WO2019189884A1 - 血液浄化器及びその製法 - Google Patents

血液浄化器及びその製法 Download PDF

Info

Publication number
WO2019189884A1
WO2019189884A1 PCT/JP2019/014337 JP2019014337W WO2019189884A1 WO 2019189884 A1 WO2019189884 A1 WO 2019189884A1 JP 2019014337 W JP2019014337 W JP 2019014337W WO 2019189884 A1 WO2019189884 A1 WO 2019189884A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
porous molded
blood purifier
blood
polymer
Prior art date
Application number
PCT/JP2019/014337
Other languages
English (en)
French (fr)
Inventor
大石 輝彦
直喜 森田
慶太朗 松山
田島 洋
智徳 小泉
Original Assignee
旭化成メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成メディカル株式会社 filed Critical 旭化成メディカル株式会社
Priority to US17/042,024 priority Critical patent/US11806461B2/en
Priority to JP2020509357A priority patent/JP6899957B2/ja
Priority to EP19774274.5A priority patent/EP3777915B1/en
Priority to CN201980022684.6A priority patent/CN111918682B/zh
Priority to KR1020207028032A priority patent/KR102407423B1/ko
Publication of WO2019189884A1 publication Critical patent/WO2019189884A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3679Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits by absorption
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2805Sorbents inside a permeable or porous casing, e.g. inside a container, bag or membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/3212Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/327Polymers obtained by reactions involving only carbon to carbon unsaturated bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a blood purifier having a porous molded body containing an inorganic ion adsorbent and a method for producing the same. More specifically, the present invention relates to a blood purifier having a porous molded body containing an inorganic ion adsorbent that has a high phosphorus adsorption capacity and can be used safely, and a method for producing the same.
  • phosphorus accumulated in the body is periodically removed and adjusted by dialysis therapy such as hemodialysis, hemofiltration dialysis, and hemofiltration to prevent hyperphosphatemia.
  • dialysis therapy a treatment time of 4 hours is generally required 3 times a week.
  • phosphorus 650 mg
  • phosphorus 650 mg
  • 4550 mg accumulates in one week.
  • about 800 to 1000 mg of phosphorus can be removed by one dialysis, and about 3000 mg of phosphorus can be removed by dialysis three times a week.
  • dialysis therapy alone has insufficient phosphorus removal effect, so in order to control phosphorus, diet therapy and drug therapy by drinking phosphorus adsorbents can be mentioned in addition to dialysis therapy.
  • diet therapy and drug therapy by drinking phosphorus adsorbents can be mentioned in addition to dialysis therapy.
  • the phosphorus intake is limited.
  • the serum phosphorus level is set to 3.5 to 6.0 mg / dL in the CKD-MBD (bone mineral metabolism abnormalities accompanying chronic kidney disease) guidelines. Serum phosphorus levels below 3.5 mg / dL can cause rickets and osteomalacia due to hypophosphatemia, and levels above 6.0 mg / dL can cause hyperphosphatemia and cause cardiovascular calcification. Become. As for diet therapy that suppresses the intake of phosphorus, there is a balance with the nutritional status of the patient, and the patient's own preference must be considered, so it is difficult to manage the phosphorus concentration in the body during the diet therapy.
  • an oral phosphorus adsorbent that binds to phosphate ions derived from food in the digestive tract to form insoluble phosphate and suppresses absorption of phosphorus from the intestinal tract is administered before or during each meal.
  • concentration of phosphorus is controlled.
  • the dose of phosphorus adsorbent at each meal is considerably high. Therefore, as side effects when taking phosphorus adsorbents, vomiting, bloating, constipation, accumulation of drugs in the body, etc. occur with a high probability, so the compliance due to them is very low (also said that it is 50% or less) It is difficult for doctors and patients to manage phosphorus levels with drugs.
  • Patent Document 1 by circulating a dialysis composition containing a phosphorus adsorbent in the dialysate during hemodialysis treatment, phosphorus in the blood can be efficiently removed without directly contacting the phosphorus adsorbent with blood. It is disclosed to remove.
  • Patent Document 2 discloses a hemodialysis system in which a phosphorus adsorbent that removes phosphorus accumulated in blood in an extracorporeal blood circuit is provided separately from the hemodialyzer.
  • Patent Document 3 discloses a porous molded body suitable for an adsorbent that can adsorb and remove phosphorus and the like at high speed.
  • the problem to be solved by the present invention is to provide a blood purifier having a porous molded body that has a high phosphorus adsorption capacity and can be used safely.
  • the present inventors have included an inorganic ion adsorbent having a high phosphorus adsorbing capacity in the porous molded article, and a moisture content and a bulk density of the porous molded article. Is further washed with a supercritical fluid or subcritical fluid, and by completely removing fine particles and trace metals generated from the blood purifier having the porous molded body, the amount of phosphorus adsorption in the blood is high, And it discovered that it could be set as the blood purifier which can be used safely, and came to complete this invention.
  • the porous molded body forming polymer is an aromatic polysulfone.
  • the hydrophilic polymer is a biocompatible polymer.
  • the biocompatible polymer is a polyvinylpyrrolidone (PVP) polymer.
  • the biocompatible polymer is selected from the group consisting of a polyvinylpyrrolidone (PVP) polymer and polymethoxyethyl acrylate (PMEA).
  • PVP polyvinylpyrrolidone
  • PMEA polymethoxyethyl acrylate
  • the inorganic ion adsorbent is represented by the following formula (1): MN x O n ⁇ mH 2 O ⁇ (1) ⁇ Wherein x is 0-3, n is 1-4, m is 0-6, and M and N are Ti, Zr, Sn, Sc, Y, La, Ce From Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Al, Si, Cr, Co, Ga, Fe, Mn, Ni, V, Ge, Nb, and Ta Metal elements selected from the group consisting of different from each other.
  • the blood purifier according to any one of [1] to [8] above, which contains at least one metal oxide represented by the following formula: [10]
  • the metal oxide has the following groups (a) to (c): (A) hydrated titanium oxide, hydrated zirconium oxide, hydrated tin oxide, hydrated cerium oxide, hydrated lanthanum oxide, and hydrated yttrium oxide; (B) A composite of at least one metal element selected from the group consisting of titanium, zirconium, tin, cerium, lanthanum, neodymium, and yttrium and at least one metal element selected from the group consisting of aluminum, silicon, and iron Metal oxides; (C) The blood purifier according to [9], which is selected from activated alumina.
  • the blood purifier according to the present invention has a high phosphorus adsorption capacity and can be used safely.
  • the blood purifier of the present invention is excellent in the selectivity and adsorption of phosphorus in blood, even in the case of a high blood flow rate at the time of extracorporeal circulation treatment.
  • the necessary amount of phosphorus in the blood can be eliminated without affecting it.
  • the phosphorus concentration in the blood can be appropriately managed without taking a side effect of a phosphorus adsorbent oral drug or the like.
  • the blood purifier of the present invention even if a dialysis patient does not take a phosphorus adsorbent oral medicine or takes a small amount (subsidiary use), without causing side effects of the dialysis patient, It is possible to appropriately manage the phosphorus concentration in the blood in the body.
  • the number of fine particles of 10 ⁇ m or more in 1 mL of physiological saline is 25 or less, and the number of fine particles of 25 ⁇ m or more is 3 or less.
  • the moisture content (%) A and the bulk density of the porous molded body are B.
  • B ⁇ 0.02A + 2.175 ⁇ 0.185 (74 ⁇ A ⁇ 94).
  • a porous molded body that is out of this range has a higher number of fine particles or a lower phosphorus adsorption amount in the blood than the intended performance.
  • the porous molded body of the present embodiment includes an inorganic ion adsorbent, and preferably includes a porous molded body-forming polymer and an inorganic ion adsorbent.
  • the porous molded article the total pore volume of pore diameter 1 nm ⁇ 80 nm as measured by nitrogen gas adsorption method, 0.05 cm per unit mass of the inorganic ion adsorbent 3 in /g ⁇ 0.7cm 3 / g Some are preferred.
  • the total pore volume of pore diameter 1 nm ⁇ 80 nm as measured by nitrogen gas adsorption method is a 0.05cm per unit mass of the inorganic ion absorbing material 3 /g ⁇ 0.7cm 3 / g, preferably 0.1cm 3 /g ⁇ 0.6cm 3 / g, more preferably 0.2cm 3 /g ⁇ 0.5cm 3 / g.
  • the pore volume is calculated by the BJH method after measuring the freeze-dried porous compact by a nitrogen gas adsorption method.
  • the total pore volume Va per unit mass of the inorganic ion adsorbent is Vb (cm 3 / g) of the pore volume per unit mass of the porous molded body calculated from the dried porous molded body.
  • the ash is the residue when the porous molded body is fired at 800 ° C. for 2 hours.
  • the pore volume of the porous molded body measured by the nitrogen gas adsorption method mainly reflects the pore volume of the inorganic ion adsorbent contained in the porous molded body. It means that the diffusion efficiency of ions into the ion adsorbent is increased, and the adsorption capacity is increased.
  • the total pore volume per unit mass of the inorganic ion adsorbent is smaller than 0.05 cm 3 / g, the pore volume of the inorganic ion adsorbent is small and the adsorption capacity is remarkably reduced.
  • the specific surface area of the porous molded body measured by the nitrogen gas adsorption method is preferably 50 m 2 / g to 400 m 2 / g, more preferably 70 m 2 / g to 350 m 2 / g, and even more preferably 100 m. 2 / g to 300 m 2 / g.
  • the specific surface area is calculated by the BET method after measuring the freeze-dried porous compact by a nitrogen gas adsorption method.
  • the specific surface area of the porous molded body measured by the nitrogen gas adsorption method mainly reflects the specific surface area of the inorganic ion adsorbent contained in the porous molded body. This means more sites and higher adsorption capacity.
  • the specific surface area of the porous molded body is smaller than 50 m 2 / g, the number of adsorption sites of the inorganic ion adsorbent is small, and the adsorption capacity is remarkably lowered.
  • this value is larger than 400 m 2 / g, the bulk density of the inorganic ion adsorbent is high, the viscosity of the stock slurry is increased, and granulation becomes difficult.
  • the supported amount of the inorganic ion adsorbent contained in the porous molded body is preferably 30% by mass to 95% by mass, more preferably 40% by mass to 90% by mass, and still more preferably 50% by mass to 80% by mass. % By mass. If the amount supported is less than 30% by mass, the frequency of contact between the ion adsorption target substance and the inorganic ion adsorbent as the adsorption substrate tends to be insufficient. On the other hand, if it exceeds 95% by mass, Insufficient strength.
  • the porous molded body of this embodiment preferably has an average particle size of 100 ⁇ m to 2500 ⁇ m and is substantially in the form of spherical particles, and the average particle shape is more preferably 150 ⁇ m to 2000 ⁇ m, The thickness is more preferably 200 ⁇ m to 1500 ⁇ m, and even more preferably 300 ⁇ m to 1000 ⁇ m.
  • the porous molded body of the present embodiment is preferably in the form of spherical particles, and the spherical particles may be elliptical as well as true spherical.
  • the average particle diameter means a median diameter of a sphere equivalent diameter obtained from an angular distribution of scattered light intensity of diffraction by laser light, assuming that the porous molded body is spherical. If the average particle size is 100 ⁇ m or more, the pressure loss is small when the porous molded body is filled in a column or tank or the like, which is suitable for high-speed water flow treatment. On the other hand, if the average particle size is 2500 ⁇ m or less, the surface area of the porous molded body when packed in a column or tank can be increased, and ions can be reliably adsorbed even when the liquid is passed through at high speed. .
  • the inorganic ion adsorbent contained in or constituting the porous molded body in the present embodiment means an inorganic substance exhibiting an ion adsorption phenomenon or an ion exchange phenomenon.
  • the natural product-based inorganic ion adsorbent include various mineral substances such as zeolite and montmorillonite.
  • specific examples of various minerals include aluminosilicate kaolin minerals with a single layer lattice, bilayered muscovite, sea green stone, Kanuma soil, pyrophyllite, talc, feldspar with a three-dimensional framework structure , Zeolite, montmorillonite and the like.
  • Examples of the synthetic inorganic ion adsorbent include metal oxides, polyvalent metal salts, insoluble hydrated oxides, and the like.
  • Examples of the metal oxide include a composite metal oxide, a composite metal hydroxide, and a metal hydrated oxide.
  • an inorganic ion adsorbent contains the metal oxide represented by following formula (1) from a viewpoint of adsorption
  • the metal oxide may be an unhydrated (unhydrated) metal oxide in which m in the above formula (1) is 0, or a metal hydrated oxide (water) in which m is a numerical value other than 0. Japanese metal oxide).
  • m in the above formula (1) is 0, or a metal hydrated oxide (water) in which m is a numerical value other than 0. Japanese metal oxide).
  • x in the above formula (1) is a numerical value other than 0.
  • each metal element contained is regularly distributed throughout the oxide with regularity and contained in the metal oxide.
  • It is a composite metal oxide represented by a chemical formula in which the composition ratio of each metal element is fixed. Specifically, a perovskite structure, a spinel structure, etc.
  • the inorganic ion adsorbent may contain a plurality of metal oxides represented by the above formula (1).
  • the metal oxide as the inorganic ion adsorbent is the following group (a) to (c) from the viewpoint of excellent adsorption performance of an object to be adsorbed, especially phosphorus: (A) hydrated titanium oxide, hydrated zirconium oxide, hydrated tin oxide, hydrated cerium oxide, hydrated lanthanum oxide and hydrated yttrium oxide (b) from titanium, zirconium, tin, cerium, lanthanum, neodymium, and yttrium A composite metal oxide of at least one metal element selected from the group consisting of and at least one metal element selected from the group consisting of aluminum, silicon and iron is preferably selected from (c) activated alumina.
  • It may be a material selected from any one of the groups (a) to (c), may be used in combination with materials selected from any one of the groups (a) to (c), The materials in each of the groups (a) to (c) may be used in combination. When used in combination, it may be a mixture of two or more materials selected from any one of the groups (a) to (c), and two or more groups of the groups (a) to (c) The mixture of 2 or more types of materials chosen from these may be sufficient.
  • the inorganic ion adsorbent may contain aluminum sulfate-added activated alumina from the viewpoint of low cost and high adsorptivity.
  • an inorganic ion adsorbent in addition to the metal oxide represented by the above formula (1), those in which metal elements other than M and N are further solid-solved are from the viewpoint of the adsorptivity of inorganic ions and the production cost. More preferred.
  • a hydrated zirconium oxide represented by ZrO 2 ⁇ mH 2 O (m is a numerical value other than 0) in which iron is dissolved is mentioned.
  • Examples of the polyvalent metal salt include the following formula (2): M 2+ (1-p) M 3+ p (OH ⁇ ) (2 + pq) (A n ⁇ ) q / r (2) ⁇
  • M 2+ is at least one divalent metal ion selected from the group consisting of Mg 2+ , Ni 2+ , Zn 2+ , Fe 2+ , Ca 2+ , and Cu 2+
  • M 3+ is Al 3+ and is at least one trivalent metal ion selected from the group consisting of Fe 3+
  • a n-is an n-valent anion is 0.1 ⁇ p ⁇ 0.5, 0.1 ⁇ q ⁇ 0 .5 and r is 1 or 2.
  • the hydrotalcite type compound represented by this is mentioned.
  • the hydrotalcite compound represented by the above formula (2) is preferable because the raw material is inexpensive as an inorganic ion adsorbent and the adsorptivity is high.
  • insoluble hydrated oxides include insoluble heteropolyacid salts and insoluble hexacyanoferrates.
  • metal carbonate As an inorganic ion adsorbent, metal carbonate has excellent performance from the viewpoint of adsorption performance. However, from the viewpoint of elution, use of carbonate requires examination of applications.
  • the metal carbonate from the viewpoint that an ion exchange reaction with carbonate ions can be expected, the following formula (3): QyRz (CO 3 ) s ⁇ tH 2 O. . .
  • the metal carbonate may be an unhydrated (unhydrated) metal carbonate in which t in the above formula (3) is 0, or a hydrate in which t is a numerical value other than 0. Good.
  • the inorganic ion adsorbent from the viewpoint of low elution and excellent adsorption performance of phosphorus, boron, fluorine and / or arsenic, the following group (d): (D) Magnesium carbonate, calcium carbonate, strontium carbonate, barium carbonate, scandium carbonate, manganese carbonate, iron carbonate, cobalt carbonate, nickel carbonate, silver carbonate, zinc carbonate, yttrium carbonate, lanthanum carbonate, cerium carbonate, praseodymium carbonate, neodymium carbonate , Samarium carbonate, europium carbonate, gadolinium carbonate, terbium carbonate, dysprosium carbonate, holmium carbonate, erbium carbonate, thulium carbonate, ytterbium carbonate, and lutetium carbonate; Is preferably selected from.
  • inorganic ion adsorption of metal carbonate As for the mechanism of inorganic ion adsorption of metal carbonate, elution of metal carbonate and recrystallization of inorganic ions and metal ions on metal carbonate are expected, so the higher the solubility of metal carbonate, the more inorganic ion adsorption The amount is high and excellent adsorption performance can be expected. At the same time, there is a concern about metal elution from the inorganic ion adsorbent, so that sufficient study is required for use in applications where metal elution is a problem.
  • the inorganic ion adsorbent constituting the porous molded body in the present embodiment may contain an impurity element mixed in due to the production method or the like as long as the function of the porous molded body is not hindered.
  • impurity elements that may be mixed include nitrogen (nitrate, nitrite, ammonium), sodium, magnesium, sulfur, chlorine, potassium, calcium, copper, zinc, bromine, barium, hafnium, and the like. It is done.
  • the inorganic ion adsorbent constituting the porous molded body in the present embodiment may contain an impurity element mixed in due to the production method or the like as long as the function of the porous molded body is not hindered.
  • impurity elements examples include nitrogen (nitrate, nitrite, ammonium), sodium, magnesium, sulfur, chlorine, potassium, calcium, copper, zinc, bromine, barium, and hafnium. It is done.
  • the method of substitution with an organic liquid is not particularly limited, and may be centrifuged and filtered after dispersing an inorganic ion adsorbent containing water in the organic liquid, or filtered with a filter press or the like. After that, the organic liquid may be passed. In order to increase the substitution rate, it is preferable to repeat the method of filtering after dispersing the inorganic ion adsorbent in the organic liquid.
  • the substitution rate of the water contained in the production to the organic liquid may be 50% by mass to 100% by mass, preferably 70% by mass to 100% by mass, more preferably 80% by mass to 100% by mass. Good.
  • the substitution rate of the organic liquid is Sb (mass%) as the substitution ratio with the organic liquid, and Wc (mass%) is the moisture content of the filtrate after treating the inorganic ion adsorbent containing water with the organic liquid.
  • Formula (4): Sb 100 ⁇ Wc. . . (4)
  • the value represented by The water content of the filtrate after the treatment with the organic liquid can be determined by measuring by the Karl Fischer method.
  • the blood purifier of the present embodiment can be safely used even though the porous molded body contains the inorganic ion adsorbent, and is approved by the artificial kidney device defined by the Ministry of Health, Labor and Welfare described below. Meet the standards.
  • the blood purifier of this embodiment is a fine particle of 10 ⁇ m or more in 1 mL of the physiological saline for injection 3 months and 6 months after the physiological saline for injection is sealed in the blood purifier.
  • the number of fine particles of 25 ⁇ m or more is 3 or less
  • the absorbance of the eluate test solution is 0.1 or less
  • a membrane pore retaining agent is added to the test solution. Not included.
  • a supercritical fluid means a fluid that has a critical pressure (hereinafter also referred to as Pc) or higher and a critical temperature (hereinafter also referred to as Tc).
  • the subcritical fluid is a state other than the supercritical state, and when the pressure and temperature during the reaction are P and T, respectively, 0.5 ⁇ P / Pc ⁇ 1.0 and 0.5 ⁇ T / Tc, or fluid with the conditions of 0.5 ⁇ P / Pc and 0.5 ⁇ T / Tc ⁇ 1.0.
  • Preferred pressure and temperature ranges for the subcritical fluid are 0.6 ⁇ P / Pc ⁇ 1.0 and 0.6 ⁇ T / Tc, or 0.6 ⁇ P / Pc and 0.6 ⁇ T / Tc ⁇ 1. .0.
  • the temperature and pressure ranges for the subcritical fluid are 0.5 ⁇ P / Pc ⁇ 1.0 and 0.5 ⁇ T / Tc, or 0.5 ⁇ P. / Pc and 0.5 ⁇ T / Tc ⁇ 1.0.
  • the temperature represents Celsius, but when either Tc or T is negative, the formula representing the subcritical state is not limited to this.
  • an organic medium such as water or alcohol, a gas such as carbon dioxide, nitrogen, oxygen, helium, argon, air, or a mixed fluid thereof is used. Carbon dioxide is most preferable because it can be in a supercritical state even at a temperature of about room temperature and dissolves various substances well.
  • the porous molded body forming polymer that can constitute the porous molded body used in the blood purifier according to the present embodiment may be any polymer that can form a porous molded body, such as a polysulfone-based polymer, Polyvinylidene fluoride polymer, Polyvinylidene chloride polymer, Acrylonitrile polymer, Polymethyl methacrylate polymer, Polyamide polymer, Polyimide polymer, Cellulose polymer, Ethylene vinyl alcohol copolymer polymer, Polyaryl ether sulfone, Polypropylene Examples include polymers, polystyrene-based polymers, polycarbonate-based polymers, and many kinds.
  • aromatic polysulfone is preferred because of its excellent thermal stability, acid resistance, alkali resistance and mechanical strength.
  • aromatic polysulfone used in the present embodiment the following formula (5): —O—Ar—C (CH 3 ) 2 —Ar—O—Ar—SO 2 —Ar— (5) ⁇ In the formula, Ar is a disubstituted phenyl group at the para position.
  • formula (6) —O—Ar—SO 2 —Ar— (6) ⁇ In the formula, Ar is a disubstituted phenyl group at the para position. ⁇ Which has a repeating unit represented by.
  • the polymerization degree and molecular weight of the aromatic polysulfone are not particularly limited.
  • the hydrophilic polymer that can constitute the porous molded body of the present embodiment is not particularly limited as long as it is a biocompatible polymer that swells in water but does not dissolve in water, and includes a sulfonic acid group and a carboxyl group. , Carbonyl group, ester group, amino group, amide group, cyano group, hydroxyl group, methoxy group, phosphate group, oxyethylene group, imino group, imide group, imino ether group, pyridine group, pyrrolidone group, imidazole group, 4 Examples thereof include polymers having a quaternary ammonium group or the like alone or in combination.
  • the hydrophilic polymer is most preferably a polyvinylpyrrolidone (hereinafter also referred to as PVP) polymer.
  • PVP polyvinylpyrrolidone
  • examples of the polyvinyl pyrrolidone-based polymer include vinyl pyrrolidone / vinyl acetate copolymer, vinyl pyrrolidone / vinyl caprolactam copolymer, vinyl pyrrolidone / vinyl alcohol copolymer, and the like including at least one of them. preferable.
  • polyvinylpyrrolidone vinylpyrrolidone / vinyl acetate copolymer
  • vinylpyrrolidone / vinylcaprolactam copolymer are preferably used from the viewpoint of compatibility with the polysulfone polymer.
  • the porous molded body used for the blood purifier of this embodiment is preferably coated with a biocompatible polymer, and the biocompatible polymer is preferably polymethoxyethyl acrylate (PMEA) and polyvinylpyrrolidone (PVP). ) Selected from the group consisting of polymers.
  • PMEA polymethoxyethyl acrylate
  • PVP polyvinylpyrrolidone
  • acrylate polymers with different side chain structures were prepared for comparison with PMEA, and various markers of platelets, leukocytes, complement, and coagulation system were evaluated when blood was circulated.
  • the activation of blood components was slight compared to other polymers, and the PMEA surface is superior in blood compatibility because the number of adhesion of human platelets is significantly less and the morphological change of adherent platelets is small.
  • PMEA is not only good in blood compatibility because it has an ester group in the structure and is hydrophilic, but it is considered that the state of water molecules adsorbed on the surface has a great influence on blood compatibility. ing.
  • the measurement area of the ATR-IR method is substantially equal to the depth of the “surface layer” corresponding to the surface of the porous molded body. That is, the blood compatibility in the depth region approximately equal to the measurement region of the ATR-IR method dominates the blood compatibility of the porous molded body, and the presence of PMEA in that region has a certain blood compatibility. It was found that a blood purifier can be provided. By coating PMEA on the surface of the porous molded body, generation of fine particles from the blood purifier after long-term storage can be suppressed.
  • the measurement area by the ATR-IR method depends on the wavelength of infrared light in air, the incident angle, the refractive index of the prism, the refractive index of the sample, etc., and is usually an area within 1 ⁇ m from the surface. Presence of PMEA on the surface of the porous molded body can be confirmed by pyrolysis gas chromatography mass spectrometry of the porous molded body. The presence of PMEA can be estimated by measuring the total reflection infrared absorption (ATR-IR) on the surface of the porous molded body, and if a peak is observed near 1735 cm ⁇ 1 of the infrared absorption curve, May be derived from other substances.
  • ATR-IR total reflection infrared absorption
  • PMEA solubility of PMEA in a solvent is unique.
  • PMEA does not dissolve in 100% ethanol solvent, but there is a region where water / ethanol mixed solvent dissolves depending on the mixing ratio.
  • the peak intensity of the PMEA-derived peak (near 1735 cm ⁇ 1 ) increases as the amount of water increases.
  • the porous molded body containing PMEA on the surface since the change in the pore diameter on the surface is small, there is not much change in the water permeability, and the product design is simple.
  • PMEA is provided on the surface of the porous molded body.
  • PMEA adheres in an extremely thin film state and is porous in a state where the pores are not substantially blocked. It is considered that the surface of the molded product is coated.
  • PMEA is preferable because it has a small molecular weight and a short molecular chain, so that the structure of the coating is difficult to increase and the structure of the porous molded body is difficult to change.
  • PMEA is preferable because it is highly compatible with other substances, can be uniformly applied to the surface of the porous molded body, and can improve blood compatibility.
  • the weight average molecular weight of PMEA can be measured, for example, by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • a method for forming the PMEA coating layer on the surface of the porous molded body for example, a method of coating by flowing a coating solution in which PMEA is dissolved from the upper part of a column (container) filled with the porous molded body is preferably used. It is done.
  • Polyvinylpyrrolidone (PVP) polymer The polyvinyl pyrrolidone (PVP) polymer is not particularly limited, but polyvinyl pyrrolidone (PVP) is preferably used.
  • the number of fine particles of 10 ⁇ m or more in 1 mL of the saline solution after 3 months and 6 months after the injection physiological saline is enclosed in the blood purifier is 25 or less, and The number of fine particles of 25 ⁇ m or more in 1 mL of saline is 3 or less, and the absorbance of the eluate test solution is 0.1 or less.
  • a method for measuring the number of fine particles in physiological saline for injection enclosed in a blood purifier is as follows.
  • the wet type blood purifier is shipped as it is, with a solution (for example, UF filtration membrane water, etc.) sealed immediately before shipment, radiation sterilization in the solution. .
  • a solution for example, UF filtration membrane water, etc.
  • 10 L of physiological saline for injection is passed through the porous molded body in the blood purifier (the porous molded body is a hollow fiber membrane).
  • a new physiological saline solution for injection is sealed, and then kept at 25 ° C. ⁇ 1 ° C.
  • a new physiological saline solution for injection is sealed, and then kept at 25 ° C. ⁇ 1 ° C. and stored for 3 months. Sampling of the saline solution from the blood purifier is performed after all the solutions (filling solutions) are taken out from the blood purifier as much as possible and then mixed uniformly. For example, after sampling for measurement at 3 months, the remaining saline solution is placed in the original blood purifier and sealed, and stored for another 3 months, and used for measurement at 6 months.
  • the number of fine particles in the sampled solution (or filling solution) can be measured with a particle counter.
  • the porous molded body of the present embodiment is suitably used for phosphorus adsorption in hemodialysis of dialysis patients.
  • the blood composition is divided into a plasma component and a blood cell component, and the plasma component is composed of water 91%, protein 7%, lipid component and inorganic salts, and phosphorus in the blood exists in the plasma component as phosphate ions.
  • the blood cell component is composed of 96% red blood cells, 3% white blood cells, and 1% platelets.
  • the size of red blood cells is 7-8 ⁇ m in diameter
  • the size of white blood cells is 5-20 ⁇ m in diameter
  • the size of platelets is 2-3 ⁇ m in diameter. is there.
  • the most frequent pore diameter of the porous molded body measured with a mercury porosimeter is 0.08 to 0.70 ⁇ m, there is a large amount of inorganic ion adsorbent on the outer surface. Can be reliably adsorbed, and is excellent in the ability of phosphorus ions to permeate and diffuse into the porous molded body. Furthermore, blood flowability due to clogging of blood cell components or the like is not reduced. In this embodiment, it can use as a more suitable phosphorus adsorption agent for blood processing by having a biocompatible polymer on the surface of this porous molded object.
  • a blood purifier filled with a porous molded body in a container (column) or the like can be used connected in series or in parallel before and after the dialyzer during dialysis.
  • the blood purifier of this embodiment can be used as a phosphorus adsorption blood purifier, and is excellent in inorganic phosphorus selectivity and adsorption performance even in a state where the concentration of phosphorus in blood is low and the space velocity is high.
  • the blood purifier of this embodiment From the viewpoint of easily inducing a refilling effect, it is preferable to connect the blood purifier of this embodiment before and after the dialyzer.
  • the phosphorus adsorption rate (%) ratio in which phosphorus in blood is adsorbed is preferably 50% or more, more preferably 60% or more, and 70% or more. 80% or more, 85% or more, 90% or more, 95% or more, or 99% or more. It is preferable that the blood phosphorus adsorption amount of the porous molded body used in the blood purifier of this embodiment is 2 mg / ml or more.
  • the material of the container (column) of the blood purifier of this embodiment there is no limitation on the material of the container (column) of the blood purifier of this embodiment.
  • mixing such as polystyrene polymer, polysulfone polymer, polyethylene polymer, polypropylene polymer, polycarbonate polymer, and styrene / butadiene block copolymer is possible. Resin or the like can be used. From the viewpoint of raw material costs, polyethylene-based polymers and polypropylene-based polymers are preferably used.
  • the porous molded body production method of the present embodiment includes, for example, (1) a step of drying the inorganic ion adsorbent, (2) a step of pulverizing the inorganic ion adsorbent obtained in step (1), (3) A slurry is prepared by mixing the inorganic ion adsorbent obtained in the step (2), a good solvent for the porous molded body forming polymer, the porous molded body forming polymer, and optionally a hydrophilic polymer (water-soluble polymer).
  • Step (1) Drying step of inorganic ion adsorbent
  • the inorganic ion adsorbent is dried to obtain a powder.
  • the organic liquid is not particularly limited as long as it has an effect of suppressing aggregation of the inorganic ion adsorbent, but a liquid having high hydrophilicity is preferably used.
  • a liquid having high hydrophilicity is preferably used.
  • alcohols, ketones, esters, ethers and the like can be mentioned.
  • the substitution rate with the organic liquid may be 50% by mass to 100% by mass, preferably 70% by mass to 100% by mass, and more preferably 80% by mass to 100% by mass.
  • the method of substitution with an organic liquid is not particularly limited, and an inorganic ion adsorbent containing water may be dispersed in the organic liquid, followed by centrifugation and filtration, or filtration with a filter press or the like. After that, the organic liquid may be passed. In order to increase the substitution rate, it is preferable to repeat the method of filtering after dispersing the inorganic ion adsorbent in the organic liquid.
  • the substitution rate with the organic liquid can be determined by measuring the moisture content of the filtrate by the Karl Fischer method.
  • Step (2) Grinding step of inorganic ion adsorbent
  • the powder of the inorganic ion adsorbent obtained in the step (1) is pulverized.
  • the pulverization method is not particularly limited, and dry pulverization or wet pulverization can be used.
  • the dry pulverization method is not particularly limited, and an impact pulverizer such as a hammer mill, an airflow pulverizer such as a jet mill, a medium pulverizer such as a ball mill, and a compression pulverizer such as a roller mill are used. be able to.
  • an airflow pulverizer is preferable because the particle size distribution of the pulverized inorganic ion adsorbent can be sharpened.
  • the wet pulverization method is not particularly limited as long as it can be pulverized and mixed together with the good solvent of the inorganic ion adsorbent and the porous molded body forming polymer, and is not limited to pressure type fracture, mechanical grinding, ultrasonic Means used in physical crushing methods such as treatment can be used.
  • the pulverizing and mixing means include generator shaft type homogenizers, blenders such as Waring blenders, media agitating type mills such as sand mills, ball mills, attritors, and bead mills, jet mills, mortars and pestles, rabies, ultrasonic processors, etc. Is mentioned.
  • a medium stirring mill is preferable because it has high grinding efficiency and can grind even a high viscosity.
  • the diameter of the ball used in the medium stirring mill is not particularly limited, but is preferably 0.1 mm to 10 mm. If the ball diameter is 0.1 mm or more, the ball mass is sufficient, so that the pulverization force is high and the pulverization efficiency is high.
  • the ability to finely pulverize is excellent.
  • the material of the ball used in the medium agitating mill is not particularly limited, but various metals such as iron and stainless steel, oxides such as alumina and zirconia, and non-oxides such as silicon nitride and silicon carbide. A ceramic etc. are mentioned. Among them, zirconia is excellent in that it has excellent wear resistance and has less contamination to the product (mixed wear). After the pulverization, it is preferable to purify by filtration using a filter or the like in a state where the inorganic ion adsorbent is sufficiently dispersed in a good solvent for the porous molded body forming polymer.
  • the particle diameter of the pulverized / purified inorganic ion adsorbent is 0.001 to 10 ⁇ m, preferably 0.001 to 2 ⁇ m, more preferably 0.01 to 0.1 ⁇ m.
  • the smaller the particle size the better. It tends to be difficult to produce uniform fine particles of less than 0.001 ⁇ m.
  • the inorganic ion adsorbent exceeds 10 ⁇ m, it tends to be difficult to stably produce a porous molded body.
  • Step (3) Slurry preparation step
  • the inorganic ion adsorbent obtained in the step (2) a good solvent for the porous molded body forming polymer, the porous molded body forming polymer, and in some cases a water-soluble polymer (hydrophilic polymer).
  • a good solvent for the porous molded body forming polymer used in the step (2) and the step (3) the porous molded body forming polymer is stably dissolved in excess of 1% by mass under the production conditions of the porous molded body. If it exists, it will not specifically limit, A conventionally well-known thing can be used.
  • the good solvent examples include N-methyl-2pyrrolidone (NMP), N, N-dimethylacetamide (DMAC), N, N-dimethylformamide (DMF) and the like. Only 1 type may be used for a good solvent, and 2 or more types may be mixed and used for it.
  • the amount of the porous molded body forming polymer added in the step (3) is such that the ratio of porous molded body forming polymer / (porous molded body forming polymer + water-soluble polymer + porous solvent for forming the molded body) is as follows: The content is preferably 3% by mass to 40% by mass, and more preferably 4% by mass to 30% by mass.
  • the content of the porous molded body-forming polymer is 3% by mass or more, a porous molded body with high strength is obtained.
  • the content is 40% by mass or less, a porous molded body with high porosity is obtained.
  • the water-soluble polymer does not necessarily need to be added, but by adding it, a fibrous structure that forms a three-dimensional continuous network structure on the outer surface and inside of the porous molded body A porous molded body containing the body can be obtained uniformly, that is, the pore diameter can be easily controlled, and a porous molded body capable of reliably adsorbing ions even when the liquid is passed through at high speed.
  • the water-soluble polymer used in the step (3) is not particularly limited as long as it is compatible with the good solvent for the porous molded body-forming polymer and the porous molded body-forming polymer.
  • the water-soluble polymer any of natural polymers, semi-synthetic polymers, and synthetic polymers can be used. Examples of natural polymers include guar gum, locust bean gum, carrageenan, gum arabic, tragacanth, pectin, starch, dextrin, gelatin, casein, collagen and the like.
  • Examples of the semisynthetic polymer include methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl starch, and methyl starch.
  • Examples of the synthetic polymer include polyethylene glycols such as polyvinyl alcohol, polyvinyl pyrrolidone (PVP), polyvinyl methyl ether, carboxyvinyl polymer, sodium polyacrylate, tetraethylene glycol, and triethylene glycol.
  • a synthetic polymer is preferable from the viewpoint of improving the supportability of the inorganic ion adsorbent, and polyvinylpyrrolidone (PVP) and polyethylene glycols are more preferable from the viewpoint of improving the porosity.
  • the mass average molecular weight of polyvinylpyrrolidone (PVP) and polyethylene glycols is preferably 400 to 35,000,000, more preferably 1,000 to 1,000,000, and 2,000 to 100,000. More preferably, it is 000. If the mass average molecular weight is 400 or more, a porous molded body having a high surface opening property can be obtained. If it is 35,000,000 or less, the viscosity of the slurry during molding tends to be low, so that molding tends to be easy.
  • the mass average molecular weight of the water-soluble polymer can be measured by dissolving the water-soluble polymer in a predetermined solvent and performing gel permeation chromatography (GPC) analysis.
  • the amount of the water-soluble polymer added is such that the ratio of water-soluble polymer / (water-soluble polymer + porous molded body forming polymer + porous solvent for forming a porous molded body) is 0.1 mass% to 40 mass%.
  • the content is 0.1% by mass to 30% by mass, and more preferably 0.1% by mass to 10% by mass.
  • the porous molded body includes a fibrous structure that forms a three-dimensional continuous network structure on the outer surface and inside of the porous molded body. Is obtained uniformly. If the amount of water-soluble polymer added is 40% by mass or less, the outer surface opening ratio is appropriate, and the amount of inorganic ion adsorbent on the outer surface of the porous molded body is large. Even in this case, a porous molded body that can reliably adsorb ions can be obtained.
  • Step (4) Molding step
  • the molding slurry is a mixed slurry of a porous molded body-forming polymer, a good solvent for the porous molded body-forming polymer, an inorganic ion adsorbent, and, if necessary, a water-soluble polymer.
  • the form of the porous molded body of the present embodiment can take any form such as a particulate form, a thread form, a sheet form, a hollow fiber form, a cylindrical form, and a hollow cylindrical form, depending on the method for forming the forming slurry.
  • the method for forming particles for example, in the form of spherical particles.
  • the slurry for forming contained in the container is scattered from a nozzle provided on the side surface of the rotating container, and the liquid is formed.
  • examples thereof include a rotating nozzle method for forming droplets.
  • the rotary nozzle method it can be formed into a particulate form having a uniform particle size distribution.
  • a method of spraying a molding slurry from a 1-fluid nozzle or a 2-fluid nozzle and coagulating it in a coagulation bath can be mentioned.
  • the nozzle diameter is preferably 0.1 mm to 10 mm, and more preferably 0.1 mm to 5 mm.
  • the centrifugal force is expressed in terms of centrifugal acceleration, preferably 5G to 1500G, more preferably 10G to 1000G, and even more preferably 10G to 800G. If the centrifugal acceleration is 5 G or more, the formation and scattering of droplets are easy, and if it is 1500 G or less, it is possible to suppress the molding slurry from being discharged without becoming a thread and widening the particle size distribution.
  • Examples of the method of forming into a thread-like or sheet-like form include a method of extruding a forming slurry from a spinneret or die having a corresponding shape and solidifying the slurry in a poor solvent.
  • a method for forming a hollow fiber-shaped porous molded body it can be molded in the same manner as a method for forming a thread-shaped or sheet-shaped porous molded body by using a spinning nozzle composed of an annular orifice.
  • As a method of forming a cylindrical or hollow cylindrical porous molded body when extruding a slurry for molding from a spinning nozzle, it may be solidified in a poor solvent while cutting, or it is solidified into a filament and then cut later. It doesn't matter.
  • the molded product obtained in the step (4) whose solidification is promoted is solidified in a poor solvent to obtain a porous molded body.
  • a solvent having a solubility of the porous molded body-forming polymer of 1% by mass or less can be used under the conditions of the step (5).
  • alcohols such as water, methanol and ethanol And aliphatic hydrocarbons such as ethers, n-hexane and n-heptane.
  • water is preferable as the poor solvent.
  • a good solvent is brought in from the preceding step, and the concentration of the good solvent changes at the start and end of the coagulation step. Therefore, it may be a poor solvent in which a good solvent is added in advance, and it is preferable to perform the coagulation step by controlling the concentration while separately adding water or the like so as to maintain the initial concentration.
  • the concentration of the good solvent By adjusting the concentration of the good solvent, the structure (outer surface opening ratio and particle shape) of the porous molded body can be controlled.
  • the poor solvent is water or a mixture of a good solvent for the porous molded body forming polymer and water
  • the content of the good solvent for the porous molded body forming polymer with respect to water in the coagulation step may be 0 to 80% by mass.
  • the content is preferably 0 to 60% by mass.
  • the temperature of the poor solvent is preferably 40 to 100 ° C., and preferably 50 to 100 ° C. from the viewpoint of controlling the temperature and humidity of the space in the rotating container that scatters the droplets described below by centrifugal force. Is more preferable, and 60 to 100 ° C. is further more preferable.
  • the manufacturing apparatus includes a rotating container that scatters droplets by centrifugal force and a coagulation tank that stores a coagulating liquid, and the coagulating liquid is coagulated with the rotating container.
  • the cover which covers the space part between tanks is comprised, and the control means which controls the temperature and humidity of a space part can be provided.
  • the rotating container that scatters droplets by centrifugal force is not limited to a specific structure as long as it has a function of making the molding slurry into spherical droplets and scatters by centrifugal force. Examples include a rotating nozzle.
  • the forming slurry is supplied to the center of the rotating disk, the forming slurry spreads out in a film shape with a uniform thickness along the surface of the rotating disk, and is divided into droplets by centrifugal force from the periphery of the disk. Thus, fine droplets are scattered.
  • the rotating nozzle has a large number of through holes formed in the peripheral wall of the hollow disk-shaped rotating container, or is attached to the nozzle by penetrating through the peripheral wall.
  • the forming slurry is supplied into the rotating container and the rotating container is rotated. At this time, the forming slurry is discharged from the through hole or nozzle by centrifugal force to form droplets.
  • the coagulation tank for storing the coagulation liquid is not limited to one having a specific structure as long as it has a function capable of storing the coagulation liquid. And a coagulation tank having a structure in which the coagulation liquid naturally flows down by gravity along the inner surface.
  • the coagulation tank having an upper surface is a device that spontaneously drops liquid droplets scattered horizontally from the rotating container and captures the liquid droplets on the surface of the coagulation liquid stored in the coagulation tank having an upper surface opened.
  • a coagulation tank with a structure in which the coagulating liquid naturally flows down by gravity along the inner surface of the cylinder arranged so as to surround the rotating container allows the coagulating liquid to flow out at a substantially uniform flow rate in the circumferential direction along the inner surface of the cylinder.
  • the apparatus captures and solidifies droplets in a coagulating liquid flow that naturally flows along the inner surface.
  • the temperature and humidity control means for the space is a means for controlling the temperature and humidity of the space by including a cover that covers the space between the rotating container and the coagulation tank.
  • the cover that covers the space portion is not limited to a specific structure as long as it has a function of isolating the space portion from the external environment and making it easier to realistically control the temperature and humidity of the space portion. It can be a box shape, a cylindrical shape, or an umbrella shape. Examples of the material of the cover include metal stainless steel and plastic. It can be covered with a known heat insulating agent in that it is isolated from the external environment. The cover may be partially opened to adjust the temperature and humidity.
  • the temperature and humidity control means of the space section only needs to have a function of controlling the temperature and humidity of the space section, and are not limited to specific means. For example, a heater such as an electric heater or a steam heater, ultrasonic humidification And humidifiers such as heating humidifiers. In view of the simple structure, a means for heating the coagulation liquid stored in the coagulation tank and using the steam generated from the coagulation liquid to control the temperature and humidity of the space is preferable.
  • a coating film can be formed by applying a coating liquid containing, for example, PMEA or PVP-based polymer to the surface of the porous molded body.
  • a coating liquid containing, for example, PMEA or PVP-based polymer to the surface of the porous molded body.
  • the PMEA coating liquid penetrates into the pores formed in the porous molded body, and does not significantly change the pore diameter of the porous molded body surface.
  • PMEA can also be included.
  • the solvent for the PMEA coating solution is not particularly limited as long as it is a solvent capable of dissolving or dispersing PMEA without dissolving a polymer such as a porous molded body-forming polymer or a water-soluble polymer constituting the porous molded body.
  • water or an aqueous alcohol solution is preferred because of process safety and good handling in the subsequent drying process. From the viewpoints of boiling point and toxicity, water, ethanol aqueous solution, methanol aqueous solution, isopropyl alcohol aqueous solution and the like are preferably used.
  • the solvent of the PVP coating liquid is not particularly limited as long as it is a solvent that does not dissolve a polymer such as a porous molded body-forming polymer or a water-soluble polymer constituting the porous molded body but can dissolve or disperse PVP.
  • water or an aqueous alcohol solution is preferred because of process safety and good handling in the subsequent drying process.
  • water, ethanol aqueous solution, methanol aqueous solution, isopropyl alcohol aqueous solution and the like are preferably used.
  • solvent of a coating liquid, and a composition of a solvent it sets suitably according to the polymer which comprises a porous molded object.
  • the concentration of PMEA in the PMEA coating liquid is not limited, but can be 0.001% by mass to 1% by mass of the coating liquid, and more preferably 0.005% by mass to 0.2% by mass. .
  • the coating method of the coating liquid for example, the porous molded body is filled in a suitable column (container), the coating liquid containing PMEA is flowed from the top, and then the excess solution is removed using compressed air. A removal method can be employed. Then, after washing with distilled water or the like to replace and remove the remaining unnecessary solvent, it can be used as a medical device by sterilization.
  • the porous molded body is in the form of particles, cylinders, hollow cylinders, etc., and those having a short shape are those in which the porous molded body in a wet state is 1 mL 3 by using a graduated cylinder or the like as an apparent volume. Measure. Then, the weight is obtained by vacuum drying at room temperature, and the bulk density is calculated as weight / volume.
  • the porous molded body is in the form of a thread, a hollow fiber, a sheet or the like, and the one having a long shape measures the cross-sectional area and the length when wet, and calculates the volume from the product of both.
  • the weight is obtained by vacuum drying at room temperature, and the bulk density (g / mL) is calculated as weight / volume.
  • the porosity obtained from the slurry with respect to the inorganic ion adsorbent concentration, the porous forming body forming polymer concentration and the water-soluble polymer concentration in the slurry for forming the porous molded body By obtaining the relationship with the bulk density of the molded body in advance, the target bulk density of the porous molded body can be adjusted. The water content of the porous molded body described below can be adjusted similarly.
  • [Moisture content] 3 mL (3 cm 3 ) of a porous molded body (bead) in a wet state is accurately collected with a graduated cylinder or the like, and the collected bead is placed on a nonwoven fabric to remove surface water.
  • the beads from which the surface water has been removed are placed in a PP test tube prepared in advance, and the weight G1 is quickly measured. Thereafter, vacuum drying is performed at 70 ° C., and the weight when reaching a constant weight is defined as G2.
  • the water content (%) is a value of 100 ⁇ (G1-G2) / (G1).
  • Average particle diameter of porous molded body and average particle diameter of inorganic ion adsorbent The average particle diameter of the porous molded body and the average particle diameter of the inorganic ion adsorbent were measured with a laser diffraction / scattering particle size distribution analyzer (LA-950 (trade name) manufactured by HORIBA). Water was used as the dispersion medium. When measuring a sample using hydrated cerium oxide as an inorganic ion adsorbent, the refractive index was measured using the value of cerium oxide. Similarly, when a sample using hydrated zirconium oxide as an inorganic ion adsorbent was measured, the value of zirconium oxide was used as the refractive index.
  • Example 1 After putting 2000 g of cerium sulfate tetrahydrate (Wako Pure Chemical Industries, Ltd.) into 50 L of pure water and dissolving it with a stirring blade, 3 L of 8 M caustic soda (Wako Pure Chemical Industries, Ltd.) was 20 ml / min. The hydrated cerium oxide precipitate was obtained. After the obtained precipitate is filtered with a filter press, 500 L of pure water is passed through and washed, and then 80 L of ethanol (Wako Pure Chemical Industries, Ltd.) is passed through to remove moisture contained in the hydrated cerium oxide. Replaced with ethanol.
  • a hydrated helium oxide powder having an average particle size of 1.2 ⁇ m was obtained.
  • the obtained molding slurry was supplied to the inside of a cylindrical rotating container having a nozzle having a diameter of 4 mm on the side surface, and this container was rotated to form droplets from the nozzle by centrifugal force (15G).
  • the droplets were landed in a coagulation tank having an upper surface opening in which a coagulating liquid having a NMP content of 50% by mass with water was heated to 60 ° C. and stored, and the molding slurry was coagulated. Furthermore, alkali substitution and classification were performed after the ethanol substitution to obtain a spherical porous molded body.
  • the particle diameter of the porous molded body was 537 ⁇
  • the bulk density was 0.45 g / ml-Resin
  • the water content was 83.2%.
  • [PMEA coating] 1 mL of the obtained porous molded body was filled into a cylindrical container (one provided with a glass filter on the bottom, L (length) / D (cylinder diameter) was 1.5). Next, 0.2 g of PMEA (Mn 20,000, Mw / Mn 2.4) was dissolved in an aqueous solution (100 g) of 40 g of ethanol / 60 g of water to prepare a coating solution. The container filled with the porous molded body was vertically held, and the coating liquid was poured from the upper part thereof at a flow rate of 100 mL / min to bring the coating liquid into contact with the porous molded body, and then washed with pure water.
  • the coating solution in the container is blown off with 0.1 KMpa of air, the module is placed in a vacuum dryer, vacuum dried at 35 ° C. for 15 hours, and gamma sterilization is performed at 25 Kgy in an air atmosphere to purify blood. A vessel was made.
  • Half of the obtained plasma (1000 mL) is added with the porous molded body obtained in Example 1, stirred at room temperature for 2 hours, centrifuged (3500 rpm, 5 min), and about 950 mL of plasma with a phosphorus concentration of 0 Got. 35 mL of plasma having a phosphorus concentration of 10.8 mg / dL and 465 mL of plasma having a phosphorus concentration of 0 were mixed and centrifuged (3500 rpm, 5 min) to obtain a plasma having a phosphorus concentration of 0.8 mg / dL and 495 mL as a supernatant. As shown in FIG.
  • Example 1 the blood purifier obtained in Example 1 was incorporated, 450 mL of the obtained plasma was passed at a flow rate of 2 mL / min, the first fraction was 10 mL, and thereafter 20 mL per sample. Collected.
  • the amount of phosphorus adsorbed by the porous molded body at a plasma flow rate of 350 mL was 2.91 mg-P / mL-Resin.
  • the performance of the obtained blood purifier is shown in Table 1 below. It was a blood purifier that has a high phosphorus adsorption capacity and that can be used safely and meets the acceptance criteria for artificial kidney devices.
  • Example 2 As a water-soluble polymer, 31.6 g of polyvinylpyrrolidone (PVP, BASF K90) was added, 217.6 g of NMP and 31.6 g of PES were added to 119.2 g of MOX, and a spherical porous molded body was obtained in the same manner as in Example 1. It was. The performance of the obtained blood purifier is shown in Table 1 below. It was a blood purifier that has a high phosphorus adsorption capacity and that can be used safely and meets the acceptance criteria for artificial kidney devices.
  • PVP polyvinylpyrrolidone
  • Example 3 In the same manner as in Example 1, 6.8 g of PVP and MOX 98 g were added with 267.2 g of dimethylacetamide (DMAc, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and 28 g of polysulfone (P-1700, manufactured by Amoco Engineering Polymers). A porous molded body was obtained. The performance of the obtained blood purifier is shown in Table 1 below. It was a blood purifier that has a high phosphorus adsorption capacity and that can be used safely and meets the acceptance criteria for artificial kidney devices.
  • DMAc dimethylacetamide
  • P-1700 polysulfone
  • Example 4 2.8 g of PVP, 219.2 g of NMP and 22 g of PES were added to 147.6 g of MOX, and a spherical porous molded body was obtained in the same manner as in Example 1.
  • the performance of the obtained blood purifier is shown in Table 1 below. It was a blood purifier that has a high phosphorus adsorption capacity and that can be used safely and meets the acceptance criteria for artificial kidney devices.
  • Example 5 NMP162.8g and PES14.8g were added to MOX222.4g, and the spherical porous molded object was obtained similarly to Example 1.
  • the performance of the obtained blood purifier is shown in Table 1 below. It was a blood purifier that has a high phosphorus adsorption capacity and that can be used safely and meets the acceptance criteria for artificial kidney devices.
  • Example 6 NMP178g and PES44.4g were added to MOX177.6g, and the spherical porous molded object was obtained similarly to Example 1.
  • the performance of the obtained blood purifier is shown in Table 1 below. It was a blood purifier that has a high phosphorus adsorption capacity and that can be used safely and meets the acceptance criteria for artificial kidney devices.
  • Example 7 NMP173.2g and PES34.8g were added to MOX192g, and the spherical porous molded object was obtained similarly to Example 1.
  • the performance of the obtained blood purifier is shown in Table 1 below. It was a blood purifier that has a high phosphorus adsorption capacity and that can be used safely and meets the acceptance criteria for artificial kidney devices.
  • Example 8 A blood purifier was prepared in the same manner as in Example 1 except that PMEA coating was not performed. The performance of the obtained blood purifier is shown in Table 1 below.
  • Example 9 A blood purifier was prepared in the same manner as in Example 1 except that cleaning with a supercritical fluid was not performed. Various characteristics of the obtained blood purifier are shown in Table 2 below.
  • Example 9 In PMEA coating, 1.0 g of PMEA was dissolved in an aqueous solution (100 g) of 40 g of methanol / 60 g of water, a coating solution was prepared, and the blood purifier was the same as in Example 2 except that washing with a supercritical fluid was not performed. Was made. The performance of the obtained blood purifier is shown in Table 3 below. It was a blood purifier that had a high phosphorus adsorption capacity and could be used safely, meeting the acceptance criteria for artificial kidney devices with fine particle count and metal elution.
  • Example 10 A blood purifier was prepared in the same manner as in Example 2 except that hydrated zirconium oxide (trade name: R zirconium hydroxide manufactured by Daiichi Rare Element Co., Ltd.) was used instead of MOX.
  • the performance of the obtained blood purifier is shown in Table 3 below. It was a blood purifier that had a high phosphorus adsorption capacity and could be used safely, meeting the acceptance criteria for artificial kidney devices with fine particle count and metal elution.
  • Example 11 A blood purifier was prepared in the same manner as in Example 2 except that lanthanum oxide (manufactured by Nacalai Tesque) was used instead of MOX. The performance of the obtained blood purifier is shown in Table 3 below. It was a blood purifier that had a high phosphorus adsorption capacity and could be used safely, meeting the acceptance criteria for artificial kidney devices with fine particle count and metal elution.
  • Example 12 A blood purifier was prepared in the same manner as in Example 2 except that neodymium carbonate (trade name: neodymium carbonate octahydrate manufactured by Fuji Film Wako Chemical Co., Ltd.) was used instead of MOX.
  • neodymium carbonate trade name: neodymium carbonate octahydrate manufactured by Fuji Film Wako Chemical Co., Ltd.
  • the performance of the obtained blood purifier is shown in Table 3 below. It was a blood purifier that had a high phosphorus adsorption capacity and could be used safely, meeting the acceptance criteria for artificial kidney devices with fine particle count and metal elution.
  • NMP 220 g, MOX 200 g and PVP 4 g, a copolymer having an intrinsic viscosity [ ⁇ ] 1.2 consisting of 91.5% by weight of acrylonitrile, 8.0% by weight of methyl acrylate and 0.5% by weight of sodium methacryl sulfonate (organic)
  • a blood purifier was prepared in the same manner as in Example 1 except that a mixed solution composed of 10 g of a polymer resin (PAN) was used as the molding slurry solution.
  • PAN polymer resin
  • the performance of the obtained blood purifier is shown in Table 3 below. It was a blood purifier that had a high phosphorus adsorption capacity and could be used safely, meeting the acceptance criteria for artificial kidney devices with fine particle count and metal elution.
  • Example 14 160 g of dimethyl sulfoxide (DMSO, manufactured by Kanto Chemical Co., Ltd.) as a good solvent for the organic polymer resin, 20 g of ethylene vinyl alcohol copolymer (EVOH, manufactured by Nippon Synthetic Chemical Co., Ltd., trade name: Soarnol E3803), PVP 4 g, MOX 200 g
  • DMSO dimethyl sulfoxide
  • EVOH ethylene vinyl alcohol copolymer
  • PVP 4 g ethylene vinyl alcohol copolymer
  • MOX 200 g A blood purifier was prepared in the same manner as in Example 1 except that the mixed solution consisting of was used as the molding slurry solution.
  • the performance of the obtained blood purifier is shown in Table 3 below. It was a blood purifier that had a high phosphorus adsorption capacity and could be used safely, meeting the acceptance criteria for artificial kidney devices with fine particle count and metal elution.
  • Example 15 Except for using a mixed solution consisting of 220 g of DMSO, 28 g of poly (methyl methacrylate) (PMMA, manufactured by Mitsubishi Chemical Co., Ltd., trade name: Dianar BR-77), 32 g of PVP, and 120 g of MOX as a slurry solution for molding.
  • a blood purifier was prepared in the same manner as in Example 1. The performance of the obtained blood purifier is shown in Table 3 below. It was a blood purifier that had a high phosphorus adsorption capacity and could be used safely, meeting the acceptance criteria for artificial kidney devices with fine particle count and metal elution.
  • the blood purifier according to the present invention has a high phosphorus adsorption capacity and can be used safely, it can be suitably used for a therapy for periodically removing phosphorus accumulated in the body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Anesthesiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Emergency Medicine (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • External Artificial Organs (AREA)

Abstract

リン吸着能が高く安全に使用可能な多孔性成形体を有する血液浄化器を提供する。本発明に係る血液浄化器は、無機イオン吸着体を含む多孔性成形体を有する血液浄化器であって、該多孔性成形体の含水率をA、かさ密度をBとしたとき、B=-0.02A+2.175±0.185(74≦A≦94)の関係を満たし、かつ、該血液浄化器中に注射用生理食塩液を封入してから3月後及び6月後における該注射用生理食塩液1mL中の10μm以上の微粒子数が25個以下であり、かつ、25μm以上の微粒子数が3個以下であることを特徴とする。

Description

血液浄化器及びその製法
 本発明は、無機イオン吸着体を含む多孔性成形体を有する血液浄化器及びその製法に関する。より詳しくは、本発明は、リン吸着能が高く安全に使用可能な、無機イオン吸着体を含む多孔性成形体を有する血液浄化器及びその製法に関する。
 正常に腎臓が機能している健常成人であれば、体内の過剰なリンは、主に尿として体外に排出される。他方、慢性腎不全患者等の腎機能に障害を有している腎疾患患者等は、過剰なリンを体外に適切に排出できないため、徐々に体内にリンが蓄積され、高リン血症等の疾患を引き起こす。
 高リン血症が持続すると、二次性副甲状腺機能亢進症が引き起こされ、骨が痛む、脆くなる、変形する、骨折しやすい等の症状を特徴とする腎性骨症となり、これに高カルシウム血症を合併した場合は、心血管系の石灰化による心不全発症のリスクが高くなる。
 心血管系の石灰化は慢性腎不全等の最も深刻な合併症の1つであるので、慢性腎不全患者において、高リン血症を防ぐために体内のリンの量を適切にコントロールすることは非常に重要である。
 血液透析患者においては、高リン血症に至らないよう、血液透析、血液ろ過透析及び血液ろ過等の透析療法により、体内に蓄積したリンを定期的に除去し、調節している。透析療法においては、一般に、週3回、1回4時間の治療時間を要する。
 しかしながら、健常成人が1日に摂取する1000mgのリンを、血液透析患者が摂取した場合、通常、腎臓から排出されるはずのリン(650mg)が体内に蓄積し、1週間で4550mgも蓄積する。通常の血液透析では、1回の透析で800~1000mg程度のリンの除去が可能であり、週3回の透析で約3000mgのリンを除去することが可能となる。透析療法で除去できるリンの量(3000mg)は、1週間で蓄積されたリンの量(4550mg)に至らないため、結果として体内にリンが蓄積される。
 また、中でも、慢性腎不全患者である維持透析患者は、リンの主排泄経路の腎機能を失っているため、尿中へのリンの排出機能はほぼ失われている。透析療法において、透析液中にリンが含まれていないため、透析液への拡散現象によりリンを体外に除去することができるが、現状の透析時間及び透析条件では十分な排出ができないのが実情である。
 以上のように、透析療法のみではリン除去効果が不十分であるため、リンをコントロールするために、透析療法に加え、食事療法とリン吸着剤の飲用による薬物療法とが挙げられるが、重要なのは、患者の栄養状態を評価して低栄養状態でないことを確認後、リン摂取量の制限を行うことである。
 リンのコントロールとして、CKD-MBD(慢性腎臓病に伴う骨ミネラル代謝異常)ガイドラインにおいては、血清リン値は3.5~6.0mg/dLとされている。
 血清リン値が、3.5mg/dL以下になると低リン血症でくる病や骨軟化症の原因となり、6.0mg/dL以上になると高リン血症となり心血管系の石灰化の原因となる。
 リンの摂取量を抑える食事療法については、患者の栄養状態との兼ね合いもあり、また患者自体の嗜好も考えなければならないため、食事療法での体内のリン濃度を管理することは難しい。
 また、薬物療法においては、消化管内で食物由来のリン酸イオンと結合して不溶性のリン酸塩を形成し、腸管からのリンの吸収を抑制するリン吸着剤経口薬を毎食事前又は食事中に服用することで、リン濃度の管理が行われる。しかしながら、薬物療法においては、毎食事時のリン吸着剤の飲用量は相当多くなる。そのため、リン吸着剤の服用時の副作用として、嘔吐、膨満感、便秘、体内への薬剤の蓄積等が高い確率で起こるため、それらに起因する服用コンプライアンスが非常に低く(50%以下だとも言われている)、リン濃度を薬剤により管理するのはドクターにとっても患者にとっても困難な状態にある。
 以下の特許文献1には、血液透析治療時の透析液の中にリン吸着剤を含む透析組成物を循環させることにより、リン吸着剤を血液と直接接触させないで血液中のリンを効率的に除去することが開示されている。
 また、以下の特許文献2には体外血液回路に血液中に蓄積されたリンを除去するリン吸着剤を血液透析器とは別に配設した血液透析システムが開示されている。
 また、以下の特許文献3には、リン等を高速に吸着除去できる吸着剤に適した多孔性成形体が開示されている。
 しかしながら、これら従来技術の血液浄化器は、リンの吸着能が低く、安全に使用可能である点で十分なものでなかった。
国際公開第2011/125758号 特開2002-102335号公報 特許第4671419号公報
 前記した従来技術の問題点に鑑み、本発明が解決しようとする課題は、リン吸着能が高く、かつ、安全に使用可能な多孔性成形体を有する血液浄化器を提供することである。
 本発明者らは、前記課題を解決すべく鋭意検討し実験を重ねた結果、多孔性成形体にリン吸着能が高い無機イオン吸着体を含有させつつ、多孔性成形体の含水率と嵩密度を最適化し、さらに超臨界流体又は亜臨界流体で洗浄し、該多孔性成形体を有する血液浄化器から発生する微粒子や微量金属を完全に除去することで、血中のリン吸着量が高く、かつ、安全に使用可能な血液浄化器とすることができることを見出し、本発明を完成するに至ったものである。
 すなわち、本発明は、以下のとおりのものである。
 [1]無機イオン吸着体を含む多孔性成形体を有する血液浄化器であって、該多孔性成形体の含水率をA、かさ密度をBとしたとき、B=-0.02A+2.175±0.185(74≦A≦94)の関係を満たし、かつ、該血液浄化器中に注射用生理食塩液を封入してから3月後及び6月後における該注射用生理食塩液1mL中の10μm以上の微粒子数が25個以下であり、かつ、25μm以上の微粒子数が3個以下であることを特徴とする血液浄化器。
 [2]前記多孔性成形体は、多孔性成形体形成ポリマーと親水性ポリマーと無機イオン吸着体から構成される、前記[1]に記載の血液浄化器。
 [3]前記多孔性成形体形成ポリマーは、芳香族ポリスルホンである、前記[2]に記載の血液浄化器。
 [4]前記親水性ポリマーは、生体適合性ポリマーである、前記[2]又は[3]に記載の血液浄化器。
 [5]前記生体適合性ポリマーは、ポリビニルピロリドン(PVP)系ポリマーである、前記[4]に記載の血液浄化器。
 [6]前記多孔性成形体は、生体適合性ポリマーにより被覆されている、前記[1]~[4]のいずれかに記載の血液浄化器。
 [7]前記生体適合性ポリマーは、ポリビニルピロリドン(PVP)系ポリマー及びポリメトキシエチルアクリレート(PMEA)からなる群から選ばれる、前記[6]に記載の血液浄化器。
 [8]前記多孔性成形体の血中リン吸着量が2mg/ml以上である、前記[1]~[7]のいずれかに記載の血液浄化器。
 [9]前記無機イオン吸着体が、下記式(1):
   MN・mHO  ・・・(1)
{式中、xは、0~3であり、nは、1~4であり、mは、0~6であり、そしてMとNは、Ti、Zr、Sn、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Si、Cr、Co、Ga、Fe、Mn、Ni、V、Ge、Nb、及びTaからなる群から選ばれる金属元素であり、互いに異なる。}で表される少なくとも一種の金属酸化物を含有する、前記[1]~[8]のいずれかに記載の血液浄化器。
 [10]前記金属酸化物が、下記(a)~(c)群:
 (a)水和酸化チタン、水和酸化ジルコニウム、水和酸化スズ、水和酸化セリウム、水和酸化ランタン、及び水和酸化イットリウム;
 (b)チタン、ジルコニウム、スズ、セリウム、ランタン、ネオジム、及びイットリウムからなる群から選ばれる少なくとも一種の金属元素と、アルミニウム、珪素、及び鉄からなる群から選ばれる少なくとも一種の金属元素との複合金属酸化物;
 (c)活性アルミナ
から選ばれる、前記[9]に記載の血液浄化器。
 [11]前記無機イオン吸着体を含む多孔性成形体を超臨界流体又は亜臨界流体で洗浄した後に、その表面をPMEAで被覆する工程を含む、前記[7]~[10]のいずれかに記載の血液浄化器の製造方法。
 本発明に係る血液浄化器は、リン吸着能が高く、かつ、安全に使用可能である。
 具体的には、本発明の血液浄化器は、体外循環治療時の高い血液流速の場合であっても、血液中のリンの選択性、吸着性に優れており、血液中の他の成分に影響を及ぼすことなく、血液中のリンを必要量排除することができる。また、血液中のリンを体外循環によって有効に除去できるため、副作用のあるリン吸着剤経口薬等を飲用することなく、血液中のリン濃度を適切に管理することができる。
 したがって、本発明の血液浄化器を用いることで、透析患者が、リン吸着剤経口薬を服用しないか、少量の服用(補助的な使用)に留めても、透析患者の副作用を起こさずに、体内血液中のリン濃度を適切に管理することができる。
本実施形態の血液浄化器の、牛血漿を使用した低リン濃度血清によるカラムフロー試験装置の概要図である。
 以下、本発明の実施形態について詳細に説明する。
 本実施形態の血液浄化器は、無機イオン吸着体を含む多孔性成形体を有する血液浄化器であって、該多孔性成形体の含水率をA、かさ密度をBとしたとき、B=-0.02A+2.175±0.185(74≦A≦94)の関係を満たし、かつ、該血液浄化器中に注射用生理食塩液を封入してから3月後及び6月後における該注射用生理食塩液1mL中の10μm以上の微粒子数が25個以下であり、かつ、25μm以上の微粒子数が3個以下であることを特徴とする。
 本実施形態の血液浄化器の製造においては、リン吸着能が高く、かつ、安全に使用可能な血液浄化器を得るために、多孔性成形体の含水率(%)A、かさ密度をBとしたとき、B=-0.02A+2.175±0.185(74≦A≦94)の範囲にある多孔性成形体を用いることが必要である。この範囲から外れる多孔性成形体は、微粒子数が多くなるか、又は血中のリン吸着量が目的とする性能よりも低い性能となる。
[多孔性成形体]
 本実施形態の多孔性成形体は、無機イオン吸着体を含み、好ましくは、多孔性成形体形成ポリマーと無機イオン吸着体から構成される。多孔性成形体は、窒素ガス吸着法で測定した細孔直径1nm~80nmの細孔体積の総和が、該無機イオン吸着体の単位質量当たり0.05cm/g~0.7cm/gであるものが好ましい。
 本実施形態において、窒素ガス吸着法で測定した細孔直径1nm~80nmの細孔体積の総和は、無機イオン吸着体の単位質量当たり0.05cm/g~0.7cm/gであり、好ましくは0.1cm/g~0.6cm/gであり、より好ましくは0.2cm/g~0.5cm/gである。
 細孔体積は凍結乾燥した多孔性成形体を窒素ガス吸着法により測定し、BJH法によって算出されるものである。
 無機イオン吸着体の単位質量当たりの細孔体積の総和Vaは、乾燥した多孔性成形体から算出された多孔性成形体の単位質量当たりの細孔体積をVb(cm/g)、多孔性成形体の無機イオン吸着体担持量をSa(質量%)としたとき、下記式(7):
   Va = Vb / Sa × 100  ...(7)
で求められる。
 多孔性成形体の無機イオン吸着体の担持量(質量%)Saは、多孔性成形体の乾燥時の質量Wa(g)、灰分の質量Wb(g)とするとき下記式(8):
   Sa = Wb / Wa × 100  ...(8)
で求められる。
 ここで、灰分とは多孔性成形体を800℃で2時間焼成したときの残分である。
 窒素ガス吸着法により測定される多孔性成形体の細孔体積は、主に多孔性成形体に含まれる無機イオン吸着体の細孔体積が反映された値となるため、その値が大きいほど無機イオン吸着体内部へのイオンの拡散効率が高くなり、吸着容量が高くなることを意味する。
 無機イオン吸着体の単位質量当たりの細孔体積の総和が0.05cm/gより小さいと、無機イオン吸着体の細孔体積が小さく、吸着容量が著しく低下する。他方、この値が0.7cm3/gより大きいと、無機イオン吸着体の嵩密度が高く、原液スラリーの粘度上昇が起こり、造粒が困難となる。
 本実施形態において、窒素ガス吸着法により測定した多孔性成形体の比表面積は、好ましくは50m/g~400m/g、より好ましくは70m/g~350m/g、さらに好ましくは100m/g~300m/gである。
 比表面積は凍結乾燥した多孔性成形体を窒素ガス吸着法により測定し、BET法によって算出されるものである。
 窒素ガス吸着法により測定される多孔性成形体の比表面積は、主に多孔性成形体に含まれる無機イオン吸着体の比表面積が反映された値となるため、その値が大きいほどイオンの吸着サイトが増加して、吸着容量が高くなることを意味する。
 多孔性成形体の比表面積が50m/gより小さいと、無機イオン吸着体の吸着サイトが少なく、吸着容量が著しく低下する。他方、この値が400m/gより大きいと、無機イオン吸着体の嵩密度が高く、原液スラリーの粘度上昇が起こり、造粒が困難となる。
 本実施形態において、多孔性成形体に含まれる無機イオン吸着体の担持量は、好ましくは30質量%~95質量%、より好ましくは40質量%~90質量%、さらに好ましくは50質量%~80質量%である。
 かかる担持量が30質量%未満であると、イオンの吸着対象物質と吸着基質である無機イオン吸着体との接触頻度が不十分となりやすく、他方、95質量%を超えると、多孔性成形体の強度が不足しやすい。
 本実施形態の多孔性成形体は、平均粒径が100μm~2500μmであり、かつ、実質的に球状粒子の形態にあることが好ましく、平均粒形は、150μm~2000μmであることがより好ましく、200μm~1500μmであることがさらに好ましく、300μm~1000μmであることがよりさらに好ましい。
 本実施形態の多孔性成形体は、球状粒子の形態であることが好ましく、球状粒子としては、真球状のみならず、楕円球状であってもよい。
 本実施形態において、平均粒径は、多孔性成形体を球状とみなして、レーザー光による回折の散乱光強度の角度分布から求めた球相当径のメディアン径を意味する。
 平均粒径が100μm以上であれば、多孔性成形体をカラムやタンクになどの容器へ充填した際に圧カ損失が小さいため高速通水処理に適する。他方、平均粒径が2500μm以下であれば、カラムやタンクに充填したときの多孔性成形体の表面積を大きくすることができ、高速で通液処理してもイオンを確実に吸着することができる。
[無機イオン吸着体]
 本実施形態における多孔性成形体に含有される又はこれを構成する無機イオン吸着体とは、イオン吸着現象又はイオン交換現象を示す無機物質を意味する。
 天然物系の無機イオン吸着体としては、例えば、ゼオライト、モンモリロナイト等の各種の鉱物性物質等が挙げられる。
 各種の鉱物性物質の具体例としては、アルミノケイ酸塩で単一層格子をもつカオリン鉱物、2層格子構造の白雲母、海緑石、鹿沼土、パイロフィライト、タルク、3次元骨組み構造の長石、ゼオライト、モンモリロナイト等が挙げられる。
 合成物系の無機イオン吸着体としては、例えば、金属酸化物、多価金属の塩及び不溶性の含水酸化物等が挙げられる。金属酸化物としては、複合金属酸化物、複合金属水酸化物及び金属の含水酸化物等を含む。
 無機イオン吸着体は、吸着対象物、中でも、リンの吸着性能の観点で、下記式(1)で表される金属酸化物を含有することが好ましい。
 MN・mHO ・・・(1)
{式中、xは、0~3であり、nは、1~4であり、mは、0~6であり、そしてMとNは、Ti、Zr、Sn、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Si、Cr、Co、Ga、Fe、Mn、Ni、V、Ge、Nb、及びTaからなる群から選ばれる金属元素であり、互いに異なる。}で表される少なくとも一種の金属酸化物を含有することが好ましい。
 金属酸化物は、上記式(1)中のmが0である未含水(未水和)の金属酸化物であってもよいし、mが0以外の数値である金属の含水酸化物(水和金属酸化物)であってもよい。
 上記式(1)中のxが0以外の数値である場合の金属酸化物は、含有される各金属元素が規則性を持って酸化物全体に均一に分布し、金属酸化物に含有される各金属元素の組成比が一定に定まった化学式で表される複合金属酸化物である。
 具体的には、ペロブスカイト構造、スピネル構造等を形成し、ニッケルフェライト(NiFe)、ジルコニウムの含水亜鉄酸塩(Zr・Fe・mHO、ここで、mは0.5~6である。)等が挙げられる。
 無機イオン吸着体は、上記式(1)で表される金属酸化物を複数種含有していてもよい。
 無機イオン吸着体としての金属酸化物は、吸着対象物、中でも、リンの吸着性能に優れているという観点から、下記(a)~(c)群:
 (a)水和酸化チタン、水和酸化ジルコニウム、水和酸化スズ、水和酸化セリウム、水和酸化ランタン及び水和酸化イットリウム
 (b)チタン、ジルコニウム、スズ、セリウム、ランタン、ネオジム、及びイットリウムからなる群から選ばれる少なくとも一種の金属元素と、アルミニウム、珪素及び鉄からなる群から選ばれる少なくとも一種の金属元素との複合金属酸化物
 (c)活性アルミナ
から選ばれることが好ましい。
 (a)~(c)群のいずれかの群から選択される材料であってもよく、(a)~(c)群のいずれかの群から選択される材料を組み合わせて用いてもよく、(a)~(c)群のそれぞれにおける材料を組み合わせて用いてもよい。組み合わせて用いる場合には、(a)~(c)群のいずれかの群から選ばれる2種以上の材料の混合物であってもよく、(a)~(c)群の2つ以上の群から選ばれる2種以上の材料の混合物であってもよい。
 無機イオン吸着体は、安価で吸着性が高いという観点から、硫酸アルミニウム添着活性アルミナを含有してもよい。
 無機イオン吸着体としては、上記式(1)で表される金属酸化物に加え、上記M及びN以外の金属元素がさらに固溶したものは、無機イオンの吸着性や製造コストの観点から、より好ましい。
 例えば、ZrO・mHO(mが0以外の数値である。)で表される水和酸化ジルコニウムに、鉄が固溶したものが挙げられる。
 多価金属の塩としては、例えば、下記式(2):
   M2+ (1-p)3+ (OH(2+p-q)(An-q/r  ・・・(2)
{式中、M2+は、Mg2+、Ni2+、Zn2+、Fe2+、Ca2+、及びCu2+からなる群から選ばれる少なくとも一種の二価の金属イオンであり、M3+は、Al3+及びFe3+からなる群から選ばれる少なくとも一種の三価の金属イオンであり、An-は、n価のアニオンであり、0.1≦p≦0.5であり、0.1≦q≦0.5であり、そしてrは、1又は2である。}で表されるハイドロタルサイト系化合物が挙げられる。
 上記式(2)で表されるハイドロタルサイト系化合物は、無機イオン吸着体として原料が安価であり、吸着性が高いことから好ましい。
 不溶性の含水酸化物としては、例えば、不溶性のヘテロポリ酸塩及び不溶性ヘキサシアノ鉄酸塩等が挙げられる。
 無機イオン吸着体として、金属炭酸塩は吸着性能の観点で優れた性能を有するが、溶出の観点からは炭酸塩を用いる場合は用途の検討が必要である。
 金属炭酸塩としては、炭酸イオンとのイオン交換反応が期待できるという観点から、下記式(3):
   QyRz(CO)s・tHO  ...(3)
{式中、yは、1~2であり、zは、0~1であり、sは、1~3であり、tは、0~8であり、そして、QとRは、Mg、Ca、Sr、Ba、Sc、Mn、Fe、Co、Ni、Ag、Zn、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuからなる群から選ばれる金属元素であり、互いに異なる。}で表される少なくとも一種の金属炭酸塩を含有することができる。
 金属炭酸塩は、上記式(3)中のtが0である未含水(未水和)の金属炭酸塩であってもよいし、tが0以外の数値である水和物であってもよい。
 無機イオン吸着体としては、溶出が少なく、リン、ホウ素、フッ素及び/又はヒ素の吸着性能に優れているという観点から、下記(d)群:
 (d)炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、炭酸スカンジウム、炭酸マンガン、炭酸鉄、炭酸コバルト、炭酸ニッケル、炭酸銀、炭酸亜鉛、炭酸イットリウム、炭酸ランタン、炭酸セリウム、炭酸プラセオジム、炭酸ネオジム、炭酸サマリウム、炭酸ユウロピウム、炭酸ガドリニウム、炭酸テルビウム、炭酸ジスプロシウム、炭酸ホルミウム、炭酸エルビウム、炭酸ツリウム、炭酸イッテルビウム、及び炭酸ルテチウム;
から選ばれることが好ましい。
 金属炭酸塩の無機イオン吸着機構としては、金属炭酸塩の溶出、金属炭酸塩上での無機イオンと金属イオンの再結晶化が予想されるため、金属炭酸塩の溶解度が高いものほど無機イオン吸着量は高く、優れた吸着性能を期待できる。同時に、無機イオン吸着体からの金属溶出が懸念されるため、金属溶出が問題となる用途での使用においては充分な検討が必要となる。
 本実施形態における多孔性成形体を構成する無機イオン吸着体は、その製造方法等に起因して混入する不純物元素を、多孔性成形体の機能を阻害しない範囲で含有していてもよい。混入する可能性がある不純物元素としては、例えば、窒素(硝酸態、亜硝酸態、アンモニウム態)、ナトリウム、マグネシウム、イオウ、塩素、カリウム、カルシウム、銅、亜鉛、臭素、バリウム、ハフニウム等が挙げられる。
 本実施形態における多孔性成形体を構成する無機イオン吸着体は、その製造方法等に起因して混入する不純物元素を、多孔性成形体の機能を阻害しない範囲で含有していてもよい。混入する可能性がある不純物元素としては、例えば、窒素(硝酸態、亜硝酸態、アンモニウム態)、ナトリウム、マグネシウム、イオウ、塩素、カリウム、カルシウム、銅、亜鉛、臭素、バリウム及びハフニウム等が挙げられる。
 有機液体への置換方法は、特に限定されるものではなく、有機液体に水を含んだ無機イオン吸着体を分散させた後に遠心分離、濾過をしてもよいし、フィルタープレス等でろ過を行った後に有機液体を通液してもよい。置換率を高くするためには、有機液体へ無機イオン吸着体を分散後に濾過する方法を繰り返すことが好ましい。
 製造時に含有される水分の有機液体への置換率は、50質量%~100質量%であればよく、好ましくは70質量%~100質量%、より好ましくは80質量%~100質量%であればよい。
 有機液体の置換率とは、有機液体への置換率をSb(質量%)、水を含んだ無機イオン吸着体を有機液体で処理後の濾液の水分率をWc(質量%)とするとき下記式(4):
   Sb = 100 - Wc  ...(4)
で表される値をいう。
 有機液体で処理後の濾液の水分率は、カールフィッシャー法で測定することで求められる。
 無機イオン吸着体に含まれる水分を有機液体に置換した後に乾燥を行うことで、乾燥時の凝集を抑制することができ、無機イオン吸着体の細孔体積を増加させることができ、その吸着容量を増加させることができる。
 有機液体の置換率が50質量%未満であると、乾燥時の凝集抑制効果が低くなり無機イオン吸着体の細孔体積が増加しない。
[微粒子の除去]
 本実施形態の血液浄化器は、多孔質成形体が前記無機イオン吸着体を含有しているにも拘わらず、安全に使用可能なものであり、以下に説明する厚生労働省の定める人工腎臓装置承認基準を満たしている。具体的には、本実施形態の血液浄化器は、血液浄化器内に注射用生理食塩液を封入してから3月後及び6月後における前記注射用生理食塩液1mL中の10μm以上の微粒子数が25個以下であり、かつ、25μm以上の微粒子数が3個以下であり、さらに、溶出物試験液の吸光度が0.1以下であり、かつ、該試験液中に膜孔保持剤を含まない。
 本発明者らは、本実施形態の血液浄化器の製造において、多孔性成形体が無機イオン吸着体を含んでいるにも拘わらず、これを超臨界流体又は亜臨界流体で洗浄することにより血液浄化器から発生する微粒子を完全に除去することができることを見出した。
 超臨界流体とは、臨界圧力(以下、Pcともいう)以上、かつ臨界温度(以下、Tcともいう)以上の条件の流体を意味する。亜臨界流体とは、超臨界状態以外の状態であって、反応時の圧力、温度をそれぞれP、Tとしたときに、0.5<P/Pc<1.0かつ0.5<T/Tc、又は0.5<P/Pcかつ0.5<T/Tc<1.0の条件の流体を意味する。亜臨界流体の好ましい圧力、温度の範囲は、0.6<P/Pc<1.0かつ0.6<T/Tc、又は0.6<P/Pcかつ0.6<T/Tc<1.0である。但し、流体が水である場合には、亜臨界流体となる温度、圧力の範囲は、0.5<P/Pc<1.0かつ0.5<T/Tc、又は、0.5<P/Pcかつ0.5<T/Tc<1.0であることができる。ここで温度は摂氏を表すが、Tc又はTのいずれかがマイナスである場合には、亜臨界状態を表す式はこの限りではない。
 超臨界流体又は亜臨界流体としては、水やアルコール等の有機媒体、二酸化炭素、窒素、酸素、ヘリウム、アルゴン、空気等の気体、又はこれらの混合流体が用いられる。二酸化炭素は、常温程度の温度下でも超臨界状態にでき、様々な物質を良く溶解することから、最も好ましい。
[多孔性成形体形成ポリマー]
 本実施形態に係る血液浄化器に用いる多孔性成形体を構成することができる多孔性成形体形成ポリマーは、多孔性成形体を形成することができるポリマーであればよく、例えば、ポリスルホン系ポリマー、ポリフッ化ビニリデン系ポリマー、ポリ塩化ビニリデン系ポリマー、アクリロニトリル系ポリマー、ポリメタクリル酸メチル系ポリマー、ポリアミド系ポリマー、ポリイミド系ポリマー、セルロース系ポリマー、エチレンビニルアルコール共重合体系ポリマー、ポリアリールエーテルスルホン、ポリプロピレン系ポリマー、ポリスチレン系ポリマー、ポリカーボネート系ポリマー、多種類等が挙げられる。中でも芳香族ポリスルホンは、その熱安定性、耐酸、耐アルカリ性及び機械的強度に優れるため好ましい。
 本実施形態で用いられる芳香族ポリスルホンとしては、下記式(5):
   -O-Ar-C(CH-Ar-O-Ar-SO-Ar-  ・・・(5)
{式中、Arは、パラ位での2置換のフェニル基である。}又は下記式(6):
   -O-Ar-SO-Ar-  ・・・(6)
{式中、Arは、パラ位での2置換のフェニル基である。}で表される繰り返し単位を有するものが挙げられる。尚、芳香族ポリスルホンの重合度や分子量については特に限定しない。
[親水性ポリマー]
 本実施形態の多孔性成形体を構成することができる親水性ポリマーとしては、水中で膨潤するが、水に溶解しない生体適合性ポリマーであればよく、特に限定しないが、スルホン酸基、カルボキシル基、カルボニル基、エステル基、アミノ基、アミド基、シアノ基、ヒドロキシル基、メトキシ基、リン酸基、オキシエチレン基、イミノ基、イミド基、イミノエーテル基、ピリジン基、ピロリドン基、イミダゾール基、4級アンモニウム基等を単独で又は複数種有するポリマーを例示することができる。
 多孔性成形体形成ポリマーが芳香族ポリスルホンである場合、親水性ポリマーとしてはポリビニルピロリドン(以下、PVPともいう。)系ポリマーが最も好ましい。
 ポリビニルピロリドン系ポリマーとしては、ビニルピロリドン・酢酸ビニル共重合ポリマー、ビニルピロリドン・ビニルカプロラクタム共重合ポリマー、ビニルピロリドン・ビニルアルコール共重合ポリマー等が挙げられ、これらのうち少なくとも1種を含んでいることが好ましい。中でも、ポリスルホン系ポリマーとの相溶性という観点から、ポリビニルピロリドン、ビニルピロリドン・酢酸ビニル共重合ポリマー、ビニルピロリドン・ビニルカプロラクタム共重合ポリマーが好適に用いられる。
 本実施形態の血液浄化器に用いる多孔性成形体は、生体適合性ポリマーにより被覆されていることが好ましく、該生体適合性ポリマーは、好ましくは、ポリメトキシエチルアクリレート(PMEA)及びポリビニルピロリドン(PVP)系ポリマーからなる群から選ばれる。
[ポリメトキシエチルアクリレート(PMEA)]
 PMEAの生体適合性(血液適合性)については、田中 賢,人工臓器の表面を生体適合化するマテリアル,BIO INDUSTRY,Vol20,No.12,59-70 2003に詳細に述べられている。
 その中で、PMEAとその比較のために側鎖構造の異なるアクリレート系ポリマーを作製し、血液を循環させたときの血小板、白血球、補体、凝固系の各種マーカーを評価したところ、「PMEA表面は他の高分子に比べて血液成分の活性化が軽微であった。また、PMEA表面はヒト血小板の粘着数が有意に少なく粘着血小板の形態変化が小さいことから血液適合性に優れる」と記載されている。
 このように、PMEAは、単に構造中にエステル基がり親水性であるから血液適合性が良いというのではなく、その表面に吸着した水分子の状態が血液適合性に大きな影響を与えると考えられている。
 ATR-IR法においては、試料に入射した波は試料に僅かにもぐり込んで反射するため、このもぐり込み深さ領域の赤外吸収を測定できることが知られているところ、本発明者らは、このATR-IR法の測定領域が、多孔性成形体の表面に相当する「表層」の深さとほぼ等しいことも見出した。すなわち、ATR-IR法の測定領域とほぼ等しい深さ領域における血液適合性が、多孔性成形体の血液適合性を支配し、その領域にPMEAを存在させることで、一定の血液適合性を有する血液浄化器を提供できることを見出した。PMEAを多孔性成形体の表面にコートすることで、長期保管後の血液浄化器からの微粒子の発生も抑制可能である。
 ATR-IR法による測定領域は、空気中での赤外光の波長、入射角、プリズムの屈折率、試料の屈折率等に依存し,通常、表面から1μm以内の領域である。
 PMEAが多孔性成形体の表面に存在することは、多孔性成形体の熱分解ガスクロマトグラフ質量分析により確認できる。PMEAの存在は多孔性成形体の表面に対する全反射赤外吸収(ATR-IR)測定で、赤外吸収曲線の1735cm-1付近にピークが見られれば推定されるが、この付近のピークは他の物質に由来する可能性もある。そこで、熱分解ガスクロマトグラフ質量分析を行い、PMEA由来の2-メトキシエタノールを確認することでPMEAの存在を確認することができる。
 PMEAの溶媒に対する溶解性は特異なものがある。例えば、PMEAは100%エタノール溶媒には溶解しないが、水/エタノール混合溶媒にはその混合比によって溶解する領域がある。そして、その溶解する領域内の混合比では、水の量が多いほど、PMEA由来のピーク(1735cm-1付近)のピーク強度は強くなる。
 表面にPMEAを含む多孔性成形体においては、表面の細孔径の変化が小さいので、透水性能の変化があまりなく製品設計が簡単である。本実施形態においては、PMEAを多孔性成形体の表面に有するが、例えば、PMEAを多孔性成形体にコートした場合、PMEAが極薄膜状に付着し、細孔をほぼ塞がない状態で多孔性成形体表面をコートしていると考えられる。特に、PMEAは分子量が小さく、分子鎖が短いことから、被膜の構造が厚くなりにくく、多孔性成形体の構造を変化させにくいため好ましい。また、PMEAは他の物質との相溶性が高く、多孔性成形体の表面に均一に塗布することができ、血液適合性を向上させることができるため好ましい。
 PMEAの重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)などにより測定することができる。
 多孔性成形体の表面にPMEA被覆層を形成する方法としては、例えば、多孔性成形体を充填したカラム(容器)の上部からPMEAを溶解したコート液を流してコーティングする方法等が好適に用いられる。
[ポリビニルピロリドン(PVP)系ポリマー]
 ポリビニルピロリドン(PVP)系ポリマーは、特に制限はないが、ポリビニルピロリドン(PVP)が好適に用いられる。
[微粒子数、溶出金属濃度]
 透析用途の血液浄化器が透析型人工腎臓装置の製造(輸入)承認を得るためには、厚生労働省の定める人工腎臓装置承認基準を満たす必要がある。したがって、本実施形態の血液浄化器は、人工腎臓装置承認基準に記載の溶出物試験の基準を満たす必要がある。本実施形態の血液浄化器は、血液浄化器中に注射用生理食塩液を封入してから3月後及び6月後における前記食塩液1mL中の10μm以上の微粒子数が25個以下で且つ前記食塩液1mL中の25μm以上の微粒子数が3個以下であり、さらに、溶出物試験液の吸光度が0.1以下である。
 血液浄化器中に封入した注射用生理食塩液中の微粒子数の測定方法は、以下の通りである。
(1)ウエットタイプの血液浄化器における測定方法
 ウエットタイプの血液浄化器は、出荷直前に溶液(例えば、UF濾過膜水等)を封入して、溶液中で放射線滅菌を行い、そのまま出荷される。このようなウエットタイプの血液浄化器では、溶液を完全に除去した後、10Lの注射用生理食塩液で血液浄化器中の多孔性成形体に通液した後(孔性成形体が中空糸膜の場合には膜内表面側から膜外表面側に濾過した後)、新たな注射用生理食塩液を封入してから25℃±1℃に保温して3ヶ月間静置状態で保管する。血液浄化器から食塩液のサンプリングは、血液浄化器から全ての溶液(充填液)を可能な限り取り出した後、均一に混合してから行う。例えば、3ヶ月時点の測定の為のサンプリング後、残りの食塩液を元の血液浄化器の中に入れ密封して更に3ヶ月間保管し、6ヶ月時点の測定に用いる。
(2)ドライタイプの血液浄化器における測定方法
 ドライタイプの血液浄化器では放射線滅菌を溶液中で行わない場合が多く、乾燥状態で出荷されることが多い。10Lの注射用生理食塩液で血液浄化器中の多孔性成形体に通液した後(孔性成形体が中空糸膜の場合には膜内表面側から膜外表面側に濾過した後)、新たな注射用生理食塩液を封入してから25℃±1℃に保温して3ヶ月間静置状態で保管する。血液浄化器から食塩液のサンプリングは、血液浄化器から全ての溶液(充填液)を可能な限り取り出した後、均一に混合してから行う。例えば、3ヶ月時点の測定の為のサンプリング後、残りの食塩液を元の血液浄化器の中に入れ密封して更に3ヶ月間保管し、6ヶ月時点の測定に用いる。
 サンプリングした溶液(又は充填液)中の微粒子数はパーティクルカウンターにて測定可能である。
[多孔性成形体のリン吸着性能]
 本実施形態の多孔性成形体は、透析患者の血液透析におけるリン吸着に好適に用いられる。血液組成は血漿成分と血球成分に分かれ、血漿成分は水91%、タンパク質7%、脂質成分及び無機塩類で構成されており、血液中でリンは、リン酸イオンとして血漿成分中に存在する。血球成分は赤血球96%、白血球3%及び血小板1%で構成されており、赤血球の大きさは直径7~8μm、白血球の大きさは直径5~20μm、血小板の大きさは直径2~3μmである。
 水銀ポロシメーターで測定した多孔性成形体の最頻細孔径が0.08~0.70μmであることにより、外表面の無機イオン吸着体の存在量が多いため、高速で通液処理してもリンイオンを確実に吸着でき、リンイオンの多孔性成形体内部への浸透拡散吸着性にも優れる。さらに、血球成分等の目詰り等による血液流れ性が低下することもない。
 本実施形態においては、かかる多孔性成形体の表面に生体適合性ポリマーを有することにより、より好適な血液処理用リン吸着剤として用いることができる。
 最頻細孔径が0.08~0.70μmである多孔性成形体を含有し、該多孔性成形体の表面に生体適合性ポリマーを有することにより、血液中のリンイオンを選択的に確実に吸着することで、体内に戻る血中リン濃度はほとんど0に近いものとなる。ほとんどリンを含まない血液を体内に戻すことで細胞内又は細胞外からの血中へのリンの移動が活発になりリフィリング効果が大きくなることが考えられる。
 また、血中のリンを補おうとするリフィリング効果を誘発することで、通常排泄できない細胞外液、細胞内に存在するリンも排泄できる可能性がある。
 これにより、透析患者が、リン吸着剤経口薬を服用しないか、少量の服用(補助的な使用)に留めても、透析患者の副作用を起こさずに、体内血液中のリン濃度を適切に管理することができる。
 多孔性成形体を容器(カラム)等に充填した血液浄化器を透析時のダイアライザー前後に直列、並列等に繋いで使用することができる。本実施形態の血液浄化器をリン吸着用血液浄化器として用いることができ、血中のリン濃度が低く、空間速度が速い状態でも無機リンの選択性と吸着性能に優れる。
 リフィリング効果を誘発しやすくなる観点から、ダイアライザーの前後に本実施形態の血液浄化器を繋いで使用することが好ましい。
 リフィリング効果が期待できる観点から、リン吸着率(%)(血中のリンが吸着される割合)は、50%以上であることが好ましく、60%以上であることがより好ましく、70%以上、80%以上、85%以上、90%以上、95%以上、99%以上であることが好適である。
 本実施形態の血液浄化器に用いる多孔性成形体の血中リン吸着量は、2mg/ml以上であることが好ましい。
 本実施形態の血液浄化器の容器(カラム)の素材に限定はなく、例えば、ポリスチレン系ポリマー、ポリスルホン系ポリマー、ポリエチレン系ポリマー、ポリプロピレン系ポリマー、ポリカーボネート系ポリマー、スチレン・ブタジエンブロックコポリマーの様な混合樹脂等を用いることができる。素材のコストの観点からポリエチレン系ポリマー、ポリプロピレン系ポリマーが好ましく用いられる。
[多孔性成形体の製造方法]
 次に、本実施形態の多孔性成形体の製造方法を詳細に説明する。
 本実施形態の多孔性成形体の製造方法は、例えば、(1)無機イオン吸着体を乾燥する工程、(2)工程(1)で得られた無機イオン吸着体を粉砕する工程、(3)工程(2)で得られた無機イオン吸着体、多孔性成形体形成ポリマーの良溶媒、多孔性成形体形成ポリマー、及び場合により親水性ポリマー(水溶性高分子)を混合してスラリーを作製する工程、(4)工程(3)で得られたスラリーを成形する工程、(5)工程(4)で得られた成形品を貧溶媒中で凝固させる工程を含む。
[工程(1):無機イオン吸着体の乾燥工程]
 工程(1)において、無機イオン吸着体を乾燥させて粉体を得る。このとき、乾燥時の凝集を抑制するために、製造時に含有される水分を有機液体に置換した後に乾燥されることが好ましい。有機液体としては、無機イオン吸着体の凝集を抑制される効果があれば特に限定されないが、親水性が高い液体を用いることが好ましい。例えば、アルコール類、ケトン類、エステル類、エーテル類等が挙げられる。
 有機液体への置換率は、50質量%~100質量%であればよく、好ましくは70質量%~100質量%、より好ましくは80質量%~100質量%であればよい。
 有機液体への置換方法は、特に限定されるものではなく、有機液体に水を含んだ無機イオン吸着体を分散させた後に遠心分離、濾過をしてもよいし、フィルタープレスなどでろ過を行った後に有機液体を通液してもよい。置換率を高くするためには、有機液体へ無機イオン吸着体を分散後に濾過する方法を繰り返すことが好ましい。
 有機液体への置換率は、濾液の水分率をカールフィッシャー法で測定することで求められる。
 無機イオン吸着体に含まれる水分を有機液体に置換した後に乾燥を行うことで、乾燥時の凝集を抑制することができ、無機イオン吸着体の細孔体積を増加させることができ、その吸着容量を増加させることができる。
 有機液体の置換率が50質量%未満であると、乾燥時の凝集抑制効果が低くなり無機イオン吸着体の細孔体積が増加しない。
[工程(2):無機イオン吸着体の粉砕工程]
 工程(2)においては、工程(1)により得られた無機イオン吸着体の粉末を粉砕する。粉砕の方法としては、特に限定されるものではなく、乾式粉砕や湿式粉砕を用いることができる。
 乾式粉砕方法は、特に限定されるものではなく、ハンマーミルなどの衝撃式破砕機、ジェットミルなどの気流式粉砕機、ボールミルなどの媒体式粉砕機、ローラーミルなどの圧縮式粉砕機などを用いることができる。
 中でも、粉砕した無機イオン吸着体の粒子径分布をシャープにすることができることから、気流式粉砕機が好ましい。
 湿式粉砕方法は、無機イオン吸着体及び多孔性成形体形成ポリマーの良溶媒を合わせて粉砕、混合できるものであれば、特に限定されるものではなく、加圧型破壊、機械的磨砕、超音波処理等の物理的破砕方法に用いられる手段を用いることができる。
 粉砕混合手段の具体例としては、ジェネレーターシャフト型ホモジナイザー、ワーリングブレンダー等のブレンダー、サンドミル、ボールミル、アトライタ、ビーズミル等の媒体撹拌型ミル、ジェットミル、乳鉢と乳棒、らいかい器、超音波処理器等が挙げられる。
 中でも、粉砕効率が高く、粘度の高いものまで粉砕できることから、媒体撹拌型ミルが好ましい。
 媒体撹拌型ミルに使用するボール径は、特に限定されるものではないが、0.1mm~10mmであることが好ましい。ボール径が0.1mm以上であれば、ボール質量が充分あるので粉砕力があり粉砕効率が高く、ボール径が10mm以下であれば、微粉砕する能力に優れる。
 媒体攪拌型ミルに使用するボールの材質は、特に限定されるものではないが、鉄やステンレス等の金属、アルミナ、ジルコニア等の酸化物類、窒化ケイ素、炭化ケイ素等の非酸化物類の各種セラミック等が挙げられる。中でも、耐摩耗性に優れ、製品へのコンタミネーション(摩耗物の混入)が少ない点で、ジルコニアが優れている。
 粉砕後は多孔性成形体形成ポリマーの良溶媒に無機イオン吸着体が十分に分散した状態でフィルター等を用いて濾過精製することが好ましい。
 粉砕・精製した無機イオン吸着体の粒子径は、0.001~10μm、好ましくは0.001~2μm、より好ましくは0.01~0.1μmである。製膜原液中で無機イオン吸着体を均一に分散させるには、粒子径が小さい程良い。0.001μm未満の均一した微粒子を製造し難い傾向にある。10μmを超える無機イオン吸着体では、多孔性成形体を安定して製造し難い傾向にある。
[工程(3):スラリー作製工程]
 工程(3)においては、工程(2)により得られた無機イオン吸着体と、多孔性成形体形成ポリマーの良溶媒、多孔性成形体形成ポリマー、場合により水溶性高分子(親水性ポリマー)を混合してスラリーを作製する。
 工程(2)及び工程(3)に用いる多孔性成形体形成ポリマーの良溶媒としては、多孔性成形体の製造条件において多孔性成形体形成ポリマーを安定に1質量%を超えて溶解するものであれば、特に限定されるものではなく、従来公知のものを使用できる。
 良溶媒としては、例えば、N-メチル-2ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAC)、N,N-ジメチルホルムアミド(DMF)等が挙げられる。
 良溶媒は1種のみを用いてもよく、2種以上を混合して用いてもよい。
 工程(3)における多孔性成形体形成ポリマーの添加量は、多孔性成形体形成ポリマー/(多孔性成形体形成ポリマー+水溶性高分子+多孔性成形体形成ポリマーの良溶媒)の割合が、3質量%~40質量%となるようにすることが好ましく、4質量%~30質量%であることがより好ましい。多孔性成形体形成ポリマーの含有率が3質量%以上であれば、強度の高い多孔性成形体が得られ、40質量%以下であれば、空孔率の高い多孔性成形体が得られる。
 工程(3)において、水溶性高分子は必ずしも添加される必要は無いが、添加をすることで多孔性成形体の外表面及び内部に三次元的に連続した網目構造を形成する繊維状の構造体を含む多孔性成形体が均一に得られ、すなわち、孔径の制御が容易になり、高速で通液処理してもイオンを確実に吸着できる多孔性成形体が得られる。
 工程(3)に用いる水溶性高分子は、多孔性成形体形成ポリマーの良溶媒と多孔性成形体形成ポリマーとに対して相溶性のあるものであれば、特に限定されるものではない。
 水溶性高分子としては、天然高分子、半合成高分子、及び合成高分子のいずれも使用できる。
 天然高分子としては、例えば、グアーガム、ローカストビーンガム、カラーギナン、アラビアゴム、トラガント、ペクチン、デンプン、デキストリン、ゼラチン、カゼイン、コラーゲン等が挙げられる。
 半合成高分子としては、例えば、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルデンプン、メチルデンプン等が挙げられる。
 合成高分子としては、例えば、ポリビニルアルコール、ポリビニルピロリドン(PVP)、ポリビニルメチルエーテル、カルボキシビニルポリマー、ポリアクリル酸ナトリウム、テトラエチレングリコール、トリエチレングリコール等のポリエチレングリコール類等が挙げられる。
 中でも、無機イオン吸着体の担持性を高める点から、合成高分子が好ましく、多孔性が向上する点から、ポリビニルピロリドン(PVP)、ポリエチレングリコール類がより好ましい。
 ポリビニルピロリドン(PVP)とポリエチレングリコール類の質量平均分子量は、400~35,000,000であることが好ましく、1,000~1,000,000であることがより好ましく、2,000~100,000であることがさらに好ましい。
 質量平均分子量が400以上であれば、表面開口性の高い多孔性成形体が得られ、35,000,000以下であれば、成形する時のスラリーの粘度が低いので成形が容易になる傾向がある。
 水溶性高分子の質量平均分子量は、水溶性高分子を所定の溶媒に溶解し、ゲル浸透クロマトグラフィー(GPC)分析により測定できる。
 水溶性高分子の添加量は、水溶性高分子/(水溶性高分子+多孔性成形体形成ポリマー+多孔性成形体形成ポリマーの良溶媒)の割合が、0.1質量%~40質量%となるようにすることが好ましく、0.1質量%~30質量%であることがより好ましく、0.1質量%~10質量%であることがさらに好ましい。
 水溶性高分子の添加量が0.1質量%以上であれば、多孔性成形体の外表面及び内部に三次元的に連続した網目構造を形成する繊維状の構造体を含む多孔性成形体が均一に得られる。水溶性高分子の添加量が40質量%以下であれば、外表面開口率が適当であり、多孔性成形体の外表面の無機イオン吸着体の存在量が多いため、高速で通液処理してもイオンを確実に吸着できる多孔性成形体が得られる。
[工程(4):成形工程]
 工程(4)においては、工程(3)により得られたスラリー(成形用スラリー)を成形する。成形用スラリーは、多孔性成形体形成ポリマーと、多孔性成形体形成ポリマーの良溶媒と、無機イオン吸着体と、必要により水溶性高分子の混合スラリーである。
 本実施形態の多孔性成形体の形態は、成形用スラリーを成形する方法によって、粒子状、糸状、シート状、中空糸状、円柱状、中空円柱状等の任意の形態を採ることができる。
 粒子状、例えば、球状粒子の形態に成形する方法としては、特に限定されないが、例えば、回転する容器の側面に設けたノズルから、容器中に収納されている成形用スラリーを飛散させて、液滴を形成させる回転ノズル法等が挙げられる。回転ノズル法により、粒度分布が揃った粒子状の形態に成形することができる。
 具体的には、1流体ノズルや2流体ノズルから、成形用スラリーを噴霧して凝固浴中で凝固する方法が挙げられる。
 ノズルの径は、0.1mm~10mmであることが好ましく、0.1mm~5mmであることがより好ましい。ノズルの径が0.1mm以上であれば、液滴が飛散しやすく、10mm以下であれば、粒度分布を均一にすることができる。
 遠心力は、遠心加速度で表され、5G~1500Gであることが好ましく、10G~1000Gであることがより好ましく、10G~800Gであることがさらに好ましい。
 遠心加速度が5G以上であれば、液滴の形成と飛散が容易であり、1500G以下であえば、成形用スラリーが糸状にならずに吐出し、粒度分布が広くなるのを抑えることができる。粒度分布が狭いことにより、カラムに多孔性成形体を充填した時に水の流路が均一になるため、超高速通水処理に用いても通水初期からイオン(吸着対象物)が漏れ出す(破過する)ことが無いという利点を有している。
 糸状又はシート状の形態に成形する方法としては、該当する形状の紡口、ダイスから成形用スラリーを押し出し、貧溶媒中で凝固させる方法が挙げられる。
 中空糸状の多孔性成形体を成形する方法としては、環状オリフィスからなる紡口を用いることで、糸状やシート状の多孔性成形体を成形する方法と同様にして成形できる。
 円柱状又は中空円柱状の多孔性成形体を成形する方法としては、紡口から成形用スラリーを押し出す際、切断しながら貧溶媒中で凝固させてもよいし、糸状に凝固させてから後に切断しても構わない。
[工程(5):凝固工程]
 工程(5)においては、工程(4)で得られた凝固が促進された成形品を貧溶媒中で凝固させて、多孔性成形体を得る。
<貧溶媒>
 工程(5)における貧溶媒としては、工程(5)の条件において多孔性成形体形成ポリマーの溶解度が1質量%以下の溶媒を使用することができ、例えば、水、メタノール及びエタノール等のアルコール類、エーテル類、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類等が挙げられる。中でも、貧溶媒としては、水が好ましい。
 工程(5)では、先行する工程から良溶媒が持ち込まれ、良溶媒の濃度が、凝固工程開始時と終点で、変化してしまう。そのため、予め良溶媒を加えた貧溶媒としてもよく、初期の濃度を維持するように水等を別途加えながら濃度を管理して凝固工程を行うことが好ましい。
 良溶媒の濃度を調整することで、多孔性成形体の構造(外表面開口率及び粒子形状)を制御できる。
 貧溶媒が水又は多孔性成形体形成ポリマーの良溶媒と水の混合物の場合、凝固工程において、水に対する多孔性成形体形成ポリマーの良溶媒の含有量は、0~80質量%であることが好ましく、0~60質量%であることがより好ましい。
 多孔性成形体形成ポリマーの良溶媒の含有量が80質量%以下であれば、多孔性成形体の形状が良好になる効果が得られる。
 貧溶媒の温度は、以下に説明する液滴を遠心力で飛散させる回転容器における空間部の温度と湿度を制御する観点から、40~100℃であることが好ましく、50~100℃であることがより好ましく、60~100℃であることがさらに好ましい。
[多孔性成形体の製造装置]
 本実施形態における多孔性成形体が粒子状の形態である場合、その製造装置は、液滴を遠心力で飛散させる回転容器と、凝固液を貯留する凝固槽と、を備え、回転容器と凝固槽の間の空間部分を覆うカバーを具備し、空間部の温度と湿度を制御する制御手段を備えたものであることができる。
 液滴を遠心力で飛散させる回転容器は、成形用スラリーを球状の液滴にして遠心力で飛散する機能があれば、特定の構造からなるものに限定されず、例えば、周知の回転ディスク及び回転ノズル等が挙げられる。
 回転ディスクは、成形用スラリーが回転するディスクの中心に供給され、回転するディスクの表面に沿って成形用スラリーが均一な厚みでフィルム状に展開し、ディスクの周縁から遠心力で滴状に分裂して微小液滴を飛散させるものである。
 回転ノズルは、中空円盤型の回転容器の周壁に多数の貫通孔を形成するか、または周壁に貫通させてノズルを取付け、回転容器内に成形用スラリーを供給すると共に回転容器を回転させ、その際に貫通孔又はノズルから遠心力により成形用スラリーを吐出させて液滴を形成するものである。
 凝固液を貯留する凝固槽は、凝固液を貯留できる機能があれば、特定の構造からなるものに限定されず、例えば周知の上面開口の凝固槽や、回転容器を囲むように配置した筒体の内面に沿って凝固液を重力により自然流下させる構造の凝固槽等が挙げられる。
 上面開口の凝固槽は、回転容器から水平方向に飛散した液滴を自然落下させ、上面が開口した凝固槽に貯留した凝固液の水面で液滴を捕捉する装置である。
 回転容器を囲むように配置した筒体の内面に沿って凝固液を重力により自然流下させる構造の凝固槽は、凝固液を筒体の内面に沿わせて周方向にほぼ均等な流量で流出させ、内面に沿って自然流下する凝固液流中に液滴を捕捉して凝固させる装置である。
 空間部の温度と湿度の制御手段は、回転容器と凝固槽の間の空間部を覆うカバーを具備し、空間部の温度と湿度を制御する手段である。
 空間部を覆うカバーは、空間部を外部の環境から隔離して、空間部の温度及び湿度を現実的に制御し易くする機能があれば、特定の構造からなるものに限定されず、例えば、箱状、筒状及び傘状の形状とすることができる。
 カバーの材質は、例えば、金属のステンレス鋼やプラスチック等が挙げられる。外部環境と隔離する点で、公知の断熱剤で覆うこともできる。カバーには、一部開口部を設けて、温度及び湿度を調整してもよい。
 空間部の温度及び湿度の制御手段は、空間部の温度と湿度を制御する機能があればよく、特定の手段に限定されず、例えば、電気ヒーター、スチームヒーター等の加熱機、超音波式加湿器、加熱式加湿器等の加湿器が挙げられる。
 構造が簡便であるという点で、凝固槽に貯留した凝固液を加温して、凝固液から発生する蒸気を利用して空間部の温度と湿度を制御する手段が好ましい。
 以下、多孔性成形体の表面に生体適合性ポリマーの被覆層を形成する方法について説明する。
 本実施形態においては、多孔性成形体の表面に、例えばPMEA又はPVP系ポリマーを含むコート液を塗布することによって、被膜を形成することができる。この際、例えば、PMEAコート液は多孔性成形体に形成された細孔内に浸入し、多孔質な成形体表面の細孔径を大きく変化させずに、多孔性成形体の細孔表面全体にPMEAが含ませることもできる。
 PMEAコート液の溶媒としては、多孔性成形体を構成する多孔性成形体形成ポリマーや水溶性高分子といった高分子を溶解せず、PMEAを溶解する又は分散させることができる溶媒であれば特に限定されるものではないが、工程の安全性や、続く乾燥工程での取り扱いの良さから、水やアルコール水溶液が好ましい。沸点、毒性の観点から、水、エタノール水溶液、メタノール水溶液、イソプロピルアルコール水溶液などが好適に用いられる。
 PVPコート液の溶媒としては、多孔性成形体を構成する多孔性成形体形成ポリマーや水溶性高分子といった高分子を溶解せず、PVPを溶解する又は分散させることができる溶媒であれば特に限定されるものではないが、工程の安全性や、続く乾燥工程での取り扱いの良さから、水やアルコール水溶液が好ましい。沸点、毒性の観点から、水、エタノール水溶液、メタノール水溶液、イソプロピルアルコール水溶液などが好適に用いられる。
 コート液の溶媒の種類、溶媒の組成については、多孔性成形体を構成する高分子との関係で、適宜設定する。
 PMEAコート液のPMEAの濃度に限定はないが、例えば、コート液の0.001質量%~1質量%とすることができ、0.005質量%~0.2質量%であることがより好ましい。
 コート液の塗布方法に限定はないが、例えば、多孔性成形体を適当なカラム(容器)に充填し、上部からPMEAを含んだコート液を流し、次いで、圧縮空気を用いて余分な溶液を除去する方法を採用することができる。
 その後、蒸留水などで洗浄を行い残った不要な溶媒を置換除去した後、滅菌をすることで医療用具として用いることができる。
 以下、実施例、比較例を挙げて説明するが、本発明はこれらに限定されるものではない。多孔性成形体の物性、血液浄化器の性能等の測定は、以下のように実施した。本発明の範囲は以下の実施例等のみに限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
[かさ密度]
 多孔性成形体が、粒子状、円柱状、中空円柱状等であり、その形状が短いものは、湿潤状態の多孔性成形体を、メスシリンダー等を用いて、1mLを1cmとしてみかけの体積を測定する。その後、室温で真空乾燥して重量を求め、重量/体積として、かさ密度を算出する。
 多孔性成形体が、糸状、中空糸状、シート状等であり、その形状が長いものは、湿潤時の断面積と長さを測定して、両者の積から体積を算出する。その後、室温で真空乾燥して重量を求め、重量/体積として、かさ密度(g/mL)を算出する。乾燥した無機イオン吸着体の平均粒子径毎に、多孔性成形体成形用スラリー中の無機イオン吸着体濃度と多孔性成形体形成ポリマー濃度及び水溶性高分子濃度に対する該スラリーから得られた多孔性成形体のかさ密度との関係を予め求めておくことにより、多孔性成形体について目的とするかさ密度を調整することが可能である。以下に説明する多孔性成形体の含水率も同様に調整することが可能である。
[含水率]
 湿潤状態の多孔性成形体(ビーズ)をメスシリンダーなどで精確に3mL(3cm)を採取し、採取したビーズを不織布の上に置いて表面の水を取り除く。表面水を取り除いたビーズをあらかじめ用意したPP試験管の中に入れ、素早く重量G1を測定し、その後、70℃で真空乾燥を行い恒量に達した時の重量をG2とする。含水率(%)は100×(G1-G2)/(G1)の値とする。
[多孔性成形体の平均粒径及び無機イオン吸着体の平均粒径]
 多孔性成形体の平均粒径及び無機イオン吸着体の平均粒径は、レーザー回折/散乱式粒度分布測定装置(HORIBA社製のLA-950(商品名))で測定した。分散媒体は水を用いた。無機イオン吸着体に水和酸化セリウムを使用したサンプルの測定時は、屈折率に酸化セリウムの値を使用して測定した。同様に、無機イオン吸着体に水和酸化ジルコニウムを使用したサンプルを測定する時は、屈折率に酸化ジルコニウムの値を使用して測定した。
[牛血漿でのリン吸着量]
 図1に示す装置を用いて、牛血漿を使用した低リン濃度血清によるカラムフロー試験によるリン吸着量を測定した。低リン濃度(0.7mg/dL)程度に調整した牛血漿を用いて、一般的な透析条件(空間速度SV=120,4時間透析)と同等な条件でカラム(容器)に充填した多孔性成形体のリン吸着量(mg-P/mL-Resin(多孔性成形体))を測定した。
 リン酸イオン濃度は、モリブデン酸直接法にて測定した。
 通液速度がSV120の時のリン吸着量が、1.5(mg-P/mL-Resin)以上であれば、吸着容量が大きく、リン吸着剤として良好であると判断した。
[微粒子数]
 微粒子計測器(リオン社製 KL-04)を用いて、それぞれの評価用サンプルを測定した。測定値は1回目の測定値を廃棄し、2回目以降3回測定し、その平均値を正式な値とした。
[実施例1]
 硫酸セリウム4水和物(和光純薬(株))2000gを50Lの純水中に投入し、撹拌羽を用いて溶解させた後、8M苛性ソーダ(和光純薬(株))3Lを20ml/minの速度で滴下し、水和酸化セリウムの沈殿物を得た。得られた沈殿物をフィルタープレスにてろ過した後、純水500Lを通液して洗浄し、さらにエタノール(和光純薬(株))80Lを通液して水和酸化セリウムに含まれる水分をエタノールに置換した。このとき、濾過終了時の濾液10mlを採取し、カールフィッシャー水分率計((株)三菱ケミカルアナリテック社製のCA-200(商品名))にて水分率の測定を行ったところ、水分率は5質量%であり、有機液体の置換率は95質量%であった。得られた有機液体を含む水和酸化セリウムを風乾し、乾燥した水和酸化セリウムを得た。
 得られた乾燥水和酸化セリウムを、ジェットミル装置(日清エンジニアリング(株)社製のSJ-100(商品名))を用いて、圧気圧力0.8MPa、原料フィード速度100g/hrの条件で粉砕し、粒子径平均1.2μmの水和酸化ヘリウム粉末を得た。
 N-メチル-2ピロリドン(NMP、三菱化学(株)製)214.8gと、粉砕した水和酸化セリウム粉末(MOX)146.4g、ポリエーテルスルホン(PES、住友化学(株)製)39.2gを加えて、溶解槽中にて、60℃に加温して撹拌羽根を用いて撹拌・溶解し、均一な成形用スラリー溶液を得た。
 得られた成形用スラリーを側面に直径4mmのノズルを開けた円筒状回転容器の内部に供給し、この容器を回転させ、遠心力(15G)によりノズルから液滴を形成させた。水に対するNMPの含有量が50質量%の凝固液を60℃に加温して貯留した、上面開口の凝固槽中に液滴を着水させ、成形用スラリーを凝固させた。
 さらに、エタノール置換後にアルカリ洗浄、分級を行い、球状の多孔性成形体を得た。
 多孔性成形体の粒径は537μ、かさ密度0.45g/ml-Resin、含水率83.2%であった。
[超臨界流体による洗浄]
 得られた多孔性成形体を二酸化炭素からなる超臨界流体(臨界温度304.1K、臨界圧力7.38MPa、株式会社アイテック社製機器)にて1時間洗浄した。
[PMEAコーティング]
 得られた多孔性成形体1mLを円筒型容器(底面にガラスフィルター設置したもの、L(長さ)/D(円筒直径)は1.5)に充填した。次いでPMEA(Mn20,000,Mw/Mn2.4)0.2gをエタノール40g/水60gの水溶液(100g)中に溶解させ、コート液を作製した。多孔性成形体を充填した容器を垂直に把持しその上部からコート液を流速100mL/minで流し多孔性成形体にコート液を接触させ、その後、純水で洗浄した。
 純水洗浄後、0.1KMpaのエアーで容器内のコート液を吹き飛ばし、真空乾燥機内にモジュールを入れて35℃で15時間真空乾燥させ、大気雰囲気下、25Kgyでガンマ線滅菌を実施して血液浄化器を作製した。
[牛血漿を使用した低リン濃度血清によるカラムフロー試験]
 透析治療時にダイアライザーの後にリン吸着器を使用する場合を考えて、透析治療時のダイアライザー出口の血中無機リン濃度0.2~1.0mg/dLでのリン吸着量を測定することにした。そのため、試験血漿液のリン濃度の調整を行った。
 市販品の牛血清を遠心分離(3500rpm、5min)してその上澄み液である血漿を2000mL作製した。血漿中のリン濃度は10.8mg/dLであった。
 得られた血漿の半分(1000mL)に実施例1で得られた多孔性成形体を加え、室温で2時間攪拌処理を行い、遠心分離(3500rpm、5min)をしてリン濃度0の血漿約950mLを得た。
 リン濃度10.8mg/dLの血漿35mLとリン濃度0の血漿465mLを混合し遠心分離(3500rpm、5min)をかけて上澄み液としてリン濃度0.8mg/dL、495mLの血漿を得た。
 図1に示すように、実施例1で得られた血液浄化器を組み込み、得られた血漿450mLを2mL/minの流速で通液し、1フラクション目は10mLでそれ以降は1サンプルあたり20mLずつ採取した。通常、平均的な透析条件は流速Qb=200mL/minで4時間透析を行うことから、200mL×4時間=48000mLの全血流量となり、血球成分をHt=30%とすると血漿としては33600mLの流量となる。今回は1/100スケールでの実験としたので340mLの通液を目安とした。
 血漿フロー量350mLでの多孔性成形体のリン吸着量は2.91mg-P/mL-Resinであった。
[評価結果]
 得られた血液浄化器の性能を以下の表1に示す。リン吸着能が高く、微粒子数が人工腎臓装置承認基準を満たす安全に使用可能な血液浄化器であった。
[実施例2]
 水溶性高分子としてポリビニルピロリドン(PVP、BASF社製K90)を31.6g、MOX119.2gにNMP217.6gと、PES31.6gを加えて、実施例1と同様に球状の多孔性成形体を得た。
 得られた血液浄化器の性能を以下の表1に示す。リン吸着能が高く、微粒子数が人工腎臓装置承認基準を満たす安全に使用可能な血液浄化器であった。
[実施例3]
 PVPを6.8g、MOX98gにジメチルアセトアミド(DMAc、三菱瓦斯化学(株)社製)267.2gと、ポリスルホン(Amoco Engineering  Polymers社製 P-1700)28gを加えて、実施例1と同様に球状の多孔性成形体を得た。
 得られた血液浄化器の性能を以下の表1に示す。リン吸着能が高く、微粒子数が人工腎臓装置承認基準を満たす安全に使用可能な血液浄化器であった。
[実施例4]
 PVPを2.8g、MOX147.6gにNMP219.2gと、PES22gを加えて、実施例1と同様に球状の多孔性成形体を得た。
 得られた血液浄化器の性能を以下の表1に示す。リン吸着能が高く、微粒子数が人工腎臓装置承認基準を満たす安全に使用可能な血液浄化器であった。
[実施例5]
 MOX222.4gにNMP162.8gと、PES14.8gを加えて、実施例1と同様に球状の多孔性成形体を得た。
 得られた血液浄化器の性能を以下の表1に示す。リン吸着能が高く、微粒子数が人工腎臓装置承認基準を満たす安全に使用可能な血液浄化器であった。
[実施例6]
 MOX177.6gにNMP178gと、PES44.4gを加えて、実施例1と同様に球状の多孔性成形体を得た。
 得られた血液浄化器の性能を以下の表1に示す。リン吸着能が高く、微粒子数が人工腎臓装置承認基準を満たす安全に使用可能な血液浄化器であった。
[実施例7]
 MOX192gにNMP173.2gと、PES34.8gを加えて、実施例1と同様に球状の多孔性成形体を得た。
 得られた血液浄化器の性能を以下の表1に示す。リン吸着能が高く、微粒子数が人工腎臓装置承認基準を満たす安全に使用可能な血液浄化器であった。
[実施例8]
 PMEAコートを行わなかった以外は、実施例1と同様に血液浄化器を作製した。得られた血液浄化器の性能を以下の表1に示す。
[比較例1]
 MOX196.4gにNMP166gと、PES37.6gを加えて、実施例1と同様に球状の多孔性成形体を得た。
 得られた血液浄化器の性能を以下の表2に示す。微粒子数が多い結果となった。
[比較例2]
 MOX211.6gにNMP141.2gと、PES47.2gを加えて、実施例1と同様に多孔性成形体を得た。
 得られた血液浄化器の性能を以下の表2に示す。微粒子数が多い結果となった。
[比較例3]
 MOX44gにNMP216gと、PES140gを加えて、実施例1と同様に球状の多孔性成形体を得た。
 得られた血液浄化器の性能を以下の表2に示す。血中のリン吸着量が低い結果となった。
[比較例4]
 MOX176gにNMP189.2gと、PES34.8gを加えて、実施例1と同様に球状の多孔性成形体を得た。
 得られた血液浄化器の性能を以下の表2に示す。微粒子数が多い結果となった。
[比較例5]
 MOX3.6gにNMP236.2gと、PES133.2gを加えて、実施例1と同様に球状の多孔性成形体を得た。
 得られた血液浄化器の性能を以下の表2に示す。血中のリン吸着量が低い結果となった。
[比較例6]
 PVPを11.2g、MOX129.2gにNMP224.8gと、PES34.8gを加えて、実施例1と同様に多孔性成形体を得た。
 得られた血液浄化器の性能を以下の表2に示す。微粒子数が多い結果となった。
[比較例7]
 PVPを18g、MOX7.2gにNMP236.8gと、PES18gを加えて、実施例1と同様に多孔性成形体を得た。
 得られた血液浄化器の性能を以下の表2に示す。微粒子数が多く、血中のリン吸着量が低い結果となった。
[比較例8]
 PVPを15.2g、MOX46gにNMP308gと、PES30.8gを加えて、実施例1と同様に球状の多孔性成形体を得た。
 得られた血液浄化器の性能を以下の表2に示す。微粒子数が多く、血中のリン吸着量が低い結果となった。
[比較例9]
 超臨界流体による洗浄を行わなかった以外は、実施例1と同様に血液浄化器を作製した。得られた血液浄化器の各種特性を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[実施例9]
 PMEAコートにおいて、PMEA1.0gをメタノール40g/水60gの水溶液(100g)中に溶解させ、コート液を作製し、超臨界流体による洗浄を行わなかった以外は、実施例2と同様に血液浄化器を作製した。得られた血液浄化器の性能を以下の表3に示す。リン吸着能が高く、微粒子数、金属溶出が人工腎臓装置承認基準を満たす安全に使用可能な血液浄化器であった。
[実施例10]
 MOXの代わりに水和酸化ジルコニウム(第一稀元素社製 商品名:R水酸化ジルコニウム)を用いた以外は、実施例2と同様に血液浄化器を作製した。得られた血液浄化器の性能を以下の表3に示す。リン吸着能が高く、微粒子数、金属溶出が人工腎臓装置承認基準を満たす安全に使用可能な血液浄化器であった。
[実施例11]
 MOXの代わりに酸化ランタン(ナカライテスク社製)を用いた以外は、実施例2と同様に血液浄化器を作製した。得られた血液浄化器の性能を以下の表3に示す。リン吸着能が高く、微粒子数、金属溶出が人工腎臓装置承認基準を満たす安全に使用可能な血液浄化器であった。
[実施例12]
 MOXの代わりに炭酸ネオジム(富士フィルムワコーケミカル社製 商品名:炭酸ネオジム八水和物)を用いた以外は、実施例2と同様に血液浄化器を作製した。得られた血液浄化器の性能を以下の表3に示す。リン吸着能が高く、微粒子数、金属溶出が人工腎臓装置承認基準を満たす安全に使用可能な血液浄化器であった。
[実施例13]
 NMP220gとMOX200gとPVP4gと、アクリロニトリル91.5重量%、アクリル酸メチル8.0重量%、メタクリルスルホン酸ソーダ0.5重量%、からなる極限粘度[η]=1.2の共重合体(有機高分子樹脂、PAN)10gから成る混合溶液を成形用スラリー溶液に用いた以外は、実施例1と同様に血液浄化器を作製した。得られた血液浄化器の性能を以下の表3に示す。リン吸着能が高く、微粒子数、金属溶出が人工腎臓装置承認基準を満たす安全に使用可能な血液浄化器であった。
[実施例14]
 有機高分子樹脂の良溶媒をジメチルスルホキシド(DMSO、関東化学社製)160g、有機高分子樹脂をエチレンビニルアルコール共重合体(EVOH、日本合成化学社製 商品名:ソアノールE3803)20g、PVP4g、MOX200gから成る混合溶液を成形用スラリー溶液に用いた以外は、実施例1と同様に血液浄化器を作製した。得られた血液浄化器の性能を以下の表3に示す。リン吸着能が高く、微粒子数、金属溶出が人工腎臓装置承認基準を満たす安全に使用可能な血液浄化器であった。
[実施例15]
 DMSO220g、有機高分子樹脂をポリ(メタクリル酸メチル)(PMMA、三菱化学社製 商品名:ダイヤナールBR-77)28g、PVP32g、MOX120gから成る混合溶液を成形用スラリー溶液に用いた以外は、実施例1と同様に血液浄化器を作製した。得られた血液浄化器の性能を以下の表3に示す。リン吸着能が高く、微粒子数、金属溶出が人工腎臓装置承認基準を満たす安全に使用可能な血液浄化器であった。
Figure JPOXMLDOC01-appb-T000003
 本発明に係る血液浄化器は、リン吸着能が高く、かつ、安全に使用可能であるため、体内に蓄積したリンを定期的に除去するための療法に好適に利用可能である。
 1  恒温槽
 2  実験台
 3  ポンプ
 4  多孔性吸収体(リン吸収剤)入りカラム
 5  圧力計
 6  サンプリング

Claims (11)

  1.  無機イオン吸着体を含む多孔性成形体を有する血液浄化器であって、該多孔性成形体の含水率をA、かさ密度をBとしたとき、B=-0.02A+2.175±0.185(74≦A≦94)の関係を満たし、かつ、該血液浄化器中に注射用生理食塩液を封入してから3月後及び6月後における該注射用生理食塩液1mL中の10μm以上の微粒子数が25個以下であり、かつ、25μm以上の微粒子数が3個以下であることを特徴とする血液浄化器。
  2.  前記多孔性成形体は、多孔性成形体形成ポリマーと親水性ポリマーと無機イオン吸着体から構成される、請求項1に記載の血液浄化器。
  3.  前記多孔性成形体形成ポリマーは、芳香族ポリスルホンである、請求項2に記載の血液浄化器。
  4.  前記親水性ポリマーは、生体適合性ポリマーである、請求項2又は3に記載の血液浄化器。
  5.  前記生体適合性ポリマーは、ポリビニルピロリドン(PVP)系ポリマーである、請求項4に記載の血液浄化器。
  6.  前記多孔性成形体は、生体適合性ポリマーにより被覆されている、請求項1~5のいずれか1項に記載の血液浄化器。
  7.  前記生体適合性ポリマーは、ポリビニルピロリドン(PVP)系ポリマー及びポリメトキシエチルアクリレート(PMEA)からなる群から選ばれる、請求項6に記載の血液浄化器。
  8.  前記多孔性成形体の血中リン吸着量が2mg/ml以上である、請求項1~7のいずれか1項に記載の血液浄化器。
  9.  前記無機イオン吸着体が、下記式(1):
       MN・mHO  ・・・(1)
    {式中、xは、0~3であり、nは、1~4であり、mは、0~6であり、そしてMとNは、Ti、Zr、Sn、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Si、Cr、Co、Ga、Fe、Mn、Ni、V、Ge、Nb、及びTaからなる群から選ばれる金属元素であり、互いに異なる。}で表される少なくとも一種の金属酸化物を含有する、請求項1~8のいずれか1項に記載の血液浄化器。
  10.  前記金属酸化物が、下記(a)~(c)群:
     (a)水和酸化チタン、水和酸化ジルコニウム、水和酸化スズ、水和酸化セリウム、水和酸化ランタン、及び水和酸化イットリウム;
     (b)チタン、ジルコニウム、スズ、セリウム、ランタン、ネオジム、及びイットリウムからなる群から選ばれる少なくとも一種の金属元素と、アルミニウム、珪素、及び鉄からなる群から選ばれる少なくとも一種の金属元素との複合金属酸化物;
     (c)活性アルミナ
    から選ばれる、請求項9に記載の血液浄化器。
  11.  前記無機イオン吸着体を含む多孔性成形体を超臨界流体又は亜臨界流体で洗浄した後に、その表面をPMEAで被覆する工程を含む、請求項7~10のいずれか1項に記載の血液浄化器の製造方法。
PCT/JP2019/014337 2018-03-30 2019-03-29 血液浄化器及びその製法 WO2019189884A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/042,024 US11806461B2 (en) 2018-03-30 2019-03-29 Blood purification device and method for producing same
JP2020509357A JP6899957B2 (ja) 2018-03-30 2019-03-29 血液浄化器及びその製法
EP19774274.5A EP3777915B1 (en) 2018-03-30 2019-03-29 Blood purification device and method for producing same
CN201980022684.6A CN111918682B (zh) 2018-03-30 2019-03-29 血液净化器及其制法
KR1020207028032A KR102407423B1 (ko) 2018-03-30 2019-03-29 혈액 정화기 및 그 제법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-068794 2018-03-30
JP2018068794 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189884A1 true WO2019189884A1 (ja) 2019-10-03

Family

ID=68060279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014337 WO2019189884A1 (ja) 2018-03-30 2019-03-29 血液浄化器及びその製法

Country Status (7)

Country Link
US (1) US11806461B2 (ja)
EP (1) EP3777915B1 (ja)
JP (1) JP6899957B2 (ja)
KR (1) KR102407423B1 (ja)
CN (1) CN111918682B (ja)
TW (1) TWI693948B (ja)
WO (1) WO2019189884A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203923A1 (ja) 2019-03-29 2020-10-08 旭化成メディカル株式会社 血液浄化器
WO2020203927A1 (ja) 2019-03-29 2020-10-08 旭化成メディカル株式会社 血液浄化器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI812942B (zh) * 2021-04-16 2023-08-21 伊達醫療器材科技股份有限公司 體外血液循環低能量光照射裝置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158664A (ja) * 1984-08-30 1986-03-25 旭化成株式会社 体外循環治療用多孔質ガラス系吸着剤
JP2002102335A (ja) 2000-09-28 2002-04-09 M P G Kk 血液透析装置
JP4671419B2 (ja) 2003-12-15 2011-04-20 旭化成ケミカルズ株式会社 多孔性成形体及びその製造方法
WO2011125758A1 (ja) 2010-03-31 2011-10-13 富田製薬株式会社 透析組成物、血液透析システムおよび血液透析器
WO2017082423A1 (ja) * 2015-11-11 2017-05-18 旭化成メディカル株式会社 血液処理用リン吸着剤、血液処理システム及び血液処理方法
JP2017086563A (ja) * 2015-11-11 2017-05-25 旭化成メディカル株式会社 サイトカイン及びハイモビリティグループボックス1の吸着体、並びに血液処理システム
WO2018212269A1 (ja) * 2017-05-17 2018-11-22 旭化成メディカル株式会社 血液処理用リン吸着剤、血液処理システム及び血液処理方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988007892A1 (en) * 1987-04-09 1988-10-20 Terumo Kabushiki Kaisha B lymphocyte separating material and body fluid clarifying material
JPH05137782A (ja) * 1991-11-22 1993-06-01 Ube Ind Ltd 血液浄化装置
JP2004305915A (ja) 2003-04-07 2004-11-04 Shin Nihon Salt Co Ltd セリウム水和酸化物含有濾過材
JP5268250B2 (ja) 2006-12-05 2013-08-21 旭化成メディカル株式会社 炎症性サイトカイン産生を抑制するフィルター材、装置、および方法
CA2719356C (en) 2008-03-31 2020-04-07 Toray Industries, Inc. Polymeric separation membrane for blood purification
JP5579116B2 (ja) 2011-03-30 2014-08-27 株式会社藤商事 遊技機
KR101631536B1 (ko) * 2011-08-09 2016-06-17 도레이 카부시키가이샤 흡착용 담체 및 그 제조방법
JP6149125B2 (ja) 2013-12-18 2017-06-14 旭化成メディカル株式会社 血液処理用分離膜及びこれを備える血液処理器
JP6020623B2 (ja) * 2015-03-02 2016-11-02 株式会社ジェイエスピー 発泡性アクリル系樹脂粒子、アクリル系樹脂発泡粒子、及びアクリル系樹脂発泡粒子成形体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158664A (ja) * 1984-08-30 1986-03-25 旭化成株式会社 体外循環治療用多孔質ガラス系吸着剤
JP2002102335A (ja) 2000-09-28 2002-04-09 M P G Kk 血液透析装置
JP4671419B2 (ja) 2003-12-15 2011-04-20 旭化成ケミカルズ株式会社 多孔性成形体及びその製造方法
WO2011125758A1 (ja) 2010-03-31 2011-10-13 富田製薬株式会社 透析組成物、血液透析システムおよび血液透析器
WO2017082423A1 (ja) * 2015-11-11 2017-05-18 旭化成メディカル株式会社 血液処理用リン吸着剤、血液処理システム及び血液処理方法
JP2017086563A (ja) * 2015-11-11 2017-05-25 旭化成メディカル株式会社 サイトカイン及びハイモビリティグループボックス1の吸着体、並びに血液処理システム
WO2018212269A1 (ja) * 2017-05-17 2018-11-22 旭化成メディカル株式会社 血液処理用リン吸着剤、血液処理システム及び血液処理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3777915A4
TANAKA, K.: "Artificial organ surface-biocompatibilizing materials", BIO INDUSTRY, vol. 20, no. 12, 2003, pages 59 - 70

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203923A1 (ja) 2019-03-29 2020-10-08 旭化成メディカル株式会社 血液浄化器
WO2020203927A1 (ja) 2019-03-29 2020-10-08 旭化成メディカル株式会社 血液浄化器

Also Published As

Publication number Publication date
US20210353845A1 (en) 2021-11-18
JPWO2019189884A1 (ja) 2020-12-17
EP3777915B1 (en) 2024-03-13
TW201945040A (zh) 2019-12-01
CN111918682B (zh) 2023-06-23
EP3777915A1 (en) 2021-02-17
JP6899957B2 (ja) 2021-07-07
US11806461B2 (en) 2023-11-07
CN111918682A (zh) 2020-11-10
KR102407423B1 (ko) 2022-06-10
TWI693948B (zh) 2020-05-21
KR20200128103A (ko) 2020-11-11
EP3777915A4 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
JP7074898B2 (ja) 血液処理用リン吸着剤、血液処理システム及び血液処理方法
CN110636874B (zh) 血液处理用磷吸附剂、血液处理系统及血液处理方法
CN113195013B (zh) 具备血液净化装置和血液成分调整器的体外血液循环系统
WO2019189884A1 (ja) 血液浄化器及びその製法
WO2019189881A1 (ja) 血液浄化器及びその製法
TWI782263B (zh) 血液淨化器
JP7228679B2 (ja) 血液浄化器及びその製法
JP7397856B2 (ja) 血液浄化器
JP2020163150A (ja) 血液処理用多孔性成形体
JP2021159305A (ja) 補体活性化を惹起しない血液処理用多孔性成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509357

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207028032

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019774274

Country of ref document: EP