007467 JP2019007467W WO2019198362A1 WO 2019198362 A1 WO2019198362 A1 WO 2019198362A1 JP 2019007467 W JP2019007467 W JP 2019007467W WO 2019198362 A1 WO2019198362 A1 WO 2019198362A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
observation state
objective optical
group
Prior art date
Application number
PCT/JP2019/007467
Other languages
English (en)
French (fr)
Inventor
江口陽亮
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2020513106A priority Critical patent/JP7047075B2/ja
Publication of WO2019198362A1 publication Critical patent/WO2019198362A1/ja
Priority to US17/038,202 priority patent/US20210137358A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00188Optical arrangements with focusing or zooming features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides

Definitions

  • the Fno (F number) of the objective optical system of Patent Document 1 is about 6.
  • the Fno of the objective optical system of Patent Document 2 is about 6.
  • the Fno of the objective optical system of Patent Document 3 is about 4.5.
  • the Fno of the objective optical system of Patent Document 4 is about 6.
  • the Fno of the objective optical system of Patent Document 5 is about 7.
  • the Fno of the objective optical system of Patent Document 6 is about 6. Any objective optical system has a large Fno and does not correspond to a high-definition optical system.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide an endoscope objective optical system that is small and high-definition and has reduced optical performance degradation due to manufacturing errors. .
  • an endoscope objective optical system includes a positive first group and a negative second group in order from the object side.
  • An endoscope objective optical system that performs zooming and focusing by moving at least the second group along the optical axis in the normal observation state to the magnified observation state.
  • the first group includes, in order from the object side, a plano-concave negative lens having a plane directed toward the object side, and two cemented lenses, and satisfies the following conditional expression (1): . -3.6 ⁇ f1 / fz1 ⁇ -2 (1) here, f1 is the focal length of the plano-concave negative lens, fz1 is the focal length of the entire endoscope objective optical system in the normal observation state, It is.
  • the present invention it is possible to provide an endoscope objective optical system that is small and high-definition and has reduced deterioration in optical performance due to manufacturing errors.
  • Distortion aberration (DT) and (d) indicate lateral chromatic aberration (CC) in the normal observation state.
  • (e) is spherical aberration (SA) in the magnified observation state
  • (f) is astigmatism (AS) in the magnified observation state
  • (g) is magnified observation.
  • Distortion aberration (DT) and (h) in the state indicate lateral chromatic aberration (CC) in the magnified observation state.
  • SA spherical aberration
  • AS astigmatism
  • DT spherical aberration
  • (A) is a lens cross-sectional block diagram in the normal observation state of the endoscope objective optical system which concerns on Example 2.
  • FIG. FIG. 6B is a lens cross-sectional configuration diagram in an enlarged observation state of the endoscope objective optical system according to Example 2.
  • SA spherical aberration
  • AS astigmatism
  • DT Distortion aberration
  • DT lateral chromatic aberration
  • CC lateral chromatic aberration
  • FIG. 6B is a lens cross-sectional configuration diagram in an enlarged observation state of the endoscope objective optical system according to Example 4;
  • the endoscope objective optical system according to Example 4 shows spherical aberration (SA) in the normal observation state, (b) shows astigmatism (AS) in the normal observation state, and (c) shows in the normal observation state.
  • Distortion aberration (DT) and (d) indicate lateral chromatic aberration (CC) in the normal observation state.
  • SA spherical aberration
  • AS astigmatism
  • g magnified observation.
  • Distortion aberration (DT) and (h) in the state indicate lateral chromatic aberration (CC) in the magnified observation state.
  • A) is a lens cross-sectional block diagram in the normal observation state of the endoscope objective optical system which concerns on Example 5.
  • FIG. FIG. 10B is a lens cross-sectional configuration diagram in an enlarged observation state of the endoscope objective optical system according to Example 5.
  • SA spherical aberration
  • AS astigmatism
  • Distortion aberration (DT) and (d) indicate lateral chromatic aberration (CC) in the normal observation state.
  • SA spherical aberration
  • AS astigmatism
  • DT Distortion aberration
  • DT lateral chromatic aberration
  • CC lateral chromatic aberration
  • spherical aberration (SA) in a normal observation state (b) astigmatism (AS) in a normal observation state, and (c) in a normal observation state.
  • Distortion aberration (DT) and (d) indicate lateral chromatic aberration (CC) in the normal observation state.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion aberration
  • CC lateral chromatic aberration
  • FIG. 10B is a lens cross-sectional configuration diagram in an enlarged observation state of the endoscope objective optical system according to Example 7.
  • SA spherical aberration
  • AS astigmatism
  • DT Distortion aberration
  • CC lateral chromatic aberration
  • (e) is spherical aberration (SA) in the magnified observation state
  • (f) is astigmatism (AS) in the magnified observation state
  • (g) is magnified observation.
  • Distortion aberration (DT) and (h) in the state indicate lateral chromatic aberration (CC) in the magnified observation state.
  • (A) is a lens cross-sectional block diagram in the normal observation state of the endoscope objective optical system which concerns on Example 8.
  • FIG. FIG. 10B is a lens cross-sectional configuration diagram in an enlarged observation state of the endoscope objective optical system according to Example 8.
  • spherical aberration (SA) in a normal observation state (b) astigmatism (AS) in a normal observation state, and (c) in a normal observation state.
  • Distortion aberration (DT) and (d) indicate lateral chromatic aberration (CC) in the normal observation state.
  • SA spherical aberration
  • AS astigmatism
  • DT distortion aberration
  • CC lateral chromatic aberration
  • FIG. 1A is a lens cross-sectional configuration diagram in a normal observation state of the endoscope objective optical system according to the embodiment.
  • FIG. 1B is a lens cross-sectional configuration diagram in an enlarged observation state of the endoscope objective optical system according to the embodiment.
  • the endoscope objective optical system includes, in order from the object side, a positive first group G1, a negative second group G2, and a positive third group G3.
  • An endoscope objective optical system that performs zooming and focusing by moving at least the second group G2 along the optical axis AX in a normal observation state to a magnified observation state,
  • the first group G1 includes, in order from the object side, a plano-concave negative lens L1 having a plane directed toward the object side, and two cemented lenses CL1 and CL2. The following conditional expression (1) is satisfied.
  • Conditional expression (1) defines an appropriate ratio between f1 and fz1.
  • the lens configuration of the endoscope objective optical system is a three-group configuration including a positive first group G1, a negative second group G2, and a positive third group G3.
  • a lens having a strong negative refractive power (power) is disposed on the first lens L1 in order to widen the angle.
  • the first lens L1 has a strong negative refractive power
  • the position of the principal point is on the image plane side (rear side). For this reason, it becomes possible to take a sufficient back focus while reducing the size of the endoscope objective optical system.
  • the third group G3 includes a positive lens L8, a positive lens L9, and a cemented lens CL3 of the positive lens L10 and the negative lens L11.
  • the following conditional expression (2) It is desirable to satisfy (3). -5 ⁇ f5 / f7 ⁇ -1 (2) -5 ⁇ f6 / f7 ⁇ -0.3 (3)
  • f5 is the focal length of the object side positive lens L8 of the third lens unit G3
  • f6 is the focal length of the positive lens L9 on the image side of the third group G3
  • f7 is the focal length of the cemented lens CL3 of the third group G3, It is.
  • Conditional expression (2) defines an appropriate ratio between f5 and f7.
  • Conditional expression (3) defines an appropriate ratio between f6 and f7.
  • the oblique incidence characteristic of the light beam to the imager needs to be negative with respect to the plane perpendicular to the optical axis AX. If the light beam is bent suddenly by the positive lens, the light beam height increases in the vicinity of the positive lens in the third lens group G3 at normal times, causing flare. Therefore, it is necessary to appropriately distribute the refractive power in the positive lens of the third group G3.
  • conditional expressions (2) and (3) If the upper limit value of conditional expressions (2) and (3) is exceeded, the refractive powers of the positive lenses L8 and L9 are too strong, and the spherical aberration becomes excessively corrected.
  • conditional expressions (2) and (3) If the lower limit value of conditional expressions (2) and (3) is not reached, the refractive powers of the positive lenses L8 and L9 are weak and the oblique incidence characteristics are inclined to the plus side.
  • conditional expressions (2 ′) and (3 ′) are satisfied instead of the conditional expressions (2) and (3).
  • conditional expression (4 ′) 2.4 ⁇ Ls / Bk ⁇ 4.6 (4 ′)
  • FFz3 is a distance (front focal position) from the front focal point in the enlarged observation state of the endoscope objective optical system to the most object side surface of the endoscope objective optical system
  • fz3 is the focal length of the entire endoscope objective optical system in the magnified observation state
  • Conditional expression (5) is a conditional expression for appropriately setting the magnification at the time of magnification observation.
  • conditional expression (5) 1.1 ⁇ FFz3 / fz3 ⁇ 3 (5 ′)
  • f7 is a focal length of the cemented lens CL3 of the third group G3
  • f3 is a focal length of the cemented lens CL2 on the image side of the first group G1, It is.
  • Conditional expression (6) is a conditional expression for satisfying the oblique incidence characteristics of light rays on the imager.
  • conditional expression (6) If the upper limit of conditional expression (6) is exceeded, the refractive power of f7 becomes too strong. As a result, the magnification chromatic aberration sensitivity due to the manufacturing error of f7 becomes too strong, and the performance deteriorates.
  • conditional expression (6 ′) -2 ⁇ f7 / f3 ⁇ -0.74 (6 ')
  • conditional expression (7) ⁇ 26 ⁇ f2 / fz1 ⁇ 5 (7 ′)
  • f2 is the focal length of the cemented lens CL1 on the object side of the first group G
  • f3 is a focal length of the cemented lens CL2 on the image side of the first group G1 It is.
  • Conditional expression (8) is a conditional expression for lens processability and field curvature correction.
  • conditional expression (8) If the upper limit of conditional expression (8) is exceeded, the curvature of the joint surface of f2 becomes too tight (small), and it is not preferable in manufacturing because the thickness of the lens border cannot be sufficiently secured.
  • conditional expression (8) If the lower limit value of conditional expression (8) is not reached, the curvature of the joining surface of f2 becomes too loose (large), and the field curvature cannot be corrected sufficiently.
  • conditional expression (8) -4 ⁇ f2 / f3 ⁇ -1.1 (8 ')
  • the third group G3 includes a convex positive lens L12 having a plane directed to the image surface side which is bonded to the cover glass CG, and the following conditional expression (9) It is desirable to satisfy.
  • the cover glass CG is a parallel plate. ⁇ 10 ⁇ f8 / f1 ⁇ 0.5 (9) f8 is the focal length of the positive lens L12 bonded to the cover glass CG, f1 is the focal length of the plano-concave negative lens L1, It is.
  • conditional expression (9) If the upper limit of conditional expression (9) is exceeded, the refractive power of f1 becomes too strong. For this reason, variation in peripheral performance due to manufacturing errors of the optical system becomes large.
  • conditional expression (9 ′) ⁇ 7 ⁇ f8 / f1 ⁇ 1.2
  • the cemented lens CL3 of the third group G3 has the biconcave negative lens L11 and satisfies the following conditional expression (10).
  • SF72 is a shaping factor of the biconcave negative lens L11.
  • SF72 (r72 + r73) / (r72 ⁇ r73) where r72 is the radius of curvature of the object side of the biconcave negative lens L11 and r73 is the radius of curvature of the image side of the biconcave negative lens L11.
  • Conditional expression (10) is a conditional expression for satisfying the oblique incidence characteristics of light rays on the imager.
  • conditional expression (10 ′) 0.2 ⁇ SF72 ⁇ 0.7 (10 ′)
  • FIG. 2A is a lens cross-sectional configuration diagram in a normal observation state of the endoscope objective optical system according to the first embodiment.
  • FIG. 2B is a lens cross-sectional configuration diagram of the endoscope objective optical system according to Example 1 in an enlarged observation state.
  • the endoscope objective optical system has, in order from the object side, a positive first group G1, an aperture stop S, a negative second group G2, and a positive third group G3.
  • the positive first group G1 includes, in order from the object side, a plano-concave negative lens L1, a biconcave negative lens L2, a biconvex positive lens L3, an infrared absorption filter F1, and the like.
  • the negative lens L2 and the positive lens L3 are cemented to form a cemented lens CL1.
  • the positive lens L4 and the negative meniscus lens L5 are cemented to form a cemented lens CL2.
  • An aperture stop S is disposed on the image side of the first group G1.
  • FIG. 3A shows the spherical aberration (SA) in the normal observation state
  • FIG. 3B shows the astigmatism (AS) in the normal observation state
  • FIG. 3C shows the endoscope objective optical system according to Example 1.
  • FIG. 3D shows lateral chromatic aberration (CC) in the normal observation state
  • 3E shows spherical aberration (SA) in the magnified observation state
  • FIG. 3F shows astigmatism (AS) in the magnified observation state
  • FIG. 3G shows distortion aberration (DT) in the magnified observation state
  • FIG. 3 (h) shows the chromatic aberration of magnification (CC) in the magnified observation state.
  • FIG. 4A is a lens cross-sectional configuration diagram of the endoscope objective optical system according to Example 2 in a normal observation state.
  • FIG. 4B is a lens cross-sectional configuration diagram in an enlarged observation state of the endoscope objective optical system according to the second embodiment.
  • the endoscope objective optical system has, in order from the object side, a positive first group G1, an aperture stop S, a negative second group G2, and a positive third group G3.
  • the positive first group G1 includes, in order from the object side, a plano-concave negative lens L1, a biconcave negative lens L2, a biconvex positive lens L3, an infrared absorption filter F1, and the like. And a biconvex positive lens L4 and a negative meniscus lens L5 having a convex surface facing the image side.
  • the negative lens L2 and the positive lens L3 are cemented to form a cemented lens CL1.
  • the positive lens L4 and the negative meniscus lens L5 are cemented to form a cemented lens CL2.
  • An aperture stop S is disposed on the image side of the first group G1.
  • the infrared absorption filter F1 which is a parallel plate is a filter provided with a coating for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
  • FIG. 6A is a lens cross-sectional configuration diagram of the endoscope objective optical system according to Example 3 in a normal observation state.
  • FIG. 6B is a lens cross-sectional configuration diagram in an enlarged observation state of the endoscope objective optical system according to the third embodiment.
  • the endoscope objective optical system has, in order from the object side, a positive first group G1, an aperture stop S, a negative second group G2, and a positive third group G3.
  • the positive first group G1 includes, in order from the object side, a plano-concave negative lens L1, a biconcave negative lens L2, a biconvex positive lens L3, an infrared absorption filter F1, and the like. And a biconvex positive lens L4 and a negative meniscus lens L5 having a convex surface facing the image side.
  • the negative lens L2 and the positive lens L3 are cemented to form a cemented lens CL1.
  • the positive lens L4 and the negative meniscus lens L5 are cemented to form a cemented lens CL2.
  • An aperture stop S is disposed on the image side of the first group G1.
  • the negative second group G2 includes, in order from the object side, a negative meniscus lens L6 having a convex surface facing the object side, and a positive meniscus lens L7 having a convex surface also facing the object side.
  • the negative meniscus lens L6 and the positive meniscus lens L7 are cemented.
  • the second group G2 moves to the image side along the optical axis AX when focusing from the normal observation state to the magnified observation state.
  • r12, r16, and r24 are virtual surfaces.
  • the positive third group G3 includes, in order from the object side, a biconvex positive lens L8, a biconvex positive lens L9, a biconvex positive lens L10, a biconcave negative lens L11, and a plane on the image side. And a plano-convex positive lens L12.
  • the positive lens L10 and the negative lens L11 are cemented to form a cemented lens CL3.
  • the positive lens L12 and the cover glass CG are bonded.
  • a cover glass CG which is a parallel plate is bonded to an image plane I which is an image pickup surface of an image pickup device (not shown).
  • the infrared absorption filter F1 which is a parallel plate is a filter provided with a coating for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
  • FIG. 7A shows the spherical aberration (SA) in the normal observation state
  • FIG. 7B shows the astigmatism (AS) in the normal observation state
  • FIG. 7C shows the endoscope objective optical system according to Example 3.
  • FIG. 7D shows lateral chromatic aberration (CC) in the normal observation state
  • 7E shows spherical aberration (SA) in the magnified observation state
  • FIG. 7F shows astigmatism (AS) in the magnified observation state
  • FIG. 7G shows distortion aberration (DT) in the magnified observation state
  • FIG. 7H shows the chromatic aberration of magnification (CC) in the magnified observation state.
  • FIG. 8A is a lens cross-sectional configuration diagram of the endoscope objective optical system according to Example 4 in a normal observation state.
  • FIG. 8B is a lens cross-sectional configuration diagram in an enlarged observation state of the endoscope objective optical system according to the fourth embodiment.
  • the positive first group G1 includes, in order from the object side, a plano-concave negative lens L1, a bi-concave negative lens L2, a biconvex positive lens L3, and an infrared absorption filter F1, with the plane facing the object side. It has a planoconvex positive lens L4 with the plane facing the object side and a negative meniscus lens L5 with the convex surface facing the image side.
  • the negative lens L2 and the positive lens L3 are cemented to form a cemented lens CL1.
  • the positive lens L4 and the negative meniscus lens L5 are cemented to form a cemented lens CL2.
  • An aperture stop S is disposed on the image side of the first group G1.
  • the negative second group G2 includes, in order from the object side, a negative meniscus lens L6 having a convex surface facing the object side, and a positive meniscus lens L7 having a convex surface also facing the object side.
  • the negative meniscus lens L6 and the positive meniscus lens L7 are cemented.
  • the second group G2 moves to the image side along the optical axis AX when focusing from the normal observation state to the magnified observation state.
  • r12, r16, and r24 are virtual surfaces.
  • the positive third group G3 includes, in order from the object side, a biconvex positive lens L8, a planoconvex positive lens L9 having a plane facing the image side, a biconvex positive lens L10, and a biconcave negative lens L11. And a planoconvex positive lens L12 having a flat surface facing the image side.
  • the positive lens L10 and the negative lens L11 are cemented to form a cemented lens CL3.
  • the positive lens L12 and the cover glass CG are bonded.
  • a cover glass CG which is a parallel plate is bonded to an image plane I which is an image pickup surface of an image pickup device (not shown).
  • the infrared absorption filter F1 which is a parallel plate is a filter provided with a coating for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
  • FIG. 9A shows the spherical aberration (SA) in the normal observation state
  • FIG. 9B shows the astigmatism (AS) in the normal observation state
  • FIG. 9C shows the endoscope objective optical system according to Example 4.
  • FIG. 9D shows lateral chromatic aberration (CC) in the normal observation state
  • 9E shows spherical aberration (SA) in the magnified observation state
  • FIG. 9F shows astigmatism (AS) in the magnified observation state
  • FIG. 9G shows distortion aberration (DT) in the magnified observation state
  • FIG. 9H shows the chromatic aberration of magnification (CC) in the magnified observation state.
  • FIG. 10A is a lens cross-sectional configuration diagram of the endoscope objective optical system according to Example 5 in a normal observation state.
  • FIG. 10B is a lens cross-sectional configuration diagram in an enlarged observation state of the endoscope objective optical system according to the fifth example.
  • the negative second group G2 includes, in order from the object side, a biconcave negative lens L6 and a positive meniscus lens L7 having a convex surface also on the object side.
  • the negative lens L6 and the positive meniscus lens L7 are cemented.
  • the second group G2 moves to the image side along the optical axis AX when focusing from the normal observation state to the magnified observation state.
  • r12 and r16 are virtual planes.
  • the positive third group G3 includes, in order from the object side, a biconvex positive lens L8, a planoconvex positive lens L9 having a plane facing the image side, a biconvex positive lens L10, and a biconcave negative lens L11. And a planoconvex positive lens L12 having a flat surface facing the image side.
  • the positive lens L10 and the negative lens L11 are cemented to form a cemented lens CL3.
  • a cover glass CG which is a parallel plate is bonded to an image plane I which is an image pickup surface of an image pickup device (not shown).
  • the infrared absorption filter F1 which is a parallel plate is a filter provided with a coating for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
  • FIG. 11A shows spherical aberration (SA) in the normal observation state
  • FIG. 11B shows astigmatism (AS) in the normal observation state
  • FIG. 11C shows the endoscope objective optical system according to Example 5.
  • FIG. 11D shows lateral chromatic aberration (CC) in the normal observation state
  • 11E shows spherical aberration (SA) in the magnified observation state
  • FIG. 11F shows astigmatism in the magnified observation state (AS)
  • FIG. 11G shows distortion aberration (DT) in the magnified observation state
  • FIG. 11 (h) shows lateral chromatic aberration (CC) in the magnified observation state.
  • FIG. 12A is a lens cross-sectional configuration diagram of the endoscope objective optical system according to Example 6 in a normal observation state.
  • FIG. 12B is a lens cross-sectional configuration diagram in an enlarged observation state of the endoscope objective optical system according to the sixth embodiment.
  • the endoscope objective optical system has, in order from the object side, a positive first group G1, an aperture stop S, a negative second group G2, and a positive third group G3.
  • the negative second group G2 includes, in order from the object side, a negative meniscus lens L6 having a convex surface facing the object side and a positive meniscus lens L7 having a convex surface facing the object side.
  • the negative meniscus lens L6 and the positive meniscus lens L7 are cemented.
  • the second group G2 moves to the image side along the optical axis AX when focusing from the normal observation state to the magnified observation state.
  • r12 and r16 are virtual planes.
  • the positive third group G3 includes, in order from the object side, a biconvex positive lens L8, a planoconvex positive lens L9 having a plane facing the image side, a biconvex positive lens L10, and a biconcave negative lens L11. And a planoconvex positive lens L12 having a flat surface facing the image side.
  • the positive lens L10 and the negative lens L11 are cemented to form a cemented lens CL3.
  • the positive lens L12 and the cover glass CG are bonded.
  • a cover glass CG which is a parallel plate is bonded to an image plane I which is an image pickup surface of an image pickup device (not shown).
  • the infrared absorption filter F1 which is a parallel plate is a filter provided with a coating for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
  • the endoscope objective optical system has, in order from the object side, a positive first group G1, an aperture stop S, a negative second group G2, and a positive third group G3.
  • the positive first group G1 includes, in order from the object side, a plano-concave negative lens L1, a biconcave negative lens L2, a biconvex positive lens L3, an infrared absorption filter F1, and the like. And a positive biconvex lens L4 and a negative meniscus lens L5 having a convex surface facing the image side.
  • the negative lens L2 and the positive lens L3 are cemented to form a cemented lens CL1.
  • the positive lens L4 and the negative meniscus lens L5 are cemented to form a cemented lens CL2.
  • An aperture stop S is disposed on the image side of the first group G1.
  • the negative second group G2 includes, in order from the object side, a negative meniscus lens L6 having a convex surface facing the object side, and a positive meniscus lens L7 having a convex surface also facing the object side.
  • the negative meniscus lens L6 and the positive meniscus lens L7 are cemented.
  • the second group G2 moves to the image side along the optical axis AX when focusing from the normal observation state to the magnified observation state.
  • r12 and r16 are virtual planes.
  • the positive third group G3 includes, in order from the object side, a biconvex positive lens L8, a planoconvex positive lens L9 having a plane facing the image side, a biconvex positive lens L10, and a biconcave negative lens L11. And a plano-convex positive lens L12 having a plane facing the image side.
  • the positive lens L10 and the negative lens L11 are cemented to form a cemented lens CL3.
  • the positive lens L12 and the cover glass CG are bonded.
  • a cover glass CG which is a parallel plate is bonded to an image plane I which is an image pickup surface of an image pickup device (not shown).
  • the infrared absorption filter F1 which is a parallel plate is a filter provided with a coating for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
  • FIG. 15A shows spherical aberration (SA) in the normal observation state
  • FIG. 15B shows astigmatism (AS) in the normal observation state
  • FIG. 15C shows the endoscope objective optical system according to Example 7.
  • FIG. 15D shows lateral chromatic aberration (CC) in the normal observation state
  • 15E shows spherical aberration (SA) in the magnified observation state
  • FIG. 15F shows astigmatism (AS) in the magnified observation state
  • FIG. 15G shows distortion aberration (DT) in the magnified observation state
  • FIG. 15H shows the chromatic aberration of magnification (CC) in the magnified observation state.
  • FIG. 16A is a lens cross-sectional configuration diagram of the endoscope objective optical system according to Example 8 in a normal observation state.
  • FIG. 16B is a lens cross-sectional configuration diagram in the enlarged observation state of the endoscope objective optical system according to Example 8.
  • the endoscope objective optical system has, in order from the object side, a positive first group G1, an aperture stop S, a negative second group G2, and a positive third group G3.
  • the positive first group G1 includes, in order from the object side, a plano-concave negative lens L1 having a plane directed toward the object side, a biconcave negative lens L2, a biconvex positive lens L3, an infrared absorption filter F1, A positive meniscus lens L4 having a convex surface facing the image side; and a negative meniscus lens L5 having a convex surface facing the image side.
  • the negative lens L2 and the positive lens L3 are cemented to form a cemented lens CL1.
  • the positive meniscus lens L4 and the negative meniscus lens L5 are cemented to form a cemented lens CL2.
  • An aperture stop S is disposed on the image side of the first group G1.
  • the negative second group G2 includes, in order from the object side, a negative meniscus lens L6 having a convex surface facing the object side, and a positive meniscus lens L7 having a convex surface also facing the object side.
  • the negative meniscus lens L6 and the positive meniscus lens L7 are cemented.
  • the second group G2 moves to the image side along the optical axis AX when focusing from the normal observation state to the magnified observation state.
  • r12 and r16 are virtual planes.
  • FIG. 17A shows the spherical aberration (SA) in the normal observation state
  • FIG. 17B shows the astigmatism (AS) in the normal observation state
  • FIG. 17C shows the endoscope objective optical system according to Example 8.
  • FIG. 17D shows lateral chromatic aberration (CC) in the normal observation state
  • FIG. 17E shows spherical aberration (SA) in the magnified observation state
  • FIG. 17F shows astigmatism (AS) in the magnified observation state
  • FIG. 17G shows distortion aberration (DT) in the magnified observation state
  • FIG. 17H shows the chromatic aberration of magnification (CC) in the magnified observation state.
  • Example 1 Example 2
  • Example 3 Example 4 (1) -2.33 -3.03 -2.36 -3.46 (2) -1.42 -1.44 -1.07 -1.47 (3) -1.41 -1.35 -1.18 -1.33 (4) 2.66 4.18 3.33 4.42 (5) 1.36 1.53 1.36 1.62 (6) -0.82 -0.81 -1.34 -0.77 (7) -12.39 -8.84 -8.30 -9.18 (8) -1.93 -1.41 -1.54 -1.44 (9) -3.15 -2.37 -3.10 -1.90 (10) 0.26 0.24 0.70 0.21
  • Example 5 Example 6
  • Example 7 Example 8 (1) -2.41 -2.32 -2.31 -2.39 (2) -1.35 -1.40 -1.44 -1.26 (3) -1.21 -1.36 -1.62 -1.16 (4) 3.04 3.04 2.68 3.45 (5) 1.77 1.36 1.35
  • the present invention is suitable for an endoscope objective optical system that is compact and high-definition and has reduced deterioration in optical performance due to manufacturing errors.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Astronomy & Astrophysics (AREA)
  • Lenses (AREA)

Abstract

小型かつ高精細であり、製造誤差による光学性能の劣化が低減された内視鏡対物光学系を提供する。 物体側より順に、正の第1群G1と、負の第2群G2と、正の第3群G3とを有し、 通常観察状態から拡大観察状態において、少なくとも第2群G2を光軸AXに沿って動かすことにより変倍と合焦を行う内視鏡対物光学系であって、 第1群G1は、物体側から順に、物体側に平面を向けた平凹の負レンズL1と、接合レンズ2枚CL1、CL2とを有し、 以下の条件式(1)を満たすことを特徴とする内視鏡対物光学系。 -3.6<f1/fz1<-2 (1) ここで、 f1は平凹の負レンズL1の焦点距離、 fz1は通常観察状態における内視鏡対物光学系全系の焦点距離、 である。

Description

内視鏡対物光学系
 本発明は内視鏡対物光学系に関するものである。
 近年、医療用内視鏡において、拡大内視鏡を利用して、病変部の精密診断が行なわれている。被写体を拡大観察することにより、粘膜模様、血管模様が観察できるようになり、精密診断に使用されている。診断の精度向上のため内視鏡画像の高画素化が求められ、画素数の高い撮像素子が採用され始めている。また拡大内視鏡に限らず、通常内視鏡でも患者への苦痛低減のため細径化が望まれている。
 このような拡大内視鏡の対物光学系の例は、例えば、以下の6つの特許文献である、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5、特許文献6に提案されている。これらの特許文献に提案された対物光学系は、正負正の3群構成であり、第2群が光軸に沿って可動することで合焦を行う。
特開2009-294496号公報 特開2007-260305号公報 特開2008-107391号公報 特開2001-91832号公報 特開平11-316339号公報 特許第5985133号公報
 以下、各特許文献に提案されている対物光学系に関して説明する。特許文献1の対物光学系のFno(Fナンバー)は6程度である。特許文献2の対物光学系のFnoは6程度である。特許文献3の対物光学系のFnoは4.5程度である。特許文献4の対物光学系のFnoは6程度である。特許文献5の対物光学系のFnoは7程度である。特許文献6の対物光学系のFnoは6程度である。いずれの対物光学系もFnoが大きく、高精細な光学系に対応しない。
 また、特許文献3の対物光学系は半画角が50°と小さいので、通常の内視鏡として適さない。特許文献4の対物光学系の場合、複数のレンズを動かすと枠構成が複雑化し、小型化に適さない。さらに、特許文献5の対物光学系は、バックフォーカスが長すぎてしまい、小型化に適さない。
 本発明は、このような課題に鑑みてなされたものであって、小型かつ高精細であり、製造誤差による光学性能の劣化が低減された内視鏡対物光学系を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の少なくとも幾つかの実施形態に係る内視鏡対物光学系は、物体側より順に、正の第1群と、負の第2群と、正の第3群と、を有し、通常観察状態から拡大観察状態において、少なくとも第2群を光軸に沿って動かすことにより変倍と合焦を行う内視鏡対物光学系であって、第1群は、物体側から順に、物体側に平面を向けた平凹の負レンズと、2つの接合レンズと、を有し、以下の条件式(1)を満たすことを特徴とする。
 -3.6<f1/fz1<-2 (1)
 ここで、
 f1は平凹の負レンズの焦点距離、
 fz1は通常観察状態における内視鏡対物光学系全系の焦点距離、
である。
 本発明によれば、小型かつ高精細であり、製造誤差による光学性能の劣化が低減された内視鏡対物光学系を提供できる。
(a)は実施形態に係る内視鏡対物光学系の通常観察状態におけるレンズ断面構成図である。(b)は実施形態に係る内視鏡対物光学系の拡大観察状態におけるレンズ断面構成図である。 (a)は実施例1に係る内視鏡対物光学系の通常観察状態におけるレンズ断面構成図である。(b)は実施例1に係る内視鏡対物光学系の拡大観察状態におけるレンズ断面構成図である。 実施例1に係る内視鏡対物光学系の、(a)は通常観察状態における球面収差(SA)、(b)は通常観察状態における非点収差(AS)、(c)は通常観察状態における歪曲収差(DT)、(d)は通常観察状態における倍率色収差(CC)を示している。 また、実施例1に係る内視鏡対物光学系の、(e)は拡大観察状態における球面収差(SA)、(f)は拡大観察状態における非点収差(AS)、(g)は拡大観察状態における歪曲収差(DT)、(h)は拡大観察状態における倍率色収差(CC)を示している。 (a)は実施例2に係る内視鏡対物光学系の通常観察状態におけるレンズ断面構成図である。(b)は実施例2に係る内視鏡対物光学系の拡大観察状態におけるレンズ断面構成図である。 実施例2に係る内視鏡対物光学系の、(a)は通常観察状態における球面収差(SA)、(b)は通常観察状態における非点収差(AS)、(c)は通常観察状態における歪曲収差(DT)、(d)は通常観察状態における倍率色収差(CC)を示している。 また、実施例2に係る内視鏡対物光学系の、(e)は拡大観察状態における球面収差(SA)、(f)は拡大観察状態における非点収差(AS)、(g)は拡大観察状態における歪曲収差(DT)、(h)は拡大観察状態における倍率色収差(CC)を示している。 (a)は実施例3に係る内視鏡対物光学系の通常観察状態におけるレンズ断面構成図である。(b)は実施例3に係る内視鏡対物光学系の拡大観察状態におけるレンズ断面構成図である。 実施例3に係る内視鏡対物光学系の、(a)は通常観察状態における球面収差(SA)、(b)は通常観察状態における非点収差(AS)、(c)は通常観察状態における歪曲収差(DT)、(d)は通常観察状態における倍率色収差(CC)を示している。 また、実施例3に係る内視鏡対物光学系の、(e)は拡大観察状態における球面収差(SA)、(f)は拡大観察状態における非点収差(AS)、(g)は拡大観察状態における歪曲収差(DT)、(h)は拡大観察状態における倍率色収差(CC)を示している。 (a)は実施例4に係る内視鏡対物光学系の通常観察状態におけるレンズ断面構成図である。(b)は実施例4に係る内視鏡対物光学系の拡大観察状態におけるレンズ断面構成図である。 実施例4に係る内視鏡対物光学系の、(a)は通常観察状態における球面収差(SA)、(b)は通常観察状態における非点収差(AS)、(c)は通常観察状態における歪曲収差(DT)、(d)は通常観察状態における倍率色収差(CC)を示している。 また、実施例4に係る内視鏡対物光学系の、(e)は拡大観察状態における球面収差(SA)、(f)は拡大観察状態における非点収差(AS)、(g)は拡大観察状態における歪曲収差(DT)、(h)は拡大観察状態における倍率色収差(CC)を示している。 (a)は実施例5に係る内視鏡対物光学系の通常観察状態におけるレンズ断面構成図である。(b)は実施例5に係る内視鏡対物光学系の拡大観察状態におけるレンズ断面構成図である。 実施例5に係る内視鏡対物光学系の、(a)は通常観察状態における球面収差(SA)、(b)は通常観察状態における非点収差(AS)、(c)は通常観察状態における歪曲収差(DT)、(d)は通常観察状態における倍率色収差(CC)を示している。 また、実施例5に係る内視鏡対物光学系の、(e)は拡大観察状態における球面収差(SA)、(f)は拡大観察状態における非点収差(AS)、(g)は拡大観察状態における歪曲収差(DT)、(h)は拡大観察状態における倍率色収差(CC)を示している。 (a)は実施例6に係る内視鏡対物光学系の通常観察状態におけるレンズ断面構成図である。(b)は実施例6に係る内視鏡対物光学系の拡大観察状態におけるレンズ断面構成図である。 実施例6に係る内視鏡対物光学系の、(a)は通常観察状態における球面収差(SA)、(b)は通常観察状態における非点収差(AS)、(c)は通常観察状態における歪曲収差(DT)、(d)は通常観察状態における倍率色収差(CC)を示している。 また、実施例6に係る内視鏡対物光学系の、(e)は拡大観察状態における球面収差(SA)、(f)は拡大観察状態における非点収差(AS)、(g)は拡大観察状態における歪曲収差(DT)、(h)は拡大観察状態における倍率色収差(CC)を示している。 (a)は実施例7に係る内視鏡対物光学系の通常観察状態におけるレンズ断面構成図である。(b)は実施例7に係る内視鏡対物光学系の拡大観察状態におけるレンズ断面構成図である。 実施例7に係る内視鏡対物光学系の、(a)は通常観察状態における球面収差(SA)、(b)は通常観察状態における非点収差(AS)、(c)は通常観察状態における歪曲収差(DT)、(d)は通常観察状態における倍率色収差(CC)を示している。 また、実施例7に係る内視鏡対物光学系の、(e)は拡大観察状態における球面収差(SA)、(f)は拡大観察状態における非点収差(AS)、(g)は拡大観察状態における歪曲収差(DT)、(h)は拡大観察状態における倍率色収差(CC)を示している。 (a)は実施例8に係る内視鏡対物光学系の通常観察状態におけるレンズ断面構成図である。(b)は実施例8に係る内視鏡対物光学系の拡大観察状態におけるレンズ断面構成図である。 実施例8に係る内視鏡対物光学系の、(a)は通常観察状態における球面収差(SA)、(b)は通常観察状態における非点収差(AS)、(c)は通常観察状態における歪曲収差(DT)、(d)は通常観察状態における倍率色収差(CC)を示している。 また、実施例8に係る内視鏡対物光学系の、(e)は拡大観察状態における球面収差(SA)、(f)は拡大観察状態における非点収差(AS)、(g)は拡大観察状態における歪曲収差(DT)、(h)は拡大観察状態における倍率色収差(CC)を示している。
 以下、本実施形態に係る内視鏡対物光学系について、図面を用いて、このような構成をとった理由と作用を説明する。なお、以下の実施形態によりこの発明が限定されるものではない。
(実施形態)
 図1(a)は実施形態に係る内視鏡対物光学系の通常観察状態におけるレンズ断面構成図である。図1(b)は実施形態に係る内視鏡対物光学系の拡大観察状態におけるレンズ断面構成図である。
 実施形態に係る内視鏡対物光学系は、物体側より順に、正の第1群G1と、負の第2群G2と、正の第3群G3と、を有し、
 通常観察状態から拡大観察状態において、少なくとも第2群G2を光軸AXに沿って動かすことにより変倍と合焦を行う内視鏡対物光学系であって、
 第1群G1は、物体側から順に、物体側に平面を向けた平凹の負レンズL1と、2つの接合レンズCL1、CL2と、を有し、
 以下の条件式(1)を満たすことを特徴とする。
 -3.6<f1/fz1<-2 (1)
 ここで、
 f1は平凹の負レンズL1の焦点距離、
 fz1は通常観察状態における内視鏡対物光学系全系の焦点距離、
である。
 なお、以下、適宜、平凹の負レンズL1を第1レンズL1という。
 条件式(1)は、f1とfz1の適切な比を規定している。
 内視鏡対物光学系のレンズ構成を、正の第1群G1、負の第2群G2、正の第3群G3の3群構成とする。第2群G2の負群で合焦を行うことで、合焦時の収差変動を抑えることができる。また、本実施形態の内視鏡対物光学系は、広角化のため、第1レンズL1に強い負の屈折力(パワー)を持つレンズを配置する。第1レンズL1に強い負の屈折力を持たせると、主点の位置が像面側(後ろ側)になる。このため、内視鏡対物光学系を小型化しつつ、バックフォーカスを十分に取ることが可能となる。
 条件式(1)は、製造誤差による光学性能の劣化を防ぐための条件式である。本実施形態では、第1レンズL1に強い負の屈折力を持たせることで小型化し、観察性を高めている。一方で、第1レンズL1に強い屈折力を持たせることで製造誤差が発生した際に光学性能の劣化が大きくなってしまう。
 条件式(1)の上限値を上回ると、平凹の負レンズL1の焦点距離f1が大きくなりすぎてしまう。第1レンズL1の曲率半径が小さくなってしまうため、屈折力が強くなる。それにより、レンズの製造誤差による周辺性能のばらつきが大きくなってしまう。
 条件式(1)の下限値を下回ると、平凹の負レンズL1の焦点距離f1が小さくなりすぎてしまう。このため、球面収差、コマ収差などが発生してしまい性能が悪化する。
 また、本実施形態の好ましい態様によれば、第3群G3は、正レンズL8、正レンズL9、正レンズL10と負レンズL11の接合レンズCL3と、を有し、以下の条件式(2)、(3)を満たすことが望ましい。
 -5<f5/f7<-1   (2)
 -5<f6/f7<-0.3   (3)
 f5は第3群G3の物体側の正レンズL8の焦点距離、
 f6は第3群G3の像側の正レンズL9の焦点距離
 f7は第3群G3の接合レンズCL3の焦点距離、
である。
 条件式(2)は、f5とf7との適切な比を規定している。
 条件式(3)は、f6とf7との適切な比を規定している。
 拡大光学系において、イメージャへの光線の斜入射特性は、光軸AXに垂直な面に対してマイナス側にする必要がある。正レンズで急激に光線を曲げてしまうと通常時、第3群群G3の正レンズ付近で光線高が上がってしまい、フレアの原因となる。そのため、第3群G3の正レンズでは適切に屈折力を配分する必要がある。
 条件式(2)、(3)の上限値を上回ると、正レンズL8、L9の屈折力が強すぎ、球面収差が補正過剰になってしまう。
 条件式(2)、(3)の下限値を下回ると、正レンズL8、L9の屈折力が弱く斜入射特性がプラス側に傾いてしまう。
 また、条件式(2)、(3)に代えて、以下の条件式(2’)、(3’)を満足することが好ましい。
 -3<f5/f7<-1      (2’)
 -3<f6/f7<-0.9     (3’)
 また、本実施形態の好ましい態様によれば、以下の条件式(4)を満たすことが望ましい。
 2.1<Ls/Bk<5   (4)
 Lsは第2群G2の通常観察状態から拡大観察状態における移動長、
 Bkは内視鏡対物光学系の最終面から像面Iまでの光軸AXに沿った距離、
である。
 条件式(4)は、第2群G2の通常観察状態から拡大観察状態における移動長(光学ストローク長)、内視鏡対物光学系の最終面から像面Iまでの光軸に沿った距離(バックフォーカス)を適切に設定するための条件式である。
 条件式(4)の上限値を上回るとバックフォーカスを十分に取れず、ピント調整ができず、レンズの組立ができない。
 条件式(4)の下限値を下回るとストローク長が短くなってしまい、変倍時の感度が高くなってしまい、内視鏡対物光学系の操作性が悪化してしまう。
 また、条件式(4)に代えて、以下の条件式(4’)を満たすことが好ましい。
 2.4<Ls/Bk<4.6   (4’)
 また、本実施形態の好ましい態様によれば、以下の条件式(5)を満たすことが望ましい。
 0.8<FFz3/fz3<4   (5)
 FFz3は内視鏡対物光学系の拡大観察状態における前側焦点から内視鏡対物光学系の最も物体側の面までの距離(前側焦点位置)、
 fz3は拡大観察状態の内視鏡対物光学系全系の焦点距離、
である。
 条件式(5)は、拡大観察時の倍率を適切に設定するための条件式である。
 条件式(5)の上限値を上回ると、FFz3が大きくなりすぎてしまう。これにより、拡大観察時の倍率が小さすぎてしまい、観察したい被写体の分解能が不足する。このため、観察性が悪化する。
 条件式(5)の下限値を下回ると、FFz3が小さくなり、拡大観察時の倍率は大きくなる。しかしながら、ディストーションが大きくなりすぎてしまい、拡大観察時の周辺部が密に見え、観察性が悪化してしまう。
 また、条件式(5)に代えて、以下の条件式(5’)を満たすことが好ましい。
 1.1<FFz3/fz3<3   (5’)
 また、本実施形態の好ましい態様によれば、以下の条件式(6)を満たすことが望ましい。
 -6<f7/f3<-0.5   (6)
 f7は第3群G3の接合レンズCL3の焦点距離、
 f3は第1群G1の像側の接合レンズCL2の焦点距離、
である。
 条件式(6)は、イメージャへの光線の斜入射特性を満たすための条件式である。
 条件式(6)の上限値を上回ると、f7の屈折力が強くなりすぎてしまう。これにより、f7の製造誤差による倍率色収差感度が強くなりすぎてしまい、性能が劣化してしまう。
 条件式(6)の下限値を下回ると、f7の屈折力が弱くなってしまう。これにより、イメージャへの光線の斜入射特性がプラス側へ傾いてしまい、視野の周辺領域が暗くなってしまう。
 また、条件式(6)に代えて、以下の条件式(6’)を満たすことが好ましい。
 -2<f7/f3<-0.74   (6’)
 また、本実施形態の好ましい態様によれば、以下の条件式(7)を満たすことが望ましい。
 -30<f2/fz1<-1     (7)
 f2は第1群G1の物体側の接合レンズCL1の焦点距離、
 fz1は通常観察状態における内視鏡対物光学系全系の焦点距離、
である。
 条件式(7)は、f2とfz1の適切な比を規定している。
 接合レンズCL1は色収差を補正しつつ、第1レンズL1の強い屈折力で発生した像面湾曲を補正する効果を有する。
 条件式(7)の上限値を上回ると、物体側の接合レンズCL1の焦点距離f2が大きくなり、サジタル(S)像面、メリジオナル(M)像面の開きが大きくなる。これにより、非点収差を補正しきれない。
 条件式(7)の下限値を下回ると、物体側の接合レンズCL1の焦点距離f2が小さくなり、屈折力が弱すぎてしまい、色収差補正に効果がなくなってしまう。
 また、条件式(7)に代えて、以下の条件式(7’)を満たすことが好ましい。
 -26<f2/fz1<-5   (7’)
 また、本実施形態の好ましい態様によれば、以下の条件式(8)を満たすことが望ましい。
 -8<f2/f3<-1   (8)
 f2は第1群G1の物体側の接合レンズCL1の焦点距離、
 f3は第1群G1の像側の接合レンズCL2の焦点距離、
である。
 条件式(8)は、レンズの加工性と像面湾曲補正のための条件式である。
 条件式(8)の上限値を上回ると、f2の接合面の曲率がきつく(小さく)なりすぎてしまい、レンズのフチ肉厚を十分に確保することができず、製造上好ましくない。
 条件式(8)の下限値を下回ると、f2の接合面の曲率が緩く(大きく)なりすぎてしまい、像面湾曲の補正が十分にできない。
 また、条件式(8)に代えて、以下の条件式(8’)を満たすことが好ましい。
 -4<f2/f3<-1.1   (8’)
 また、本実施形態の好ましい態様によれば、第3群G3は、カバーガラスCGに接合された像面側に平面を向けた凸平の正レンズL12を有し、以下の条件式(9)を満たすことが望ましい。カバーガラスCGは、平行平板である。
 -10<f8/f1<-0.5  (9)
 f8はカバーガラスCGに接合された正レンズL12の焦点距離、
 f1は平凹の負レンズL1の焦点距離、
である。
 条件式(9)は、光学系の組み立て時の調整感度に関する条件式である。
 条件式(9)の下限値を下回るとf8が小さくなりすぎてしまう。このため、光学系の組み立て時の調整感度がきつくなってしまう。
 条件式(9)の上限値を上回るとf1の屈折力が強くなりすぎてしまう。このため、光学系の製造誤差による周辺性能のバラつきが大きくなってしまう。
 また、条件式(9)に代えて、以下の条件式(9’)を満たすことが好ましい。
 -7<f8/f1<-1.2   (9’)
 また、本実施形態の好ましい態様によれば、第3群G3の接合レンズCL3は両凹の負レンズL11を有し、以下の条件式(10)を満たすことが望ましい。
 0.1<SF72<0.9   (10)
 SF72は両凹の負レンズL11のシェイピングファクターである。両凹の負レンズL11の物体側の曲率半径をr72、両凹の負レンズL11の像側の曲率半径をr73とするとSF72=(r72+r73)/(r72-r73)である。
 条件式(10)は、イメージャへの光線の斜入射特性を満たすための条件式である。
 条件式(10)の上限値を上回ると接合レンズCL3の接合面の曲率半径が大きくなりすぎてしまい、倍率色収差を補正できない。
 条件式(10)の下限値を下回るとシェイピングファクターが小さくなりすぎてしまい、像面側の曲率半径が小さくなってしまう。このため、撮像面への斜入射特性がプラス側に傾いてしまい、周辺が暗くなってしまう。
 また、条件式(10)に代えて、以下の条件式(10’)を満たすことが好ましい。
 0.2<SF72<0.7   (10’)
(実施例1)
 実施例1に係る内視鏡対物光学系について説明する。
 図2(a)は実施例1に係る内視鏡対物光学系の通常観察状態におけるレンズ断面構成図である。図2(b)は実施例1に係る内視鏡対物光学系の拡大観察状態におけるレンズ断面構成図である。
 内視鏡対物光学系は、物体側から順に、正の第1群G1と、明るさ絞りSと、負の第2群G2と、正の第3群G3と、を有している。
 正の第1群G1は、物体側から順に、平面を物体側に向けた平凹の負レンズL1と、両凹の負レンズL2と、両凸の正レンズL3と、赤外吸収フィルターF1と、平面を物体側に向けた平凸正レンズL4と、像側に凸面を向けた負メニスカスレンズL5と、を有する。負レンズL2と正レンズL3とは接合され接合レンズCL1を構成する。正レンズL4と負メニスカスレンズL5とは接合され接合レンズCL2を構成する。第1群G1の像側に明るさ絞りSが配置されている。
 負の第2群G2は、物体側から順に、物体側に平面を向けた平凹負レンズL6と、物体側も凸面を向けた正メニスカスレンズL7と、を有する。負レンズL6と正メニスカスレンズL7とは接合されている。第2群G2は、通常観察状態から拡大観察状態へフォーカシングするに際して、光軸AXに沿って像側へ移動する。r12とr16は仮想面である。
 正の第3群G3は、物体側から順に、両凸の正レンズL8と、像側に平面を向けた平凸正レンズL9と、両凸の正レンズL10と、両凹の負レンズL11と、像側に平面を向けた平凸正レンズL12と、を有する。正レンズL10と負レンズL11とは接合され接合レンズCL3を構成する。正レンズL12とカバーガラスCGとは接合されている。平行平板であるカバーガラスCGは、不図示の撮像素子の撮像面である像面Iに接合されている。
 平行平板である赤外吸収フィルターF1は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのコーティングが施されたフィルターである。
 実施例1に係る内視鏡対物光学系の、図3(a)は通常観察状態における球面収差(SA)、図3(b)は通常観察状態における非点収差(AS)、図3(c)は通常観察状態における歪曲収差(DT)、図3(d)は通常観察状態における倍率色収差(CC)を示している。
 また、図3(e)は拡大観察状態における球面収差(SA)、図3(f)は拡大観察状態における非点収差(AS)、図3(g)は拡大観察状態における歪曲収差(DT)、図3(h)は拡大観察状態における倍率色収差(CC)を示している。
 これら、諸収差図は、546.7nm(e線)、435.84(g線)、486.13(F線)、656.3nm(C線)の各波長について示している。また、各図中、”FIY”は像高を示す。以下、収差図に関しては、同様の符号を用いる。
(実施例2)
 実施例2に係る内視鏡対物光学系について説明する。
 図4(a)は実施例2に係る内視鏡対物光学系の通常観察状態におけるレンズ断面構成図である。図4(b)は実施例2に係る内視鏡対物光学系の拡大観察状態におけるレンズ断面構成図である。
 内視鏡対物光学系は、物体側から順に、正の第1群G1と、明るさ絞りSと、負の第2群G2と、正の第3群G3と、を有している。
 正の第1群G1は、物体側から順に、平面を物体側に向けた平凹の負レンズL1と、両凹の負レンズL2と、両凸の正レンズL3と、赤外吸収フィルターF1と、両凸正レンズL4と、像側に凸面を向けた負メニスカスレンズL5と、を有する。負レンズL2と正レンズL3とは接合され接合レンズCL1を構成する。正レンズL4と負メニスカスレンズL5とは接合され接合レンズCL2を構成する。第1群G1の像側に明るさ絞りSが配置されている。
 負の第2群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL6と、物体側も凸面を向けた正メニスカスレンズL7と、を有する。負メニスカスレンズL6と正メニスカスレンズL7とは接合されている。第2群G2は、通常観察状態から拡大観察状態へフォーカシングするに際して、光軸AXに沿って像側へ移動する。r12とr16は仮想面である。
 正の第3群G3は、物体側から順に、両凸の正レンズL8と、両凸の正レンズL9と、両凸の正レンズL10と、両凹の負レンズL11と、像側に平面を向けた平凸正レンズL12と、を有する。正レンズL10と負レンズL11とは接合され接合レンズCL3を構成する。正レンズL12とカバーガラスCGとは接合されている。平行平板であるカバーガラスCGは、不図示の撮像素子の撮像面である像面Iに接合されている。
 平行平板である赤外吸収フィルターF1は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのコーティングが施されたフィルターである。
 実施例2に係る内視鏡対物光学系の、図5(a)は通常観察状態における球面収差(SA)、図5(b)は通常観察状態における非点収差(AS)、図5(c)は通常観察状態における歪曲収差(DT)、図5(d)は通常観察状態における倍率色収差(CC)を示している。
 また、図5(e)は拡大観察状態における球面収差(SA)、図5(f)は拡大観察状態における非点収差(AS)、図5(g)は拡大観察状態における歪曲収差(DT)、図5(h)は拡大観察状態における倍率色収差(CC)を示している。
(実施例3)
 実施例3に係る内視鏡対物光学系について説明する。
 図6(a)は実施例3に係る内視鏡対物光学系の通常観察状態におけるレンズ断面構成図である。図6(b)は実施例3に係る内視鏡対物光学系の拡大観察状態におけるレンズ断面構成図である。
 内視鏡対物光学系は、物体側から順に、正の第1群G1と、明るさ絞りSと、負の第2群G2と、正の第3群G3と、を有している。
 正の第1群G1は、物体側から順に、平面を物体側に向けた平凹の負レンズL1と、両凹の負レンズL2と、両凸の正レンズL3と、赤外吸収フィルターF1と、両凸正レンズL4と、像側に凸面を向けた負メニスカスレンズL5と、を有する。負レンズL2と正レンズL3とは接合され接合レンズCL1を構成する。正レンズL4と負メニスカスレンズL5とは接合され接合レンズCL2を構成する。第1群G1の像側に明るさ絞りSが配置されている。
 負の第2群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL6と、物体側も凸面を向けた正メニスカスレンズL7と、を有する。負メニスカスレンズL6と正メニスカスレンズL7とは接合されている。第2群G2は、通常観察状態から拡大観察状態へフォーカシングするに際して、光軸AXに沿って像側へ移動する。r12とr16とr24は仮想面である。
 正の第3群G3は、物体側から順に、両凸の正レンズL8と、両凸の正レンズL9と、両凸の正レンズL10と、両凹の負レンズL11と、像側に平面を向けた平凸正レンズL12と、を有する。正レンズL10と負レンズL11とは接合され接合レンズCL3を構成する。正レンズL12とカバーガラスCGとは接合されている。平行平板であるカバーガラスCGは、不図示の撮像素子の撮像面である像面Iに接合されている。
 平行平板である赤外吸収フィルターF1は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのコーティングが施されたフィルターである。
 実施例3に係る内視鏡対物光学系の、図7(a)は通常観察状態における球面収差(SA)、図7(b)は通常観察状態における非点収差(AS)、図7(c)は通常観察状態における歪曲収差(DT)、図7(d)は通常観察状態における倍率色収差(CC)を示している。
 また、図7(e)は拡大観察状態における球面収差(SA)、図7(f)は拡大観察状態における非点収差(AS)、図7(g)は拡大観察状態における歪曲収差(DT)、図7(h)は拡大観察状態における倍率色収差(CC)を示している。
(実施例4)
 実施例4に係る内視鏡対物光学系について説明する。
 図8(a)は実施例4に係る内視鏡対物光学系の通常観察状態におけるレンズ断面構成図である。図8(b)は実施例4に係る内視鏡対物光学系の拡大観察状態におけるレンズ断面構成図である。
 内視鏡対物光学系は、物体側から順に、正の第1群G1と、明るさ絞りSと、負の第2群G2と、正の第3群G3と、を有している。
 正の第1群G1は、物体側から順に、平面を物体側に向けた平凹の負レンズL1、両凹の負レンズL2と、両凸の正レンズL3と、赤外吸収フィルターF1と、平面を物体側に向けた平凸正レンズL4と、像側に凸面を向けた負メニスカスレンズL5と、を有する。負レンズL2と正レンズL3とは接合され接合レンズCL1を構成する。正レンズL4と負メニスカスレンズL5とは接合され接合レンズCL2を構成する。第1群G1の像側に明るさ絞りSが配置されている。
 負の第2群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL6と、物体側も凸面を向けた正メニスカスレンズL7と、を有する。負メニスカスレンズL6と正メニスカスレンズL7とは接合されている。第2群G2は、通常観察状態から拡大観察状態へフォーカシングするに際して、光軸AXに沿って像側へ移動する。r12とr16とr24は仮想面である。
 正の第3群G3は、物体側から順に、両凸の正レンズL8と、像側に平面を向けた平凸正レンズL9と、両凸の正レンズL10と、両凹の負レンズL11と、像側に平面を向けた平凸正レンズL12と、を有する。正レンズL10と負レンズL11とは接合され接合レンズCL3を構成する。正レンズL12とカバーガラスCGとは接合されている。平行平板であるカバーガラスCGは、不図示の撮像素子の撮像面である像面Iに接合されている。
 平行平板である赤外吸収フィルターF1は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのコーティングが施されたフィルターである。
 実施例4に係る内視鏡対物光学系の、図9(a)は通常観察状態における球面収差(SA)、図9(b)は通常観察状態における非点収差(AS)、図9(c)は通常観察状態における歪曲収差(DT)、図9(d)は通常観察状態における倍率色収差(CC)を示している。
 また、図9(e)は拡大観察状態における球面収差(SA)、図9(f)は拡大観察状態における非点収差(AS)、図9(g)は拡大観察状態における歪曲収差(DT)、図9(h)は拡大観察状態における倍率色収差(CC)を示している。
(実施例5)
 実施例5に係る内視鏡対物光学系について説明する。
 図10(a)は実施例5に係る内視鏡対物光学系の通常観察状態におけるレンズ断面構成図である。図10(b)は実施例5に係る内視鏡対物光学系の拡大観察状態におけるレンズ断面構成図である。
 内視鏡対物光学系は、物体側から順に、正の第1群G1と、明るさ絞りSと、負の第2群G2と、正の第3群G3と、を有している。
 正の第1群G1は、物体側から順に、平面を物体側に向けた平凹の負レンズL1と、両凹の負レンズL2と、両凸の正レンズL3と、赤外吸収フィルターF1と、両凸の正レンズL4と、像側に凸面を向けた負メニスカスレンズL5と、を有する。負レンズL2と正レンズL3とは接合され接合レンズCL1を構成する。正レンズL4と負メニスカスレンズL5とは接合され接合レンズCL2を構成する。第1群G1の像側に明るさ絞りSが配置されている。
 負の第2群G2は、物体側から順に、両凹の負レンズL6と、物体側も凸面を向けた正メニスカスレンズL7と、を有する。負レンズL6と正メニスカスレンズL7とは接合されている。第2群G2は、通常観察状態から拡大観察状態へフォーカシングするに際して、光軸AXに沿って像側へ移動する。r12とr16は仮想面である。
 正の第3群G3は、物体側から順に、両凸の正レンズL8と、像側に平面を向けた平凸正レンズL9と、両凸の正レンズL10と、両凹の負レンズL11と、像側に平面を向けた平凸正レンズL12と、を有する。正レンズL10と負レンズL11とは接合されて接合レンズCL3を構成している。平行平板であるカバーガラスCGは、不図示の撮像素子の撮像面である像面Iに接合されている。
 平行平板である赤外吸収フィルターF1は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのコーティングが施されたフィルターである。
 実施例5に係る内視鏡対物光学系の、図11(a)は通常観察状態における球面収差(SA)、図11(b)は通常観察状態における非点収差(AS)、図11(c)は通常観察状態における歪曲収差(DT)、図11(d)は通常観察状態における倍率色収差(CC)を示している。
 また、図11(e)は拡大観察状態における球面収差(SA)、図11(f)は拡大観察状態における非点収差(AS)、図11(g)は拡大観察状態における歪曲収差(DT)、図11(h)は拡大観察状態における倍率色収差(CC)を示している。
(実施例6)
 実施例6に係る内視鏡対物光学系について説明する。
 図12(a)は実施例6に係る内視鏡対物光学系の通常観察状態におけるレンズ断面構成図である。図12(b)は実施例6に係る内視鏡対物光学系の拡大観察状態におけるレンズ断面構成図である。
 内視鏡対物光学系は、物体側から順に、正の第1群G1と、明るさ絞りSと、負の第2群G2と、正の第3群G3と、を有している。
 正の第1群G1は、物体側から順に、平面を物体側に向けた平凹の負レンズL1、両凹の負レンズL2と、両凸の正レンズL3、赤外吸収フィルターF1、平面を物体側に向けた平凸正レンズL4と、像側に凸面を向けた負メニスカスレンズL5と、を有する。負レンズL2と正レンズL3とは接合され接合レンズCL1を構成する。正レンズL4と負メニスカスレンズL5とは接合され接合レンズCL2を構成する。第1群G1の像側に明るさ絞りSが配置されている。
 負の第2群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL6と、物体側に凸面を向けた正メニスカスレンズL7と、を有する。負メニスカスレンズL6と正メニスカスレンズL7とは接合されている。第2群G2は、通常観察状態から拡大観察状態へフォーカシングするに際して、光軸AXに沿って像側へ移動する。r12とr16は仮想面である。
 正の第3群G3は、物体側から順に、両凸の正レンズL8と、像側に平面を向けた平凸正レンズL9と、両凸の正レンズL10と、両凹の負レンズL11と、像側に平面を向けた平凸正レンズL12と、を有する。正レンズL10と負レンズL11とは接合されて接合レンズCL3を構成している。正レンズL12とカバーガラスCGとは接合されている。平行平板であるカバーガラスCGは、不図示の撮像素子の撮像面である像面Iに接合されている。
 平行平板である赤外吸収フィルターF1は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのコーティングが施されたフィルターである。
 実施例6に係る内視鏡対物光学系の、図13(a)は通常観察状態における球面収差(SA)、図13(b)は通常観察状態における非点収差(AS)、図13(c)は通常観察状態における歪曲収差(DT)、図13(d)は通常観察状態における倍率色収差(CC)を示している。
 また、図13(e)は拡大観察状態における球面収差(SA)、図13(f)は拡大観察状態における非点収差(AS)、図13(g)は拡大観察状態における歪曲収差(DT)、図13(h)は拡大観察状態における倍率色収差(CC)を示している。
(実施例7)
 実施例7に係る内視鏡対物光学系について説明する。
 図14(a)は実施例7に係る内視鏡対物光学系の通常観察状態におけるレンズ断面構成図である。図14(b)は実施例7に係る内視鏡対物光学系の拡大観察状態におけるレンズ断面構成図である。
 内視鏡対物光学系は、物体側から順に、正の第1群G1と、明るさ絞りSと、負の第2群G2と、正の第3群G3と、を有している。
 正の第1群G1は、物体側から順に、平面を物体側に向けた平凹の負レンズL1と、両凹の負レンズL2と、両凸の正レンズL3と、赤外吸収フィルターF1と、両凸の正レンズL4と、像側に凸面を向けた負メニスカスレンズL5と、を有する。負レンズL2と正レンズL3とは接合され接合レンズCL1を構成する。正レンズL4と負メニスカスレンズL5とは接合され接合レンズCL2を構成する。第1群G1の像側に明るさ絞りSが配置されている。
 負の第2群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL6と、物体側も凸面を向けた正メニスカスレンズL7と、を有する。負メニスカスレンズL6と正メニスカスレンズL7とは接合されている。第2群G2は、通常観察状態から拡大観察状態へフォーカシングするに際して、光軸AXに沿って像側へ移動する。r12とr16は仮想面である。
 正の第3群G3は、物体側から順に、両凸の正レンズL8と、像側に平面を向けた平凸の正レンズL9と、両凸の正レンズL10と、両凹の負レンズL11と、像側に平面を向けた平凸正レンズL12と、を有する。正レンズL10と負レンズL11とは接合されて接合レンズCL3を構成する。正レンズL12とカバーガラスCGとは接合されている。平行平板であるカバーガラスCGは、不図示の撮像素子の撮像面である像面Iにに接合されている。
 平行平板である赤外吸収フィルターF1は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのコーティングが施されたフィルターである。
 実施例7に係る内視鏡対物光学系の、図15(a)は通常観察状態における球面収差(SA)、図15(b)は通常観察状態における非点収差(AS)、図15(c)は通常観察状態における歪曲収差(DT)、図15(d)は通常観察状態における倍率色収差(CC)を示している。
 また、図15(e)は拡大観察状態における球面収差(SA)、図15(f)は拡大観察状態における非点収差(AS)、図15(g)は拡大観察状態における歪曲収差(DT)、図15(h)は拡大観察状態における倍率色収差(CC)を示している。
(実施例8)
 実施例8に係る内視鏡対物光学系について説明する。
 図16(a)は実施例8に係る内視鏡対物光学系の通常観察状態におけるレンズ断面構成図である。図16(b)は実施例8に係る内視鏡対物光学系の拡大観察状態におけるレンズ断面構成図である。
 内視鏡対物光学系は、物体側から順に、正の第1群G1と、明るさ絞りSと、負の第2群G2と、正の第3群G3と、を有している。
 正の第1群G1は、物体側から順に、平面を物体側に向けた平凹の負レンズL1と、両凹の負レンズL2と、両凸の正レンズL3、赤外吸収フィルターF1と、像側に凸面を向けた正メニスカスレンズL4と、像側に凸面を向けた負メニスカスレンズL5と、を有する。負レンズL2と正レンズL3とは接合され接合レンズCL1を構成する。正メニスカスレンズL4と負メニスカスレンズL5とは接合され接合レンズCL2を構成する。第1群G1の像側に明るさ絞りSが配置されている。
 負の第2群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL6と、物体側も凸面を向けた正メニスカスレンズL7と、を有する。負メニスカスレンズL6と正メニスカスレンズL7とは接合されている。第2群G2は、通常観察状態から拡大観察状態へフォーカシングするに際して、光軸AXに沿って像側へ移動する。r12とr16は仮想面である。
 正の第3群G3は、物体側から順に、両凸の正レンズL8と、像側に平面を向けた平凸の正レンズL9と、両凸の正レンズL10と、両凹の負レンズL11と、を有する。正レンズL10と負レンズL11とは接合されて接合レンズCL3を構成している。平行平板F2とカバーガラスCGとは接合されている。平行平板であるカバーガラスCGは、不図示の撮像素子の撮像面である像面Iに接合されている。
 平行平板である赤外吸収フィルターF1は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのコーティングが施されたフィルターである。
 実施例8に係る内視鏡対物光学系の、図17(a)は通常観察状態における球面収差(SA)、図17(b)は通常観察状態における非点収差(AS)、図17(c)は通常観察状態における歪曲収差(DT)、図17(d)は通常観察状態における倍率色収差(CC)を示している。
 また、図17(e)は拡大観察状態における球面収差(SA)、図17(f)は拡大観察状態における非点収差(AS)、図17(g)は拡大観察状態における歪曲収差(DT)、図17(h)は拡大観察状態における倍率色収差(CC)を示している。
 以下、数値実施例を示す。r1、r2、・・・はレンズ各面の曲率半径、d1、d2、・・・は各レンズの肉厚および面間隔、n1、n2、・・・は各レンズのe線に対する屈折率、ν1、ν2、・・・は各レンズのd線に対するアッベ数である。絞りは、明るさ絞りである。
数値実施例1
単位  mm
 
面データ
面番号         r          d         ne        νd
      1        ∞        0.51     1.88300    40.78
      2       2.178      1.45
      3      -6.771      1.69     1.88300    40.76
      4       2.096      2.41     1.51742    52.43
      5      -3.390      0.11
      6        ∞        0.89     1.49400    75.00
      7        ∞        0.22
      8        ∞        1.76     1.72916    54.68
      9      -3.216      1.14     1.84666    23.78
     10      -4.693      0.11
     11(絞り)  ∞        0.07
     12        ∞        可変
     13        ∞        0.71     1.49700    81.54
     14       3.713      0.73     1.84666    23.78
     15       4.212      0.30
     16        ∞        可変
     17       7.394      1.56     1.48749    70.23
     18      -7.394      0.22
     19       4.194      1.34     1.53775    74.70
     20        ∞        0.29
     21       4.563      1.14     1.51633    64.14
     22      -6.477      0.67     1.95906    17.47
     23       3.780      0.77
     24       4.009      1.00     1.51633    64.14
     25        ∞        0.02     1.51500    64.00
     26        ∞        0.78     1.50700    63.26
     27        ∞ 
     29(像面) 
 
ズームデータ  
          通常観察状態    拡大観察状態
焦点距離       1.05           1.25
FNO.       3.04           3.62
d12            0.29           2.34  
d16            2.38           0.33   
 
数値実施例2
単位  mm
 
面データ
面番号         r          d         ne        νd
      1        ∞        0.51     1.88300    40.78
      2       2.895      1.45
      3      -5.431      1.70     1.88300    40.76
      4       2.034      2.41     1.51742    52.43
      5      -3.389      0.26
      6        ∞        0.89     1.49400    75.00
      7        ∞        0.22
      8     684.692      1.76     1.72916    54.68
      9      -3.212      1.14     1.84666    23.78
     10      -4.701      0.11
     11(絞り)  ∞        0.07
     12        ∞        可変
     13      80.180      0.64     1.49700    81.54
     14       3.722      0.61     1.84666    23.78
     15       4.192      0.30
     16        ∞        可変
     17       7.394      1.56     1.48749    70.23
     18      -7.386      0.22
     19       4.162      1.32     1.53775    74.70
     20     -70.480      0.29
     21       4.548      1.12     1.51633    64.14
     22      -6.142      0.66     1.95906    17.47
     23       3.795      0.49
     24       4.009      1.00     1.51633    64.14
     25        ∞        0.02     1.51500    64.00
     26        ∞        0.78     1.50700    63.26
     27        ∞
     28(像面) 
 
ズームデータ
          通常観察状態    拡大観察状態
焦点距離       1.08           1.27
FNO.       2.83           3.33
d12            0.29           2.36  
d16            2.40           0.32
 
数値実施例3
単位  mm
 
面データ
面番号         r          d         ne        νd
      1        ∞        0.51     1.88300    40.78
      2       2.218      1.45
      3      -5.859      1.64     1.88300    40.76
      4       2.089      2.17     1.51742    52.43
      5      -3.575      0.13
      6        ∞        0.89     1.49400    75.00
      7        ∞        0.22
      8      21.053      1.71     1.72916    54.68
      9      -3.206      1.08     1.84666    23.78
     10      -4.658      0.11
     11(絞り)  ∞        0.07
     12        ∞        可変
     13      59.032      0.58     1.49700    81.54
     14       3.812      0.52     1.84666    23.78
     15       4.012      0.30
     16        ∞        可変
     17       7.765      1.62     1.48749    70.23
     18      -7.745      0.22
     19       5.420      1.35     1.53775    74.70
     20     -43.839      0.29
     21       4.518      1.24     1.51633    64.14
     22     -20.974      0.76     1.95906    17.47
     23       3.746      0.07
     24        ∞        0.53
     25       4.009      1.00     1.51633    64.14
     26        ∞        0.02     1.51500    64.00
     27        ∞        0.78     1.50700   63.26
     28        ∞
     29(像面)
 
ズームデータ
          通常観察状態    拡大観察状態
焦点距離       1.06           1.26
FNO.       2.94           3.49
d12            0.26           2.25  
d16            2.27           0.27  
 
数値実施例4
単位  mm
 
面データ
面番号         r          d         ne        νd
      1        ∞        0.51     1.88300    40.78
      2       3.341      1.40
      3      -5.655      1.71     1.88300    40.76
      4       2.020      2.42     1.51742    52.43
      5      -3.377      0.21
      6        ∞        0.89     1.49400    75.00
      7        ∞        0.52
      8    -142.693      1.76     1.72916    54.68
      9      -3.204      1.13     1.84666    23.78
     10      -4.707      0.00
     11(絞り)  ∞        0.06
     12        ∞        可変
     13      54.409      0.66     1.49700    81.54
     14       3.722      0.65     1.84666    23.78
     15       4.197      0.06
     16        ∞        可変
     17       7.383      1.55     1.48749    70.23
     18      -7.373      0.10
     19       3.827      1.34     1.53775    74.70
     20        ∞        0.26
     21       4.548      1.15     1.51633    64.14
     22      -5.846      0.66     1.95906    17.47
     23       3.786      0.09
     24        ∞        0.38
     25       3.706      0.87     1.51633    64.14
     26        ∞        0.07     1.51500    64.00
     27        ∞        0.65     1.50700    63.26
     28        ∞
     29(像面)
 
ズームデータ
          通常観察状態    拡大観察状態
焦点距離       1.09            1.28
FNO.       2.72            3.18
d12            0.26            2.36  
d16            2.40            0.30   
 
数値実施例5
単位  mm
 
面データ
面番号         r          d         ne        νd
      1        ∞        1.46     1.88300    40.78
      2       2.288      1.45
      3      -6.192      1.64     1.88300    40.76
      4       2.088      2.38     1.51742    52.43
      5      -3.436      0.22
      6        ∞        0.89     1.49400    75.00
      7        ∞        0.16
      8     844.855      1.76     1.72916    54.68
      9      -3.247      1.14     1.84666    23.78
     10      -4.655      0.33
     11(絞り)  ∞        0.07
     12        ∞        可変
     13    -147.787      0.67     1.49700    81.54
     14       3.696      0.69     1.84666    23.78
     15       4.226      0.96
     16        ∞        可変
     17       7.418      1.56     1.48749    70.23
     18      -7.436      0.55
     19       3.805      1.33     1.53775    74.70
     20        ∞        0.00
     21       4.584      1.11     1.51633    64.14
     22      -7.766      0.67     1.95906    17.47
     23       3.775      0.64
     24       7.557      1.12     1.51633    64.14
     25        ∞        0.14     1.51500    64.00
     26        ∞        0.90     1.50700    63.26
     27        ∞
     28(像面)
 
ズームデータ
          通常観察状態    拡大観察状態
焦点距離       1.07            1.27
FNO.       3.03            3.60
d12            0.34            2.29  
d16            2.33            0.40    
 
数値実施例6
単位  mm
 
面データ
面番号         r          d         ne        νd
      1        ∞        0.43     1.88300    40.78
      2       2.166      1.47
      3      -9.759      1.70     1.88300    40.76
      4       2.153      2.44     1.51742    52.43
      5      -3.319      0.22
      6        ∞        0.89     1.49400    75.00
      7        ∞        0.24
      8     -72.895      1.76     1.72916    54.68
      9      -3.213      1.13     1.84666    23.78
     10      -4.693      0.08
     11(絞り)  ∞        0.07
     12        ∞        可変
     13     748.308      0.66     1.49700    81.54
     14       3.715      0.66     1.84666    23.78
     15       4.213      0.29
     16        ∞        可変
     17       7.392      1.56     1.48749    70.23
     18      -7.393      0.17
     19       4.102      1.34     1.53775    74.70
     20        ∞        0.30
     21       4.561      1.14     1.51633    64.14
     22      -6.708      0.67     1.95906    17.47
     23       3.780      0.68
     24       4.040      0.97     1.51633    64.14
     25        ∞        0.01     1.51500    64.00
     26        ∞        0.74     1.50700    63.26
     27        ∞
     28(像面)
 
ズームデータ
          通常観察状態    拡大観察状態
焦点距離       1.05            1.25
FNO.       2.92            3.47
d12            0.28            2.34  
d16            2.38            0.33  
 
数値実施例7
単位  mm
 
面データ
面番号         r          d         ne        νd
      1        ∞        0.60     1.88300    40.78
      2       2.163      1.30
      3      -4.790      1.68     1.88300    40.76
      4       2.108      2.40     1.51742    52.43
      5      -3.343      0.21
      6        ∞        0.89     1.49400    75.00
      7        ∞        0.22
      8     103.811      1.75     1.72916    54.68
      9      -3.186      1.11     1.84666    23.78
     10      -4.731      0.22
     11(絞り)  ∞        0.07
     12        ∞        可変
     13     371.937      0.67     1.49700    81.54
     14       3.728      0.67     1.84666    23.78
     15       4.208      0.35
     16        ∞        可変
     17       7.396      1.56     1.48749    70.23
     18      -7.401      0.31
     19       4.763      1.34     1.53775    74.70
     20        ∞        0.62
     21       4.561      1.14     1.51633    64.14
     22      -6.231      0.69     1.95906    17.47
     23       3.786      0.76
     24       3.536      0.89     1.51633    64.14
     25        ∞        0.02     1.51500    64.00
     26        ∞        0.78     1.50700    63.26
     27        ∞
     28(像面)
 
ズームデータ
          通常観察状態    拡大観察状態
焦点距離       1.05            1.26
FNO.       3.18            3.79
d12            0.30            2.33  
d16            2.38            0.34  
 
数値実施例8
単位  mm
 
面データ
面番号         r          d         ne        νd
      1        ∞        0.95     1.88300    40.78
      2       2.252      1.25
      3      -7.573      1.79     1.88300    40.76
      4       2.142      2.44     1.51742    52.43
      5      -3.233      0.23
      6        ∞        0.89     1.49400    75.00
      7        ∞        0.30
      8     -54.770      1.77     1.72916    54.68
      9      -3.212      1.17     1.84666    23.78
     10      -4.710      0.22
     11(絞り)  ∞        0.07
     12        ∞        可変
     13     160.517      0.66     1.49700    81.54
     14       3.671      0.61     1.84666    23.78
     15       4.277      1.91
     16        ∞        可変
     17       7.351      1.57     1.48749    70.23
     18      -7.279      0.14
     19       3.868      1.32     1.53775    74.70
     20        ∞        0.05
     21       4.350      1.22     1.51633    64.14
     22      -6.167      0.67     1.95906    17.47
     23       4.008      0.64
     24        ∞        1.00     1.51633    64.14
     25        ∞        0.02     1.51500    64.00
     26        ∞        0.78     1.50700    63.26
     27        ∞
     28(像面)
 
ズームデータ
          通常観察状態    拡大観察状態
焦点距離       1.06            1.26
FNO.       2.91            3.47
d12            0.21            2.41  
d16            2.50            0.22  
 
 以下に各実施例の条件式対応値を示す。 
 
      実施例1   実施例2   実施例3   実施例4
(1)    -2.33      -3.03      -2.36      -3.46
(2)    -1.42      -1.44      -1.07      -1.47
(3)    -1.41      -1.35      -1.18      -1.33
(4)     2.66       4.18       3.33       4.42
(5)     1.36       1.53       1.36       1.62
(6)    -0.82      -0.81      -1.34      -0.77
(7)   -12.39      -8.84      -8.30      -9.18
(8)    -1.93      -1.41      -1.54      -1.44
(9)    -3.15      -2.37      -3.10      -1.90
(10)    0.26       0.24       0.70       0.21
 
      実施例5   実施例6   実施例7   実施例8
(1)    -2.41      -2.32      -2.31      -2.39
(2)    -1.35      -1.40      -1.44      -1.26
(3)    -1.21      -1.36      -1.62      -1.16
(4)     3.04       3.04       2.68       3.45
(5)     1.77       1.36       1.35       1.55
(6)    -0.88      -0.79      -0.83      -0.85
(7)   -10.30     -25.43      -8.45     -18.83
(8)    -1.66      -3.77      -1.35      -2.76
(9)    -5.66      -3.20      -2.80      -0.87
(10)    0.35       0.28       0.24       0.21
 
 以上のように、本発明は、小型かつ高精細であり、製造誤差による光学性能の劣化が低減された内視鏡対物光学系に適している。
 G1 第1群
 G2 第2群
 G3 第3群
 L1~L12 レンズ
 S 明るさ絞り
 CG カバーガラス
 AX 光軸
 I 撮像面(像面)

Claims (9)

  1.  物体側より順に、正の第1群と、負の第2群と、正の第3群と、を有し、
     通常観察状態から拡大観察状態において、少なくとも前記第2群を光軸に沿って動かすことにより変倍と合焦を行う内視鏡対物光学系であって、
     前記第1群は、物体側から順に、物体側に平面を向けた平凹の負レンズと、2つの接合レンズとを有し、
     以下の条件式(1)を満たすことを特徴とする内視鏡対物光学系。
     -3.6<f1/fz1<-2 (1)
     ここで、
     f1は前記平凹の負レンズの焦点距離、
     fz1は通常観察状態における前記内視鏡対物光学系全系の焦点距離、
    である。
  2.  前記第3群は、物体側から順に、正レンズと、正レンズと、正レンズと負レンズの接合レンズと、を有し、以下の条件式(2)、(3)を満たすことを特徴とする請求項1に記載の内視鏡対物光学系。
     -5<f5/f7<-1   (2)
     -5<f6/f7<-0.3   (3)
     f5は前記第3群の物体側の前記正レンズの焦点距離、
     f6は前記第3群の像側の前記正レンズの焦点距離、
     f7は前記第3群の前記接合レンズの焦点距離、
    である。
  3.  以下の条件式(4)を満たすことを特徴とする請求項1に記載の内視鏡対物光学系。
     2.1<Ls/Bk<5   (4)
     Lsは前記第2群の通常観察状態から拡大観察状態における移動長、
     Bkは前記内視鏡対物光学系の最終面から像面までの光軸に沿った距離、
    である。
  4.  以下の条件式(5)を満たすことを特徴とする請求項1に記載の内視鏡対物光学系。
     0.8<FFz3/fz3<4  (5)
     FFz3は前記内視鏡対物光学系の拡大観察状態における前側焦点から前記内視鏡対物光学系の最も物体側の面までの距離、 
     fz3は拡大観察状態の前記内視鏡対物光学系全系の焦点距離、
    である。
  5.  以下の条件式(6)を満たすことを特徴とする請求項2に記載の内視鏡対物光学系。
     -6<f7/f3<-0.5   (6)
     f7は前記第3群の前記接合レンズの焦点距離、
     f3は前記第1群の像側の前記接合レンズの焦点距離、
    である。 
  6.  以下の条件式(7)を満たすことを特徴とする請求項1に記載の内視鏡対物光学系。
     -30<f2/fz1<-1   (7)
     f2は前記第1群の物体側の前記接合レンズの焦点距離、
     fz1は通常観察状態における前記内視鏡対物光学系全系の焦点距離、
    である。
  7.  以下の条件式(8)を満たすことを特徴とする請求項1に記載の内視鏡対物光学系。
     -8<f2/f3<-1   (8)
     f2は前記第1群の物体側の前記接合レンズの焦点距離、
     f3は前記第1群の像側の前記接合レンズの焦点距離、
    である。
  8.  前記第3群は、カバーガラスに接合された像面側に平面を向けた凸平の正レンズを有し、以下の条件式(9)を満たすことを特徴とする請求項1に記載の内視鏡対物光学系。
     -10<f8/f1<-0.5  (9)
     f8は前記カバーガラスに接合された前記正レンズの焦点距離、
     f1は前記平凹の負レンズの焦点距離、
    である。
  9.  前記第3群の前記接合レンズは両凹の負レンズを有し、
     以下の条件式(10)を満たすことを特徴とする内視鏡対物光学系。
     0.1<SF72<0.9   (10)
     SF72は前記両凹の負レンズのシェイピングファクターであり、前記両凹の負レンズの物体側の曲率半径をr72、前記両凹の負レンズの像側の曲率半径をr73とするとSF72=(r72+r73)/(r72-r73)である。
     
     
PCT/JP2019/007467 2018-04-11 2019-02-27 内視鏡対物光学系 WO2019198362A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020513106A JP7047075B2 (ja) 2018-04-11 2019-02-27 内視鏡対物光学系、撮像装置及び内視鏡
US17/038,202 US20210137358A1 (en) 2018-04-11 2020-09-30 Endoscope objective optical system, image pickup apparatus and endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018076378 2018-04-11
JP2018-076378 2018-04-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/038,202 Continuation US20210137358A1 (en) 2018-04-11 2020-09-30 Endoscope objective optical system, image pickup apparatus and endoscope

Publications (1)

Publication Number Publication Date
WO2019198362A1 true WO2019198362A1 (ja) 2019-10-17

Family

ID=68163144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007467 WO2019198362A1 (ja) 2018-04-11 2019-02-27 内視鏡対物光学系

Country Status (3)

Country Link
US (1) US20210137358A1 (ja)
JP (1) JP7047075B2 (ja)
WO (1) WO2019198362A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11857151B2 (en) * 2018-09-12 2024-01-02 Steris Instrument Management Services, Inc. Systems and methods for standalone endoscopic objective image analysis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226248A (ja) * 2011-04-22 2012-11-15 Pentax Ricoh Imaging Co Ltd 撮影レンズ系
WO2014129089A1 (ja) * 2013-02-22 2014-08-28 オリンパスメディカルシステムズ株式会社 内視鏡用対物光学系及び撮像装置
WO2016084494A1 (ja) * 2014-11-26 2016-06-02 オリンパス株式会社 対物光学系
WO2017199614A1 (ja) * 2016-05-16 2017-11-23 オリンパス株式会社 対物光学系

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252723B1 (en) * 1998-03-03 2001-06-26 Olympus Optical Co., Ltd. Objective optical system
US6480342B1 (en) * 1999-02-22 2002-11-12 Olympus Optical Co., Ltd. Zoom lens system
JP2008107391A (ja) * 2006-10-23 2008-05-08 Olympus Medical Systems Corp 内視鏡対物光学系
JP4653823B2 (ja) * 2008-06-06 2011-03-16 オリンパスメディカルシステムズ株式会社 対物光学系
JP2012078643A (ja) * 2010-10-04 2012-04-19 Olympus Corp 撮像光学系及びそれを有する撮像装置
JP2015004717A (ja) * 2013-06-19 2015-01-08 リコーイメージング株式会社 単焦点レンズ系
EP3168668A4 (en) * 2014-07-11 2018-03-07 Olympus Corporation Objective optical system
US9864167B2 (en) * 2014-09-17 2018-01-09 Ricoh Company, Ltd. Image forming lens and image capturing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226248A (ja) * 2011-04-22 2012-11-15 Pentax Ricoh Imaging Co Ltd 撮影レンズ系
WO2014129089A1 (ja) * 2013-02-22 2014-08-28 オリンパスメディカルシステムズ株式会社 内視鏡用対物光学系及び撮像装置
WO2016084494A1 (ja) * 2014-11-26 2016-06-02 オリンパス株式会社 対物光学系
WO2017199614A1 (ja) * 2016-05-16 2017-11-23 オリンパス株式会社 対物光学系

Also Published As

Publication number Publication date
JP7047075B2 (ja) 2022-04-04
US20210137358A1 (en) 2021-05-13
JPWO2019198362A1 (ja) 2021-02-25

Similar Documents

Publication Publication Date Title
US7616386B2 (en) Zoom lens and image-pickup apparatus
JP6397717B2 (ja) 顕微鏡結像レンズ、顕微鏡装置、及び、撮像光学系
EP3306369A1 (en) Endoscope objective optical system
US10481370B2 (en) Optical system, optical apparatus, and method for manufacturing the optical system
JP5930257B1 (ja) 内視鏡用対物光学系
JP6095877B1 (ja) 内視鏡用対物光学系
JP2017223755A (ja) 撮像光学系
JP4464212B2 (ja) 魚眼レンズ系
JP4981466B2 (ja) 光学系及びそれを有する撮像装置
JP5426353B2 (ja) 防振機能を有するズームレンズ
WO2017179373A1 (ja) 内視鏡用対物光学系
JP2014029375A (ja) ズームレンズ及びそれを有する撮像装置
JP2022033521A (ja) 内視鏡用対物レンズおよび内視鏡
WO2018235352A1 (ja) 内視鏡用対物光学系
WO2018042797A1 (ja) 内視鏡対物光学系
JP6584142B2 (ja) 撮像光学系及びそれを有する撮像装置
JP2016045314A (ja) リアコンバージョンレンズ
JP2015114625A (ja) ズームレンズ及び撮像装置
JP2008083316A (ja) 内視鏡対物光学系
WO2019198362A1 (ja) 内視鏡対物光学系
JP5063211B2 (ja) ズームレンズおよび撮像装置
JP2018054980A (ja) ズームレンズ及び撮像装置
JP5082486B2 (ja) ズームレンズと、これを有する光学装置
JP2008191231A (ja) 光学系及びそれを有する撮像装置
JP2009282181A (ja) 観察光学系及びそれを用いた撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513106

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19785121

Country of ref document: EP

Kind code of ref document: A1