WO2019194071A1 - はんだ噴流検査装置、実装基板及びはんだ噴流検査方法 - Google Patents

はんだ噴流検査装置、実装基板及びはんだ噴流検査方法 Download PDF

Info

Publication number
WO2019194071A1
WO2019194071A1 PCT/JP2019/013680 JP2019013680W WO2019194071A1 WO 2019194071 A1 WO2019194071 A1 WO 2019194071A1 JP 2019013680 W JP2019013680 W JP 2019013680W WO 2019194071 A1 WO2019194071 A1 WO 2019194071A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
main surface
pastes
solder pastes
solder jet
Prior art date
Application number
PCT/JP2019/013680
Other languages
English (en)
French (fr)
Inventor
徹也 川添
浩儀 山下
佐々木 俊介
太 大川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2019194071A1 publication Critical patent/WO2019194071A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/08Soldering by means of dipping in molten solder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • the present invention relates to a solder jet inspection device, a mounting substrate, and a solder jet inspection method.
  • Patent Document 1 discloses a jig used for confirming the height of a solder jet of a jet soldering apparatus.
  • the amount of heat applied to the board to be soldered has the greatest effect on the soldering quality.
  • the amount of heat applied to the board to be soldered also varies depending on the amount of warpage of the board to be soldered, the preheating state of the board to be soldered, or the change in the flow velocity of the solder jet. To do. Since only the height of the solder jet can be measured with the jig described in Patent Document 1, it is difficult to stabilize the soldering quality.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a solder jet inspection device, a mounting board, and a solder jet inspection method capable of stabilizing the soldering quality.
  • the solder jet inspection apparatus of the present invention includes a substrate including a first main surface and a second main surface opposite to the first main surface, and one or more solder pastes disposed on the first main surface. Prepare.
  • the mounting substrate of the present invention includes a substrate including a first main surface and a second main surface opposite to the first main surface, one or more solder pastes, and an electronic component.
  • the substrate includes one or more check pads disposed on the first major surface.
  • One or more solder pastes are provided on one or more check pads.
  • the substrate is provided with a through hole extending from the first main surface to the second main surface.
  • the lead of the electronic component is inserted into the through hole from the first main surface side. In the plan view of the first main surface, the minimum distance between the electronic component and the one or more check pads is 10 mm or less.
  • the solder jet inspection method of the present invention transports the solder jet inspection apparatus of the present invention or the mounting board of the present invention, brings the solder jet into contact with the second main surface, and the molten state of one or more solder pastes. Observing.
  • the amount of heat applied from the solder jet can be inspected by observing the melting state of one or more solder pastes. Soldering quality can be stabilized.
  • FIG. 1 is a schematic plan view of a solder jet inspection device according to a first embodiment.
  • 2 is a schematic cross-sectional view of the solder jet inspection apparatus of the first embodiment taken along a cross-sectional line II-II shown in FIG. 1 is a schematic cross-sectional view showing a soldering apparatus according to a first embodiment.
  • 1 is a schematic partial enlarged cross-sectional view showing a soldering apparatus according to a first embodiment. It is a schematic sectional drawing of the solder jet inspection apparatus of Embodiment 2.
  • FIG. 6 is a schematic plan view of a solder jet inspection device according to a third embodiment.
  • FIG. 7 is a schematic cross-sectional view of the solder jet inspection apparatus of the third embodiment taken along a cross-sectional line VII-VII shown in FIG.
  • FIG. 10 is a schematic cross-sectional view of a solder jet inspection apparatus according to a modification of the third embodiment.
  • FIG. 6 is a schematic plan view of a solder jet inspection device according to a fourth embodiment.
  • FIG. 10 is a schematic cross-sectional view of the solder jet inspection apparatus according to the fourth embodiment taken along a cross-sectional line XX shown in FIG. 9.
  • FIG. 10 is a schematic cross-sectional view of a solder jet inspection device according to a modification of the fourth embodiment.
  • FIG. 10 is a schematic plan view of a mounting board in a fifth embodiment.
  • FIG. 13 is a schematic cross-sectional view of the mounting board of the fifth embodiment taken along a cross-sectional line XIII-XIII shown in FIG.
  • FIG. 10 is a schematic plan view of a mounting board according to a modification of the fifth embodiment.
  • FIG. 15 is a schematic cross-sectional view taken along a cross-sectional line XV-XV shown in FIG. 14 of a mounting board according to a modification of the fifth embodiment.
  • FIG. 10 is a schematic plan view of a mounting board in a sixth embodiment.
  • FIG. 17 is a schematic cross sectional view of the mounting board of the sixth embodiment, taken along a cross sectional line XVII-XVII shown in FIG.
  • FIG. 10 is a schematic plan view of a mounting board in a seventh embodiment.
  • FIG. 19 is a schematic cross-sectional view of the mounting board according to the seventh embodiment taken along a cross-sectional line XIX-XIX shown in FIG.
  • Embodiment 1 FIG. With reference to FIG.1 and FIG.2, the solder jet test
  • the solder jet inspection apparatus 1 is different from an actual product.
  • the solder jet inspection device 1 is, for example, a device exclusively used for inspecting the amount of heat applied from the solder jet 50j (see FIG. 3).
  • the solder jet inspection apparatus 1 includes a substrate 10 and one or more solder pastes 14.
  • the substrate 10 includes a first main surface 10p and a second main surface 10q opposite to the first main surface 10p.
  • the first main surface 10p and the second main surface 10q extend in a first direction (x direction) and a second direction (y direction) perpendicular to the first direction.
  • the substrate 10 may be a printed wiring board.
  • the printed wiring board includes a base material 11 and one or more conductive pads 12.
  • the base material 11 may further include wiring (not shown).
  • the base material 11 has electrical insulation.
  • a substrate base material (printed circuit board 51 shown in FIG. 3) used in an actual product may be used.
  • the substrate 11 may be a glass composite substrate such as a CEM-3 substrate.
  • the glass composite substrate is formed, for example, by impregnating a glass nonwoven fabric with an epoxy resin and thermally curing the epoxy resin.
  • the substrate 11 may be a glass epoxy substrate such as an FR-4 substrate, for example.
  • the glass epoxy base material is formed, for example, by impregnating a glass woven fabric with an epoxy resin and thermally curing the epoxy resin.
  • the substrate 11 may be a paper phenol substrate formed by infiltrating a phenol resin into an insulating paper.
  • the one or more conductive pads 12 are formed on the first main surface 10p.
  • the one or more conductive pads 12 may be a plurality of conductive pads 12.
  • the plurality of conductive pads 12 may be arranged in a matrix.
  • the plurality of conductive pads 12 may be arranged along a first direction (x direction) and a second direction (y direction).
  • One or more of the conductive pads 12 may be formed of a conductive metal material such as copper or aluminum.
  • the wiring (not shown) may be formed on the first main surface 10p or may be formed on the second main surface 10q.
  • the wiring may be formed of a conductive metal material such as copper or aluminum.
  • the one or more solder pastes 14 are disposed on the first main surface 10p.
  • One or more solder pastes 14 may be formed on one or more conductive pads 12.
  • the one or more solder pastes 14 are configured to be observed from the first main surface 10p side.
  • the one or more solder pastes 14 may be a plurality of solder pastes 14. As shown in FIG. 1, the plurality of solder pastes 14 may be arranged in a matrix in a plan view of the first main surface 10p. In the plan view of the first main surface 10p, the plurality of solder pastes 14 may be disposed along the first direction (x direction) and the second direction (y direction).
  • the one or more solder pastes 14 may be supplied onto the first main surface 10p (one or more conductive pads 12) of the substrate 10 using a dispenser.
  • the one or more solder pastes 14 may be supplied onto the first major surface 10p of the substrate 10 using a metal mask (not shown).
  • One or more solder pastes 14 are selectively supplied only to the openings of the metal mask.
  • the metal mask is not particularly limited, but may have a thickness of 50 ⁇ m or more.
  • the metal mask is not particularly limited, but may have a thickness of 500 ⁇ m or less.
  • One or more solder pastes 14 may be supplied onto the first main surface 10p of the substrate 10 while the substrate 10 is placed on the electronic balance. The amount of the one or more solder pastes 14 supplied onto the first main surface 10p of the substrate 10 can be kept constant, and a plurality of solder jet inspection apparatuses 1 having the same performance can be easily prepared.
  • the one or more solder pastes 14 include a solder filler.
  • a solder filler is not specifically limited, The solder particle which has an average particle diameter of 10 micrometers or more and 50 micrometers or less may be sufficient. The average particle size of the solder particles is measured using a laser diffraction scattering method.
  • the solder filler is, for example, Sn-58Bi (melting point 141 ° C.), Sn-3.5Ag-0.5Bi-8.0In (melting point 214 ° C.), Sn-0.75Cu (melting point 229 ° C.) or Sn-5Sb (melting point). 243 ° C.).
  • the melting point T m1 of the one or more solder pastes 14 may be 250 ° C.
  • the melting point T m1 of the one or more solder pastes 14 may be T b or less and T b ⁇ 10 ° C. or more.
  • T b is the time the second main surface 10q to the solder jet 50j of the substrate 10 (see FIG. 3) is in contact, indicative of the temperature of the first main surface 10p of the substrate 10.
  • the jet soldering device 7 mainly includes a flux application unit 30, a preheating unit 35, and a jet soldering unit 40.
  • the flux application unit 30 applies the flux 32 to the lower surface 53 of the printed circuit board 51.
  • the flux application unit 30 may include a spray 31.
  • the printed circuit board 51 includes an upper surface 52 and a lower surface 53.
  • the printed circuit board 51 includes a conductive pad 54 on the lower surface 53.
  • the electronic component 55 is placed on the upper surface 52 of the printed circuit board 51.
  • the electronic component 55 has a lead 56.
  • the lead 56 is inserted into the hole of the printed circuit board 51 and is in contact with the conductive pad 54.
  • the flux 32 is applied using the spray 31 to the lower surface 53 of the printed circuit board 51 conveyed to the flux application unit 30 using a conveyor (not shown).
  • the preheating unit 35 heats the printed circuit board 51 to which the flux 32 is applied before soldering in the jet soldering unit 40.
  • the preheating part 35 raises the temperature of the printed circuit board 51 and the electronic component 55 to a temperature suitable for soldering, and relieves the thermal shock applied to the electronic component 55 during soldering.
  • the solvent contained in the flux 32 may be removed by heat applied by the preheating unit 35.
  • the preheating unit 35 may be, for example, a sheath heater, an infrared panel heater, or a blower configured to blow out hot air.
  • the jet soldering unit 40 may include a solder bath 41, a nozzle 44, a pump 48, and a heater 49.
  • the solder bath 41 stores the molten solder 50.
  • the solder bath 41 may be made of, for example, cast iron, titanium, or stainless steel (for example, SUS316).
  • the heater 49 heats the molten solder 50 and maintains the solder in a molten state.
  • the heater 49 may be disposed below the solder bath 41.
  • the nozzle 44 has a spout 45.
  • the nozzle 44 may further include a guide portion 46 extending from the ejection port 45.
  • the guide part 46 guides the solder jet 50j ejected from the ejection port 45 along the conveyance direction 9 of the printed circuit board 51, prevents the solder jet 50j from immediately falling into the solder bath 41, and allows the flow of the solder jet 50j to flow. Be calm.
  • the guide portion 46 can increase the time and area in which the solder jet 50j contacts the printed circuit board 51 while the printed circuit board 51 is transported along the transport direction 9.
  • the pump 48 pumps the molten solder 50 to the nozzle 44.
  • the pump 48 may include an impeller 48a disposed in the nozzle 44 and a motor 48b that rotates the impeller 48a. By rotating the impeller 48a by the motor 48b, the molten solder 50 is ejected from the nozzle 44 to become a solder jet 50j. The solder jet 50j contacts the lower surface 53 of the printed circuit board 51, and the electronic component 55 is soldered to the printed circuit board 51.
  • inspection method of this Embodiment is demonstrated.
  • the solder jet inspection apparatus 1 Prior to the printed circuit board 51 on which the electronic component 55 is mounted, the solder jet inspection apparatus 1 is conveyed by a conveyor (not shown) along the same conveyance path as the printed circuit board 51 on which the electronic component 55 is mounted. Therefore, the amount of heat applied from the solder jet 50j to the solder jet inspection apparatus 1 is proportional to the amount of heat applied from the solder jet 50j to the printed circuit board 51.
  • the solder jet inspection apparatus 1 is conveyed to the flux application unit 30 by a conveyor.
  • the flux application unit 30 is in an off state, and the flux application unit 30 does not apply the flux 32 to the solder jet inspection device 1.
  • the solder jet inspection device 1 is conveyed to the preheating unit 35.
  • the preheating unit 35 heats the solder jet inspection device 1 and raises the temperature of the solder jet inspection device 1 to a temperature similar to the temperature suitable for soldering the electronic component 55 to the printed circuit board 51.
  • the solder jet inspection apparatus 1 is conveyed to the jet soldering part 40 by a conveyor.
  • the second principal surface 10q of the solder jet inspection device 1 is in contact with the solder jet 50j ejected from the nozzle 45 of the nozzle 44, and heat is applied to the substrate 10 from the solder jet 50j.
  • the heat from the second main surface 10q by conducting a medium substrate 10 toward the first major surface 10p, raising the temperature T b of the first main surface 10p.
  • the temperature T b of the first main surface 10p changes.
  • the temperature T b of the first main surface 10p reaches near the melting point T m1 of the one or more solder paste 14, one or more solder paste 14 is melted.
  • the solder jet inspection apparatus 1 passes the jet soldering part 40, the melted one or more solder pastes 14 are cooled and solidified again.
  • the solder filler contained in the one or more solder pastes 14 melts and hardens, the surface of the one or more solder pastes 14 becomes smooth, and the one or more solder pastes 14 have a metallic luster.
  • the temperature T b of the first main surface 10p does not reach the melting point T m1 of the one or more solder pastes 14 and the one or more solder pastes 14 do not melt, the one or more solders The solder filler remains in the paste 14. Therefore, the surface of the solder paste 14 is not smooth, and the one or more solder pastes 14 do not have a metallic luster.
  • the metallic luster of the one or more solder pastes 14 after the solder jet inspection apparatus 1 passes the jet soldering part 40 is observed visually or using the camera 20.
  • the molten state of one or more solder pastes 14 can be observed.
  • the amount of heat applied from the solder jet 50j to the solder jet inspection device 1 can be inspected.
  • An image indicating the melting state of one or more solder pastes 14 acquired using the camera 20 may be stored in the storage unit 22.
  • the comparison unit 23 acquires an image indicating the melting state of one or more solder pastes 14 acquired using the camera 20 from the camera 20 or the storage unit 22.
  • the comparison unit 23 compares the image indicating the melting state of the one or more solder pastes 14 acquired using the camera 20 with the image indicating the melting state of the one or more solder pastes 14 acquired previously. .
  • the comparison unit 23 outputs the comparison result obtained by the comparison unit 23 to the control unit 24.
  • the determination unit 26 determines the melting state of the one or more solder pastes 14 based on the luminance V of the one or more solder pastes 14. Specifically, the determination unit 26 acquires an image indicating the melting state of one or more solder pastes 14 acquired using the camera 20 from the camera 20 or the storage unit 22. The determination unit 26 calculates the luminance V from the image indicating the melting state of the one or more solder pastes 14. Brightness V, for example, luminance of V R, the brightness V G and the blue component of the green component (G component) of the red component of the image showing the molten state of one or more solder paste 14 (R component) (B component) It may be calculated from V B. For example, the brightness V may be given by the following formula (1).
  • k R denotes the weighting coefficient for the brightness V R of the red component of the image (R component)
  • k R denotes the weighting coefficient for the brightness V R of the red component of the image (R component)
  • k R is the red component of the image ( It represents the weighting factor for the luminance V R of the R component).
  • the sum of the weighting factors k R , k G , and k B is 1.
  • the weighting factors k R , k G , and k B may be equal to each other.
  • the weight coefficient k G may be the largest
  • the weight coefficient k R may be the second largest
  • the weight coefficient k B may be the smallest among the weight coefficients k R , k G , and k B.
  • the determination unit 26 compares the calculated luminance V with the reference luminance V ref stored in the storage unit 22. For example, when the calculated luminance V is equal to or lower than the reference luminance V ref , the determination unit 26 may determine that the solder paste 14 is not melted, and the calculated luminance V is based on the reference luminance V ref . If it is larger, it may be determined that the solder paste 14 is melted. The determination unit 26 outputs the determination result obtained by the determination unit 26 to the control unit 24.
  • the control unit 24 preheats based on the comparison result obtained by the comparison unit 23 or the determination result obtained by the determination unit 26 so that the amount of heat applied from the solder jet 50j to the solder jet inspection device 1 is constant. At least one of the unit 35, the motor 48b, and the heater 49 may be controlled, and the nozzle 44 may be adjusted or replaced.
  • the comparison result obtained by the comparison unit 23 or the determination result obtained by the determination unit 26 may be output to the display unit 25.
  • the solder jet 50 j to the solder jet inspection device 1 in the first main surface 10 p.
  • the distribution of the amount of heat applied can be examined.
  • the conveyance direction 9 of the solder jet inspection apparatus 1 is the second direction (y direction).
  • the solder jet inspection device 1 can inspect the distribution of the amount of heat applied from the solder jet 50j to the solder jet inspection device 1 in the direction along the conveying direction 9 of the solder jet inspection device 1.
  • the distribution of the amount of heat applied from the solder jet 50j to the solder jet inspection device 1 in the direction perpendicular to the conveying direction 9 of the solder jet inspection device 1 can be inspected.
  • the two solder pastes 14 in the middle are once melted and hardened, and have a metallic luster.
  • the two solder pastes 14 at both ends are not melted and do not have a metallic luster.
  • Solder jet inspection apparatus 1 of the present embodiment is arranged on substrate 10 including first main surface 10p and second main surface 10q opposite to first main surface 10p, and first main surface 10p.
  • One or more solder pastes 14 By observing the melting state of one or more solder pastes 14, the amount of heat applied from the solder jet 50j to the solder jet inspection device 1 can be inspected. Soldering quality can be stabilized.
  • the substrate 10 may be a printed wiring board. Therefore, the amount of heat applied from the solder jet 50j to the solder jet inspection device 1 can be inspected under substantially the same conditions as the actual product. Soldering quality can be stabilized.
  • one or more solder pastes 14 may have a melting point of 230 ° C. or lower. Therefore, even if the substrate 10 has a relatively low thermal conductivity and the temperature of the first main surface 10p is difficult to rise when the solder jet 50j contacts the second main surface 10q, the first main surface One or more solder pastes 14 arranged on 10p can melt. Therefore, even if the substrate 10 has a relatively low thermal conductivity, the amount of heat applied from the solder jet 50j to the solder jet inspection device 1 can be inspected. Soldering quality can be stabilized.
  • the solder jet inspection apparatus 1 is transported, the solder jet 50j is brought into contact with the second main surface 10q, and the molten state of one or more solder pastes 14 is observed. With. By observing the melting state of one or more solder pastes 14, the amount of heat applied from the solder jet 50j to the solder jet inspection device 1 can be inspected. Soldering quality can be stabilized.
  • the melting state of one or more solder pastes 14 may be observed using the camera 20. Therefore, the amount of heat applied from the solder jet 50j to the solder jet inspection device 1 can be inspected. Soldering quality can be stabilized.
  • the solder jet inspection method according to the present embodiment may further include comparing the molten state of one or more solder pastes 14 with the previously obtained molten state of one or more solder pastes 14. Therefore, a change with time of the amount of heat applied from the solder jet 50j to the solder jet inspection device 1 can be detected.
  • the solder jet inspection method further includes determining the melting state of the one or more solder pastes 14 based on the luminance V of the one or more solder pastes 14. Therefore, the amount of heat applied from the solder jet 50j to the solder jet inspection device 1 can be inspected. Soldering quality can be stabilized.
  • solder jet inspection method of the present embodiment one or more solder pastes 14 may be supplied onto the first main surface 10p using a dispenser.
  • the solder jet inspection apparatus 1 can be easily prepared at low cost.
  • FIG. 5 With reference to FIG. 5, the solder jet inspection apparatus 1b of Embodiment 2 is demonstrated.
  • the solder jet inspection apparatus 1b of the present embodiment has the same configuration as the solder jet inspection apparatus 1 of the first embodiment and has the same effects, but is mainly different in the following points.
  • the substrate 10b includes a base material 11b.
  • the substrate 10b (base material 11b) is different from the substrate (base material) used in an actual product.
  • the substrate 11b is made of a material that hardly reacts with the solder jet 50j (see FIGS. 3 and 4), does not easily wet the solder, does not dissolve in the solder jet 50j, and has heat resistance.
  • the base material 11b may be made of, for example, stainless steel, titanium, or a carbon fiber reinforced carbon composite material.
  • the base material 11b may have a higher thermal conductivity than the base material used in actual products.
  • the base material 11b may be made of a material having a thermal conductivity larger than 0.3 W / (m ⁇ K), and made of a material having a thermal conductivity larger than 1.0 W / (m ⁇ K). May be composed of a material having a thermal conductivity greater than 5.0 W / (m ⁇ K), or composed of a material having a thermal conductivity greater than 10 W / (m ⁇ K). Alternatively, it may be made of a material having a thermal conductivity higher than 15 W / (m ⁇ K), or may be made of a material having a thermal conductivity higher than 20 W / (m ⁇ K).
  • the base material 11b having a thermal conductivity greater than 0.3 W / (m ⁇ K) conducts heat from the second main surface 10q to the first main surface 10p with a lower thermal resistance, and thereby the first main surface. to reduce the difference between the temperature T b and the temperature of the second main surface 10q of 10p. Therefore, even if one or more solder pastes 14 have a relatively high melting point T m1 , one solder paste 50j (refer to FIGS. 3 and 4) contacts the second main surface 10q. The above solder paste 14 melts. Even if one or more solder pastes 14 have a relatively high melting point T m1 , the amount of heat applied from the solder jet 50j (see FIG. 3) to the solder jet inspection device 1b can be inspected. Soldering quality can be stabilized.
  • the base material 11b having a thermal conductivity higher than 0.3 W / (m ⁇ K) conducts heat from the second main surface 10q to the first main surface 10p with a lower thermal resistance. Therefore, changes in the amount of heat applied from the solder jet 50j (see FIG. 3) to the solder jet inspection apparatus 1b is also small, the temperature T b of the first main surface 10p changes. The amount of heat applied from the solder jet 50j to the solder jet inspection device 1b can be inspected more accurately. Soldering quality can be stabilized.
  • the substrate 10b (base material 11b) may have a bio number B of 1 or less.
  • the bio number B is given by the following equation (2).
  • d d ⁇ h / ⁇ (2)
  • d represents the thickness (m) of the substrate 10b (base material 11b)
  • h represents the heat transfer coefficient (W / (m 2 ⁇ K)) of the solder jet 50j
  • represents the substrate 10b (base material 11b). It represents thermal conductivity (W / (m ⁇ K)).
  • the heat transfer coefficient h of the solder jet 50j is about 1000 W / (m 2 ⁇ K), and the thermal conductivity ⁇ of titanium is 21. Since it is 4 W / (m ⁇ K), the bio number of the base material 11b is about 0.93.
  • solder paste 50j contacts the second main surface 10q.
  • the above solder paste 14 melts.
  • the amount of heat applied from the solder jet 50j see FIG. 3) to the solder jet inspection device 1b can be inspected. Soldering quality can be stabilized.
  • the base material 11b having a bio number of 1 or less conducts heat from the second main surface 10q to the first main surface 10p with a lower thermal resistance. Therefore, changes in the amount of heat applied from the solder jet 50j (see FIG. 3) to the solder jet inspection apparatus 1b is also small, the temperature T b of the first main surface 10p changes. The amount of heat applied from the solder jet 50j to the solder jet inspection device 1b can be inspected more accurately. Soldering quality can be stabilized.
  • the solder jet inspection method of the present embodiment includes the same steps as those of the solder jet inspection method of the first embodiment and has the same effects, but mainly differs in the following points.
  • the solder jet inspection device 1b is used. Therefore, even if one or more solder pastes 14 have a relatively high melting point T m1 , the amount of heat applied from the solder jet 50j (see FIG. 3) to the solder jet inspection device 1b can be inspected. Even a small change in the amount of heat applied from the solder ejection 50j to the solder jet testing apparatus 1b, the temperature T b of the first main surface 10p changes. The amount of heat applied from the solder jet 50j to the solder jet inspection device 1b can be inspected more accurately. Soldering quality can be stabilized.
  • Embodiment 3 FIG. With reference to FIG.6 and FIG.7, the solder jet test
  • the solder jet inspection apparatus 1c of the present embodiment has the same configuration as the solder jet inspection apparatus 1 of the first embodiment and has the same effects, but mainly differs in the following points.
  • the substrate 10 includes a conductive via 18 that connects the first main surface 10p and the second main surface 10q.
  • the conductive via 18 is made of a material having a high electric conductivity such as copper or aluminum.
  • the conductive via 18 has a higher thermal conductivity than the base material 11.
  • Conductive vias 18, a lower thermal resistance, the second main surface 10q and heat is conducted to the first major surface 10p, the difference between the temperature of the temperature T b and the second major surface 10q of the first main surface 10p Make it smaller. Even if the one or more solder pastes 14 have a relatively high melting point T m1 , when the solder jet 50j (see FIGS.
  • solder paste 14 melts. Even if one or more solder pastes 14 have a relatively high melting point T m1 , the amount of heat applied from the solder jet 50j (see FIG. 3) to the solder jet inspection device 1c can be inspected. Soldering quality can be stabilized.
  • the conductive via 18 conducts heat from the second main surface 10q to the first main surface 10p with a lower thermal resistance. Therefore, changes in the amount of heat applied from the solder jet 50j (see FIG. 3) to the solder jet inspection apparatus 1c can be small, the temperature T b of the first main surface 10p changes. The amount of heat applied from the solder jet 50j to the solder jet inspection device 1c can be inspected more accurately. Soldering quality can be stabilized.
  • the diameter D of the conductive via 18 may be, for example, 1 mm or less, or 0.5 mm or less.
  • the substrate 10 may include a plurality of conductive vias 18.
  • the plurality of conductive vias 18 may be arranged along a second direction (y direction) which is a conveyance direction 9 (see FIG. 3) of the solder jet inspection device 1c.
  • the one or more solder pastes 14 may be a plurality of solder pastes 14.
  • the plurality of solder pastes 14 may be arranged along the radial direction with the conductive via 18 as the center.
  • the plurality of solder pastes 14 may be radially arranged around the conductive vias 18. The distribution of the amount of heat applied from the solder jet 50j (see FIG. 3) to the solder jet inspection device 1c in the first main surface 10p can be inspected.
  • the distribution of the amount of heat applied to 1c can be examined. Soldering quality can be stabilized.
  • the substrate 10 includes a plurality of conductive vias 18, the plurality of solder pastes 14 may be arranged radially around each of the plurality of conductive vias 18.
  • the plurality of solder pastes 14 may be arranged at equal intervals along the radial direction centered on the conductive via 18.
  • the interval between the solder pastes 14 adjacent to each other in the radial direction may be, for example, 0.5 mm or more.
  • the interval between the solder pastes 14 adjacent to each other in the radial direction may be, for example, 1.0 mm or less.
  • the shortest distance L min between the one or more solder pastes 14 and the conductive vias 18 may be 1 mm or less.
  • One or more solder pastes 14 are disposed proximate to the conductive vias 18. Therefore, even when one or more solder pastes 14 have a relatively high melting point T m1 , one solder paste 50j (refer to FIGS. 3 and 4) contacts the second main surface 10q. The above solder paste 14 melts. Even if one or more solder pastes 14 have a relatively high melting point T m1 , the amount of heat applied from the solder jet 50j (see FIG. 3) to the solder jet inspection device 1c can be inspected.
  • solder jet inspection apparatus 1d according to a modification of the present embodiment will be described.
  • the solder jet inspection apparatus 1d according to the modification of the present embodiment has the same configuration as the solder jet inspection apparatus 1c of the present embodiment, but is mainly different in the following points.
  • the substrate 10b (base material 11b) of the second embodiment is used.
  • the solder jet inspection method of the present embodiment includes the same steps as those of the solder jet inspection method of the first embodiment and has the same effects, but mainly differs in the following points.
  • solder jet inspection apparatuses 1c and 1d are used. Therefore, even if one or more solder pastes 14 have a relatively high melting point T m1 , the amount of heat applied from the solder jet 50j (see FIG. 3) to the solder jet inspection devices 1c and 1d can be inspected. . Even a small change in the amount of heat applied from the solder ejection 50j to the solder jet inspection apparatus 1c, the temperature T b of the first main surface 10p changes. The amount of heat applied from the solder jet 50j to the solder jet inspection devices 1c and 1d can be inspected more accurately. Soldering quality can be stabilized.
  • Embodiment 4 FIG. With reference to FIG.9 and FIG.10, the solder jet test
  • the solder jet inspection device 1e of the present embodiment has the same configuration as the solder jet inspection device 1 of the first embodiment, but is mainly different in the following points.
  • a plurality of solder pastes 14, 15, and 16 are disposed on the first main surface 10p. As shown in FIG. 9, the plurality of solder pastes 14, 15, and 16 are arranged in a matrix in the plan view of the first main surface 10p.
  • the plurality of solder pastes 14, 15, and 16 have a plurality of melting points in each row and each column. Specifically, the plurality of solder pastes 14, 15, and 16 have different melting points in each row and each column.
  • the plurality of solder pastes 14, 15, 16 have different melting points.
  • the melting point T m2 of the solder paste 15 is higher than the melting point T m1 of the solder paste 14.
  • the melting point T m3 of the solder paste 16 is higher than the melting point T m2 of the solder paste 15.
  • the solder paste 14 includes a first solder filler made of Sn-3.5Ag-0.5Bi-8.0In (melting point 214 ° C.), and the solder paste 15 is Sn-0.75Cu (melting point 229).
  • the solder paste 16 may include a third solder filler composed of Sn-5Sb (melting point 243 ° C.).
  • the solder paste 14 has a metallic luster, but the solder pastes 15 and 16 have a metallic luster. If not, the temperature T b of the first main surface 10p reaches the vicinity of the melting point T m1 of the solder paste 14, but does not reach the vicinity of the melting points T m2 and T m3 of the solder pastes 15 and 16. I understand. In another example, after the solder jet inspection apparatus 1e passes the jet soldering portion 40 (see FIG. 3), the solder pastes 14 and 15 have a metallic luster, but the solder paste 16 has a metallic luster. If not, it can be seen that the temperature T b of the first principal surface 10p has reached the vicinity of the melting point T m2 of the solder paste 15 but has not reached the vicinity of the melting point T m3 of the solder paste 16.
  • the distribution of the temperature T b of the first main surface 10p of the first main surface 10p may be more precisely inspected.
  • the solder jet inspection apparatus 1e from the solder jet 50j in the direction along the transport direction 9 (see FIG. 3) (second direction (y direction)) of the solder jet inspection apparatus 1e.
  • the distribution of the amount of heat applied to can be more accurately examined.
  • the distribution of the amount of heat applied from the solder jet 50j to the solder jet inspection apparatus 1e in the direction perpendicular to the conveying direction 9 (first direction (x direction)) of the solder jet inspection apparatus 1e can be inspected more accurately. Soldering quality can be stabilized.
  • solder jet inspection apparatus 1f according to a modification of the present embodiment will be described.
  • the solder jet inspection device 1f has the same configuration as the solder jet inspection device 1e, but differs mainly in the following points.
  • the substrate 10b (base material 11b) of the second embodiment is used.
  • the solder jet inspection method of the present embodiment includes the same steps as those of the solder jet inspection method of the first embodiment and has the same effects, but mainly differs in the following points.
  • solder jet inspection apparatuses 1e and 1f are used. Therefore, the distribution of the temperature T b of the first main surface 10p of the first main surface 10p may be more precisely inspected. Soldering quality can be stabilized.
  • FIG. With reference to FIG.12 and FIG.13, the mounting substrate 2 of Embodiment 5 is demonstrated.
  • the mounting board 2 of the present embodiment has the same configuration as the solder jet inspection apparatus 1 of the first embodiment, but is mainly different in the following points.
  • the substrate 10 includes a check pad 13.
  • the check pad 13 is disposed on the first main surface 10p.
  • the check pad 13 is a pad on which a solder paste 14 for inspecting the amount of heat applied from the solder jet 50j to the mounting substrate 2 is provided.
  • the check pad 13 is made of a material having a high electrical conductivity such as copper or aluminum.
  • the check pad 13 has a higher thermal conductivity than the base material 11.
  • the check pad 13 may have a circular shape.
  • the check pad 13 may have a diameter of 1.0 mm or more.
  • the check pad 13 may have a quadrangular shape.
  • the check pad 13 may be a square having a side length of 1.0 mm or more.
  • the solder paste 14 is provided on the check pad 13.
  • the substrate 10 is provided with a through hole 18b extending from the first main surface 10p to the second main surface 10q.
  • the through hole 18b is a cylindrical conductive layer provided on the inner surface of a hole extending from the first main surface 10p to the second main surface 10q.
  • the through hole 18b is made of a material having high electrical conductivity such as copper or aluminum.
  • the through hole 18 b has a higher thermal conductivity than the base material 11.
  • the through hole 18b is configured such that the lead 56 of the electronic component 55 is inserted therein.
  • the inner diameter of the through hole 18 b is larger than the inner diameter of the conductive via 18.
  • the mounting board 2 further includes an electronic component 55.
  • the electronic component 55 is not particularly limited, but may be a capacitor, for example.
  • the lead 56 of the electronic component 55 is inserted into the through hole 18b from the first main surface 10p side.
  • the main body of the electronic component 55 is on the first main surface 10p side.
  • the minimum gap G between the electronic component 55 and the check pad 13 is 10 mm or less.
  • the check pad 13 is arranged in a first direction (x direction) perpendicular to the electronic component 55 in the transport direction 9 (see FIG. 3) of the mounting substrate 2b. Also good.
  • the check pad 13 may be arranged with respect to the electronic component 55 in the second direction (y direction) which is the transport direction 9 (see FIG. 3) of the mounting substrate 2b.
  • the substrate 10 includes a plurality of check pads 13 disposed on the first main surface 10p.
  • the plurality of solder pastes 14 are provided on the plurality of check pads 13.
  • the minimum gap G between the electronic component 55 and the plurality of check pads 13 is 10 mm or less.
  • the plurality of check pads 13 may be arranged along a radial direction centering on the through hole 18b.
  • the plurality of check pads 13 may be arranged along a first direction (x direction) perpendicular to the conveyance direction 9 (see FIG. 3) of the mounting substrate 2b. You may arrange along the 2nd direction (y direction) which is the conveyance direction 9 (refer FIG. 3) of the mounting substrate 2b.
  • the plurality of check pads 13 may be arranged at equal intervals along the radial direction with the through hole 18b as the center. The interval between the check pads 13 adjacent to each other may be 0.5 mm or more, for example.
  • the plurality of check pads 13 may be arranged radially around the through hole 18b.
  • the solder jet inspection method according to the present embodiment includes the same steps as the solder jet inspection method according to the first embodiment, except that the mounting board 2 or the mounting board 2b is used in place of the solder jet inspection apparatus 1. It is different.
  • the lead 56 of the electronic component 55 is inserted into the through hole 18b.
  • the mounting boards 2 and 2b are conveyed to the flux application unit 30 by a conveyor.
  • the flux application unit 30 applies the flux 32 to the mounting substrates 2 and 2b.
  • the mounting boards 2 and 2 b are conveyed to the preheating unit 35.
  • the preheating unit 35 heats the mounting substrates 2 and 2 b and raises the temperature of the mounting substrates 2 and 2 b to a temperature similar to a temperature suitable for soldering the electronic component 55 to the substrate 10.
  • the mounting boards 2 and 2b are transported to the jet soldering section 40 (see FIG. 3) by a conveyor.
  • the second main surface 10q of the mounting substrates 2 and 2b is in contact with the solder jet 50j ejected from the ejection port 45 of the nozzle 44.
  • the lead 56 of the electronic component 55 is soldered to the through hole 18b.
  • the mounting boards 2 and 2b in which the leads 56 of the electronic component 55 are soldered to the through holes 18b are actual products.
  • the metallic luster of the one or more solder pastes 14 after the mounting substrates 2 and 2b have passed the jet soldering portion 40 is observed visually or using the camera 20. Thus, the molten state of one or more solder pastes 14 can be observed.
  • the amount of heat applied from the solder jet 50j (see FIG. 3) to the mounting boards 2 and 2b can be inspected.
  • the mounting boards 2 and 2b and the solder jet inspection method of the present embodiment have the following effects similar to those of the solder jet inspection device 1 and the solder jet inspection method of the first embodiment.
  • the mounting boards 2 and 2b of the present embodiment include a board 10, one or more solder pastes 14, and an electronic component 55.
  • the substrate 10 includes a first main surface 10p and a second main surface 10q opposite to the first main surface 10p.
  • the substrate 10 includes one or more check pads 13 disposed on the first major surface 10p.
  • One or more solder pastes 14 are provided on one or more check pads 13.
  • the substrate 10 is provided with a through hole 18b extending from the first main surface 10p to the second main surface 10q.
  • the lead 56 of the electronic component 55 is inserted into the through hole 18b from the first main surface 10p side.
  • the minimum gap G between the electronic component 55 and the one or more check pads 13 is 10 mm or less.
  • the minimum gap G between the electronic component 55 and the one or more check pads 13 is 10 mm or less, so the temperature of the check pad 13 closest to the electronic component 55 is the electronic component. It accurately reflects the temperature of the through hole 18b into which the 55 leads 56 are inserted. Therefore, when the electronic component 55 is soldered to the through hole 18b using the jet soldering apparatus 7 (see FIG. 3), the solder jet 50j ( The amount of heat applied from the mounting substrate 2, 2b (through hole 18b) to the mounting substrate 2 (see FIG. 3) can be inspected. Soldering quality can be stabilized.
  • the substrate 10 is provided with a through hole 18b extending from the first main surface 10p to the second main surface 10q.
  • the through hole 18 b has a higher thermal conductivity than the base material 11.
  • Through-hole 18b is a lower thermal resistance, the second main surface 10q and heat is conducted to the first major surface 10p, the difference between the temperature of the temperature T b and the second major surface 10q of the first main surface 10p Make it smaller.
  • the one or more solder pastes 14 have a relatively high melting point T m1 , when the solder jet 50j (see FIGS. 3 and 4) contacts the second major surface 10q, the one or more solder pastes 14j The solder paste 14 melts.
  • solder pastes 14 Even if one or more solder pastes 14 have a relatively high melting point T m1 , the amount of heat applied from the solder jet 50j (see FIG. 3) to the mounting boards 2 and 2b can be inspected. Soldering quality can be stabilized.
  • the through hole 18b conducts heat from the second main surface 10q to the first main surface 10p with a lower thermal resistance. Therefore, changes in the amount of heat applied from the solder jet 50j (see FIG. 3) to the mounting board 2,2b can be small, the temperature T b of the first main surface 10p changes. The amount of heat applied from the solder jet 50j to the mounting boards 2 and 2b can be inspected more accurately. Soldering quality can be stabilized.
  • the one or more solder pastes 14 are a plurality of solder pastes 14.
  • the plurality of solder pastes 14 are arranged along the radial direction with the through hole 18b as the center. Therefore, the distribution of the amount of heat applied from the solder jet 50j (see FIG. 3) to the mounting board 2b (through hole 18b) can be inspected. Soldering quality can be stabilized.
  • the mounting substrates 2 and 2b are transported to bring the solder jet into contact with the second main surface 10q, and the molten state of one or more solder pastes 14 is observed. Is provided.
  • the minimum gap G between the electronic component 55 and the one or more check pads 13 is 10 mm or less, so the temperature of the check pad 13 closest to the electronic component 55 is the electronic component.
  • the temperature of the through hole 18b into which the 55 leads 56 are inserted is reflected almost accurately. Therefore, when the electronic component 55 is soldered to the through hole 18b using the jet soldering apparatus 7 (see FIG. 3), the solder jet 50j ( The amount of heat applied from the mounting substrate 2, 2b (through hole 18b) to the mounting substrate 2 (see FIG. 3) can be inspected. Soldering quality can be stabilized.
  • Embodiment 6 FIG. With reference to FIG.16 and FIG.17, the mounting substrate 2c of Embodiment 6 is demonstrated.
  • the mounting board 2c of the present embodiment has the same configuration as the mounting board 2b of the fifth embodiment, but is mainly different in the following points.
  • the plurality of check pads 13 are arranged at equal intervals from the electronic component 55 in a plan view of the first main surface 10p.
  • the minimum gap G between the electronic component 55 and each of the plurality of check pads 13 may be 10 mm or less.
  • the interval between the plurality of check pads 13 adjacent to each other may be 0.5 mm or more.
  • a plurality of solder pastes 14, 15, 16 are provided on the corresponding check pads 13.
  • the melting points of the plurality of solder pastes 14, 15, 16 are different from each other.
  • the melting point T m2 of the solder paste 15 is higher than the melting point T m1 of the solder paste 14.
  • the melting point T m3 of the solder paste 16 is higher than the melting point T m2 of the solder paste 15.
  • the metallic luster of the plurality of solder pastes 14, 15, 16 after the mounting substrate 2 c passes the jet soldering portion 40 (see FIG. 3) is observed visually or using the camera 20. Thus, the molten state of the plurality of solder pastes 14, 15, 16 can be observed.
  • the temperatures of the plurality of check pads 13 are equal to each other. Therefore, the temperature T b of the first main surface 10p may be more precisely inspected. Soldering quality can be stabilized.
  • the determination unit 26 outputs a determination result that the amount of heat applied from the solder jet 50j (see FIG. 3) to the mounting board 2c (through hole 18b) is insufficient.
  • the solder pastes 14 and 15 have a metallic luster, but the solder paste 16 does not have a metallic luster.
  • temperature T b of the first main surface 10p is, though has reached the vicinity of the melting point T m2 of the solder paste 15 does not reach the vicinity of the melting point T m3 of the solder paste 16.
  • the determination unit 26 outputs a determination result that the amount of heat applied from the solder jet 50j (see FIG. 3) to the mounting board 2c (through hole 18b) is appropriate.
  • the determination unit 26 outputs a determination result that the amount of heat applied from the solder jet 50j (see FIG. 3) to the mounting board 2c (through hole 18b) is excessive.
  • the solder jet inspection method of the present embodiment includes the same steps as those of the jet inspection method of the fifth embodiment, but is mainly different in that a mounting board 2c is used instead of the mounting boards 2 and 2b.
  • the mounting substrate 2c and the solder jet inspection method of the present embodiment have the following effects in addition to the effects of the mounting substrates 2 and 2b and the solder jet inspection method of the fifth embodiment.
  • the one or more solder pastes 14 are a plurality of solder pastes 14.
  • the melting points of the plurality of solder pastes 14 are different from each other. Therefore, according to the mounting board 2c and a solder jet inspection method of the present embodiment, the temperature T b of the first main surface 10p may be more precisely inspected. Soldering quality can be stabilized.
  • Embodiment 7 FIG. With reference to FIGS. 18 and 19, the mounting substrate 2d of the sixth embodiment will be described.
  • the mounting board 2d of the present embodiment has the same configuration as the mounting board 2b of the fifth embodiment, but is mainly different in the following points.
  • the substrate 10 includes a solid pattern layer 17 and a solder resist layer 19.
  • the solid pattern layer 17 is provided on the first major surface 10p.
  • the solid pattern layer 17 is made of a material having high electrical conductivity such as copper or aluminum.
  • the solid pattern layer 17 has a higher thermal conductivity than the base material 11.
  • the solid pattern layer 17 is connected to the through hole 18b.
  • the solid pattern layer 17 is a conductive pattern layer formed in a planar shape in a plan view of the first main surface 10p. In the plan view of the first main surface 10p, the solid pattern layer 17 has an area larger than that of the wiring (not shown).
  • One or more check pads 13 are part of the solid pattern layer 17.
  • the solid pattern layer 17 can be used as a heat dissipation layer or a ground layer.
  • the solder resist layer 19 is provided on the first main surface 10p and the solid pattern layer 17.
  • the solder resist layer 19 is made of, for example, an ultraviolet curable epoxy resin.
  • the solder resist layer 19 is provided with openings 19a and 19b.
  • the through hole 18b is exposed from the opening 19a.
  • One or more check pads 13 are part of the solid pattern layer 17.
  • the one or more check pads 13 are portions of the solid pattern layer 17 that are exposed from the openings 19 b of the solder resist layer 19.
  • the solder paste 14 is provided on one or more check pads 13.
  • the solder paste 14 is provided in the opening 19b.
  • the solder jet inspection method according to the present embodiment includes the same steps as the jet inspection method according to the fifth embodiment, but is mainly different in that a mounting substrate 2d is used instead of the mounting substrate 2b.
  • one or more check pads 13 and one or more solder pastes 14 are mounted on a part of the solid pattern layer 17 on the mounting substrate 2 of the fifth embodiment or the sixth embodiment. You may arrange
  • the present embodiment and its modifications are The following effects are achieved.
  • the substrate 10 includes a solid pattern layer 17 provided on the first main surface 10p.
  • the solid pattern layer 17 is connected to the through hole 18b.
  • One or more check pads 13 are part of the solid pattern layer 17.
  • the solid pattern layer 17 transfers the heat applied to the through hole 18b to one or more check pads 13 with a lower thermal resistance.
  • the solid pattern layer 17 reduces the difference between the temperature of the through hole 18 b and the temperature of the one or more check pads 13. Therefore, when the electronic component 55 is soldered to the through hole 18b using the jet soldering device 7 (see FIG. 3), the molten state of one or more solder pastes 14 on one or more check pads 13 is observed. By doing so, the amount of heat applied from the solder jet 50j (see FIG. 3) to the mounting substrate 2d (through hole 18b) can be more accurately inspected.
  • solder pastes 14 Even if one or more solder pastes 14 have a relatively high melting point T m1 , the amount of heat applied from the solder jet 50j (see FIG. 3) to the mounting substrate 2d (through hole 18b) can be inspected. The soldering quality can be further stabilized.
  • Embodiments 1-7 and modifications thereof disclosed herein are illustrative and non-restrictive in every respect. As long as there is no contradiction, at least two of Embodiments 1-7 and their modifications disclosed this time may be combined.
  • the substrates 10 and 10b may include the conductive via 18 of the third embodiment.
  • the scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
  • solder jet inspection device 2, 2b, 2c mounting substrate, 7 soldering device, 9 transport direction, 10, 10b substrate, 10p first main surface, 10q second main surface, 11, 11b base material, 12, 54 conductive pad, 13 check pad, 14, 15, 16 solder paste, 17 solid pattern layer, 18 conductive via, 18b through hole, 19 solder resist layer, 19a, 19b opening, 20 camera , 22 storage unit, 23 comparison unit, 24 control unit, 25 display unit, 26 determination unit, 30 flux application unit, 31 spray, 32 flux, 35 preheating unit, 40 jet soldering unit, 41 solder bath, 44 nozzle, 45 Spout, 46 guide section, 48 pump, 48a impeller, 48b model Motor, 49 a heater, 50 molten solder, 50j solder jets, 51 printed board, 52 top, 53 bottom surface, 55 electronic components 56 leads.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

はんだ噴流検査装置(1)は、第1主面(10p)と第1主面(10p)とは反対側の第2主面(10q)とを含む基板(10)と、第1主面(10p)上に配置された1つ以上のソルダーペースト(14)とを備える。そのため、はんだ噴流検査装置(1)は、はんだ付け品質を安定化させることができる。

Description

はんだ噴流検査装置、実装基板及びはんだ噴流検査方法
 本発明は、はんだ噴流検査装置、実装基板及びはんだ噴流検査方法に関する。
 特許第6197942号明細書(特許文献1)は、噴流はんだ付け装置のはんだ噴流の高さを確認するために用いられる治具を開示している。
特許第6197942号明細書
 はんだ付けされる基板に印加される熱量が、はんだ付け品質に最も大きな影響を及ぼす。はんだ付けされる基板に印加される熱量は、はんだ噴流の高さに加えて、はんだ付けされる基板の反り量、はんだ付けされる基板の予熱状態またははんだ噴流の流速の変化などによっても、変化する。特許文献1に記載の治具でははんだ噴流の高さしか測定できないため、はんだ付け品質を安定化させることが困難であった。本発明は、上記の課題を鑑みてなされたものであり、その目的は、はんだ付け品質を安定化させることができるはんだ噴流検査装置、実装基板及びはんだ噴流検査方法を提供することである。
 本発明のはんだ噴流検査装置は、第1主面と第1主面とは反対側の第2主面とを含む基板と、第1主面上に配置された1つ以上のソルダーペーストとを備える。
 本発明の実装基板は、第1主面と第1主面とは反対側の第2主面とを含む基板と、1つ以上のソルダーペーストと、電子部品とを備える。基板は、第1主面上に配置されている1つ以上のチェックパッドを含む。1つ以上のソルダーペーストは、1つ以上のチェックパッド上に設けられている。基板には、第1主面から第2主面まで延在するスルーホールが設けられている。電子部品のリードは、第1主面側からスルーホールに挿入されている。第1主面の平面視において、電子部品と1つ以上のチェックパッドとの間の最小間隔は10mm以下である。
 本発明のはんだ噴流検査方法は、本発明のはんだ噴流検査装置または本発明の実装基板を搬送して、第2主面にはんだ噴流を接触させることと、1つ以上のソルダーペーストの溶融状態を観察することとを備える。
 1つ以上のソルダーペーストの溶融状態を観察することによって、はんだ噴流から印加される熱量を検査することができる。はんだ付け品質が安定化され得る。
実施の形態1のはんだ噴流検査装置の概略平面図である。 実施の形態1のはんだ噴流検査装置の、図1に示される断面線II-IIにおける概略断面図である。 実施の形態1のはんだ付け装置を示す概略断面図である。 実施の形態1のはんだ付け装置を示す概略部分拡大断面図である。 実施の形態2のはんだ噴流検査装置の概略断面図である。 実施の形態3のはんだ噴流検査装置の概略平面図である。 実施の形態3のはんだ噴流検査装置の、図6に示される断面線VII-VIIにおける概略断面図である。 実施の形態3の変形例のはんだ噴流検査装置の概略断面図である。 実施の形態4のはんだ噴流検査装置の概略平面図である。 実施の形態4のはんだ噴流検査装置の、図9に示される断面線X-Xにおける概略断面図である。 実施の形態4の変形例のはんだ噴流検査装置の概略断面図である。 実施の形態5の実装基板の概略平面図である。 実施の形態5の実装基板の、図12に示される断面線XIII-XIIIにおける概略断面図である。 実施の形態5の変形例の実装基板の概略平面図である。 実施の形態5の変形例の実装基板の、図14に示される断面線XV-XVにおける概略断面図である。 実施の形態6の実装基板の概略平面図である。 実施の形態6の実装基板の、図16に示される断面線XVII-XVIIにおける概略断面図である。 実施の形態7の実装基板の概略平面図である。 実施の形態7の実装基板の、図18に示される断面線XIX-XIXにおける概略断面図である。
 以下、本発明の実施の形態を説明する。なお、同一の構成には同一の参照番号を付し、その説明は繰り返さない。
 実施の形態1.
 図1及び図2を参照して、実施の形態1のはんだ噴流検査装置1を説明する。はんだ噴流検査装置1は、実際の製品とは異なっている。はんだ噴流検査装置1は、例えば、専ら、はんだ噴流50j(図3を参照)から印加される熱量を検査するために用いられる装置である。はんだ噴流検査装置1は、基板10と、1つ以上のソルダーペースト14とを備える。
 基板10は、第1主面10pと、第1主面10pとは反対側の第2主面10qとを含む。第1主面10p及び第2主面10qは、第1の方向(x方向)と、第1の方向に垂直な第2の方向(y方向)とに延在している。
 基板10は、プリント配線基板であってもよい。プリント配線基板は、基材11と、1つ以上の導電パッド12とを含む。基材11は、配線(図示せず)をさらに含んでもよい。基材11は、電気的絶縁性を有する。基板10(基材11)は、実際の製品に用いられる基板(基材(図3に示されるプリント基板51))が用いられてもよい。基材11は、例えば、CEM-3基材のようなガラスコンポジット基材であってもよい。ガラスコンポジット基材は、例えば、ガラス不織布にエポキシ樹脂を含浸させて、エポキシ樹脂を熱硬化させることによって形成される。基材11は、例えば、FR-4基材のようなガラスエポキシ基材であってもよい。ガラスエポキシ基材は、例えば、ガラス織布にエポキシ樹脂を含浸させて、エポキシ樹脂を熱硬化させることによって形成される。基材11は、絶縁体の紙にフェノール樹脂を浸透させて形成した紙フェノール基材であってもよい。
 1つ以上の導電パッド12は、第1主面10p上に形成されている。1つ以上の導電パッド12は、複数の導電パッド12であってもよい。第1主面10pの平面視において、複数の導電パッド12は、マトリクス状に配置されてもよい。第1主面10pの平面視において、複数の導電パッド12は、第1の方向(x方向)及び第2の方向(y方向)に沿って配置されてもよい。1つ以上の導電パッド12は、銅またはアルミニウムのような導電金属材料で形成されてもよい。配線(図示せず)は、第1主面10p上に形成されてもよいし、第2主面10q上にも形成されてもよい。配線は、銅またはアルミニウムのような導電金属材料で形成されてもよい。
 1つ以上のソルダーペースト14は、第1主面10p上に配置されている。1つ以上のソルダーペースト14は、1つ以上の導電パッド12上に形成されてもよい。1つ以上のソルダーペースト14は、第1主面10p側から観察されるように構成されている。1つ以上のソルダーペースト14は、複数のソルダーペースト14であってもよい。図1に示されるように、第1主面10pの平面視において、複数のソルダーペースト14は、マトリクス状に配置されてもよい。第1主面10pの平面視において、複数のソルダーペースト14は、第1の方向(x方向)及び第2の方向(y方向)に沿って配置されてもよい。
 1つ以上のソルダーペースト14は、ディスペンサを用いて、基板10の第1主面10p(1つ以上の導電パッド12)上に供給されてもよい。1つ以上のソルダーペースト14は、金属マスク(図示せず)を用いて、基板10の第1主面10p上に供給されてもよい。金属マスクの開口部にのみ、1つ以上のソルダーペースト14は選択的に供給される。金属マスクは、特に限定されないが、50μm以上の厚さを有してもよい。金属マスクは、特に限定されないが、500μm以下の厚さを有してもよい。基板10を電子天秤上に載置したまま、1つ以上のソルダーペースト14が、基板10の第1主面10p上に供給されてもよい。基板10の第1主面10p上に供給される1つ以上のソルダーペースト14の量を一定に保つことができ、同じ性能を有する複数のはんだ噴流検査装置1を容易に準備することができる。
 1つ以上のソルダーペースト14は、ソルダーフィラーを含む。ソルダーフィラーは、特に限定されないが、10μm以上かつ50μm以下の平均粒径を有するはんだ粒子であってもよい。はんだ粒子の平均粒径は、レーザ回折散乱法を用いて測定される。ソルダーフィラーは、例えば、Sn-58Bi(融点141℃)、Sn-3.5Ag-0.5Bi-8.0In(融点214℃)、Sn-0.75Cu(融点229℃)またはSn-5Sb(融点243℃)のような鉛フリーはんだで構成されてもよい。1つ以上のソルダーペースト14の融点Tm1は、250℃以下であってもよく、230℃以下であってもよく、200℃以下であってもよい。1つ以上のソルダーペースト14の融点Tm1は、Tb以下かつTb-10℃以上であってもよい。Tbは、基板10の第2主面10qにはんだ噴流50j(図3を参照)が接触しているときの、基板10の第1主面10pの温度を表す。
 図3及び図4を参照して、本実施の形態の噴流はんだ付け装置7を説明する。噴流はんだ付け装置7は、フラックス塗布部30と、予熱部35と、噴流はんだ付け部40とを主に備える。
 フラックス塗布部30は、プリント基板51の下面53にフラックス32を塗布する。フラックス塗布部30は、スプレー31を含んでもよい。プリント基板51は、上面52と、下面53とを含む。プリント基板51は、下面53上に導電パッド54を含む。電子部品55は、プリント基板51の上面52に載置されている。電子部品55はリード56を有する。リード56は、プリント基板51の孔に挿入されて、導電パッド54に接触している。コンベア(図示せず)を用いてフラックス塗布部30に搬送されてくるプリント基板51の下面53に、スプレー31を用いてフラックス32が塗布される。
 予熱部35は、噴流はんだ付け部40におけるはんだ付けの前に、フラックス32が塗布されたプリント基板51を加熱する。予熱部35は、プリント基板51及び電子部品55の温度をはんだ付けに適した温度にまで上昇させて、はんだ付けの際に電子部品55に加わる熱衝撃を緩和する。フラックス32に含まれる溶剤は、予熱部35によって加えられる熱によって除去されてもよい。予熱部35は、例えば、シースヒーター、赤外線パネルヒーターまたはホットエアーを吹き出し得るように構成されている送風機であってもよい。
 噴流はんだ付け部40において、はんだ噴流50jがプリント基板51の下面53に接触して、電子部品55はプリント基板51の導電パッド54にはんだ付けされる。噴流はんだ付け部40は、はんだ槽41と、ノズル44と、ポンプ48と、ヒータ49とを含んでもよい。はんだ槽41は、溶融はんだ50を溜める。はんだ槽41は、例えば、鋳鉄、チタンまたはステンレス(例えば、SUS316)で構成されてもよい。ヒータ49は、溶融はんだ50を加熱して、はんだを溶融された状態に維持する。ヒータ49は、はんだ槽41の下部に配置されてもよい。
 ノズル44は、噴出口45を有する。ノズル44は、噴出口45から延在するガイド部46をさらに含んでもよい。ガイド部46は、噴出口45から噴出したはんだ噴流50jをプリント基板51の搬送方向9に沿ってガイドして、はんだ噴流50jが直ちにはんだ槽41に落下することを防ぎ、はんだ噴流50jの流れを穏やかにする。ガイド部46は、プリント基板51が搬送方向9に沿って搬送される間にはんだ噴流50jがプリント基板51に接触する時間及び面積を増加させることができる。
 ポンプ48は、溶融はんだ50をノズル44に圧送する。ポンプ48は、ノズル44内に配置されるインペラ48aと、インペラ48aを回転させるモータ48bとを含んでもよい。モータ48bによりインペラ48aを回転させることによって、溶融はんだ50はノズル44から噴出して、はんだ噴流50jとなる。はんだ噴流50jは、プリント基板51の下面53に接触して、電子部品55はプリント基板51にはんだ付けされる。
 図3及び図4を参照して、本実施の形態のはんだ噴流検査方法を説明する。
 はんだ噴流検査装置1は、電子部品55が搭載されたプリント基板51に先立って、電子部品55が搭載されたプリント基板51と同じ搬送経路に沿って、コンベア(図示せず)によって搬送される。そのため、はんだ噴流50jからはんだ噴流検査装置1に印加される熱量は、はんだ噴流50jからプリント基板51に印加される熱量に比例する。
 具体的には、はんだ噴流検査装置1は、コンベアによってフラックス塗布部30に搬送される。フラックス塗布部30はオフ状態にあり、フラックス塗布部30は、はんだ噴流検査装置1にフラックス32を塗布しない。それから、はんだ噴流検査装置1は、予熱部35に搬送される。予熱部35は、はんだ噴流検査装置1を加熱して、プリント基板51に電子部品55をはんだ付けするのに適した温度と同様の温度まではんだ噴流検査装置1の温度を上昇させる。それから、はんだ噴流検査装置1は、コンベアによって噴流はんだ付け部40に搬送される。はんだ噴流検査装置1の第2主面10qは、ノズル44の噴出口45から噴出するはんだ噴流50jに接触して、はんだ噴流50jから基板10に熱が印加される。この熱は、第2主面10qから第1主面10pに向かって基板10中を伝導して、第1主面10pの温度Tbを上昇させる。はんだ噴流50jからはんだ噴流検査装置1へ印加される熱量に応じて、第1主面10pの温度Tbは変化する。
 第1主面10pの温度Tbが1つ以上のソルダーペースト14の融点Tm1付近に達すると、1つ以上のソルダーペースト14は溶融する。はんだ噴流検査装置1が噴流はんだ付け部40を通り過ぎると、溶融した1つ以上のソルダーペースト14は冷却されて再び固まる。1つ以上のソルダーペースト14に含まれるソルダーフィラーが溶融した後固まると、1つ以上のソルダーペースト14の表面は滑らかになり、1つ以上のソルダーペースト14は金属光沢を有する。これに対し、第1主面10pの温度Tbが1つ以上のソルダーペースト14の融点Tm1付近に達せずに、1つ以上のソルダーペースト14が溶融しない場合には、1つ以上のソルダーペースト14にはソルダーフィラーが残存したままである。そのため、ソルダーペースト14の表面は滑らかでなく、1つ以上のソルダーペースト14は金属光沢を有しない。
 はんだ噴流検査装置1が噴流はんだ付け部40を通り過ぎた後の1つ以上のソルダーペースト14の金属光沢を、目視によりまたはカメラ20を用いて観察する。こうして、1つ以上のソルダーペースト14の溶融状態が観察され得る。はんだ噴流50jからはんだ噴流検査装置1へ印加される熱量が検査され得る。カメラ20を用いて取得された1つ以上のソルダーペースト14の溶融状態を示す画像は、記憶部22に記憶されてもよい。
 一例では、比較部23は、カメラ20または記憶部22から、カメラ20を用いて取得された1つ以上のソルダーペースト14の溶融状態を示す画像を取得する。比較部23は、カメラ20を用いて取得された1つ以上のソルダーペースト14の溶融状態を示す画像と、以前に取得された1つ以上のソルダーペースト14の溶融状態を示す画像とを比較する。比較部23は、比較部23で得られた比較結果を、制御部24に出力する。
 別の例では、判定部26は、1つ以上のソルダーペースト14の輝度Vに基づいて、1つ以上のソルダーペースト14の溶融状態を判定する。具体的には、判定部26は、カメラ20または記憶部22から、カメラ20を用いて取得された1つ以上のソルダーペースト14の溶融状態を示す画像を取得する。判定部26は、1つ以上のソルダーペースト14の溶融状態を示す画像から、輝度Vを算出する。輝度Vは、例えば、1つ以上のソルダーペースト14の溶融状態を示す画像の赤色成分(R成分)の輝度VR、緑色成分(G成分)の輝度VG及び青色成分(B成分)の輝度VBから算出されてもよい。例えば、輝度Vは、以下の式(1)で与えられてもよい。
  V=kRR+kGG+kGG (1)
 kRは画像の赤色成分(R成分)の輝度VRの重み係数を表し、kRは画像の赤色成分(R成分)の輝度VRの重み係数を表し、kRは画像の赤色成分(R成分)の輝度VRの重み係数を表す。重み係数kR,kG,kBの和は、1である。一例では、重み係数kR,kG,kBは、互いに等しくでもよい。別の例では、重み係数kR,kG,kBの中で、重み係数kGが最も大きく、重み係数kRが二番目に大きく、重み係数kBが最も小さくてもよい。
 判定部26は、算出された輝度Vを、記憶部22に格納されている基準輝度Vrefと比較する。例えば、判定部26は、算出された輝度Vが基準輝度Vref以下である場合には、ソルダーペースト14が未溶融であると判定してもよく、算出された輝度Vが基準輝度Vrefより大きい場合には、ソルダーペースト14が溶融していると判定してもよい。判定部26は、判定部26で得られた判定結果を、制御部24に出力する。
 制御部24は、はんだ噴流50jからはんだ噴流検査装置1へ印加される熱量が一定になるように、比較部23で得られた比較結果または判定部26で得られた判定結果に基づいて、予熱部35、モータ48b及びヒータ49の少なくとも1つを制御したり、ノズル44を調整または交換してもよい。比較部23で得られた比較結果または判定部26で得られた判定結果は、表示部25に出力されてもよい。
 図1に示されるように、基板10の第1主面10p上に複数のソルダーペースト14が配置されている場合には、第1主面10p内における、はんだ噴流50jからはんだ噴流検査装置1へ印加される熱量の分布が検査され得る。例えば、はんだ噴流検査装置1の搬送方向9は、第2の方向(y方向)である。はんだ噴流検査装置1は、はんだ噴流検査装置1の搬送方向9に沿う方向における、はんだ噴流50jからはんだ噴流検査装置1へ印加される熱量の分布が検査され得る。はんだ噴流検査装置1の搬送方向9に垂直な方向(第1の方向(x方向))における、はんだ噴流50jからはんだ噴流検査装置1へ印加される熱量の分布が検査され得る。図4に示される例では、真ん中の2つのソルダーペースト14は一旦溶融した後固まっており、金属光沢を有する。これに対し、両端の2つのソルダーペースト14は溶融しておらず、金属光沢を有していない。複数のソルダーペースト14の溶融状態を観察することによって、第1の方向(x方向)における、はんだ噴流50jからはんだ噴流検査装置1へ印加される熱量の分布が検査され得る。
 本実施の形態のはんだ噴流検査装置1及びはんだ噴流検査方法の効果を説明する。
 本実施の形態のはんだ噴流検査装置1は、第1主面10pと第1主面10pとは反対側の第2主面10qとを含む基板10と、第1主面10p上に配置された1つ以上のソルダーペースト14とを備える。1つ以上のソルダーペースト14の溶融状態を観察することによって、はんだ噴流50jからはんだ噴流検査装置1へ印加される熱量が検査され得る。はんだ付け品質が安定化され得る。
 本実施の形態のはんだ噴流検査装置1では、基板10は、プリント配線基板であってもよい。そのため、実際の製品と実質的に同じ条件で、はんだ噴流50jからはんだ噴流検査装置1へ印加される熱量が検査され得る。はんだ付け品質が安定化され得る。
 本実施の形態のはんだ噴流検査装置1では、1つ以上のソルダーペースト14は、230℃以下の融点を有してもよい。そのため、基板10が相対的に低い熱伝導率を有しており、はんだ噴流50jが第2主面10qに接触したときに第1主面10pの温度が上昇し難くても、第1主面10p上に配置された1つ以上のソルダーペースト14は溶融し得る。そのため、基板10が相対的に低い熱伝導率を有していても、はんだ噴流50jからはんだ噴流検査装置1へ印加される熱量が検査され得る。はんだ付け品質が安定化され得る。
 本実施の形態のはんだ噴流検査方法は、はんだ噴流検査装置1を搬送して、第2主面10qにはんだ噴流50jを接触させることと、1つ以上のソルダーペースト14の溶融状態を観察することとを備える。1つ以上のソルダーペースト14の溶融状態を観察することによって、はんだ噴流50jからはんだ噴流検査装置1へ印加される熱量が検査され得る。はんだ付け品質が安定化され得る。
 本実施の形態のはんだ噴流検査方法では、1つ以上のソルダーペースト14の溶融状態は、カメラ20を用いて観察されてもよい。そのため、はんだ噴流50jからはんだ噴流検査装置1へ印加される熱量が検査され得る。はんだ付け品質が安定化され得る。
 本実施の形態のはんだ噴流検査方法は、1つ以上のソルダーペースト14の溶融状態を、以前に取得された1つ以上のソルダーペースト14の溶融状態と比較することをさらに備えてもよい。そのため、はんだ噴流50jからはんだ噴流検査装置1へ印加される熱量の経時的な変化が検知され得る。
 本実施の形態のはんだ噴流検査方法では、1つ以上のソルダーペースト14の溶融状態を、1つ以上のソルダーペースト14の輝度Vに基づいて判定することをさらに備える。そのため、はんだ噴流50jからはんだ噴流検査装置1へ印加される熱量が検査され得る。はんだ付け品質が安定化され得る。
 本実施の形態のはんだ噴流検査方法では、1つ以上のソルダーペースト14は、ディスペンサを用いて第1主面10p上に供給されてもよい。はんだ噴流検査装置1が、低コストかつ容易に準備され得る。
 実施の形態2.
 図5を参照して、実施の形態2のはんだ噴流検査装置1bを説明する。本実施の形態のはんだ噴流検査装置1bは、実施の形態1のはんだ噴流検査装置1と同様の構成を備え、同様の効果を奏するが、以下の点で主に異なる。
 はんだ噴流検査装置1bでは、基板10bは、基材11bを含んでいる。基板10b(基材11b)は、実際の製品に用いられる基板(基材)と異なっている。基材11bは、はんだ噴流50j(図3及び図4を参照)と反応し難く、はんだに濡れ難く、はんだ噴流50jに溶解せず、かつ、耐熱性を有する材料で構成されている。基材11bは、例えば、ステンレス、チタンまたは炭素繊維強化炭素複合材料などで構成されてもよい。
 基材11bは、実際の製品に用いられる基材よりも高い熱伝導率を有してもよい。基材11bは、0.3W/(m・K)よりも大きい熱伝導率を有する材料で構成されてもよく、1.0W/(m・K)よりも大きい熱伝導率を有する材料で構成されてもよく、5.0W/(m・K)よりも大きい熱伝導率を有する材料で構成されてもよく、10W/(m・K)よりも大きい熱伝導率を有する材料で構成されてもよく、15W/(m・K)よりも大きい熱伝導率を有する材料で構成されてもよく、20W/(m・K)よりも大きい熱伝導率を有する材料で構成されてもよい。
 0.3W/(m・K)よりも大きい熱伝導率を有する基材11bは、より低い熱抵抗で、第2主面10qから第1主面10pに熱を伝導させて、第1主面10pの温度Tbと第2主面10qの温度との差を小さくする。そのため、1つ以上のソルダーペースト14が相対的に高い融点Tm1を有していても、はんだ噴流50j(図3及び図4を参照)が第2主面10qに接触したときに、1つ以上のソルダーペースト14は溶融する。1つ以上のソルダーペースト14が相対的に高い融点Tm1を有していても、はんだ噴流50j(図3を参照)からはんだ噴流検査装置1bへ印加される熱量が検査され得る。はんだ付け品質が安定化され得る。
 さらに、0.3W/(m・K)よりも大きい熱伝導率を有する基材11bは、より低い熱抵抗で、第2主面10qから第1主面10pへ熱を伝導させる。そのため、はんだ噴流50j(図3を参照)からはんだ噴流検査装置1bへ印加される熱量の変化が小さくても、第1主面10pの温度Tbは変化する。はんだ噴流50jからはんだ噴流検査装置1bへ印加される熱量がより正確に検査され得る。はんだ付け品質が安定化され得る。
 基板10b(基材11b)は、1以下のビオ数Bを有してもよい。ビオ数Bは、以下の式(2)で与えられる。
  B=d×h/λ (2)
 dは基板10b(基材11b)の厚さ(m)を表し、hははんだ噴流50jの熱伝達率(W/(m2・K))を表し、λは基板10b(基材11b)の熱伝導率(W/(m・K))を表す。
 例えば、基材11bが、2mmの厚さを有するチタンで構成されているとき、はんだ噴流50jの熱伝達率hは約1000W/(m2・K)であり、チタンの熱伝導率λは21.4W/(m・K)であるから、基材11bのビオ数は、約0.93となる。1以下のビオ数を有する基材11bは、より低い熱抵抗で、第2主面10qから第1主面10pへ熱を伝導させて、第1主面10pの温度Tbと第2主面10qの温度との差を小さくする。そのため、1つ以上のソルダーペースト14が相対的に高い融点Tm1を有していても、はんだ噴流50j(図3及び図4を参照)が第2主面10qに接触したときに、1つ以上のソルダーペースト14は溶融する。1つ以上のソルダーペースト14が相対的に高い融点Tm1を有していても、はんだ噴流50j(図3を参照)からはんだ噴流検査装置1bへ印加される熱量が検査され得る。はんだ付け品質が安定化され得る。
 さらに、1以下のビオ数を有する基材11bは、より低い熱抵抗で、第2主面10qから第1主面10pへ熱を伝導させる。そのため、はんだ噴流50j(図3を参照)からはんだ噴流検査装置1bへ印加される熱量の変化が小さくても、第1主面10pの温度Tbは変化する。はんだ噴流50jからはんだ噴流検査装置1bへ印加される熱量がより正確に検査され得る。はんだ付け品質が安定化され得る。
 本実施の形態のはんだ噴流検査方法は、実施の形態1のはんだ噴流検査方法と同様の工程を備え、同様の効果を奏するが、以下の点で主に異なる。本実施の形態のはんだ噴流検査方法では、はんだ噴流検査装置1bが用いられている。そのため、1つ以上のソルダーペースト14が相対的に高い融点Tm1を有していても、はんだ噴流50j(図3を参照)からはんだ噴流検査装置1bへ印加される熱量が検査され得る。はんだ噴流50jからはんだ噴流検査装置1bへ印加される熱量の変化が小さくても、第1主面10pの温度Tbは変化する。はんだ噴流50jからはんだ噴流検査装置1bへ印加される熱量がより正確に検査され得る。はんだ付け品質が安定化され得る。
 実施の形態3.
 図6及び図7を参照して、実施の形態3のはんだ噴流検査装置1cを説明する。本実施の形態のはんだ噴流検査装置1cは、実施の形態1のはんだ噴流検査装置1と同様の構成を備え、同様の効果を奏するが、以下の点で主に異なる。
 はんだ噴流検査装置1cでは、基板10は、第1主面10pと第2主面10qとを接続する導電ビア18を含む。導電ビア18は、例えば、銅またはアルミニウムのような高い電気伝導率を有する材料で構成されている。導電ビア18は、基材11よりも高い熱伝導率を有する。導電ビア18は、より低い熱抵抗で、第2主面10qから第1主面10pへ熱を伝導させて、第1主面10pの温度Tbと第2主面10qの温度との差を小さくする。1つ以上のソルダーペースト14が相対的に高い融点Tm1を有していても、はんだ噴流50j(図3及び図4を参照)が第2主面10qに接触したときに、1つ以上のソルダーペースト14は溶融する。1つ以上のソルダーペースト14が相対的に高い融点Tm1を有していても、はんだ噴流50j(図3を参照)からはんだ噴流検査装置1cへ印加される熱量が検査され得る。はんだ付け品質が安定化され得る。
 さらに、導電ビア18は、より低い熱抵抗で、第2主面10qから第1主面10pへ熱を伝導させる。そのため、はんだ噴流50j(図3を参照)からはんだ噴流検査装置1cへ印加される熱量の変化が小さくても、第1主面10pの温度Tbは変化する。はんだ噴流50jからはんだ噴流検査装置1cへ印加される熱量がより正確に検査され得る。はんだ付け品質が安定化され得る。
 導電ビア18の直径D(図7を参照)は、例えば、1mm以下であってもよく、0.5mm以下であってもよい。基板10は、複数の導電ビア18を含んでもよい。複数の導電ビア18は、はんだ噴流検査装置1cの搬送方向9(図3を参照)である第2の方向(y方向)に沿って配列されてもよい。
 図6に示されるように、1つ以上のソルダーペースト14は、複数のソルダーペースト14であってもよい。第1主面10pの平面視において、複数のソルダーペースト14は、導電ビア18を中心とする径方向に沿って、配置されてもよい。第1主面10pの平面視において、複数のソルダーペースト14は、導電ビア18を中心に、放射状に配置されてもよい。第1主面10p内における、はんだ噴流50j(図3を参照)からはんだ噴流検査装置1cへ印加される熱量の分布が検査され得る。はんだ噴流検査装置1cの搬送方向9(第2の方向(y方向))及び搬送方向9に垂直な方向(第1の方向(x方向))以外の方向における、はんだ噴流50jからはんだ噴流検査装置1cへ印加される熱量の分布が検査され得る。はんだ付け品質が安定化され得る。基板10が複数の導電ビア18を含む場合には、複数のソルダーペースト14は、複数の導電ビア18の各々を中心に、放射状に配置されてもよい。
 特定的には、複数のソルダーペースト14は、導電ビア18を中心とする径方向に沿って、等間隔に配置されてもよい。径方向において互いに隣り合うソルダーペースト14の間の間隔は、例えば、0.5mm以上であってもよい。径方向において互いに隣り合うソルダーペースト14の間の間隔は、例えば、1.0mm以下であってもよい。導電ビア18から同じ距離だけ離れている複数のソルダーペースト14の溶融状態を比較することによって、第1主面10p内における、はんだ噴流50j(図3を参照)からはんだ噴流検査装置1cへ印加される熱量の分布が検査され得る。はんだ付け品質が安定化され得る。
 1つ以上のソルダーペースト14と導電ビア18との間の最短距離Lmin(図6を参照)は、1mm以下であってもよい。1つ以上のソルダーペースト14は導電ビア18に近接して配置されている。そのため、1つ以上のソルダーペースト14が相対的に高い融点Tm1を有していても、はんだ噴流50j(図3及び図4を参照)が第2主面10qに接触したときに、1つ以上のソルダーペースト14は溶融する。1つ以上のソルダーペースト14が相対的に高い融点Tm1を有していても、はんだ噴流50j(図3を参照)からはんだ噴流検査装置1cへ印加される熱量が検査され得る。
 図8を参照して、本実施の形態の変形例のはんだ噴流検査装置1dを説明する。本実施の形態の変形例のはんだ噴流検査装置1dは、本実施の形態のはんだ噴流検査装置1cと同様の構成を備えるが、以下の点で主に異なる。本実施の形態の変形例のはんだ噴流検査装置1dでは、実施の形態2の基板10b(基材11b)が用いられている。
 本実施の形態のはんだ噴流検査方法は、実施の形態1のはんだ噴流検査方法と同様の工程を備え、同様の効果を奏するが、以下の点で主に異なる。本実施の形態のはんだ噴流検査方法では、はんだ噴流検査装置1c,1dが用いられている。そのため、1つ以上のソルダーペースト14が相対的に高い融点Tm1を有していても、はんだ噴流50j(図3を参照)からはんだ噴流検査装置1c,1dへ印加される熱量が検査され得る。はんだ噴流50jからはんだ噴流検査装置1cへ印加される熱量の変化が小さくても、第1主面10pの温度Tbは変化する。はんだ噴流50jからはんだ噴流検査装置1c,1dへ印加される熱量がより正確に検査され得る。はんだ付け品質が安定化され得る。
 実施の形態4.
 図9及び図10を参照して、実施の形態4のはんだ噴流検査装置1eを説明する。本実施の形態のはんだ噴流検査装置1eは、実施の形態1のはんだ噴流検査装置1と同様の構成を備えるが、以下の点で主に異なる。
 はんだ噴流検査装置1eでは、第1主面10p上に、複数のソルダーペースト14,15,16が配置されている。図9に示されるように、第1主面10pの平面視において、複数のソルダーペースト14,15,16は、マトリクス状に配置されている。複数のソルダーペースト14,15,16は、各行及び各列において、複数の融点を有する。特定的には、複数のソルダーペースト14,15,16は、各行及び各列において、互いに異なる融点を有する。
 具体的には、複数のソルダーペースト14,15,16は、互いに異なる融点を有している。ソルダーペースト15の融点Tm2は、ソルダーペースト14の融点Tm1よりも高い。ソルダーペースト16の融点Tm3は、ソルダーペースト15の融点Tm2よりも高い。例えば、ソルダーペースト14は、Sn-3.5Ag-0.5Bi-8.0In(融点214℃)で構成されている第1ソルダーフィラーを含み、ソルダーペースト15は、Sn-0.75Cu(融点229℃)で構成されている第2ソルダーフィラーを含み、ソルダーペースト16は、Sn-5Sb(融点243℃)で構成されている第3ソルダーフィラーを含んでもよい。
 一例において、はんだ噴流検査装置1eが噴流はんだ付け部40(図3を参照)を通り過ぎた後に、ソルダーペースト14は金属光沢を有しているが、ソルダーペースト15,16は金属光沢を有していない場合には、第1主面10pの温度Tbが、ソルダーペースト14の融点Tm1付近に達しているものの、ソルダーペースト15,16の融点Tm2,Tm3付近には達していないことが分かる。別の例において、はんだ噴流検査装置1eが噴流はんだ付け部40(図3を参照)を通り過ぎた後に、ソルダーペースト14,15は金属光沢を有しているが、ソルダーペースト16は金属光沢を有していない場合には、第1主面10pの温度Tbが、ソルダーペースト15の融点Tm2付近に達しているものの、ソルダーペースト16の融点Tm3付近には達していないことが分かる。
 こうして、はんだ噴流検査装置1eによれば、第1主面10p内における第1主面10pの温度Tbの分布がより正確に検査され得る。例えば、はんだ噴流検査装置1eによれば、はんだ噴流検査装置1eの搬送方向9(図3を参照)(第2の方向(y方向))に沿う方向における、はんだ噴流50jからはんだ噴流検査装置1eへ印加される熱量の分布がより正確に検査され得る。はんだ噴流検査装置1eの搬送方向9に垂直な方向(第1の方向(x方向))における、はんだ噴流50jからはんだ噴流検査装置1eへ印加される熱量の分布がより正確に検査され得る。はんだ付け品質が安定化され得る。
 図11を参照して、本実施の形態の変形例のはんだ噴流検査装置1fを説明する。はんだ噴流検査装置1fは、はんだ噴流検査装置1eと同様の構成を備えるが、以下の点で主に異なる。はんだ噴流検査装置1fでは、実施の形態2の基板10b(基材11b)が用いられている。
 本実施の形態のはんだ噴流検査方法は、実施の形態1のはんだ噴流検査方法と同様の工程を備え、同様の効果を奏するが、以下の点で主に異なる。本実施の形態のはんだ噴流検査方法では、はんだ噴流検査装置1e,1fが用いられている。そのため、第1主面10p内における第1主面10pの温度Tbの分布がより正確に検査され得る。はんだ付け品質が安定化され得る。
 実施の形態5.
 図12及び図13を参照して、実施の形態5の実装基板2を説明する。本実施の形態の実装基板2は、実施の形態1のはんだ噴流検査装置1と同様の構成を備えるが、以下の点で主に異なる。
 実装基板2では、基板10は、チェックパッド13を含む。チェックパッド13は、第1主面10p上に配置されている。チェックパッド13は、はんだ噴流50jから実装基板2へ印加される熱量を検査するためのソルダーペースト14が設けられるパッドである。チェックパッド13は、例えば、銅またはアルミニウムのような高い電気伝導率を有する材料で構成されている。チェックパッド13は、基材11よりも高い熱伝導率を有している。第1主面10pの平面視において、チェックパッド13は、円形の形状を有してもよい。チェックパッド13は、1.0mm以上の直径を有してもよい。第1主面10pの平面視において、チェックパッド13は、四角形の形状を有してもよい。チェックパッド13は、一辺の長さが1.0mm以上である正方形であってもよい。ソルダーペースト14は、チェックパッド13上に設けられている。
 基板10には、第1主面10pから第2主面10qまで延在するスルーホール18bが設けられている。スルーホール18bは、第1主面10pから第2主面10qまで延在する孔の内表面上に設けられた筒状の導電層である。スルーホール18bは、例えば、銅またはアルミニウムのような高い電気伝導率を有する材料で構成されている。スルーホール18bは、基材11よりも高い熱伝導率を有している。スルーホール18bは、電子部品55のリード56が挿入されるように構成されている。スルーホール18bの内径は、導電ビア18の内径よりも大きい。
 実装基板2は、電子部品55をさらに備えている。電子部品55は、特に限定されないが、例えば、コンデンサであってもよい。電子部品55のリード56は、第1主面10p側からスルーホール18bに挿入されている。電子部品55の本体部は、第1主面10p側にある。
 第1主面10pの平面視において、電子部品55とチェックパッド13との間の最小間隔Gは、10mm以下である。第1主面10pの平面視において、チェックパッド13は、電子部品55に対して、実装基板2bの搬送方向9(図3を参照)に垂直な第1の方向(x方向)に配置されてもよい。チェックパッド13は、電子部品55に対して、実装基板2bの搬送方向9(図3を参照)である第2の方向(y方向)に配置されてもよい。
 図14及び図15を参照して、本実施の形態の変形例の実装基板2bを説明する。実装基板2bでは、基板10は、第1主面10p上に配置されている複数のチェックパッド13を含む。複数のソルダーペースト14は、複数のチェックパッド13上に設けられている。第1主面10pの平面視において、電子部品55と複数のチェックパッド13との間の最小間隔Gは、10mm以下である。
 複数のチェックパッド13は、スルーホール18bを中心とする径方向に沿って配置されてもよい。例えば、複数のチェックパッド13は、実装基板2bの搬送方向9(図3を参照)に垂直な第1の方向(x方向)に沿って配列されてもよい。実装基板2bの搬送方向9(図3を参照)である第2の方向(y方向)に沿って配列されてもよい。特定的には、複数のチェックパッド13は、スルーホール18bを中心とする径方向に沿って等間隔に配置されてもよい。互いに隣り合うチェックパッド13の間の間隔は、例えば、0.5mm以上であってもよい。第1主面10pの平面視において、複数のチェックパッド13は、スルーホール18bを中心に、放射状に配置されてもよい。
 本実施の形態のはんだ噴流検査方法は、実施の形態1のはんだ噴流検査方法と同様の工程を備えるが、はんだ噴流検査装置1に代えて、実装基板2または実装基板2bが用いられている点で異なる。
 具体的には、実装基板2,2bでは、電子部品55のリード56は、スルーホール18bに挿入されている。実装基板2,2bは、コンベアによってフラックス塗布部30に搬送される。フラックス塗布部30は、実装基板2,2bにフラックス32を塗布する。それから、実装基板2,2bは、予熱部35に搬送される。予熱部35は、実装基板2,2bを加熱して、基板10に電子部品55をはんだ付けするのに適した温度と同様の温度まで実装基板2,2bの温度を上昇させる。
 実装基板2,2bは、コンベアによって噴流はんだ付け部40(図3を参照)に搬送される。実装基板2,2bの第2主面10qは、ノズル44の噴出口45から噴出するはんだ噴流50jに接触する。電子部品55のリード56は、スルーホール18bにはんだ付けされる。電子部品55のリード56がスルーホール18bにはんだ付けされた実装基板2,2bは、実際の製品である。実装基板2,2bが噴流はんだ付け部40を通り過ぎた後の1つ以上のソルダーペースト14の金属光沢を、目視によりまたはカメラ20を用いて観察する。こうして、1つ以上のソルダーペースト14の溶融状態が観察され得る。はんだ噴流50j(図3を参照)から実装基板2,2bへ印加される熱量が検査され得る。
 本実施の形態の実装基板2,2b及びはんだ噴流検査方法は、実施の形態1のはんだ噴流検査装置1及びはんだ噴流検査方法の効果と同様の以下の効果を奏する。
 本実施の形態の実装基板2,2bは、基板10と、1つ以上のソルダーペースト14と、電子部品55とを備える。基板10は、第1主面10pと、第1主面10pとは反対側の第2主面10qとを含む。基板10は、第1主面10p上に配置されている1つ以上のチェックパッド13を含む。1つ以上のソルダーペースト14は、1つ以上のチェックパッド13上に設けられている。基板10には、第1主面10pから第2主面10qまで延在するスルーホール18bが設けられている。電子部品55のリード56は、第1主面10p側からスルーホール18bに挿入されている。第1主面10pの平面視において、電子部品55と1つ以上のチェックパッド13との間の最小間隔Gは10mm以下である。
 第1主面10pの平面視において、電子部品55と1つ以上のチェックパッド13との間の最小間隔Gは10mm以下であるため、電子部品55に最も近いチェックパッド13の温度は、電子部品55のリード56が挿入されるスルーホール18bの温度を正確に反映している。そのため、噴流はんだ付け装置7(図3を参照)を用いて電子部品55をスルーホール18bにはんだ付けする際、チェックパッド13上のソルダーペースト14の溶融状態を観察することによって、はんだ噴流50j(図3を参照)から実装基板2,2b(スルーホール18b)へ印加される熱量が検査され得る。はんだ付け品質が安定化され得る。
 実装基板2,2bでは、基板10には、第1主面10pから第2主面10qまで延在するスルーホール18bが設けられている。スルーホール18bは、基材11よりも高い熱伝導率を有している。スルーホール18bは、より低い熱抵抗で、第2主面10qから第1主面10pへ熱を伝導させて、第1主面10pの温度Tbと第2主面10qの温度との差を小さくする。1つ以上のソルダーペースト14が相対的に高い融点Tm1を有していても、はんだ噴流50j(図3及び図4を参照)が第2主面10qに接触したときに、1つ以上のソルダーペースト14は溶融する。1つ以上のソルダーペースト14が相対的に高い融点Tm1を有していても、はんだ噴流50j(図3を参照)から実装基板2,2bへ印加される熱量が検査され得る。はんだ付け品質が安定化され得る。
 さらに、スルーホール18bは、より低い熱抵抗で、第2主面10qから第1主面10pへ熱を伝導させる。そのため、はんだ噴流50j(図3を参照)から実装基板2,2bへ印加される熱量の変化が小さくても、第1主面10pの温度Tbは変化する。はんだ噴流50jから実装基板2,2bへ印加される熱量がより正確に検査され得る。はんだ付け品質が安定化され得る。
 本実施の形態の実装基板2bでは、1つ以上のソルダーペースト14は、複数のソルダーペースト14である。複数のソルダーペースト14は、スルーホール18bを中心とする径方向に沿って、配置されている。そのため、はんだ噴流50j(図3を参照)から実装基板2b(スルーホール18b)へ印加される熱量の分布が検査され得る。はんだ付け品質が安定化され得る。
 本実施の形態のはんだ噴流検査方法は、実装基板2,2bを搬送して、第2主面10qにはんだ噴流を接触させることと、1つ以上のソルダーペースト14の溶融状態を観察することとを備える。第1主面10pの平面視において、電子部品55と1つ以上のチェックパッド13との間の最小間隔Gは10mm以下であるため、電子部品55に最も近いチェックパッド13の温度は、電子部品55のリード56が挿入されるスルーホール18bの温度をほぼ正確に反映している。そのため、噴流はんだ付け装置7(図3を参照)を用いて電子部品55をスルーホール18bにはんだ付けする際、チェックパッド13上のソルダーペースト14の溶融状態を観察することによって、はんだ噴流50j(図3を参照)から実装基板2,2b(スルーホール18b)へ印加される熱量が検査され得る。はんだ付け品質が安定化され得る。
 実施の形態6.
 図16及び図17を参照して、実施の形態6の実装基板2cを説明する。本実施の形態の実装基板2cは、実施の形態5の実装基板2bと同様の構成を備えるが、以下の点で主に異なる。
 実装基板2cでは、第1主面10pの平面視において、複数のチェックパッド13は、電子部品55から等間隔を空けて配置されている。電子部品55と複数のチェックパッド13の各々との間の最小間隔Gは、10mm以下であってもよい。互いに隣り合う複数のチェックパッド13の間の間隔は0.5mm以上であってもよい。
 複数のソルダーペースト14,15,16が、対応する複数のチェックパッド13上に設けられている。複数のソルダーペースト14,15,16の融点は、互いに異なっている。ソルダーペースト15の融点Tm2は、ソルダーペースト14の融点Tm1よりも高い。ソルダーペースト16の融点Tm3は、ソルダーペースト15の融点Tm2よりも高い。実装基板2cが噴流はんだ付け部40(図3を参照)を通り過ぎた後の複数のソルダーペースト14,15,16の金属光沢を、目視によりまたはカメラ20を用いて観察する。こうして、複数のソルダーペースト14,15,16の溶融状態が観察され得る。複数のチェックパッド13は、電子部品55から等間隔を空けて配置されているため、複数のチェックパッド13の温度は、互いに等しい。そのため、第1主面10pの温度Tbがより正確に検査され得る。はんだ付け品質が安定化され得る。
 例えば、実装基板2cが噴流はんだ付け部40(図3を参照)を通り過ぎた後に、ソルダーペースト14は金属光沢を有しているが、ソルダーペースト15,16は金属光沢を有していない場合には、第1主面10pの温度Tbが、ソルダーペースト14の融点Tm1付近に達しているものの、ソルダーペースト15,16の融点Tm2,Tm3付近には達していない。この場合、判定部26(図3を参照)は、はんだ噴流50j(図3を参照)から実装基板2c(スルーホール18b)へ印加される熱量が不足しているという判定結果を出力する。
 実装基板2cが噴流はんだ付け部40(図3を参照)を通り過ぎた後に、ソルダーペースト14,15は金属光沢を有しているが、ソルダーペースト16は金属光沢を有していない場合には、第1主面10pの温度Tbが、ソルダーペースト15の融点Tm2付近に達しているものの、ソルダーペースト16の融点Tm3付近には達していない。この場合、判定部26(図3を参照)は、はんだ噴流50j(図3を参照)から実装基板2c(スルーホール18b)へ印加される熱量が適切であるという判定結果を出力する。
 実装基板2cが噴流はんだ付け部40(図3を参照)を通り過ぎた後に、ソルダーペースト14,15,16が全て金属光沢を有している場合には、第1主面10pの温度Tbが、ソルダーペースト16の融点Tm3付近には達している。この場合、判定部26(図3を参照)は、はんだ噴流50j(図3を参照)から実装基板2c(スルーホール18b)へ印加される熱量が過剰であるという判定結果を出力する。
 本実施の形態のはんだ噴流検査方法は、実施の形態5の噴流検査方法と同様の工程を備えるが、実装基板2,2bに代えて、実装基板2cを用いている点で主に異なる。
 本実施の形態の実装基板2c及びはんだ噴流検査方法は、実施の形態5の実装基板2,2b及びはんだ噴流検査方法の効果に加えて、以下の効果を奏する。
 本実施の形態の実装基板2c及びはんだ噴流検査方法では、1つ以上のソルダーペースト14は、複数のソルダーペースト14である。複数のソルダーペースト14の融点は、互いに異なっている。そのため、実装基板2c及び本実施の形態のはんだ噴流検査方法によれば、第1主面10pの温度Tbがより正確に検査され得る。はんだ付け品質が安定化され得る。
 実施の形態7.
 図18及び図19を参照して、実施の形態6の実装基板2dを説明する。本実施の形態の実装基板2dは、実施の形態5の実装基板2bと同様の構成を備えるが、以下の点で主に異なる。
 実装基板2dでは、基板10は、ベタパターン層17と、ソルダーレジスト層19とを含んでいる。ベタパターン層17は、第1主面10p上に設けられている。ベタパターン層17は、例えば、銅またはアルミニウムのような高い電気伝導率を有する材料で構成されている。ベタパターン層17は、基材11よりも高い熱伝導率を有している。ベタパターン層17は、スルーホール18bに接続されている。ベタパターン層17は、第1主面10pの平面視において面状に形成された導電パターン層である。第1主面10pの平面視において、ベタパターン層17は、配線(図示せず)よりも広い面積を有している。1つ以上のチェックパッド13は、ベタパターン層17の一部である。ベタパターン層17は、放熱層または接地層として用いられ得る。
 ソルダーレジスト層19は、第1主面10p及びベタパターン層17上に設けられている。ソルダーレジスト層19は、例えば、紫外線硬化性エポキシ樹脂で形成されている。ソルダーレジスト層19には、開口部19a,19bが設けられている。スルーホール18bは、開口部19aから露出している。1つ以上のチェックパッド13は、ベタパターン層17の一部である。1つ以上のチェックパッド13は、ベタパターン層17のうち、ソルダーレジスト層19の開口部19bから露出している部分である。ソルダーペースト14は、1つ以上のチェックパッド13上に設けられている。ソルダーペースト14は、開口部19b内に設けられている。
 本実施の形態のはんだ噴流検査方法は、実施の形態5の噴流検査方法と同様の工程を備えるが、実装基板2bに代えて、実装基板2dを用いている点で主に異なる。
 本実施の形態の変形例では、1つ以上のチェックパッド13及び1つ以上のソルダーペースト14が、ベタパターン層17の一部に、実施の形態5の実装基板2または実施の形態6の実装基板2cと同様な態様で配置されてもよい。
 本実施の形態及びその変形例は、実施の形態5の実装基板2,2b及び実施の形態6の実装基板2c並びに実施の形態5及び実施の形態6のはんだ噴流検査方法の効果に加えて、以下の効果を奏する。
 本実施の形態及びその変形例では、基板10は、第1主面10p上に設けられているベタパターン層17を含んでいる。ベタパターン層17は、スルーホール18bに接続されている。1つ以上のチェックパッド13は、ベタパターン層17の一部である。
 ベタパターン層17は、スルーホール18bに印加された熱を、より低い熱抵抗で、1つ以上のチェックパッド13に伝達する。ベタパターン層17は、スルーホール18bの温度と1つ以上のチェックパッド13の温度との差を小さくする。そのため、噴流はんだ付け装置7(図3を参照)を用いて電子部品55をスルーホール18bにはんだ付けする際、1つ以上のチェックパッド13上の1つ以上のソルダーペースト14の溶融状態を観察することによって、はんだ噴流50j(図3を参照)から実装基板2d(スルーホール18b)へ印加される熱量がより正確に検査され得る。1つ以上のソルダーペースト14が相対的に高い融点Tm1を有していても、はんだ噴流50j(図3を参照)から実装基板2d(スルーホール18b)へ印加される熱量が検査され得る。はんだ付け品質がさらに安定化され得る。
 今回開示された実施の形態1-7及びそれらの変形例はすべての点で例示であって制限的なものではないと考えられるべきである。矛盾のない限り、今回開示された実施の形態1-7及びそれらの変形例の少なくとも2つを組み合わせてもよい。例えば、実施の形態4及びその変形例において、基板10,10bは実施の形態3の導電ビア18を含んでもよい。本発明の範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。
 1,1b,1c,1d,1e,1f はんだ噴流検査装置、2,2b,2c 実装基板、7 はんだ付け装置、9 搬送方向、10,10b 基板、10p 第1主面、10q 第2主面、11,11b 基材、12,54 導電パッド、13 チェックパッド、14,15,16 ソルダーペースト、17 ベタパターン層、18 導電ビア、18b スルーホール、19 ソルダーレジスト層、19a,19b 開口部、20 カメラ、22 記憶部、23 比較部、24 制御部、25 表示部、26 判定部、30 フラックス塗布部、31 スプレー、32 フラックス、35 予熱部、40 噴流はんだ付け部、41 はんだ槽、44 ノズル、45 噴出口、46 ガイド部、48 ポンプ、48a インペラ、48b モータ、49 ヒータ、50 溶融はんだ、50j はんだ噴流、51 プリント基板、52 上面、53 下面、55 電子部品、56 リード。

Claims (20)

  1.  第1主面と前記第1主面とは反対側の第2主面とを含む基板と、
     前記第1主面上に配置された1つ以上のソルダーペーストとを備える、はんだ噴流検査装置。
  2.  前記基板は、プリント配線基板である、請求項1に記載のはんだ噴流検査装置。
  3.  前記基板は、はんだに濡れず、かつ、0.3W/(m・K)よりも大きい熱伝導率を有する材料で構成されている、請求項1に記載のはんだ噴流検査装置。
  4.  前記基板は、1.0以下のビオ数を有する、請求項1または請求項3に記載のはんだ噴流検査装置。
  5.  前記基板は、前記第1主面と前記第2主面とを接続する導電ビアを含む、請求項1から請求項4のいずれか1項に記載のはんだ噴流検査装置。
  6.  前記1つ以上のソルダーペーストは、複数のソルダーペーストであり、
     前記第1主面の平面視において、前記複数のソルダーペーストは、前記導電ビアを中心に、放射状に配置されている、請求項5に記載のはんだ噴流検査装置。
  7.  前記複数のソルダーペーストは、前記導電ビアを中心とする径方向に沿って、等間隔に配置されている、請求項6に記載のはんだ噴流検査装置。
  8.  前記1つ以上のソルダーペーストと前記導電ビアとの間の最短距離は、1mm以下である、請求項5から請求項7のいずれか1項に記載のはんだ噴流検査装置。
  9.  前記1つ以上のソルダーペーストは、複数のソルダーペーストであり、
     前記第1主面の平面視において、前記複数のソルダーペーストは、マトリクス状に配置されており、
     前記複数のソルダーペーストは、各行及び各列において、複数の融点を有する、請求項1から請求項4のいずれか1項に記載のはんだ噴流検査装置。
  10.  前記1つ以上のソルダーペーストは、複数のソルダーペーストであり、
     前記第1主面の平面視において、前記複数のソルダーペーストは、マトリクス状に配置されており、
     前記複数のソルダーペーストは、各行及び各列において、互いに異なる融点を有する、請求項1から請求項4のいずれか1項に記載のはんだ噴流検査装置。
  11.  前記1つ以上のソルダーペーストは、230℃以下の融点を有する、請求項1から請求項10のいずれか1項に記載のはんだ噴流検査装置。
  12.  第1主面と前記第1主面とは反対側の第2主面とを含む基板と、
     1つ以上のソルダーペーストと、
     電子部品とを備え、
     前記基板は、前記第1主面上に配置されている1つ以上のチェックパッドを含み、前記1つ以上のソルダーペーストは、前記1つ以上のチェックパッド上に設けられており、
     前記基板には、前記第1主面から前記第2主面まで延在するスルーホールが設けられており、
     前記電子部品のリードは、前記第1主面側から前記スルーホールに挿入されており、
     前記第1主面の平面視において、前記電子部品と前記1つ以上のチェックパッドとの間の最小間隔は10mm以下である、実装基板。
  13.  前記1つ以上のソルダーペーストは、複数のソルダーペーストであり、
     前記複数のソルダーペーストは、前記スルーホールを中心とする径方向に沿って、配置されている、請求項12に記載の実装基板。
  14.  前記1つ以上のソルダーペーストは、複数のソルダーペーストであり、
     前記複数のソルダーペーストの融点は、互いに異なっている、請求項12に記載の実装基板。
  15.  前記基板は、前記第1主面上に設けられているベタパターン層を含み、
     前記ベタパターン層は、前記スルーホールに接続されており、
     前記1つ以上のチェックパッドは、前記ベタパターン層の一部である、請求項12から請求項14のいずれか1項に記載の実装基板。
  16.  請求項1から請求項11のいずれか1項に記載の前記はんだ噴流検査装置または請求項12から請求項15のいずれか1項に記載の前記実装基板を搬送して、前記第2主面にはんだ噴流を接触させることと、
     前記1つ以上のソルダーペーストの溶融状態を観察することとを備える、はんだ噴流検査方法。
  17.  前記1つ以上のソルダーペーストの前記溶融状態は、カメラを用いて観察される、請求項16に記載のはんだ噴流検査方法。
  18.  前記1つ以上のソルダーペーストの前記溶融状態を、以前に取得された前記1つ以上のソルダーペーストの前記溶融状態と比較することをさらに備える、請求項16または請求項17に記載のはんだ噴流検査方法。
  19.  前記1つ以上のソルダーペーストの前記溶融状態を、前記1つ以上のソルダーペーストの輝度に基づいて判定することをさらに備える、請求項16または請求項17に記載のはんだ噴流検査方法。
  20.  前記1つ以上のソルダーペーストは、ディスペンサを用いて前記第1主面上に供給されている、請求項16から請求項19のいずれか1項に記載のはんだ噴流検査方法。
PCT/JP2019/013680 2018-04-02 2019-03-28 はんだ噴流検査装置、実装基板及びはんだ噴流検査方法 WO2019194071A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-070934 2018-04-02
JP2018070934 2018-04-02

Publications (1)

Publication Number Publication Date
WO2019194071A1 true WO2019194071A1 (ja) 2019-10-10

Family

ID=68100657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013680 WO2019194071A1 (ja) 2018-04-02 2019-03-28 はんだ噴流検査装置、実装基板及びはんだ噴流検査方法

Country Status (1)

Country Link
WO (1) WO2019194071A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7439271B2 (ja) 2020-08-21 2024-02-27 三菱電機株式会社 はんだ噴流の評価装置、評価方法、及び、評価システム、並びに、プリント基板の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563183U (ja) * 1978-10-25 1980-04-30
JPS6110750A (ja) * 1984-06-11 1986-01-18 ヴァンゼッテイ システムズ,インク リフローはんだ付け方法および装置
JPS61144671U (ja) * 1985-02-28 1986-09-06
JPH1146058A (ja) * 1997-07-25 1999-02-16 Toshiba Corp 噴流式半田付けシステム
JP2002368410A (ja) * 2001-06-07 2002-12-20 Yazaki Corp 半田温度調査物及び半田を用いた温度調査方法
JP2006269508A (ja) * 2005-03-22 2006-10-05 Hitachi Ltd プリント配線板および浸食状態判定方法
WO2007114334A1 (ja) * 2006-03-31 2007-10-11 Matsushita Electric Industrial Co., Ltd. 回路基板、回路基板の検査方法、およびその製造方法
JP2014216390A (ja) * 2013-04-23 2014-11-17 三菱電機株式会社 溶融はんだの噴流状態評価装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563183U (ja) * 1978-10-25 1980-04-30
JPS6110750A (ja) * 1984-06-11 1986-01-18 ヴァンゼッテイ システムズ,インク リフローはんだ付け方法および装置
JPS61144671U (ja) * 1985-02-28 1986-09-06
JPH1146058A (ja) * 1997-07-25 1999-02-16 Toshiba Corp 噴流式半田付けシステム
JP2002368410A (ja) * 2001-06-07 2002-12-20 Yazaki Corp 半田温度調査物及び半田を用いた温度調査方法
JP2006269508A (ja) * 2005-03-22 2006-10-05 Hitachi Ltd プリント配線板および浸食状態判定方法
WO2007114334A1 (ja) * 2006-03-31 2007-10-11 Matsushita Electric Industrial Co., Ltd. 回路基板、回路基板の検査方法、およびその製造方法
JP2014216390A (ja) * 2013-04-23 2014-11-17 三菱電機株式会社 溶融はんだの噴流状態評価装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7439271B2 (ja) 2020-08-21 2024-02-27 三菱電機株式会社 はんだ噴流の評価装置、評価方法、及び、評価システム、並びに、プリント基板の製造方法

Similar Documents

Publication Publication Date Title
JP5098648B2 (ja) プリント配線板の製造方法及び製造装置
JP2002064265A (ja) Bga実装方法
WO2019194071A1 (ja) はんだ噴流検査装置、実装基板及びはんだ噴流検査方法
US20020011511A1 (en) Apparatus and method for soldering electronic components to printed circuit boards
KR100810462B1 (ko) 회로 기판으로부터 과잉 땜납의 수직 제거
US6251767B1 (en) Ball grid assembly with solder columns
US6528873B1 (en) Ball grid assembly with solder columns
JP5910601B2 (ja) ノズル及びはんだ付け装置
JP6820948B2 (ja) はんだ噴流検査装置及びはんだ噴流検査方法
JP4830635B2 (ja) はんだ付け方法、及びはんだ付け装置
KR101145076B1 (ko) 전자 부품 유닛의 제조 방법
JP4016389B2 (ja) プリント配線基板の検査装置及び検査方法
JPS6391541A (ja) プリント板装置の半田付け個所検査方法
JP2002270987A (ja) 電子部品、これを備えた配線基板、及びはんだ付け方法、並びにはんだ付け装置
US6471111B1 (en) Method and apparatus for acoustic pressure assisted wave soldering
JP2008072037A (ja) 電子部品実装システムおよび電子部品実装方法
JPH07273438A (ja) プリント配線板の製造方法
Géczy et al. Evaluating vapor phase soldering for fine pitch BGA
Qu et al. WLCSP Assembly
JPH04264796A (ja) プリント配線板
Plumbridge et al. Printed Circuit Board Assembly Methods and Technologies
Donaldson et al. Comparison of copper erosion at plated through-hole knees in motherboards using SAC305 and an SnCuNiGe alternative alloy for wave soldering and mini-pot rework
JP2005086191A (ja) 半田付け方法とそのための液体塗布装置
Barbini et al. Lead‐Free Wave Soldering
JPH08107271A (ja) Ic単位の雰囲気はんだ付け方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19781970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP